code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import sys import turtle def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) -> List[Any]: '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) if depth == 0: return triangle(UpperCAmelCase_, get_mid(UpperCAmelCase_, UpperCAmelCase_ ), get_mid(UpperCAmelCase_, UpperCAmelCase_ ), depth - 1 ) triangle(UpperCAmelCase_, get_mid(UpperCAmelCase_, UpperCAmelCase_ ), get_mid(UpperCAmelCase_, UpperCAmelCase_ ), depth - 1 ) triangle(UpperCAmelCase_, get_mid(UpperCAmelCase_, UpperCAmelCase_ ), get_mid(UpperCAmelCase_, UpperCAmelCase_ ), depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) __A : str = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') __A : Optional[int] = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
353
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
0
__A : Any = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __A : list[bool | None] = [None] * 1000_0000 __A : Optional[Any] = True __A : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCAmelCase : Union[str, Any] = chain(next_number(_lowerCAmelCase ) ) lowerCAmelCase : int = number_chain while number < 10_000_000: lowerCAmelCase : Dict = number_chain number *= 10 return number_chain def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 10_000_000 ) -> int: '''simple docstring''' for i in range(1, _lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f'{solution() = }')
354
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 1_000_000 ) -> int: '''simple docstring''' lowerCAmelCase : Union[str, Any] = limit + 1 lowerCAmelCase : str = [0] * limit for first_term in range(1, _UpperCAmelCase ): for n in range(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): lowerCAmelCase : int = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCAmelCase : int = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
355
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
0
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __A : def __init__( self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : Optional[Any]=5 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : List[Any]=37 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : List[Any]=None , ): lowerCAmelCase : List[str] = parent lowerCAmelCase : int = batch_size lowerCAmelCase : Union[str, Any] = seq_length lowerCAmelCase : Dict = is_training lowerCAmelCase : str = use_input_mask lowerCAmelCase : Optional[int] = use_token_type_ids lowerCAmelCase : Any = use_labels lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Any = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : Dict = type_sequence_label_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Optional[int] = num_labels lowerCAmelCase : Dict = num_choices lowerCAmelCase : Optional[Any] = scope def lowercase__ ( self : List[str] ): lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : int = None lowerCAmelCase : Optional[int] = None if self.use_labels: lowerCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict ): return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowercase_ , ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): lowerCAmelCase : List[str] = FalconModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : Tuple = model(lowercase_ , attention_mask=lowercase_ ) lowerCAmelCase : Optional[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , ): lowerCAmelCase : Dict = True lowerCAmelCase : Any = FalconModel(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) lowerCAmelCase : str = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) lowerCAmelCase : int = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , ): lowerCAmelCase : Dict = FalconForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : int = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , ): lowerCAmelCase : str = True lowerCAmelCase : Any = True lowerCAmelCase : Union[str, Any] = FalconForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass lowerCAmelCase : List[str] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) lowerCAmelCase : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : int = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase : str = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] lowerCAmelCase : Union[str, Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice lowerCAmelCase : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[int] = config_and_inputs lowerCAmelCase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ : str = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ : Any = (FalconForCausalLM,) if is_torch_available() else () lowerCAmelCase_ : Optional[int] = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : Any = False def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Optional[Any] = FalconModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def lowercase__ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def lowercase__ ( self : Dict ): lowerCAmelCase , *lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowerCAmelCase : Optional[Any] = alibi self.model_tester.create_and_check_model(lowercase_ , *lowercase_ ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Union[str, Any] = 3 lowerCAmelCase : int = input_dict['input_ids'] lowerCAmelCase : List[str] = input_ids.ne(1 ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : List[str] = FalconForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : int ): lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Tuple = 3 lowerCAmelCase : Tuple = 'single_label_classification' lowerCAmelCase : int = input_dict['input_ids'] lowerCAmelCase : Dict = input_ids.ne(1 ).to(lowercase_ ) lowerCAmelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : int = FalconForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : List[str] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : List[str] ): lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Optional[int] = input_dict['input_ids'] lowerCAmelCase : List[str] = FalconForCausalLM(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : str = model(lowercase_ , use_cache=lowercase_ ) lowerCAmelCase : Tuple = input_ids.shape[0] lowerCAmelCase : int = model._convert_to_rw_cache(result.past_key_values ) lowerCAmelCase : Optional[int] = model._convert_cache_to_standard_format(lowercase_ , lowercase_ ) for layer in range(len(lowercase_ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Union[str, Any] = 3 lowerCAmelCase : Union[str, Any] = 'multi_label_classification' lowerCAmelCase : str = input_dict['input_ids'] lowerCAmelCase : Optional[Any] = input_ids.ne(1 ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase : List[Any] = FalconForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase : Dict = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : Tuple ): # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: lowerCAmelCase , lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(lowercase_ , 'use_cache' ): return lowerCAmelCase : str = model_class(lowercase_ ).to(lowercase_ ) if "use_cache" not in inputs: lowerCAmelCase : int = True lowerCAmelCase : Optional[int] = model(**lowercase_ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowerCAmelCase : List[Any] = ( getattr(lowercase_ , 'decoder_layers' , lowercase_ ) or getattr(lowercase_ , 'num_decoder_layers' , lowercase_ ) or config.num_hidden_layers ) lowerCAmelCase : Optional[Any] = getattr(lowercase_ , 'num_kv_heads' , config.num_attention_heads ) lowerCAmelCase : str = getattr(lowercase_ , 'd_model' , config.hidden_size ) lowerCAmelCase : List[Any] = embed_dim // num_attention_heads lowerCAmelCase : Dict = outputs['past_key_values'] self.assertEqual(len(lowercase_ ) , lowercase_ ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = inputs['input_ids'].shape for i in range(lowercase_ ): if config.new_decoder_architecture: lowerCAmelCase : str = config.num_attention_heads elif config.multi_query: lowerCAmelCase : List[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __A ( unittest.TestCase ): @slow def lowercase__ ( self : str ): lowerCAmelCase : Any = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) lowerCAmelCase : Dict = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(lowercase_ ) lowerCAmelCase : Dict = tokenizer('My favorite food is' , return_tensors='pt' ).to(lowercase_ ) lowerCAmelCase : Optional[Any] = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) lowerCAmelCase : int = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=19 ) lowerCAmelCase : Optional[Any] = tokenizer.batch_decode(lowercase_ )[0] self.assertEqual(lowercase_ , lowercase_ ) @slow def lowercase__ ( self : List[str] ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase : List[str] = FalconForCausalLM.from_pretrained(lowercase_ ) model.eval() model.to(lowercase_ ) lowerCAmelCase : int = tokenizer('My favorite food is' , return_tensors='pt' ).to(lowercase_ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4 ) model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4 ) model.generate(**lowercase_ , num_beams=2 , max_new_tokens=4 ) @slow def lowercase__ ( self : Optional[int] ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowerCAmelCase : int = AutoTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase : Tuple = FalconForCausalLM.from_pretrained(lowercase_ ) model.eval() model.to(device=lowercase_ ) lowerCAmelCase : List[Any] = tokenizer('My favorite food is' , return_tensors='pt' ).to(lowercase_ ) # Test results are the same with and without cache lowerCAmelCase : List[str] = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_ ) lowerCAmelCase : Any = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
356
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Any = { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''', # See all REALM models at https://huggingface.co/models?filter=realm } class __A ( A__ ): lowerCAmelCase_ : Dict = 'realm' def __init__( self : str , UpperCAmelCase_ : Optional[int]=30522 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : Union[str, Any]=128 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : List[Any]=8 , UpperCAmelCase_ : List[str]=3072 , UpperCAmelCase_ : Union[str, Any]="gelu_new" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-12 , UpperCAmelCase_ : Tuple=256 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : Union[str, Any]=1E-3 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : List[str]=320 , UpperCAmelCase_ : Optional[Any]=13353718 , UpperCAmelCase_ : Optional[Any]=5000 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : Optional[int]=2 , **UpperCAmelCase_ : Optional[int] , ): super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) # Common config lowerCAmelCase : str = vocab_size lowerCAmelCase : Optional[int] = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Optional[Any] = retriever_proj_size lowerCAmelCase : List[str] = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : List[str] = num_candidates lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : str = hidden_act lowerCAmelCase : Any = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : int = initializer_range lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : str = layer_norm_eps # Reader config lowerCAmelCase : Optional[int] = span_hidden_size lowerCAmelCase : Any = max_span_width lowerCAmelCase : Dict = reader_layer_norm_eps lowerCAmelCase : Optional[Any] = reader_beam_size lowerCAmelCase : Optional[Any] = reader_seq_len # Retrieval config lowerCAmelCase : Any = num_block_records lowerCAmelCase : Optional[int] = searcher_beam_size
357
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : List[str] = logging.get_logger(__name__) __A : List[Any] = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class __A ( a_ ): lowerCAmelCase_ : Optional[int] = "deit" def __init__( self : Tuple , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Tuple=3072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=1E-12 , UpperCAmelCase_ : Union[str, Any]=224 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[Any]=16 , **UpperCAmelCase_ : int , ): super().__init__(**lowercase_ ) lowerCAmelCase : Any = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : Tuple = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = initializer_range lowerCAmelCase : str = layer_norm_eps lowerCAmelCase : Tuple = image_size lowerCAmelCase : Tuple = patch_size lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Optional[Any] = qkv_bias lowerCAmelCase : int = encoder_stride class __A ( a_ ): lowerCAmelCase_ : Union[str, Any] = version.parse("1.11" ) @property def lowercase__ ( self : str ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase__ ( self : Any ): return 1E-4
358
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
0
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __A : Dict = direct_transformers_import(PATH_TO_TRANSFORMERS) __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING __A : Dict = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Dict = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"config.{attribute}" in modeling_source or f"getattr(config, \"{attribute}\"" in modeling_source or f"getattr(self.config, \"{attribute}\"" in modeling_source ): lowerCAmelCase : int = True # Deal with multi-line cases elif ( re.search( rf"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"", _lowercase, ) is not None ): lowerCAmelCase : Union[str, Any] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowerCAmelCase : Dict = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowerCAmelCase : Dict = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] lowerCAmelCase : Optional[int] = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed lowerCAmelCase : Union[str, Any] = True if not attribute_used: lowerCAmelCase : Optional[int] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowerCAmelCase : str = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowerCAmelCase : int = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowerCAmelCase : int = True elif attribute.endswith('_token_id' ): lowerCAmelCase : Optional[int] = True # configuration class specific cases if not case_allowed: lowerCAmelCase : int = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [] ) lowerCAmelCase : int = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = dict(inspect.signature(config_class.__init__ ).parameters ) lowerCAmelCase : str = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] lowerCAmelCase : Tuple = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowerCAmelCase : List[str] = {} if len(config_class.attribute_map ) > 0: lowerCAmelCase : List[str] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowerCAmelCase : List[Any] = inspect.getsourcefile(_lowercase ) lowerCAmelCase : List[str] = os.path.dirname(_lowercase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowerCAmelCase : Optional[Any] = [os.path.join(_lowercase, _lowercase ) for fn in os.listdir(_lowercase ) if fn.startswith('modeling_' )] # Get the source code strings lowerCAmelCase : str = [] for path in modeling_paths: if os.path.isfile(_lowercase ): with open(_lowercase ) as fp: modeling_sources.append(fp.read() ) lowerCAmelCase : int = [] for config_param, default_value in zip(_lowercase, _lowercase ): # `attributes` here is all the variant names for `config_param` lowerCAmelCase : Optional[Any] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_lowercase, _lowercase, _lowercase, _lowercase ): unused_attributes.append(attributes[0] ) return sorted(_lowercase ) def SCREAMING_SNAKE_CASE__ ( ) -> str: '''simple docstring''' lowerCAmelCase : int = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowerCAmelCase : Optional[int] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ), lambda _UpperCAmelCase : inspect.isclass(_lowercase ) and issubclass(_lowercase, _lowercase ) and inspect.getmodule(_lowercase ) == inspect.getmodule(_config_class ), ) ] for config_class in config_classes_in_module: lowerCAmelCase : Union[str, Any] = check_config_attributes_being_used(_lowercase ) if len(_lowercase ) > 0: lowerCAmelCase : str = unused_attributes if len(_lowercase ) > 0: lowerCAmelCase : Optional[int] = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += f"{name}: {attributes}\n" raise ValueError(_lowercase ) if __name__ == "__main__": check_config_attributes()
359
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
0
__A : Optional[Any] = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } __A : List[Any] = {value: key for key, value in encode_dict.items()} def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : int = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' if set(_UpperCAmelCase ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) lowerCAmelCase : str = """""" for word in coded.split(): while len(_UpperCAmelCase ) != 0: decoded += decode_dict[word[:5]] lowerCAmelCase : Optional[Any] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
360
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : int = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
0
from collections import deque from math import floor from random import random from time import time class __A : def __init__( self : List[str] ): lowerCAmelCase : Any = {} def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict=1 ): if self.graph.get(snake_case__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowerCAmelCase : Dict = [[w, v]] if not self.graph.get(snake_case__ ): lowerCAmelCase : Optional[Any] = [] def lowercase__ ( self : Any ): return list(self.graph ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] ): if self.graph.get(snake_case__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(snake_case__ ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple=-2 , UpperCAmelCase_ : Any=-1 ): if s == d: return [] lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] if s == -2: lowerCAmelCase : Dict = list(self.graph )[0] stack.append(snake_case__ ) visited.append(snake_case__ ) lowerCAmelCase : int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase : Tuple = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(snake_case__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase : int = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(snake_case__ ) != 0: lowerCAmelCase : Tuple = stack[len(snake_case__ ) - 1] else: lowerCAmelCase : Any = ss # check if se have reached the starting point if len(snake_case__ ) == 0: return visited def lowercase__ ( self : int , UpperCAmelCase_ : Any=-1 ): if c == -1: lowerCAmelCase : Optional[int] = floor(random() * 10000 ) + 10 for i in range(snake_case__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCAmelCase : List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(snake_case__ , snake_case__ , 1 ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=-2 ): lowerCAmelCase : List[Any] = deque() lowerCAmelCase : Optional[Any] = [] if s == -2: lowerCAmelCase : Any = list(self.graph )[0] d.append(snake_case__ ) visited.append(snake_case__ ) while d: lowerCAmelCase : Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] ): lowerCAmelCase : Dict = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowercase__ ( self : List[str] , UpperCAmelCase_ : str ): return len(self.graph[u] ) def lowercase__ ( self : int , UpperCAmelCase_ : int=-2 ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = [] if s == -2: lowerCAmelCase : Union[str, Any] = list(self.graph )[0] stack.append(snake_case__ ) visited.append(snake_case__ ) lowerCAmelCase : Optional[int] = s lowerCAmelCase : int = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase : str = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(snake_case__ ) != 0: lowerCAmelCase : Any = stack[len(snake_case__ ) - 1] else: lowerCAmelCase : Tuple = ss # check if se have reached the starting point if len(snake_case__ ) == 0: return sorted_nodes def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = [] lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : int = list(self.graph )[0] stack.append(snake_case__ ) visited.append(snake_case__ ) lowerCAmelCase : List[str] = -2 lowerCAmelCase : int = [] lowerCAmelCase : Optional[Any] = s lowerCAmelCase : int = False lowerCAmelCase : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase : int = len(snake_case__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase : Optional[Any] = True if len(snake_case__ ) != 0: lowerCAmelCase : Tuple = stack[len(snake_case__ ) - 1] else: lowerCAmelCase : Any = False indirect_parents.append(snake_case__ ) lowerCAmelCase : List[Any] = s lowerCAmelCase : Any = ss # check if se have reached the starting point if len(snake_case__ ) == 0: return list(snake_case__ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Any = [] lowerCAmelCase : List[Any] = list(self.graph )[0] stack.append(snake_case__ ) visited.append(snake_case__ ) lowerCAmelCase : str = -2 lowerCAmelCase : str = [] lowerCAmelCase : int = s lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase : str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase : Any = len(snake_case__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase : Optional[Any] = True if len(snake_case__ ) != 0: lowerCAmelCase : Optional[Any] = stack[len(snake_case__ ) - 1] else: lowerCAmelCase : Tuple = False indirect_parents.append(snake_case__ ) lowerCAmelCase : Dict = s lowerCAmelCase : List[str] = ss # check if se have reached the starting point if len(snake_case__ ) == 0: return False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple=-2 , UpperCAmelCase_ : Optional[int]=-1 ): lowerCAmelCase : Any = time() self.dfs(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = time() return end - begin def lowercase__ ( self : List[Any] , UpperCAmelCase_ : int=-2 ): lowerCAmelCase : Any = time() self.bfs(snake_case__ ) lowerCAmelCase : Optional[int] = time() return end - begin class __A : def __init__( self : Optional[int] ): lowerCAmelCase : int = {} def lowercase__ ( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any=1 ): if self.graph.get(snake_case__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowerCAmelCase : Dict = [[w, v]] # add the other way if self.graph.get(snake_case__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowerCAmelCase : Union[str, Any] = [[w, u]] def lowercase__ ( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int ): if self.graph.get(snake_case__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(snake_case__ ) # the other way round if self.graph.get(snake_case__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(snake_case__ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Optional[int]=-2 , UpperCAmelCase_ : Optional[int]=-1 ): if s == d: return [] lowerCAmelCase : Tuple = [] lowerCAmelCase : str = [] if s == -2: lowerCAmelCase : Tuple = list(self.graph )[0] stack.append(snake_case__ ) visited.append(snake_case__ ) lowerCAmelCase : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase : int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(snake_case__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(snake_case__ ) != 0: lowerCAmelCase : Optional[Any] = stack[len(snake_case__ ) - 1] else: lowerCAmelCase : Any = ss # check if se have reached the starting point if len(snake_case__ ) == 0: return visited def lowercase__ ( self : List[Any] , UpperCAmelCase_ : List[str]=-1 ): if c == -1: lowerCAmelCase : int = floor(random() * 10000 ) + 10 for i in range(snake_case__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCAmelCase : str = floor(random() * c ) + 1 if n != i: self.add_pair(snake_case__ , snake_case__ , 1 ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : List[Any]=-2 ): lowerCAmelCase : Union[str, Any] = deque() lowerCAmelCase : Tuple = [] if s == -2: lowerCAmelCase : int = list(self.graph )[0] d.append(snake_case__ ) visited.append(snake_case__ ) while d: lowerCAmelCase : Any = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Any ): return len(self.graph[u] ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : int = [] lowerCAmelCase : List[str] = [] lowerCAmelCase : Optional[int] = list(self.graph )[0] stack.append(snake_case__ ) visited.append(snake_case__ ) lowerCAmelCase : Optional[int] = -2 lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : List[Any] = s lowerCAmelCase : Dict = False lowerCAmelCase : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase : Tuple = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase : Optional[Any] = len(snake_case__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase : Optional[Any] = True if len(snake_case__ ) != 0: lowerCAmelCase : List[Any] = stack[len(snake_case__ ) - 1] else: lowerCAmelCase : Optional[int] = False indirect_parents.append(snake_case__ ) lowerCAmelCase : Tuple = s lowerCAmelCase : Any = ss # check if se have reached the starting point if len(snake_case__ ) == 0: return list(snake_case__ ) def lowercase__ ( self : int ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : int = list(self.graph )[0] stack.append(snake_case__ ) visited.append(snake_case__ ) lowerCAmelCase : int = -2 lowerCAmelCase : Tuple = [] lowerCAmelCase : List[str] = s lowerCAmelCase : int = False lowerCAmelCase : int = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase : List[Any] = len(snake_case__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase : Optional[int] = True if len(snake_case__ ) != 0: lowerCAmelCase : Optional[int] = stack[len(snake_case__ ) - 1] else: lowerCAmelCase : Optional[int] = False indirect_parents.append(snake_case__ ) lowerCAmelCase : int = s lowerCAmelCase : List[str] = ss # check if se have reached the starting point if len(snake_case__ ) == 0: return False def lowercase__ ( self : Dict ): return list(self.graph ) def lowercase__ ( self : Any , UpperCAmelCase_ : int=-2 , UpperCAmelCase_ : Union[str, Any]=-1 ): lowerCAmelCase : Tuple = time() self.dfs(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[int] = time() return end - begin def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any]=-2 ): lowerCAmelCase : Any = time() self.bfs(snake_case__ ) lowerCAmelCase : str = time() return end - begin
362
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
0
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __A : str = 3 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' print('Generating primitive root of p' ) while True: lowerCAmelCase : List[Any] = random.randrange(3, _lowercase ) if pow(_lowercase, 2, _lowercase ) == 1: continue if pow(_lowercase, _lowercase, _lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: '''simple docstring''' print('Generating prime p...' ) lowerCAmelCase : int = rabin_miller.generate_large_prime(_lowercase ) # select large prime number. lowerCAmelCase : str = primitive_root(_lowercase ) # one primitive root on modulo p. lowerCAmelCase : Dict = random.randrange(3, _lowercase ) # private_key -> have to be greater than 2 for safety. lowerCAmelCase : Optional[Any] = cryptomath.find_mod_inverse(pow(_lowercase, _lowercase, _lowercase ), _lowercase ) lowerCAmelCase : Optional[Any] = (key_size, e_a, e_a, p) lowerCAmelCase : int = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> None: '''simple docstring''' if os.path.exists(f"{name}_pubkey.txt" ) or os.path.exists(f"{name}_privkey.txt" ): print('\nWARNING:' ) print( f"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" 'Use a different name or delete these files and re-run this program.' ) sys.exit() lowerCAmelCase : Optional[Any] = generate_key(_lowercase ) print(f"\nWriting public key to file {name}_pubkey.txt..." ) with open(f"{name}_pubkey.txt", 'w' ) as fo: fo.write(f"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}" ) print(f"Writing private key to file {name}_privkey.txt..." ) with open(f"{name}_privkey.txt", 'w' ) as fo: fo.write(f"{private_key[0]},{private_key[1]}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' print('Making key files...' ) make_key_files('elgamal', 2_048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
363
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> list[int]: '''simple docstring''' if num <= 0: raise ValueError('Input must be a positive integer' ) lowerCAmelCase : List[str] = [True] * (num + 1) lowerCAmelCase : int = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, _UpperCAmelCase ): lowerCAmelCase : Dict = False p += 1 return [prime for prime in range(2, num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __A : Optional[int] = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
364
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> list[str]: '''simple docstring''' if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) lowerCAmelCase : str = number_of_bytes // partitions lowerCAmelCase : str = [] for i in range(snake_case__ ): lowerCAmelCase : Any = i * bytes_per_partition + 1 lowerCAmelCase : List[str] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"{start_bytes}-{end_bytes}" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
365
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
0
"""simple docstring""" import re def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if len(re.findall('[ATCG]', lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG', 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
366
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
0
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : str = old_name if "patch_embed" in old_name: lowerCAmelCase : Tuple = old_name.split('.' ) if layer == "0": lowerCAmelCase : Optional[Any] = old_name.replace('0', 'convolution1' ) elif layer == "1": lowerCAmelCase : List[str] = old_name.replace('1', 'batchnorm_before' ) elif layer == "3": lowerCAmelCase : Optional[Any] = old_name.replace('3', 'convolution2' ) else: lowerCAmelCase : Any = old_name.replace('4', 'batchnorm_after' ) if "network" in old_name and re.search(r'\d\.\d', SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[Any] = R'''\b\d{2}\b''' if bool(re.search(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) ): lowerCAmelCase : Union[str, Any] = re.search(r'\d\.\d\d.', SCREAMING_SNAKE_CASE__ ).group() else: lowerCAmelCase : str = re.search(r'\d\.\d.', SCREAMING_SNAKE_CASE__ ).group() if int(match[0] ) < 6: lowerCAmelCase : Any = old_name.replace(SCREAMING_SNAKE_CASE__, '' ) lowerCAmelCase : Dict = trimmed_name.replace('network', match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) lowerCAmelCase : Optional[int] = '''intermediate_stages.''' + trimmed_name else: lowerCAmelCase : Any = old_name.replace(SCREAMING_SNAKE_CASE__, '' ) if int(match[2] ) < num_meta4D_last_stage: lowerCAmelCase : Union[str, Any] = trimmed_name.replace('network', 'meta4D_layers.blocks.' + match[2] ) else: lowerCAmelCase : int = str(int(match[2] ) - num_meta4D_last_stage ) lowerCAmelCase : str = trimmed_name.replace('network', 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: lowerCAmelCase : str = trimmed_name.replace('norm1', 'layernorm1' ) elif "norm2" in old_name: lowerCAmelCase : Dict = trimmed_name.replace('norm2', 'layernorm2' ) elif "fc1" in old_name: lowerCAmelCase : Union[str, Any] = trimmed_name.replace('fc1', 'linear_in' ) elif "fc2" in old_name: lowerCAmelCase : int = trimmed_name.replace('fc2', 'linear_out' ) lowerCAmelCase : Dict = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'.\d.', SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Optional[int] = old_name.replace('network', 'intermediate_stages' ) if "fc" in new_name: lowerCAmelCase : str = new_name.replace('fc', 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): lowerCAmelCase : List[str] = new_name.replace('norm1', 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): lowerCAmelCase : List[Any] = new_name.replace('norm2', 'batchnorm_after' ) if "proj" in new_name: lowerCAmelCase : Union[str, Any] = new_name.replace('proj', 'projection' ) if "dist_head" in new_name: lowerCAmelCase : int = new_name.replace('dist_head', 'distillation_classifier' ) elif "head" in new_name: lowerCAmelCase : Optional[Any] = new_name.replace('head', 'classifier' ) elif "patch_embed" in new_name: lowerCAmelCase : Union[str, Any] = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": lowerCAmelCase : Optional[int] = new_name.replace('norm', 'layernorm' ) lowerCAmelCase : List[str] = '''efficientformer.''' + new_name else: lowerCAmelCase : List[str] = '''efficientformer.encoder.''' + new_name return new_name def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' for key in checkpoint.copy().keys(): lowerCAmelCase : int = checkpoint.pop(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = val return checkpoint def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : str = Image.open(requests.get(SCREAMING_SNAKE_CASE__, stream=SCREAMING_SNAKE_CASE__ ).raw ) return image def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Dict = torch.load(SCREAMING_SNAKE_CASE__, map_location='cpu' )['''model'''] lowerCAmelCase : List[str] = EfficientFormerConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : str = EfficientFormerForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = '''_'''.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) lowerCAmelCase : Union[str, Any] = config.depths[-1] - config.num_metaad_blocks + 1 lowerCAmelCase : Optional[int] = convert_torch_checkpoint(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase : Tuple = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image lowerCAmelCase : Tuple = prepare_img() lowerCAmelCase : Any = 256 lowerCAmelCase : Any = 224 lowerCAmelCase : List[Any] = EfficientFormerImageProcessor( size={'shortest_edge': image_size}, crop_size={'height': crop_size, 'width': crop_size}, resample=pillow_resamplings['bicubic'], ) lowerCAmelCase : Dict = processor(images=SCREAMING_SNAKE_CASE__, return_tensors='pt' ).pixel_values # original processing pipeline lowerCAmelCase : Dict = Compose( [ Resize(SCREAMING_SNAKE_CASE__, interpolation=pillow_resamplings['bicubic'] ), CenterCrop(SCREAMING_SNAKE_CASE__ ), ToTensor(), Normalize(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), ] ) lowerCAmelCase : List[Any] = image_transforms(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) assert torch.allclose(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Any = model(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = outputs.logits lowerCAmelCase : List[Any] = (1, 1_000) if "l1" in model_name: lowerCAmelCase : Any = torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :10], SCREAMING_SNAKE_CASE__, atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: lowerCAmelCase : Any = torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :10], SCREAMING_SNAKE_CASE__, atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: lowerCAmelCase : List[Any] = torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Processor successfuly saved at {pytorch_dump_path}" ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}", commit_message='Add model', use_temp_dir=SCREAMING_SNAKE_CASE__, ) processor.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}", commit_message='Add image processor', use_temp_dir=SCREAMING_SNAKE_CASE__, ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) __A : int = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
367
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __A : @staticmethod def lowercase__ ( *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple ): pass @is_pipeline_test @require_vision @require_timm @require_torch class __A ( unittest.TestCase ): lowerCAmelCase_ : Tuple = MODEL_FOR_OBJECT_DETECTION_MAPPING def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any ): lowerCAmelCase : str = ObjectDetectionPipeline(model=UpperCamelCase__ , image_processor=UpperCamelCase__ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowercase__ ( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : Optional[Any] = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(UpperCamelCase__ ) , 0 ) for detected_object in outputs: self.assertEqual( UpperCamelCase__ , { 'score': ANY(UpperCamelCase__ ), 'label': ANY(UpperCamelCase__ ), 'box': {'xmin': ANY(UpperCamelCase__ ), 'ymin': ANY(UpperCamelCase__ ), 'xmax': ANY(UpperCamelCase__ ), 'ymax': ANY(UpperCamelCase__ )}, } , ) import datasets lowerCAmelCase : Any = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowerCAmelCase : List[Any] = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] lowerCAmelCase : Any = object_detector(UpperCamelCase__ , threshold=0.0 ) self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) for outputs in batch_outputs: self.assertGreater(len(UpperCamelCase__ ) , 0 ) for detected_object in outputs: self.assertEqual( UpperCamelCase__ , { 'score': ANY(UpperCamelCase__ ), 'label': ANY(UpperCamelCase__ ), 'box': {'xmin': ANY(UpperCamelCase__ ), 'ymin': ANY(UpperCamelCase__ ), 'xmax': ANY(UpperCamelCase__ ), 'ymax': ANY(UpperCamelCase__ )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def lowercase__ ( self : str ): pass @require_torch def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = 'hf-internal-testing/tiny-detr-mobilenetsv3' lowerCAmelCase : List[str] = AutoModelForObjectDetection.from_pretrained(UpperCamelCase__ ) lowerCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ) lowerCAmelCase : Tuple = ObjectDetectionPipeline(model=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) lowerCAmelCase : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'score': 0.33_76, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.33_76, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ] , ) lowerCAmelCase : List[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'score': 0.33_76, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.33_76, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.33_76, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.33_76, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ] , ) @require_torch @slow def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = 'facebook/detr-resnet-50' lowerCAmelCase : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(UpperCamelCase__ ) lowerCAmelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ) lowerCAmelCase : str = ObjectDetectionPipeline(model=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) lowerCAmelCase : Tuple = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'score': 0.99_82, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.99_60, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.99_55, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.99_88, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.99_87, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) lowerCAmelCase : Optional[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'score': 0.99_82, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.99_60, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.99_55, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.99_88, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.99_87, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.99_82, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.99_60, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.99_55, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.99_88, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.99_87, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : str = 'facebook/detr-resnet-50' lowerCAmelCase : Tuple = pipeline('object-detection' , model=UpperCamelCase__ ) lowerCAmelCase : int = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'score': 0.99_82, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.99_60, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.99_55, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.99_88, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.99_87, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) lowerCAmelCase : List[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'score': 0.99_82, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.99_60, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.99_55, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.99_88, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.99_87, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.99_82, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.99_60, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.99_55, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.99_88, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.99_87, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[Any] = 0.99_85 lowerCAmelCase : str = 'facebook/detr-resnet-50' lowerCAmelCase : Any = pipeline('object-detection' , model=UpperCamelCase__ ) lowerCAmelCase : Union[str, Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=UpperCamelCase__ ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'score': 0.99_88, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.99_87, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) @require_torch @require_pytesseract @slow def lowercase__ ( self : Dict ): lowerCAmelCase : Any = 'Narsil/layoutlmv3-finetuned-funsd' lowerCAmelCase : Optional[int] = 0.99_93 lowerCAmelCase : Dict = pipeline('object-detection' , model=UpperCamelCase__ , threshold=UpperCamelCase__ ) lowerCAmelCase : Optional[int] = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'score': 0.99_93, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.99_93, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ] , )
369
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
0
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase_ : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def lowercase__ ( self : List[str] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowercase__ ( self : Tuple ): lowerCAmelCase : Tuple = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) lowerCAmelCase : List[str] = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1E-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1E-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) lowerCAmelCase : int = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1E-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1E-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) lowerCAmelCase : int = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2E-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2E-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9E-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def lowercase__ ( self : Optional[int] ): lowerCAmelCase : str = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) lowerCAmelCase : List[Any] = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2E-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2E-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) lowerCAmelCase : Union[str, Any] = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2E-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2E-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) lowerCAmelCase : str = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1E-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2E-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2E-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) lowerCAmelCase : List[Any] = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ [ { 'score': 2.2E-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2E-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2E-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2E-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def lowercase__ ( self : Any ): lowerCAmelCase : str = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() lowerCAmelCase : Any = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_lowercase , _lowercase ) @slow @require_torch def lowercase__ ( self : int ): lowerCAmelCase : Optional[int] = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_lowercase ) @slow @require_tf def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_lowercase ) def lowercase__ ( self : Dict , UpperCAmelCase_ : str ): lowerCAmelCase : int = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_lowercase ) , [ {'sequence': 'My name is John', 'score': 0.0_08, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_07, 'token': 1573, 'token_str': ' Chris'}, ] , ) lowerCAmelCase : Union[str, Any] = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_lowercase ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_51, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_14, 'token': 12790, 'token_str': ' Lyon', }, ] , ) lowerCAmelCase : List[str] = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_00, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_00, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def lowercase__ ( self : List[Any] ): lowerCAmelCase : str = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) lowerCAmelCase : Tuple = None lowerCAmelCase : Union[str, Any] = None self.run_pipeline_test(_lowercase , [] ) @require_tf def lowercase__ ( self : str ): lowerCAmelCase : Optional[int] = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) lowerCAmelCase : Any = None lowerCAmelCase : str = None self.run_pipeline_test(_lowercase , [] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) lowerCAmelCase : Optional[int] = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) lowerCAmelCase : Dict = [ f"This is another {tokenizer.mask_token} test", ] return fill_masker, examples def lowercase__ ( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple ): lowerCAmelCase : str = fill_masker.tokenizer lowerCAmelCase : Optional[Any] = fill_masker.model lowerCAmelCase : List[Any] = fill_masker( f"This is a {tokenizer.mask_token}" , ) self.assertEqual( _lowercase , [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ] , ) lowerCAmelCase : List[Any] = fill_masker([f"This is a {tokenizer.mask_token}"] ) self.assertEqual( _lowercase , [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ] , ) lowerCAmelCase : Dict = fill_masker([f"This is a {tokenizer.mask_token}", f"Another {tokenizer.mask_token} great test."] ) self.assertEqual( _lowercase , [ [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ], [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ], ] , ) with self.assertRaises(_lowercase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_lowercase ): fill_masker('This is' ) self.run_test_top_k(_lowercase , _lowercase ) self.run_test_targets(_lowercase , _lowercase ) self.run_test_top_k_targets(_lowercase , _lowercase ) self.fill_mask_with_duplicate_targets_and_top_k(_lowercase , _lowercase ) self.fill_mask_with_multiple_masks(_lowercase , _lowercase ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : Union[str, Any] = tokenizer.get_vocab() lowerCAmelCase : Union[str, Any] = sorted(vocab.keys() )[:2] # Pipeline argument lowerCAmelCase : Dict = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase , targets=_lowercase ) lowerCAmelCase : Union[str, Any] = fill_masker(f"This is a {tokenizer.mask_token}" ) self.assertEqual( _lowercase , [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ] , ) lowerCAmelCase : Optional[int] = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _lowercase ) lowerCAmelCase : Tuple = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_lowercase ) ) # Call argument lowerCAmelCase : Optional[int] = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) lowerCAmelCase : int = fill_masker(f"This is a {tokenizer.mask_token}" , targets=_lowercase ) self.assertEqual( _lowercase , [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ] , ) lowerCAmelCase : Tuple = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _lowercase ) lowerCAmelCase : str = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_lowercase ) ) # Score equivalence lowerCAmelCase : Tuple = fill_masker(f"This is a {tokenizer.mask_token}" , targets=_lowercase ) lowerCAmelCase : Dict = [top_mask['token_str'] for top_mask in outputs] lowerCAmelCase : List[Any] = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowercase ) == set(_lowercase ): lowerCAmelCase : List[Any] = fill_masker(f"This is a {tokenizer.mask_token}" , targets=_lowercase ) lowerCAmelCase : str = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) # Raises with invalid with self.assertRaises(_lowercase ): lowerCAmelCase : Optional[int] = fill_masker(f"This is a {tokenizer.mask_token}" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_lowercase ): lowerCAmelCase : Any = fill_masker(f"This is a {tokenizer.mask_token}" , targets=[''] ) with self.assertRaises(_lowercase ): lowerCAmelCase : List[str] = fill_masker(f"This is a {tokenizer.mask_token}" , targets='' ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : List[str] = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase , top_k=2 ) lowerCAmelCase : List[Any] = fill_masker(f"This is a {tokenizer.mask_token}" ) self.assertEqual( _lowercase , [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ] , ) lowerCAmelCase : List[str] = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) lowerCAmelCase : Dict = fill_masker(f"This is a {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( _lowercase , [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ] , ) self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple ): lowerCAmelCase : Tuple = tokenizer.get_vocab() lowerCAmelCase : int = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) # top_k=2, ntargets=3 lowerCAmelCase : Tuple = sorted(vocab.keys() )[:3] lowerCAmelCase : Any = fill_masker(f"This is a {tokenizer.mask_token}" , top_k=2 , targets=_lowercase ) # If we use the most probably targets, and filter differently, we should still # have the same results lowerCAmelCase : List[str] = [el['token_str'] for el in sorted(_lowercase , key=lambda UpperCAmelCase_ : x["score"] , reverse=_lowercase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowercase ).issubset(_lowercase ): lowerCAmelCase : int = fill_masker(f"This is a {tokenizer.mask_token}" , top_k=3 , targets=_lowercase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : List[Any] = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) lowerCAmelCase : Tuple = tokenizer.get_vocab() # String duplicates + id duplicates lowerCAmelCase : Union[str, Any] = sorted(vocab.keys() )[:3] lowerCAmelCase : Tuple = [targets[0], targets[1], targets[0], targets[2], targets[1]] lowerCAmelCase : Optional[int] = fill_masker(f"My name is {tokenizer.mask_token}" , targets=_lowercase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_lowercase ) , 3 ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) lowerCAmelCase : int = fill_masker( f"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( _lowercase , [ [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ], [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ], [ {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, {'sequence': ANY(_lowercase ), 'score': ANY(_lowercase ), 'token': ANY(_lowercase ), 'token_str': ANY(_lowercase )}, ], ] , )
370
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : List[str] = argparse.ArgumentParser(add_help=a__, allow_abbrev=a__ ) # The main config parser lowerCAmelCase : Dict = config_command_parser(a__ ) # The subparser to add commands to lowerCAmelCase : Dict = config_parser.add_subparsers(title='subcommands', dest='subcommand' ) # Then add other parsers with the parent parser default_command_parser(a__, parents=[parent_parser] ) update_command_parser(a__, parents=[parent_parser] ) return config_parser def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: '''simple docstring''' lowerCAmelCase : Union[str, Any] = get_config_parser() lowerCAmelCase : Any = config_parser.parse_args() if not hasattr(a__, 'func' ): config_parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from queue import PriorityQueue from typing import Any import numpy as np def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) -> Tuple: '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCAmelCase : Any = cst_fwd.get(__a, np.inf ) lowerCAmelCase : Optional[int] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCAmelCase : Optional[Any] = new_cost_f lowerCAmelCase : List[Any] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCAmelCase : str = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Union[str, Any] = -1 lowerCAmelCase : List[Any] = set() lowerCAmelCase : str = set() lowerCAmelCase : List[Any] = {source: 0} lowerCAmelCase : Union[str, Any] = {destination: 0} lowerCAmelCase : Optional[Any] = {source: None} lowerCAmelCase : Union[str, Any] = {destination: None} lowerCAmelCase : PriorityQueue[Any] = PriorityQueue() lowerCAmelCase : PriorityQueue[Any] = PriorityQueue() lowerCAmelCase : Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCAmelCase : List[Any] = queue_forward.get() visited_forward.add(__a ) lowerCAmelCase : Dict = queue_backward.get() visited_backward.add(__a ) lowerCAmelCase : Dict = pass_and_relaxation( __a, __a, __a, __a, __a, __a, __a, __a, __a, ) lowerCAmelCase : str = pass_and_relaxation( __a, __a, __a, __a, __a, __a, __a, __a, __a, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCAmelCase : Optional[int] = shortest_distance return shortest_path_distance __A : Dict = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __A : Optional[int] = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
350
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
0
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A : def __init__( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=13 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Any=10 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : List[Any] = parent lowerCAmelCase : Tuple = batch_size lowerCAmelCase : List[Any] = image_size lowerCAmelCase : List[str] = patch_size lowerCAmelCase : List[Any] = num_channels lowerCAmelCase : Union[str, Any] = is_training lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : int = type_sequence_label_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase : Union[str, Any] = (image_size // patch_size) ** 2 lowerCAmelCase : List[Any] = num_patches + 1 def lowercase__ ( self : Any ): lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[Any] ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : int = ViTMSNModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Any = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : Any = self.type_sequence_label_size lowerCAmelCase : Tuple = ViTMSNForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase : Any = 1 lowerCAmelCase : Tuple = ViTMSNForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.prepare_config_and_inputs() lowerCAmelCase : List[str] = config_and_inputs lowerCAmelCase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): lowerCAmelCase_ : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowerCAmelCase_ : List[str] = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Optional[int] = False def lowercase__ ( self : str ): lowerCAmelCase : Tuple = ViTMSNModelTester(self ) lowerCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def lowercase__ ( self : Any ): pass def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : str = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : int = model_class(UpperCAmelCase_ ) lowerCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : List[Any] ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Any = ViTMSNModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( ): '''simple docstring''' lowerCAmelCase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Any ): return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def lowercase__ ( self : Optional[Any] ): torch.manual_seed(2 ) lowerCAmelCase : Optional[Any] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(UpperCAmelCase_ ) lowerCAmelCase : int = self.default_image_processor lowerCAmelCase : str = prepare_img() lowerCAmelCase : str = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**UpperCAmelCase_ ) # verify the logits lowerCAmelCase : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) lowerCAmelCase : int = torch.tensor([-0.08_03, -0.44_54, -0.23_75] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
351
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( __lowercase ): lowerCAmelCase_ : Tuple = ["image_processor", "tokenizer"] lowerCAmelCase_ : Any = "LayoutLMv2ImageProcessor" lowerCAmelCase_ : List[str] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Tuple , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : Tuple ): if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case_ , ) lowerCAmelCase : int = kwargs.pop('feature_extractor' ) lowerCAmelCase : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case_ , snake_case_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase_ : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase_ : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : Dict , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor lowerCAmelCase : Any = self.image_processor(images=snake_case_ , return_tensors=snake_case_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(snake_case_ , snake_case_ ): lowerCAmelCase : Optional[int] = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase : List[Any] = features['''words'''] lowerCAmelCase : str = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) # add pixel values lowerCAmelCase : List[str] = features.pop('pixel_values' ) if return_overflowing_tokens is True: lowerCAmelCase : Optional[Any] = self.get_overflowing_images(snake_case_ , encoded_inputs['overflow_to_sample_mapping'] ) lowerCAmelCase : List[str] = images return encoded_inputs def lowercase__ ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowerCAmelCase : Union[str, Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(snake_case_ ) != len(snake_case_ ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f" {len(snake_case_ )} and {len(snake_case_ )}" ) return images_with_overflow def lowercase__ ( self : Optional[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[str] ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowercase__ ( self : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def lowercase__ ( self : Any ): return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase__ ( self : int ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case_ , ) return self.image_processor_class @property def lowercase__ ( self : Tuple ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case_ , ) return self.image_processor
352
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __A : List[str] = { """n_samples""": 64, """horizon""": 32, """num_inference_steps""": 20, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": __A : Union[str, Any] = """hopper-medium-v2""" __A : List[str] = gym.make(env_name) __A : Optional[Any] = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) __A : List[str] = env.reset() __A : Any = 0 __A : Dict = 0 __A : Optional[int] = 1000 __A : Tuple = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __A : Optional[int] = pipeline(obs, planning_horizon=32) # execute action in environment __A : Optional[Any] = env.step(denorm_actions) __A : int = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' F' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) __A : Optional[Any] = next_observation except KeyboardInterrupt: pass print(F'Total reward: {total_reward}')
353
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
0
class __A ( lowercase_ ): pass class __A ( lowercase_ ): pass class __A : def __init__( self : Tuple ): lowerCAmelCase : List[str] = [ [], [], [], ] def lowercase__ ( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ): try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(a__ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def lowercase__ ( self : Union[str, Any] ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self : Optional[Any] ): return "\n".join(f"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __A : def __init__( self : Tuple ): lowerCAmelCase : List[str] = [] def lowercase__ ( self : List[str] , UpperCAmelCase_ : int ): if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(a__ ) def lowercase__ ( self : Any ): if not self.queue: raise UnderFlowError('The queue is empty' ) else: lowerCAmelCase : List[Any] = min(self.queue ) self.queue.remove(a__ ) return data def __str__( self : int ): return str(self.queue ) def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: '''simple docstring''' lowerCAmelCase : Dict = FixedPriorityQueue() fpq.enqueue(0, 10 ) fpq.enqueue(1, 70 ) fpq.enqueue(0, 100 ) fpq.enqueue(2, 1 ) fpq.enqueue(2, 5 ) fpq.enqueue(1, 7 ) fpq.enqueue(2, 4 ) fpq.enqueue(1, 64 ) fpq.enqueue(0, 128 ) print(_UpperCAmelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_UpperCAmelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def SCREAMING_SNAKE_CASE__ ( ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_UpperCAmelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_UpperCAmelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
354
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) __A : Optional[int] = _symbol_database.Default() __A : List[Any] = _descriptor_pool.Default().AddSerializedFile( b'''\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03''' ) __A : List[Any] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals) if _descriptor._USE_C_DESCRIPTORS is False: __A : str = None __A : Optional[Any] = b'''H\003''' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" __A : Dict = 45 __A : Optional[Any] = 1581 __A : Optional[Any] = 1517 __A : Union[str, Any] = 1570 __A : List[str] = 1584 __A : Optional[Any] = 1793 __A : Union[str, Any] = 1795 __A : List[Any] = 1916 __A : List[Any] = 1864 __A : str = 1905 __A : Any = 1919 __A : Optional[int] = 2429 __A : Tuple = 2208 __A : Dict = 2418 __A : Any = 2323 __A : Optional[Any] = 2407 # @@protoc_insertion_point(module_scope)
355
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __A : List[Any] = { 'sample_size': 32, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': 1000, 'block_out_channels': [32, 64], 'attention_head_dim': 8, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __A : Dict = { 'sample_size': 64, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 3, 'num_class_embeds': 1000, 'block_out_channels': [192, 192 * 2, 192 * 3, 192 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __A : Optional[Any] = { 'sample_size': 256, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': None, 'block_out_channels': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'default', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __A : str = { 'num_train_timesteps': 40, 'sigma_min': 0.0_02, 'sigma_max': 80.0, } __A : str = { 'num_train_timesteps': 201, 'sigma_min': 0.0_02, 'sigma_max': 80.0, } __A : Optional[Any] = { 'num_train_timesteps': 151, 'sigma_min': 0.0_02, 'sigma_max': 80.0, } def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' if isinstance(lowerCamelCase_, lowerCamelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' lowerCAmelCase : Dict = checkpoint[f"{old_prefix}.in_layers.0.weight"] lowerCAmelCase : Dict = checkpoint[f"{old_prefix}.in_layers.0.bias"] lowerCAmelCase : Optional[int] = checkpoint[f"{old_prefix}.in_layers.2.weight"] lowerCAmelCase : Union[str, Any] = checkpoint[f"{old_prefix}.in_layers.2.bias"] lowerCAmelCase : Optional[Any] = checkpoint[f"{old_prefix}.emb_layers.1.weight"] lowerCAmelCase : List[Any] = checkpoint[f"{old_prefix}.emb_layers.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[f"{old_prefix}.out_layers.0.weight"] lowerCAmelCase : int = checkpoint[f"{old_prefix}.out_layers.0.bias"] lowerCAmelCase : Optional[Any] = checkpoint[f"{old_prefix}.out_layers.3.weight"] lowerCAmelCase : Dict = checkpoint[f"{old_prefix}.out_layers.3.bias"] if has_skip: lowerCAmelCase : str = checkpoint[f"{old_prefix}.skip_connection.weight"] lowerCAmelCase : Dict = checkpoint[f"{old_prefix}.skip_connection.bias"] return new_checkpoint def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None ) -> Tuple: '''simple docstring''' lowerCAmelCase : Optional[int] = checkpoint[f"{old_prefix}.qkv.weight"].chunk(3, dim=0 ) lowerCAmelCase : List[str] = checkpoint[f"{old_prefix}.qkv.bias"].chunk(3, dim=0 ) lowerCAmelCase : Dict = checkpoint[f"{old_prefix}.norm.weight"] lowerCAmelCase : Tuple = checkpoint[f"{old_prefix}.norm.bias"] lowerCAmelCase : Union[str, Any] = weight_q.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase : Union[str, Any] = bias_q.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase : int = weight_k.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase : Any = bias_k.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase : int = weight_v.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase : int = bias_v.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase : Tuple = ( checkpoint[f"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) lowerCAmelCase : Dict = checkpoint[f"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : List[Any] = torch.load(lowerCamelCase_, map_location='cpu' ) lowerCAmelCase : str = {} lowerCAmelCase : Dict = checkpoint['''time_embed.0.weight'''] lowerCAmelCase : Optional[int] = checkpoint['''time_embed.0.bias'''] lowerCAmelCase : str = checkpoint['''time_embed.2.weight'''] lowerCAmelCase : Dict = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: lowerCAmelCase : List[Any] = checkpoint['''label_emb.weight'''] lowerCAmelCase : Any = checkpoint['''input_blocks.0.0.weight'''] lowerCAmelCase : Dict = checkpoint['''input_blocks.0.0.bias'''] lowerCAmelCase : Union[str, Any] = unet_config['''down_block_types'''] lowerCAmelCase : str = unet_config['''layers_per_block'''] lowerCAmelCase : Any = unet_config['''attention_head_dim'''] lowerCAmelCase : Optional[Any] = unet_config['''block_out_channels'''] lowerCAmelCase : List[str] = 1 lowerCAmelCase : Dict = channels_list[0] for i, layer_type in enumerate(lowerCamelCase_ ): lowerCAmelCase : str = channels_list[i] lowerCAmelCase : Dict = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(lowerCamelCase_ ): lowerCAmelCase : List[str] = f"down_blocks.{i}.resnets.{j}" lowerCAmelCase : int = f"input_blocks.{current_layer}.0" lowerCAmelCase : List[str] = True if j == 0 and downsample_block_has_skip else False lowerCAmelCase : Tuple = convert_resnet(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, has_skip=lowerCamelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(lowerCamelCase_ ): lowerCAmelCase : List[str] = f"down_blocks.{i}.resnets.{j}" lowerCAmelCase : List[str] = f"input_blocks.{current_layer}.0" lowerCAmelCase : Tuple = True if j == 0 and downsample_block_has_skip else False lowerCAmelCase : Optional[Any] = convert_resnet(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, has_skip=lowerCamelCase_ ) lowerCAmelCase : int = f"down_blocks.{i}.attentions.{j}" lowerCAmelCase : List[Any] = f"input_blocks.{current_layer}.1" lowerCAmelCase : List[Any] = convert_attention( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) current_layer += 1 if i != len(lowerCamelCase_ ) - 1: lowerCAmelCase : List[Any] = f"down_blocks.{i}.downsamplers.0" lowerCAmelCase : List[Any] = f"input_blocks.{current_layer}.0" lowerCAmelCase : Tuple = convert_resnet(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) current_layer += 1 lowerCAmelCase : Optional[int] = current_channels # hardcoded the mid-block for now lowerCAmelCase : Optional[Any] = '''mid_block.resnets.0''' lowerCAmelCase : List[str] = '''middle_block.0''' lowerCAmelCase : Optional[int] = convert_resnet(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) lowerCAmelCase : Dict = '''mid_block.attentions.0''' lowerCAmelCase : List[Any] = '''middle_block.1''' lowerCAmelCase : Dict = convert_attention(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) lowerCAmelCase : List[Any] = '''mid_block.resnets.1''' lowerCAmelCase : Tuple = '''middle_block.2''' lowerCAmelCase : Any = convert_resnet(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) lowerCAmelCase : str = 0 lowerCAmelCase : int = unet_config['''up_block_types'''] for i, layer_type in enumerate(lowerCamelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowerCAmelCase : Any = f"up_blocks.{i}.resnets.{j}" lowerCAmelCase : Dict = f"output_blocks.{current_layer}.0" lowerCAmelCase : Dict = convert_resnet(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, has_skip=lowerCamelCase_ ) current_layer += 1 if i != len(lowerCamelCase_ ) - 1: lowerCAmelCase : int = f"up_blocks.{i}.upsamplers.0" lowerCAmelCase : Union[str, Any] = f"output_blocks.{current_layer-1}.1" lowerCAmelCase : Union[str, Any] = convert_resnet(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowerCAmelCase : Optional[Any] = f"up_blocks.{i}.resnets.{j}" lowerCAmelCase : str = f"output_blocks.{current_layer}.0" lowerCAmelCase : List[Any] = convert_resnet(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, has_skip=lowerCamelCase_ ) lowerCAmelCase : Optional[Any] = f"up_blocks.{i}.attentions.{j}" lowerCAmelCase : Optional[Any] = f"output_blocks.{current_layer}.1" lowerCAmelCase : str = convert_attention( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) current_layer += 1 if i != len(lowerCamelCase_ ) - 1: lowerCAmelCase : Optional[Any] = f"up_blocks.{i}.upsamplers.0" lowerCAmelCase : List[str] = f"output_blocks.{current_layer-1}.2" lowerCAmelCase : Dict = convert_resnet(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) lowerCAmelCase : int = checkpoint['''out.0.weight'''] lowerCAmelCase : Optional[Any] = checkpoint['''out.0.bias'''] lowerCAmelCase : int = checkpoint['''out.2.weight'''] lowerCAmelCase : List[Any] = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') __A : List[str] = parser.parse_args() __A : Dict = strabool(args.class_cond) __A : str = os.path.basename(args.unet_path) print(F'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: __A : int = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __A : Union[str, Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __A : List[Any] = TEST_UNET_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: __A : Optional[int] = None __A : List[Any] = con_pt_to_diffuser(args.unet_path, unet_config) __A : Optional[int] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __A : Dict = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __A : Optional[Any] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __A : Optional[int] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') __A : Union[str, Any] = CMStochasticIterativeScheduler(**scheduler_config) __A : Any = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
356
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : List[str] = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowerCAmelCase : Optional[Any] = '' lowerCAmelCase : str = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(UpperCAmelCase_ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowerCAmelCase : int = 0, 0 # length[i] shows the length of palindromic substring with center i lowerCAmelCase : Optional[Any] = [1 for i in range(len(UpperCAmelCase_ ) )] # for each character in new_string find corresponding palindromic string lowerCAmelCase : str = 0 for j in range(len(UpperCAmelCase_ ) ): lowerCAmelCase : Optional[int] = 1 if j > r else min(length[l + r - j] // 2, r - j + 1 ) while ( j - k >= 0 and j + k < len(UpperCAmelCase_ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowerCAmelCase : Any = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowerCAmelCase : Dict = j - k + 1 # noqa: E741 lowerCAmelCase : Optional[int] = j + k - 1 # update max_length and start position if max_length < length[j]: lowerCAmelCase : str = length[j] lowerCAmelCase : Tuple = j # create that string lowerCAmelCase : Dict = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
357
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
0
from collections.abc import Sequence from queue import Queue class __A : def __init__( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None ): lowerCAmelCase : List[str] = start lowerCAmelCase : List[Any] = end lowerCAmelCase : List[Any] = val lowerCAmelCase : Any = (start + end) // 2 lowerCAmelCase : str = left lowerCAmelCase : str = right def __repr__( self : List[str] ): return f"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})" class __A : def __init__( self : Any , UpperCAmelCase_ : Sequence , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = collection lowerCAmelCase : List[str] = function if self.collection: lowerCAmelCase : Union[str, Any] = self._build_tree(0 , len(__snake_case ) - 1 ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple ): self._update_tree(self.root , __snake_case , __snake_case ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str ): return self._query_range(self.root , __snake_case , __snake_case ) def lowercase__ ( self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ): if start == end: return SegmentTreeNode(__snake_case , __snake_case , self.collection[start] ) lowerCAmelCase : List[str] = (start + end) // 2 lowerCAmelCase : Union[str, Any] = self._build_tree(__snake_case , __snake_case ) lowerCAmelCase : Dict = self._build_tree(mid + 1 , __snake_case ) return SegmentTreeNode(__snake_case , __snake_case , self.fn(left.val , right.val ) , __snake_case , __snake_case ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int ): if node.start == i and node.end == i: lowerCAmelCase : Optional[int] = val return if i <= node.mid: self._update_tree(node.left , __snake_case , __snake_case ) else: self._update_tree(node.right , __snake_case , __snake_case ) lowerCAmelCase : str = self.fn(node.left.val , node.right.val ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , __snake_case , __snake_case ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , __snake_case , node.mid ) , self._query_range(node.right , node.mid + 1 , __snake_case ) , ) else: # range in right child tree return self._query_range(node.right , __snake_case , __snake_case ) def lowercase__ ( self : Any ): if self.root is not None: lowerCAmelCase : Dict = Queue() queue.put(self.root ) while not queue.empty(): lowerCAmelCase : Union[str, Any] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __A : Union[str, Any] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
358
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
0
"""simple docstring""" from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = None ) -> Union[str, Any]: '''simple docstring''' if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) lowerCAmelCase : List[Any] = nums[0] for i in range(1, len(lowerCAmelCase__ ) ): lowerCAmelCase : List[Any] = nums[i] lowerCAmelCase : int = max(lowerCAmelCase__, ans + num, lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __A : int = int(input('''Enter number of elements : ''').strip()) __A : Any = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
359
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' lowerCAmelCase : List[Any] = 10 lowerCAmelCase : str = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) lowerCAmelCase : Union[str, Any] = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(_UpperCAmelCase ) ), }, features=_UpperCAmelCase, ) return dataset @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : str = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=_UpperCAmelCase ) return filename # FILE_CONTENT + files __A : str = '''\\n Text data.\n Second line of data.''' @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : List[str] = tmp_path_factory.mktemp('data' ) / 'file.txt' lowerCAmelCase : List[str] = FILE_CONTENT with open(_UpperCAmelCase, 'w' ) as f: f.write(_UpperCAmelCase ) return filename @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' import bza lowerCAmelCase : str = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' lowerCAmelCase : Any = bytes(_UpperCAmelCase, 'utf-8' ) with bza.open(_UpperCAmelCase, 'wb' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' import gzip lowerCAmelCase : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) lowerCAmelCase : Union[str, Any] = bytes(_UpperCAmelCase, 'utf-8' ) with gzip.open(_UpperCAmelCase, 'wb' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' lowerCAmelCase : Tuple = bytes(_UpperCAmelCase, 'utf-8' ) with lza.frame.open(_UpperCAmelCase, 'wb' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr lowerCAmelCase : int = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(_UpperCAmelCase, 'w' ) as archive: archive.write(_UpperCAmelCase, arcname=os.path.basename(_UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[Any]: '''simple docstring''' import tarfile lowerCAmelCase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(_UpperCAmelCase, 'w' ) as f: f.add(_UpperCAmelCase, arcname=os.path.basename(_UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' import lzma lowerCAmelCase : List[str] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' lowerCAmelCase : Optional[int] = bytes(_UpperCAmelCase, 'utf-8' ) with lzma.open(_UpperCAmelCase, 'wb' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' import zipfile lowerCAmelCase : List[str] = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(_UpperCAmelCase, 'w' ) as f: f.write(_UpperCAmelCase, arcname=os.path.basename(_UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' lowerCAmelCase : Optional[int] = bytes(_UpperCAmelCase, 'utf-8' ) with zstd.open(_UpperCAmelCase, 'wb' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowerCAmelCase : str = tmp_path_factory.mktemp('data' ) / 'file.xml' lowerCAmelCase : Tuple = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(_UpperCAmelCase, 'w' ) as f: f.write(_UpperCAmelCase ) return filename __A : Tuple = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __A : Dict = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __A : Dict = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __A : Optional[Any] = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __A : Optional[Any] = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = datasets.Dataset.from_dict(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(_UpperCAmelCase ) ) as con: lowerCAmelCase : str = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)', tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(_UpperCAmelCase, 'w', newline='' ) as f: lowerCAmelCase : List[str] = csv.DictWriter(_UpperCAmelCase, fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : int = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(_UpperCAmelCase, 'w', newline='' ) as f: lowerCAmelCase : int = csv.DictWriter(_UpperCAmelCase, fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' import bza lowerCAmelCase : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_UpperCAmelCase, 'wb' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(_UpperCAmelCase, 'w' ) as f: f.write(_UpperCAmelCase, arcname=os.path.basename(_UpperCAmelCase ) ) f.write(_UpperCAmelCase, arcname=os.path.basename(_UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(_UpperCAmelCase, 'w' ) as f: f.write(_UpperCAmelCase, arcname=os.path.basename(csv_path.replace('.csv', '.CSV' ) ) ) f.write(_UpperCAmelCase, arcname=os.path.basename(csva_path.replace('.csv', '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(_UpperCAmelCase, 'w' ) as f: f.write(_UpperCAmelCase, arcname=os.path.join('main_dir', os.path.basename(_UpperCAmelCase ) ) ) f.write(_UpperCAmelCase, arcname=os.path.join('main_dir', os.path.basename(_UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) lowerCAmelCase : Union[str, Any] = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(_UpperCAmelCase, 'wb' ) as f: lowerCAmelCase : str = pq.ParquetWriter(_UpperCAmelCase, schema=_UpperCAmelCase ) lowerCAmelCase : List[str] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_UpperCAmelCase ) )] for k in DATA[0]}, schema=_UpperCAmelCase ) writer.write_table(_UpperCAmelCase ) writer.close() return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) lowerCAmelCase : Union[str, Any] = {'data': DATA} with open(_UpperCAmelCase, 'w' ) as f: json.dump(_UpperCAmelCase, _UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) lowerCAmelCase : Optional[int] = {'data': DATA_DICT_OF_LISTS} with open(_UpperCAmelCase, 'w' ) as f: json.dump(_UpperCAmelCase, _UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(_UpperCAmelCase, 'w' ) as f: for item in DATA: f.write(json.dumps(_UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(_UpperCAmelCase, 'w' ) as f: for item in DATA: f.write(json.dumps(_UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(_UpperCAmelCase, 'w' ) as f: for item in DATA_312: f.write(json.dumps(_UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(_UpperCAmelCase, 'w' ) as f: for item in DATA_STR: f.write(json.dumps(_UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' import gzip lowerCAmelCase : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(_UpperCAmelCase, 'rb' ) as orig_file: with gzip.open(_UpperCAmelCase, 'wb' ) as zipped_file: zipped_file.writelines(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' import gzip lowerCAmelCase : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(_UpperCAmelCase, 'rb' ) as orig_file: with gzip.open(_UpperCAmelCase, 'wb' ) as zipped_file: zipped_file.writelines(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Tuple = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(_UpperCAmelCase, 'w' ) as f: f.write(_UpperCAmelCase, arcname=os.path.basename(_UpperCAmelCase ) ) f.write(_UpperCAmelCase, arcname=os.path.basename(_UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : str = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(_UpperCAmelCase, 'w' ) as f: f.write(_UpperCAmelCase, arcname=os.path.join('nested', os.path.basename(_UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(_UpperCAmelCase, 'w' ) as f: f.write(_UpperCAmelCase, arcname=os.path.join('main_dir', os.path.basename(_UpperCAmelCase ) ) ) f.write(_UpperCAmelCase, arcname=os.path.join('main_dir', os.path.basename(_UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(_UpperCAmelCase, 'w' ) as f: f.add(_UpperCAmelCase, arcname=os.path.basename(_UpperCAmelCase ) ) f.add(_UpperCAmelCase, arcname=os.path.basename(_UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Dict = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(_UpperCAmelCase, 'w' ) as f: f.add(_UpperCAmelCase, arcname=os.path.join('nested', os.path.basename(_UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Any = ['0', '1', '2', '3'] lowerCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(_UpperCAmelCase, 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Dict = ['0', '1', '2', '3'] lowerCAmelCase : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(_UpperCAmelCase, 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Any = ['0', '1', '2', '3'] lowerCAmelCase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(_UpperCAmelCase, 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : str = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(_UpperCAmelCase, 'w' ) as f: f.write(_UpperCAmelCase, arcname=os.path.basename(_UpperCAmelCase ) ) f.write(_UpperCAmelCase, arcname=os.path.basename(_UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : str = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(_UpperCAmelCase, 'w' ) as f: f.write(_UpperCAmelCase, arcname=os.path.join('main_dir', os.path.basename(_UpperCAmelCase ) ) ) f.write(_UpperCAmelCase, arcname=os.path.join('main_dir', os.path.basename(_UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(_UpperCAmelCase, 'w' ) as f: f.write(_UpperCAmelCase, arcname=os.path.basename('unsupported.ext' ) ) f.write(_UpperCAmelCase, arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : List[str] = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) lowerCAmelCase : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(_UpperCAmelCase, 'w', encoding='utf-8' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' return os.path.join('tests', 'features', 'data', 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: '''simple docstring''' return os.path.join('tests', 'features', 'data', 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Tuple = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(_UpperCAmelCase, 'w' ) as f: f.write(_UpperCAmelCase, arcname=os.path.basename(_UpperCAmelCase ) ) f.write(_UpperCAmelCase, arcname=os.path.basename(_UpperCAmelCase ).replace('.jpg', '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : int = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt', 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt', 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt', 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt', 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt', 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
360
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __A ( unittest.TestCase ): def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = '''hf-internal-testing/tiny-random-t5''' lowerCAmelCase : str = AutoTokenizer.from_pretrained(__A ) lowerCAmelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(__A ) lowerCAmelCase : List[Any] = tokenizer('This is me' , return_tensors='pt' ) lowerCAmelCase : Optional[int] = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowerCAmelCase : List[str] = model.generate(**__A ) lowerCAmelCase : Optional[Any] = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) lowerCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(__A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowerCAmelCase : Optional[int] = model_reloaded.generate(**__A ) self.assertTrue(torch.allclose(__A , __A ) ) def lowercase__ ( self : Any ): lowerCAmelCase : List[Any] = '''hf-internal-testing/tiny-random-t5''' lowerCAmelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained(__A ) lowerCAmelCase : int = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__A ): model.save_pretrained(__A ) lowerCAmelCase : Tuple = model.reverse_bettertransformer() model.save_pretrained(__A )
361
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): '''simple docstring''' if isinstance(__snake_case, __snake_case ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(__snake_case, __snake_case ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" lowerCAmelCase : Optional[Any] = False if num < 0: lowerCAmelCase : Any = True lowerCAmelCase : Tuple = -num lowerCAmelCase : str = [] while num > 0: binary.insert(0, num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__snake_case ) for e in binary ) return "0b" + "".join(str(__snake_case ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
362
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __A : int = pd.read_csv('''sample_data.csv''', header=None) __A : Dict = df.shape[:1][0] # If you're using some other dataset input the target column __A : Dict = df.iloc[:, 1:2] __A : Optional[Any] = actual_data.values.reshape(len_data, 1) __A : List[str] = MinMaxScaler().fit_transform(actual_data) __A : List[Any] = 10 __A : Tuple = 5 __A : Dict = 20 __A : Tuple = len_data - periods * look_back __A : Optional[int] = actual_data[:division] __A : Optional[int] = actual_data[division - look_back :] __A , __A : Dict = [], [] __A , __A : Optional[Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __A : str = np.array(train_x) __A : List[Any] = np.array(test_x) __A : Dict = np.array([list(i.ravel()) for i in train_y]) __A : Optional[int] = np.array([list(i.ravel()) for i in test_y]) __A : Tuple = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') __A : Union[str, Any] = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) __A : Any = model.predict(x_test)
363
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A : Tuple = '''▁''' __A : Any = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __A ( snake_case__ , unittest.TestCase ): lowerCAmelCase_ : List[str] = BigBirdTokenizer lowerCAmelCase_ : int = BigBirdTokenizerFast lowerCAmelCase_ : Optional[int] = True lowerCAmelCase_ : Any = True def lowercase__ ( self : List[str] ): super().setUp() lowerCAmelCase : Optional[Any] = self.tokenizer_class(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = '<s>' lowerCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '[MASK]' ) self.assertEqual(len(_A ) , 1004 ) def lowercase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowercase__ ( self : str ): if not self.test_rust_tokenizer: return lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : List[Any] = self.get_rust_tokenizer() lowerCAmelCase : Union[str, Any] = 'I was born in 92000, and this is falsé.' lowerCAmelCase : Any = tokenizer.tokenize(_A ) lowerCAmelCase : Tuple = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) lowerCAmelCase : Any = tokenizer.encode(_A , add_special_tokens=_A ) lowerCAmelCase : str = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Tuple = tokenizer.encode(_A ) lowerCAmelCase : int = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def lowercase__ ( self : Dict ): lowerCAmelCase : Any = BigBirdTokenizer(_A , keep_accents=_A ) lowerCAmelCase : Tuple = tokenizer.tokenize('This is a test' ) self.assertListEqual(_A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) lowerCAmelCase : Dict = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase : int = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ): return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def lowercase__ ( self : str ): lowerCAmelCase : List[Any] = 'Hello World!' lowerCAmelCase : str = [65, 18536, 2260, 101, 66] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase__ ( self : int ): lowerCAmelCase : int = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off lowerCAmelCase : Union[str, Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def lowercase__ ( self : Tuple ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence lowerCAmelCase : Any = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase : List[str] = ' '.join(_A ) lowerCAmelCase : Optional[Any] = self.big_tokenizer.encode_plus(_A , return_tensors='pt' , return_token_type_ids=_A ) lowerCAmelCase : str = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=_A ) lowerCAmelCase : int = BigBirdConfig(attention_type='original_full' ) lowerCAmelCase : List[str] = BigBirdModel(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : int = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) lowerCAmelCase : List[Any] = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = {'input_ids': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
364
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __A : List[str] = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": __A : Optional[int] = '''hopper-medium-v2''' __A : Optional[int] = gym.make(env_name) __A : List[str] = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) __A : List[Any] = env.reset() __A : Optional[Any] = 0 __A : List[Any] = 0 __A : List[Any] = 1000 __A : Any = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __A : Any = pipeline(obs, planning_horizon=32) # execute action in environment __A , __A , __A , __A : Tuple = env.step(denorm_actions) __A : int = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' F' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) __A : str = next_observation except KeyboardInterrupt: pass print(F'Total reward: {total_reward}')
365
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
0
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> np.ndarray: '''simple docstring''' lowerCAmelCase : Optional[int] = cva.getAffineTransform(lowerCAmelCase__, lowerCAmelCase__ ) return cva.warpAffine(lowerCAmelCase__, lowerCAmelCase__, (rows, cols) ) if __name__ == "__main__": # read original image __A : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value __A : List[str] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __A : int = gray_img.shape # set different points to rotate image __A : Union[str, Any] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __A : Dict = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __A : int = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __A : Optional[Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __A : Optional[Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __A : Dict = plt.figure(1) __A : Tuple = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
366
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
0
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __A ( unittest.TestCase ): def __init__( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Dict=5 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Tuple=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=4 , ): lowerCAmelCase : str = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Tuple = seq_length lowerCAmelCase : Dict = is_training lowerCAmelCase : str = use_attention_mask lowerCAmelCase : Dict = use_token_type_ids lowerCAmelCase : str = use_labels lowerCAmelCase : str = vocab_size lowerCAmelCase : Union[str, Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : Any = type_vocab_size lowerCAmelCase : Dict = type_sequence_label_size lowerCAmelCase : Optional[int] = initializer_range lowerCAmelCase : Union[str, Any] = num_choices def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = None if self.use_attention_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : int = None if self.use_token_type_ids: lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Any = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : int ): lowerCAmelCase : Any = self.prepare_config_and_inputs() lowerCAmelCase : List[Any] = config_and_inputs lowerCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __A ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase_ : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : str = FlaxAlbertModelTester(self ) @slow def lowercase__ ( self : List[Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase : str = model_class_name.from_pretrained('albert-base-v2' ) lowerCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowercase ) @require_flax class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = FlaxAlbertModel.from_pretrained('albert-base-v2' ) lowerCAmelCase : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCAmelCase : List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCAmelCase : Dict = model(__lowercase , attention_mask=__lowercase )[0] lowerCAmelCase : Optional[int] = (1, 11, 768) self.assertEqual(output.shape , __lowercase ) lowerCAmelCase : List[str] = np.array( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowercase , atol=1E-4 ) )
367
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __A : Any = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __A : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' if "://" in dataset_path: lowerCAmelCase : Tuple = dataset_path.split('://' )[1] return dataset_path def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> bool: '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : int = not is_remote_filesystem(snake_case_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(snake_case_ ), fs._strip_protocol(snake_case_ ) ) else: fs.mv(snake_case_, snake_case_, recursive=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if hasattr(fsspec.asyn, 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Dict = threading.Lock()
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __A : Any = { '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
369
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
0
import qiskit def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> qiskit.result.counts.Counts: '''simple docstring''' lowerCAmelCase : Tuple = qiskit.Aer.get_backend('aer_simulator' ) lowerCAmelCase : Union[str, Any] = qiskit.QuantumCircuit(4, 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0, 2 ) qc_ha.cx(1, 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0, 1, 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2, 0 ) # extract XOR value qc_ha.measure(3, 1 ) # extract AND value # Execute the circuit on the qasm simulator lowerCAmelCase : Any = qiskit.execute(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, shots=1_000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : List[Any] = half_adder(1, 1) print(F'Half Adder Output Qubit Counts: {counts}')
370
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int = 13 , UpperCAmelCase_ : int = 64 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : int = 128 , UpperCAmelCase_ : str=[16, 32, 64, 128] , UpperCAmelCase_ : int = 7 , UpperCAmelCase_ : int = 4 , UpperCAmelCase_ : int = 37 , UpperCAmelCase_ : str = "gelu" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 128 , UpperCAmelCase_ : List[int] = [2, 2, 2, 2] , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , ): lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : Tuple = batch_size lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : int = patch_size lowerCAmelCase : List[Any] = num_channels lowerCAmelCase : str = is_training lowerCAmelCase : Optional[int] = use_labels lowerCAmelCase : Union[str, Any] = hidden_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = type_sequence_label_size lowerCAmelCase : int = initializer_range lowerCAmelCase : Any = encoder_stride lowerCAmelCase : int = num_attention_outputs lowerCAmelCase : Tuple = embed_dim lowerCAmelCase : str = embed_dim + 1 lowerCAmelCase : Optional[int] = resolution lowerCAmelCase : Tuple = depths lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : List[Any] = dim lowerCAmelCase : Tuple = mlp_expansion_ratio def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Dict = None if self.use_labels: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Dict ): return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] ): lowerCAmelCase : Dict = TFEfficientFormerModel(config=__snake_case ) lowerCAmelCase : Any = model(__snake_case , training=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str ): lowerCAmelCase : List[str] = self.type_sequence_label_size lowerCAmelCase : List[str] = TFEfficientFormerForImageClassification(__snake_case ) lowerCAmelCase : Tuple = model(__snake_case , labels=__snake_case , training=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase : Any = 1 lowerCAmelCase : Any = TFEfficientFormerForImageClassification(__snake_case ) lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : Any = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : int = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = config_and_inputs lowerCAmelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __A ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ : Union[str, Any] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCAmelCase_ : str = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : Any = False lowerCAmelCase_ : Any = False def lowercase__ ( self : Any ): lowerCAmelCase : Dict = TFEfficientFormerModelTester(self ) lowerCAmelCase : List[str] = ConfigTester( self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def lowercase__ ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def lowercase__ ( self : int ): pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def lowercase__ ( self : Any ): pass def lowercase__ ( self : int ): lowerCAmelCase , lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = model_class(__snake_case ) lowerCAmelCase : int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Union[str, Any] = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case ) def lowercase__ ( self : List[Any] ): def check_hidden_states_output(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ): lowerCAmelCase : Any = model_class(__snake_case ) lowerCAmelCase : int = model(**self._prepare_for_class(__snake_case , __snake_case ) , training=__snake_case ) lowerCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Union[str, Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) if hasattr(self.model_tester , 'encoder_seq_length' ): lowerCAmelCase : Optional[Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: lowerCAmelCase : List[str] = seq_length * self.model_tester.chunk_length else: lowerCAmelCase : Any = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowerCAmelCase : Dict = outputs.decoder_hidden_states self.asseretIsInstance(__snake_case , (list, tuple) ) self.assertEqual(len(__snake_case ) , __snake_case ) lowerCAmelCase : str = getattr(self.model_tester , 'seq_length' , __snake_case ) lowerCAmelCase : Optional[int] = getattr(self.model_tester , 'decoder_seq_length' , __snake_case ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict=False ): lowerCAmelCase : Dict = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def lowercase__ ( self : Any ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def lowercase__ ( self : List[Any] ): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Dict = TFEfficientFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowercase__ ( self : str ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : str = True lowerCAmelCase : str = getattr(self.model_tester , 'seq_length' , __snake_case ) lowerCAmelCase : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , __snake_case ) lowerCAmelCase : Union[str, Any] = getattr(self.model_tester , 'key_length' , __snake_case ) lowerCAmelCase : Any = getattr(self.model_tester , 'chunk_length' , __snake_case ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): lowerCAmelCase : Any = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Dict = False lowerCAmelCase : Optional[Any] = True lowerCAmelCase : int = model_class(__snake_case ) lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case ) , training=__snake_case ) lowerCAmelCase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase : Dict = True lowerCAmelCase : Any = model_class(__snake_case ) lowerCAmelCase : Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) , training=__snake_case ) lowerCAmelCase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowercase__ ( self : Dict ): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCAmelCase : Tuple = model_class(__snake_case ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCAmelCase : Any = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=__snake_case ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCAmelCase : int = model(__snake_case ) self.assertTrue(outputs_dict is not None ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Any ): return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def lowercase__ ( self : int ): lowerCAmelCase : List[str] = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) lowerCAmelCase : Tuple = self.default_image_processor lowerCAmelCase : List[str] = prepare_img() lowerCAmelCase : Tuple = image_processor(images=__snake_case , return_tensors='tf' ) # forward pass lowerCAmelCase : List[str] = model(**__snake_case , training=__snake_case ) # verify the logits lowerCAmelCase : Dict = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCAmelCase : Optional[int] = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) ) @slow def lowercase__ ( self : str ): lowerCAmelCase : List[str] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) lowerCAmelCase : List[Any] = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Tuple = image_processor(images=__snake_case , return_tensors='tf' ) # forward pass lowerCAmelCase : Dict = model(**__snake_case , training=__snake_case ) # verify the logits lowerCAmelCase : Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCAmelCase : Tuple = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) )
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
class __A : def __init__( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ): # we need a list not a string, so do something to change the type lowerCAmelCase : Optional[int] = arr.split(',' ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Tuple = [int(self.array[0] )] * len(self.array ) lowerCAmelCase : List[str] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): lowerCAmelCase : Optional[int] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) lowerCAmelCase : List[str] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __A : int = input('''please input some numbers:''') __A : Tuple = SubArray(whole_array) __A : Optional[int] = array.solve_sub_array() print(('''the results is:''', re))
350
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __A : List[str] = logging.get_logger(__name__) __A : Tuple = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCAmelCase : int = model_type_to_module_name(_UpperCAmelCase ) lowerCAmelCase : Any = importlib.import_module(f".{module_name}", 'transformers.models' ) try: return getattr(_UpperCAmelCase, _UpperCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_UpperCAmelCase, '__name__', _UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCAmelCase : List[Any] = importlib.import_module('transformers' ) if hasattr(_UpperCAmelCase, _UpperCAmelCase ): return getattr(_UpperCAmelCase, _UpperCAmelCase ) return None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, **_UpperCAmelCase, ): '''simple docstring''' lowerCAmelCase : Any = get_file_from_repo( _UpperCAmelCase, _UpperCAmelCase, cache_dir=_UpperCAmelCase, force_download=_UpperCAmelCase, resume_download=_UpperCAmelCase, proxies=_UpperCAmelCase, use_auth_token=_UpperCAmelCase, revision=_UpperCAmelCase, local_files_only=_UpperCAmelCase, ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(_UpperCAmelCase, encoding='utf-8' ) as reader: return json.load(_UpperCAmelCase ) class __A : def __init__( self : Tuple ): raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(UpperCAmelCase_ ) def lowercase__ ( cls : Any , UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = kwargs.pop('config' , UpperCAmelCase_ ) lowerCAmelCase : int = kwargs.pop('trust_remote_code' , UpperCAmelCase_ ) lowerCAmelCase : int = True lowerCAmelCase : str = FeatureExtractionMixin.get_feature_extractor_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = config_dict.get('feature_extractor_type' , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): lowerCAmelCase : List[str] = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : str = AutoConfig.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) # It could be in `config.feature_extractor_type`` lowerCAmelCase : Any = getattr(UpperCAmelCase_ , 'feature_extractor_type' , UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: lowerCAmelCase : Optional[int] = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: lowerCAmelCase : Optional[int] = feature_extractor_class_from_name(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = feature_extractor_auto_map is not None lowerCAmelCase : Dict = feature_extractor_class is not None or type(UpperCAmelCase_ ) in FEATURE_EXTRACTOR_MAPPING lowerCAmelCase : Dict = resolve_trust_remote_code( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if has_remote_code and trust_remote_code: lowerCAmelCase : Any = get_class_from_dynamic_module( UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = kwargs.pop('code_revision' , UpperCAmelCase_ ) if os.path.isdir(UpperCAmelCase_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(UpperCAmelCase_ ) in FEATURE_EXTRACTOR_MAPPING: lowerCAmelCase : Union[str, Any] = FEATURE_EXTRACTOR_MAPPING[type(UpperCAmelCase_ )] return feature_extractor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) raise ValueError( f"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " f"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}" ) @staticmethod def lowercase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ): FEATURE_EXTRACTOR_MAPPING.register(UpperCAmelCase_ , UpperCAmelCase_ )
351
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
0
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __A : str = 16 __A : Dict = 32 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' return int(x / 2**20 ) class __A : def __enter__( self : Dict ): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCAmelCase : List[Any] = torch.cuda.memory_allocated() return self def __exit__( self : List[Any] , *UpperCAmelCase_ : str ): gc.collect() torch.cuda.empty_cache() lowerCAmelCase : Union[str, Any] = torch.cuda.memory_allocated() lowerCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated() lowerCAmelCase : Optional[int] = bamb(self.end - self.begin ) lowerCAmelCase : Tuple = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = 16, _UpperCAmelCase = "bert-base-cased", _UpperCAmelCase = 320, _UpperCAmelCase = 160, ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowerCAmelCase : Dict = load_dataset( 'glue', 'mrpc', split={'train': f"train[:{n_train}]", 'validation': f"validation[:{n_val}]"} ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase : Tuple = tokenizer(examples['sentence1'], examples['sentence2'], truncation=_UpperCAmelCase, max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase : Optional[Any] = datasets.map( _UpperCAmelCase, batched=_UpperCAmelCase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=_UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase : Tuple = tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCAmelCase, padding='max_length', max_length=128, return_tensors='pt' ) return tokenizer.pad(_UpperCAmelCase, padding='longest', return_tensors='pt' ) # Instantiate dataloaders. lowerCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets['train'], shuffle=_UpperCAmelCase, collate_fn=_UpperCAmelCase, batch_size=_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets['validation'], shuffle=_UpperCAmelCase, collate_fn=_UpperCAmelCase, batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Optional[int] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase : Dict = config['lr'] lowerCAmelCase : List[str] = int(config['num_epochs'] ) lowerCAmelCase : Tuple = int(config['seed'] ) lowerCAmelCase : Optional[Any] = int(config['batch_size'] ) lowerCAmelCase : Optional[Any] = args.model_name_or_path set_seed(_UpperCAmelCase ) lowerCAmelCase : str = get_dataloaders(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, args.n_train, args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained(_UpperCAmelCase, return_dict=_UpperCAmelCase ) # Instantiate optimizer lowerCAmelCase : int = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase : Optional[Any] = optimizer_cls(params=model.parameters(), lr=_UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase : Union[str, Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowerCAmelCase : str = 1 lowerCAmelCase : List[str] = (len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase, num_warmup_steps=0, num_training_steps=_UpperCAmelCase, ) else: lowerCAmelCase : Dict = DummyScheduler(_UpperCAmelCase, total_num_steps=_UpperCAmelCase, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase : Optional[Any] = accelerator.prepare( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase : Any = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase : Optional[Any] = 0 # Now we train the model lowerCAmelCase : int = {} for epoch in range(_UpperCAmelCase, _UpperCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = outputs.loss lowerCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCAmelCase : Optional[int] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, 'peak_memory_utilization.json' ), 'w' ) as f: json.dump(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: '''simple docstring''' lowerCAmelCase : int = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path', type=_UpperCAmelCase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=_UpperCAmelCase, ) parser.add_argument( '--output_dir', type=_UpperCAmelCase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', ) parser.add_argument( '--peak_memory_upper_bound', type=_UpperCAmelCase, default=_UpperCAmelCase, help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.', ) parser.add_argument( '--n_train', type=_UpperCAmelCase, default=320, help='Number of training examples to use.', ) parser.add_argument( '--n_val', type=_UpperCAmelCase, default=160, help='Number of validation examples to use.', ) parser.add_argument( '--num_epochs', type=_UpperCAmelCase, default=1, help='Number of train epochs.', ) lowerCAmelCase : str = parser.parse_args() lowerCAmelCase : str = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_UpperCAmelCase, _UpperCAmelCase ) if __name__ == "__main__": main()
352
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __A ( unittest.TestCase ): def lowercase__ ( self : Any ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCAmelCase_ , max_new_tokens=10 , do_sample=UpperCAmelCase_ ) lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Any = TextStreamer(UpperCAmelCase_ ) model.generate(UpperCAmelCase_ , max_new_tokens=10 , do_sample=UpperCAmelCase_ , streamer=UpperCAmelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : List[Any] = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = -1 lowerCAmelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase_ ) lowerCAmelCase : Any = model.generate(UpperCAmelCase_ , max_new_tokens=10 , do_sample=UpperCAmelCase_ ) lowerCAmelCase : int = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : List[str] = TextIteratorStreamer(UpperCAmelCase_ ) lowerCAmelCase : Any = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} lowerCAmelCase : Dict = Thread(target=model.generate , kwargs=UpperCAmelCase_ ) thread.start() lowerCAmelCase : Any = '' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Dict ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase_ ) lowerCAmelCase : Tuple = model.generate(UpperCAmelCase_ , max_new_tokens=10 , do_sample=UpperCAmelCase_ ) lowerCAmelCase : int = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : str = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Union[str, Any] = TextStreamer(UpperCAmelCase_ , skip_prompt=UpperCAmelCase_ ) model.generate(UpperCAmelCase_ , max_new_tokens=10 , do_sample=UpperCAmelCase_ , streamer=UpperCAmelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : Any = cs.out[:-1] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase : str = AutoTokenizer.from_pretrained('distilgpt2' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(UpperCAmelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : List[Any] = torch.ones((1, 5) , device=UpperCAmelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : Union[str, Any] = TextStreamer(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) model.generate(UpperCAmelCase_ , max_new_tokens=1 , do_sample=UpperCAmelCase_ , streamer=UpperCAmelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : Optional[Any] = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : Any = tokenizer(UpperCAmelCase_ , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase_ ) lowerCAmelCase : Dict = -1 lowerCAmelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase_ ) lowerCAmelCase : Tuple = TextIteratorStreamer(UpperCAmelCase_ , timeout=0.0_01 ) lowerCAmelCase : Tuple = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} lowerCAmelCase : Dict = Thread(target=model.generate , kwargs=UpperCAmelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCAmelCase_ ): lowerCAmelCase : Union[str, Any] = '' for new_text in streamer: streamer_text += new_text
353
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __A : Any = ['''text''', '''image''', '''audio'''] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Optional[Any] = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(_UpperCAmelCase, _UpperCAmelCase ): inputs.append(create_inputs(_UpperCAmelCase ) ) else: raise ValueError(f"Invalid type requested: {input_type}" ) return inputs def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : int = [] for output in outputs: if isinstance(_UpperCAmelCase, (str, AgentText) ): output_types.append('text' ) elif isinstance(_UpperCAmelCase, (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(_UpperCAmelCase, (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(f"Invalid output: {output}" ) return output_types @is_tool_test class __A : def lowercase__ ( self : Tuple ): self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) lowerCAmelCase : str = self.tool.inputs for _input in inputs: if isinstance(_input , UpperCAmelCase_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase : int = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = create_inputs(self.tool.inputs ) lowerCAmelCase : Optional[int] = self.tool(*UpperCAmelCase_ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase : Tuple = [outputs] self.assertListEqual(output_types(UpperCAmelCase_ ) , self.tool.outputs ) def lowercase__ ( self : int ): self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = create_inputs(self.tool.inputs ) lowerCAmelCase : List[str] = self.tool(*UpperCAmelCase_ ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : List[Any] = [outputs] self.assertEqual(len(UpperCAmelCase_ ) , len(self.tool.outputs ) ) for output, output_type in zip(UpperCAmelCase_ , self.tool.outputs ): lowerCAmelCase : Dict = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ) def lowercase__ ( self : List[str] ): lowerCAmelCase : int = create_inputs(self.tool.inputs ) lowerCAmelCase : Union[str, Any] = [] for _input, input_type in zip(UpperCAmelCase_ , self.tool.inputs ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase : List[str] = self.tool(*UpperCAmelCase_ ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : int = [outputs] self.assertEqual(len(UpperCAmelCase_ ) , len(self.tool.outputs ) )
354
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
__A : str = '''Tobias Carryer''' from time import time class __A : def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=int(time() ) ): # noqa: B008 lowerCAmelCase : Optional[int] = multiplier lowerCAmelCase : Dict = increment lowerCAmelCase : Optional[Any] = modulo lowerCAmelCase : Optional[int] = seed def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[str] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __A : Optional[Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
355
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
0
from collections import defaultdict def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> bool: '''simple docstring''' lowerCAmelCase : Any = first_str.lower().strip() lowerCAmelCase : List[str] = second_str.lower().strip() # Remove whitespace lowerCAmelCase : Optional[Any] = first_str.replace(' ', '' ) lowerCAmelCase : str = second_str.replace(' ', '' ) # Strings of different lengths are not anagrams if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False # Default values for count should be 0 lowerCAmelCase : defaultdict[str, int] = defaultdict(_UpperCAmelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_UpperCAmelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __A : Any = input('''Enter the first string ''').strip() __A : Union[str, Any] = input('''Enter the second string ''').strip() __A : Any = check_anagrams(input_a, input_b) print(F'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
356
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
357
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
0
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
358
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __A : def __init__( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : List[Any]=32 , UpperCAmelCase_ : Any=5 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : str=37 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : List[str]=10 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : str=2 , ): lowerCAmelCase : List[Any] = parent lowerCAmelCase : Dict = batch_size lowerCAmelCase : Any = patch_size lowerCAmelCase : Tuple = max_length lowerCAmelCase : str = num_mel_bins lowerCAmelCase : Tuple = is_training lowerCAmelCase : Optional[int] = use_labels lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : List[Any] = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : int = scope lowerCAmelCase : Any = frequency_stride lowerCAmelCase : Dict = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase : Union[str, Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowerCAmelCase : Any = (self.max_length - self.patch_size) // self.time_stride + 1 lowerCAmelCase : Optional[Any] = frequency_out_dimension * time_out_dimension lowerCAmelCase : Any = num_patches + 2 def lowercase__ ( self : List[str] ): lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) lowerCAmelCase : Optional[int] = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Union[str, Any] = self.get_config() return config, input_values, labels def lowercase__ ( self : Optional[Any] ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ): lowerCAmelCase : Tuple = ASTModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Dict ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( lowerCAmelCase ) : List[Any] = config_and_inputs lowerCAmelCase : Optional[Any] = {'input_values': input_values} return config, inputs_dict @require_torch class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase_ : Any = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) lowerCAmelCase_ : Any = False lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : str = False def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowercase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = ASTModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def lowercase__ ( self : Any ): pass def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Optional[Any] = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Tuple = model_class(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : List[Any] = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ['input_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) @slow def lowercase__ ( self : List[Any] ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : str = ASTModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' lowerCAmelCase : int = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint', filename='sample_audio.flac', repo_type='dataset' ) lowerCAmelCase : Union[str, Any] = torchaudio.load(_UpperCAmelCase ) return audio, sampling_rate @require_torch @require_torchaudio class __A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Union[str, Any] ): return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def lowercase__ ( self : Tuple ): lowerCAmelCase : List[str] = self.default_feature_extractor lowerCAmelCase : str = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(UpperCAmelCase_ ) lowerCAmelCase : int = self.default_feature_extractor lowerCAmelCase : List[str] = prepare_audio() lowerCAmelCase : List[str] = audio.squeeze().numpy() lowerCAmelCase : Union[str, Any] = feature_extractor(UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase : Any = model(**UpperCAmelCase_ ) # verify the logits lowerCAmelCase : Union[str, Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) lowerCAmelCase : Any = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
359
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> list[int]: '''simple docstring''' lowerCAmelCase : Any = int(_UpperCAmelCase ) # Initialize Result lowerCAmelCase : Dict = [] # Traverse through all denomination for denomination in reversed(_UpperCAmelCase ): # Find denominations while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ): total_value -= int(_UpperCAmelCase ) answer.append(_UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __A : Any = [] __A : Optional[Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __A : Tuple = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) __A : Tuple = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __A : Tuple = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __A : Union[str, Any] = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'Following is minimal change for {value}: ') __A : Optional[Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
360
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __A : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __A ( lowerCAmelCase ): def __init__( self : str , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int ): super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=None ): lowerCAmelCase : int = {} lowerCAmelCase : str = {} if prompt is not None: lowerCAmelCase : Tuple = prompt if generate_kwargs is not None: lowerCAmelCase : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowerCAmelCase : str = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) lowerCAmelCase : Tuple = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[int] , UpperCAmelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase_ : Dict ): return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple=None ): lowerCAmelCase : Dict = load_image(UpperCAmelCase_ ) if prompt is not None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError( f"Received an invalid text input, got - {type(UpperCAmelCase_ )} - but expected a single string. " 'Note also that one single text can be provided for conditional image to text generation.' ) lowerCAmelCase : Dict = self.model.config.model_type if model_type == "git": lowerCAmelCase : Union[str, Any] = self.image_processor(images=UpperCAmelCase_ , return_tensors=self.framework ) lowerCAmelCase : str = self.tokenizer(text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids lowerCAmelCase : int = [self.tokenizer.cls_token_id] + input_ids lowerCAmelCase : Optional[int] = torch.tensor(UpperCAmelCase_ ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": lowerCAmelCase : Tuple = self.image_processor(images=UpperCAmelCase_ , header_text=UpperCAmelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowerCAmelCase : Dict = self.image_processor(images=UpperCAmelCase_ , return_tensors=self.framework ) lowerCAmelCase : Optional[Any] = self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCAmelCase_ ) else: raise ValueError(f"Model type {model_type} does not support conditional text generation" ) else: lowerCAmelCase : Optional[Any] = self.image_processor(images=UpperCAmelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowerCAmelCase : str = None return model_inputs def lowercase__ ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , UpperCAmelCase_ ) and all(x is None for x in model_inputs['input_ids'] ) ): lowerCAmelCase : str = None if generate_kwargs is None: lowerCAmelCase : int = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowerCAmelCase : Optional[int] = model_inputs.pop(self.model.main_input_name ) lowerCAmelCase : int = self.model.generate(UpperCAmelCase_ , **UpperCAmelCase_ , **UpperCAmelCase_ ) return model_outputs def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = [] for output_ids in model_outputs: lowerCAmelCase : List[str] = { 'generated_text': self.tokenizer.decode( UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , ) } records.append(UpperCAmelCase_ ) return records
361
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
0
from collections.abc import Iterable from typing import Generic, TypeVar __A : Optional[int] = TypeVar('''_T''') class __A ( Generic[_T] ): def __init__( self : Any , UpperCAmelCase_ : Iterable[_T] | None = None ): lowerCAmelCase : list[_T] = list(iterable or [] ) lowerCAmelCase : list[_T] = [] def __len__( self : Dict ): return len(self._stacka ) + len(self._stacka ) def __repr__( self : int ): return f"Queue({tuple(self._stacka[::-1] + self._stacka )})" def lowercase__ ( self : Dict , UpperCAmelCase_ : _T ): self._stacka.append(UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : str = self._stacka.pop lowerCAmelCase : Tuple = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('Queue is empty' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
362
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __A : Optional[Any] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __A : Optional[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __A : int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> tuple[str, float]: '''simple docstring''' lowerCAmelCase : Optional[Any] = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> tuple[str, str]: '''simple docstring''' lowerCAmelCase : List[Any] = random.randint(0, len(_UpperCAmelCase ) - 1 ) lowerCAmelCase : str = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = list(_UpperCAmelCase ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: lowerCAmelCase : List[Any] = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) -> list[str]: '''simple docstring''' lowerCAmelCase : Optional[int] = [] # Generate more children proportionally to the fitness score. lowerCAmelCase : Optional[Any] = int(parent_a[1] * 100 ) + 1 lowerCAmelCase : Optional[int] = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): lowerCAmelCase : Dict = population_score[random.randint(0, _UpperCAmelCase )][0] lowerCAmelCase : str = crossover(parent_a[0], _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase, _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase, _UpperCAmelCase ) ) return pop def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = True ) -> tuple[int, int, str]: '''simple docstring''' if N_POPULATION < N_SELECTED: lowerCAmelCase : int = f"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase : List[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase : Optional[int] = f"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(_UpperCAmelCase ) # Generate random starting population. lowerCAmelCase : Any = [] for _ in range(_UpperCAmelCase ): population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase : Optional[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase : str = [evaluate(_UpperCAmelCase, _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase : Union[str, Any] = sorted(_UpperCAmelCase, key=lambda _UpperCAmelCase : x[1], reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"\nGeneration: {generation}" f"\nTotal Population:{total_population}" f"\nBest score: {population_score[0][1]}" f"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase : Dict = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase : List[Any] = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )], _UpperCAmelCase, _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __A : int = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __A : Any = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __A : Union[str, Any] = basic(target_str, genes_list) print( F'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
363
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
0
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __A ( lowerCAmelCase ): lowerCAmelCase_ : Tuple = (CMStochasticIterativeScheduler,) lowerCAmelCase_ : List[Any] = 10 def lowercase__ ( self : Optional[Any] , **UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Dict = { 'num_train_timesteps': 201, 'sigma_min': 0.0_02, 'sigma_max': 80.0, } config.update(**UpperCAmelCase_ ) return config def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = 10 lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0](**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = scheduler.timesteps[0] lowerCAmelCase : List[str] = scheduler.timesteps[1] lowerCAmelCase : Union[str, Any] = self.dummy_sample lowerCAmelCase : List[Any] = 0.1 * sample lowerCAmelCase : str = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample lowerCAmelCase : Any = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : Any ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def lowercase__ ( self : str ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=UpperCAmelCase_ ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Union[str, Any] = self.get_scheduler_config() lowerCAmelCase : List[Any] = scheduler_class(**UpperCAmelCase_ ) lowerCAmelCase : Tuple = 1 scheduler.set_timesteps(UpperCAmelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps lowerCAmelCase : Any = torch.manual_seed(0 ) lowerCAmelCase : Dict = self.dummy_model() lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(UpperCAmelCase_ ): # 1. scale model input lowerCAmelCase : str = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict noise residual lowerCAmelCase : List[Any] = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 3. predict previous sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : Dict = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowerCAmelCase : Any = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.25_10 ) < 1E-3 def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = self.scheduler_classes[0] lowerCAmelCase : int = self.get_scheduler_config() lowerCAmelCase : Any = scheduler_class(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [106, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) lowerCAmelCase : Any = scheduler.timesteps lowerCAmelCase : int = torch.manual_seed(0 ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input lowerCAmelCase : Optional[Any] = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict noise residual lowerCAmelCase : Dict = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 3. predict previous sample x_t-1 lowerCAmelCase : str = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample lowerCAmelCase : List[str] = pred_prev_sample lowerCAmelCase : List[Any] = torch.sum(torch.abs(UpperCAmelCase_ ) ) lowerCAmelCase : List[str] = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.45_27 ) < 1E-3 def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [39, 30, 12, 15, 0] with self.assertRaises(UpperCAmelCase_ , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : int = self.get_scheduler_config() lowerCAmelCase : Union[str, Any] = scheduler_class(**UpperCAmelCase_ ) lowerCAmelCase : Dict = [39, 30, 12, 1, 0] lowerCAmelCase : str = len(UpperCAmelCase_ ) with self.assertRaises(UpperCAmelCase_ , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : Optional[Any] = self.get_scheduler_config() lowerCAmelCase : List[Any] = scheduler_class(**UpperCAmelCase_ ) lowerCAmelCase : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ )
365
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
0
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A : Dict = 16 __A : Optional[int] = 32 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = 16 ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase : Union[str, Any] = DatasetDict( { 'train': dataset['train'].select(_UpperCAmelCase ), 'validation': dataset['train'].select(_UpperCAmelCase ), 'test': dataset['validation'], } ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase : Union[str, Any] = tokenizer(examples['sentence1'], examples['sentence2'], truncation=_UpperCAmelCase, max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase : Optional[Any] = datasets.map( _UpperCAmelCase, batched=_UpperCAmelCase, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase : Any = tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase : Optional[Any] = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase : Union[str, Any] = 8 else: lowerCAmelCase : int = None return tokenizer.pad( _UpperCAmelCase, padding='longest', max_length=_UpperCAmelCase, pad_to_multiple_of=_UpperCAmelCase, return_tensors='pt', ) # Instantiate dataloaders. lowerCAmelCase : Optional[Any] = DataLoader( tokenized_datasets['train'], shuffle=_UpperCAmelCase, collate_fn=_UpperCAmelCase, batch_size=_UpperCAmelCase ) lowerCAmelCase : List[Any] = DataLoader( tokenized_datasets['validation'], shuffle=_UpperCAmelCase, collate_fn=_UpperCAmelCase, batch_size=_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets['test'], shuffle=_UpperCAmelCase, collate_fn=_UpperCAmelCase, batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader, test_dataloader def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : int = [] # Download the dataset lowerCAmelCase : Optional[Any] = load_dataset('glue', 'mrpc' ) # Create our splits lowerCAmelCase : List[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowerCAmelCase : List[Any] = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase : Any = config['lr'] lowerCAmelCase : str = int(config['num_epochs'] ) lowerCAmelCase : Tuple = int(config['seed'] ) lowerCAmelCase : Optional[Any] = int(config['batch_size'] ) lowerCAmelCase : Optional[Any] = evaluate.load('glue', 'mrpc' ) # If the batch size is too big we use gradient accumulation lowerCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase : List[str] = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) # New Code # # Create our folds: lowerCAmelCase : Optional[int] = kfold.split(np.zeros(datasets['train'].num_rows ), datasets['train']['label'] ) lowerCAmelCase : int = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_UpperCAmelCase ): lowerCAmelCase : List[Any] = get_fold_dataloaders( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase : str = AdamW(params=model.parameters(), lr=_UpperCAmelCase ) # Instantiate scheduler lowerCAmelCase : Optional[Any] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase, num_warmup_steps=100, num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase : Tuple = accelerator.prepare( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : Any = outputs.loss lowerCAmelCase : Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**_UpperCAmelCase ) lowerCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase : Tuple = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_UpperCAmelCase, references=_UpperCAmelCase, ) lowerCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", _UpperCAmelCase ) # New Code # # We also run predictions on the test set at the very end lowerCAmelCase : Optional[int] = [] for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase : List[str] = model(**_UpperCAmelCase ) lowerCAmelCase : List[Any] = outputs.logits lowerCAmelCase : str = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_UpperCAmelCase, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowerCAmelCase : List[str] = torch.cat(_UpperCAmelCase, dim=0 ) lowerCAmelCase : List[Any] = torch.stack(_UpperCAmelCase, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowerCAmelCase : List[str] = metric.compute(predictions=_UpperCAmelCase, references=_UpperCAmelCase ) accelerator.print('Average test metrics from all folds:', _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Any = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=_UpperCAmelCase, default=_UpperCAmelCase, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds', type=_UpperCAmelCase, default=3, help='The number of splits to perform across the dataset' ) lowerCAmelCase : List[Any] = parser.parse_args() lowerCAmelCase : Any = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(_UpperCAmelCase, _UpperCAmelCase ) if __name__ == "__main__": main()
366
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : Union[str, Any] = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A : List[Any] = '''pt''' elif is_tf_available(): __A : List[str] = '''tf''' else: __A : Optional[Any] = '''jax''' class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : str = PerceiverTokenizer lowerCAmelCase_ : int = False def lowercase__ ( self : List[str] ): super().setUp() lowerCAmelCase : List[str] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Union[str, Any] ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase__ ( self : Optional[Any] , **UpperCAmelCase_ : List[str] ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : str=20 , UpperCAmelCase_ : List[str]=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowerCAmelCase : Dict = [] for i in range(len(UpperCAmelCase_ ) ): try: lowerCAmelCase : Tuple = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCAmelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase : Optional[Any] = list(filter(lambda UpperCAmelCase_ : re.match(R'^[ a-zA-Z]+$' , t[1] ) , UpperCAmelCase_ ) ) lowerCAmelCase : Union[str, Any] = list(filter(lambda UpperCAmelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCAmelCase_ ) , UpperCAmelCase_ ) ) if max_length is not None and len(UpperCAmelCase_ ) > max_length: lowerCAmelCase : Optional[int] = toks[:max_length] if min_length is not None and len(UpperCAmelCase_ ) < min_length and len(UpperCAmelCase_ ) > 0: while len(UpperCAmelCase_ ) < min_length: lowerCAmelCase : List[Any] = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase : Union[str, Any] = [t[0] for t in toks] # Ensure consistency lowerCAmelCase : Optional[Any] = tokenizer.decode(UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) if " " not in output_txt and len(UpperCAmelCase_ ) > 1: lowerCAmelCase : List[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCAmelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCAmelCase_ ) ) if with_prefix_space: lowerCAmelCase : List[str] = ' ' + output_txt lowerCAmelCase : Tuple = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) return output_txt, output_ids def lowercase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.perceiver_tokenizer lowerCAmelCase : Optional[int] = 'Unicode €.' lowerCAmelCase : str = tokenizer(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , UpperCAmelCase_ ) # decoding lowerCAmelCase : List[Any] = tokenizer.decode(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , '[CLS]Unicode €.[SEP]' ) lowerCAmelCase : Union[str, Any] = tokenizer('e è é ê ë' ) lowerCAmelCase : int = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , UpperCAmelCase_ ) # decoding lowerCAmelCase : List[Any] = tokenizer.decode(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.perceiver_tokenizer lowerCAmelCase : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowerCAmelCase : Optional[int] = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on lowerCAmelCase : Optional[Any] = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) if FRAMEWORK != "jax": lowerCAmelCase : Dict = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase : List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.perceiver_tokenizer lowerCAmelCase : str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCAmelCase_ ) self.assertIn('attention_mask' , UpperCAmelCase_ ) self.assertNotIn('decoder_input_ids' , UpperCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = self.perceiver_tokenizer lowerCAmelCase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] lowerCAmelCase : List[str] = tokenizer( text_target=UpperCAmelCase_ , max_length=32 , padding='max_length' , truncation=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase__ ( self : Union[str, Any] ): # safety check on max_len default value so we are sure the test works lowerCAmelCase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCAmelCase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase : List[str] = tempfile.mkdtemp() lowerCAmelCase : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' lowerCAmelCase : Optional[int] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : str = tokenizer.__class__.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : int = after_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) shutil.rmtree(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase : List[str] = tempfile.mkdtemp() lowerCAmelCase : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowerCAmelCase : List[Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowerCAmelCase : Tuple = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.__class__.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = after_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCAmelCase : Tuple = tokenizer.__class__.from_pretrained(UpperCAmelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: lowerCAmelCase : List[Any] = json.load(UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: lowerCAmelCase : List[Any] = json.load(UpperCAmelCase_ ) lowerCAmelCase : str = [f"<extra_id_{i}>" for i in range(125 )] lowerCAmelCase : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowerCAmelCase : Union[str, Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCAmelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase : str = tokenizer_class.from_pretrained( UpperCAmelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase : Dict = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCAmelCase_ )] lowerCAmelCase : List[str] = tokenizer_class.from_pretrained( UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase__ ( self : Dict ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : Union[str, Any] ): pass def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : List[Any] ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens lowerCAmelCase : Optional[int] = self.get_tokenizers(fast=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase : int = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_string(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ )
369
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
0
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 __A : Optional[Any] = get_tests_dir('''fixtures/dummy-config.json''') class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Any ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def lowercase__ ( self : Dict ): lowerCAmelCase : Dict = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = AutoConfig.for_model('roberta' ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. lowerCAmelCase : Optional[int] = os.path.join(UpperCAmelCase_ , 'fake-roberta' ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) lowerCAmelCase : int = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(type(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): try: AutoConfig.register('custom' , UpperCAmelCase_ ) # Wrong model type will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register('model' , UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register('bert' , UpperCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase : Optional[int] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowercase__ ( self : Tuple ): with self.assertRaisesRegex( UpperCAmelCase_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained('bert-base' ) def lowercase__ ( self : Tuple ): with self.assertRaisesRegex( UpperCAmelCase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCAmelCase : int = AutoConfig.from_pretrained(UpperCAmelCase_ , revision='aaaaaa' ) def lowercase__ ( self : List[Any] ): with self.assertRaisesRegex( UpperCAmelCase_ , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): lowerCAmelCase : str = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def lowercase__ ( self : str ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase_ ): lowerCAmelCase : int = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=UpperCAmelCase_ ) lowerCAmelCase : Dict = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def lowercase__ ( self : Optional[int] ): class __A ( lowerCAmelCase ): lowerCAmelCase_ : Any = "new-model" try: AutoConfig.register('new-model' , UpperCAmelCase_ ) # If remote code is not set, the default is to use local lowerCAmelCase : List[Any] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. lowerCAmelCase : List[Any] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
370
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __A : def __init__( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=14 , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : List[Any]=5 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int=None , ): lowerCAmelCase : List[Any] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : Optional[int] = is_training lowerCAmelCase : List[Any] = use_token_type_ids lowerCAmelCase : Any = use_input_mask lowerCAmelCase : List[Any] = use_labels lowerCAmelCase : List[Any] = use_mc_token_ids lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : str = hidden_act lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = max_position_embeddings lowerCAmelCase : List[str] = type_vocab_size lowerCAmelCase : Optional[int] = type_sequence_label_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Union[str, Any] = num_labels lowerCAmelCase : Union[str, Any] = num_choices lowerCAmelCase : List[str] = scope lowerCAmelCase : List[str] = self.vocab_size - 1 def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[int] = None if self.use_input_mask: lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[Any] = None if self.use_mc_token_ids: lowerCAmelCase : str = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = None if self.use_labels: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : int = self.get_config() lowerCAmelCase : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : List[str] ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowercase__ ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , *UpperCAmelCase_ : List[Any] ): lowerCAmelCase : Optional[Any] = CTRLModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , *UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = CTRLLMHeadModel(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( lowerCAmelCase ) : Tuple = config_and_inputs lowerCAmelCase : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : Union[str, Any] = CTRLForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[int] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowerCAmelCase_ : List[Any] = (CTRLLMHeadModel,) if is_torch_available() else () lowerCAmelCase_ : str = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : str = False def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = CTRLModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=UpperCAmelCase_ , n_embd=37 ) def lowercase__ ( self : Tuple ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*UpperCAmelCase_ ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCAmelCase_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase__ ( self : Tuple ): pass @slow def lowercase__ ( self : List[str] ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = CTRLModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : List[str] ): pass @require_torch class __A ( unittest.TestCase ): def lowercase__ ( self : Dict ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowercase__ ( self : Any ): lowerCAmelCase : str = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(UpperCAmelCase_ ) lowerCAmelCase : List[str] = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=UpperCAmelCase_ ) # Legal the president is lowerCAmelCase : Dict = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCAmelCase : int = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , UpperCAmelCase_ )
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from collections import defaultdict def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : List[str] = 1 lowerCAmelCase : str = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCAmelCase ) if ret % 2 == 0: cuts.append(_UpperCAmelCase ) return ret def SCREAMING_SNAKE_CASE__ ( ) -> str: '''simple docstring''' dfs(1 ) if __name__ == "__main__": __A : Union[str, Any] = 10, 9 __A : Tuple = defaultdict(list) __A : dict[int, bool] = {} __A : list[int] = [] __A : Any = 0 __A : Tuple = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
350
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
351
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Optional[int] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase : str = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase : Any = 4 lowerCAmelCase : Tuple = 48 lowerCAmelCase : Any = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase : List[str] = [6, 6, 6, 6] lowerCAmelCase : Tuple = 60 lowerCAmelCase : Any = [6, 6, 6, 6] lowerCAmelCase : Dict = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase : int = 4 lowerCAmelCase : Dict = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase : str = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Tuple = 126 lowerCAmelCase : Tuple = 7 lowerCAmelCase : Optional[int] = 255.0 lowerCAmelCase : Any = '' return config def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase : List[str] = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase : Any = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCAmelCase : Any = name.replace('layers', 'encoder.stages' ) if "residual_group.blocks" in name: lowerCAmelCase : int = name.replace('residual_group.blocks', 'layers' ) if "attn.proj" in name: lowerCAmelCase : str = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: lowerCAmelCase : str = name.replace('attn', 'attention.self' ) if "norm1" in name: lowerCAmelCase : Optional[int] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: lowerCAmelCase : Any = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase : Any = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase : Tuple = name.replace('mlp.fc2', 'output.dense' ) if "q_bias" in name: lowerCAmelCase : Any = name.replace('q_bias', 'query.bias' ) if "k_bias" in name: lowerCAmelCase : Any = name.replace('k_bias', 'key.bias' ) if "v_bias" in name: lowerCAmelCase : Dict = name.replace('v_bias', 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase : Optional[Any] = name.replace('cpb_mlp', 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCAmelCase : Tuple = name.replace('patch_embed.proj', 'patch_embed.projection' ) if name == "norm.weight": lowerCAmelCase : Any = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase : int = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase : str = name.replace('conv_first', 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase : Any = name.replace('conv_last', 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase : int = name.replace('conv_before_upsample.0', 'conv_before_upsample' ) if "upsample.0" in name: lowerCAmelCase : Optional[Any] = name.replace('upsample.0', 'upsample.convolution_0' ) if "upsample.2" in name: lowerCAmelCase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' ) lowerCAmelCase : str = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase : Dict = name.replace('upsample.0.weight', 'upsample.conv.weight' ) lowerCAmelCase : Optional[Any] = name.replace('upsample.0.bias', 'upsample.conv.bias' ) else: pass else: lowerCAmelCase : List[Any] = 'swin2sr.' + name return name def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase : int = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase : Optional[Any] = key.split('.' ) lowerCAmelCase : Optional[int] = int(key_split[1] ) lowerCAmelCase : Union[str, Any] = int(key_split[4] ) lowerCAmelCase : Optional[Any] = config.embed_dim if "weight" in key: lowerCAmelCase : List[Any] = val[:dim, :] lowerCAmelCase : int = val[dim : dim * 2, :] lowerCAmelCase : Union[str, Any] = val[-dim:, :] else: lowerCAmelCase : Dict = val[:dim] lowerCAmelCase : Optional[Any] = val[dim : dim * 2] lowerCAmelCase : int = val[-dim:] pass else: lowerCAmelCase : int = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : str = get_config(_UpperCAmelCase ) lowerCAmelCase : int = SwinaSRForImageSuperResolution(_UpperCAmelCase ) model.eval() lowerCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' ) lowerCAmelCase : List[Any] = convert_state_dict(_UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : List[str] = model.load_state_dict(_UpperCAmelCase, strict=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_UpperCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values lowerCAmelCase : Optional[int] = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase : List[str] = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase : List[Any] = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase : List[Any] = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowerCAmelCase : Any = transforms(_UpperCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase : Union[str, Any] = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase : str = model(_UpperCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase : List[Any] = torch.Size([1, 3, 512, 512] ) lowerCAmelCase : str = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.Size([1, 3, 1_024, 1_024] ) lowerCAmelCase : List[str] = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase : int = torch.Size([1, 3, 1_024, 1_024] ) lowerCAmelCase : Union[str, Any] = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase : Tuple = torch.Size([1, 3, 512, 512] ) lowerCAmelCase : Optional[Any] = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase : int = torch.Size([1, 3, 1_024, 1_024] ) lowerCAmelCase : Optional[Any] = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _UpperCAmelCase, atol=1e-3 ) print('Looks ok!' ) lowerCAmelCase : Any = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase : Optional[Any] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __A : List[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
352
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : str = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( lowerCAmelCase ): lowerCAmelCase_ : List[Any] = "xlm-roberta-xl" def __init__( self : Tuple , UpperCAmelCase_ : Union[str, Any]=250880 , UpperCAmelCase_ : Any=2560 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : int=10240 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : int=514 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-05 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[int]="absolute" , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : str , ): super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : int = hidden_act lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : int = max_position_embeddings lowerCAmelCase : Optional[Any] = type_vocab_size lowerCAmelCase : Optional[int] = initializer_range lowerCAmelCase : List[str] = layer_norm_eps lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : Tuple = use_cache lowerCAmelCase : Tuple = classifier_dropout class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Dict ): if self.task == "multiple-choice": lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
353
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
0
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(f'Rectangle: {area_rectangle(10, 20) = }') print(f'Square: {area_square(10) = }') print(f'Triangle: {area_triangle(10, 10) = }') print(f'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(f'Parallelogram: {area_parallelogram(10, 20) = }') print(f'Rhombus: {area_rhombus(10, 20) = }') print(f'Trapezium: {area_trapezium(10, 20, 30) = }') print(f'Circle: {area_circle(20) = }') print(f'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(f'Cube: {surface_area_cube(20) = }') print(f'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(f'Sphere: {surface_area_sphere(20) = }') print(f'Hemisphere: {surface_area_hemisphere(20) = }') print(f'Cone: {surface_area_cone(10, 20) = }') print(f'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(f'Cylinder: {surface_area_cylinder(10, 20) = }') print(f'Torus: {surface_area_torus(20, 10) = }') print(f'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(f'Square: {area_reg_polygon(4, 10) = }') print(f'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
354
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
355
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __A : Optional[int] = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __A : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __A : Union[str, Any] = '''bart''' __A : Optional[int] = True @st.cache(allow_output_mutation=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' if LOAD_DENSE_INDEX: lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) lowerCAmelCase : List[str] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) lowerCAmelCase : Union[str, Any] = qar_model.eval() else: lowerCAmelCase : Union[str, Any] = (None, None) if MODEL_TYPE == "bart": lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) lowerCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) lowerCAmelCase : Optional[Any] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) lowerCAmelCase : List[Any] = sas_model.eval() else: lowerCAmelCase : str = make_qa_sas_model( model_name='t5-small', from_file='seq2seq_models/eli5_t5_model_1024_4.pth', device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: '''simple docstring''' if LOAD_DENSE_INDEX: lowerCAmelCase : Optional[Any] = faiss.StandardGpuResources() lowerCAmelCase : List[Any] = datasets.load_dataset(path='wiki_snippets', name='wiki40b_en_100_0' )['train'] lowerCAmelCase : Optional[int] = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat', dtype='float32', mode='r', shape=(wikiaab_passages.num_rows, 128), ) lowerCAmelCase : List[Any] = faiss.IndexFlatIP(128 ) lowerCAmelCase : Tuple = faiss.index_cpu_to_gpu(_UpperCAmelCase, 1, _UpperCAmelCase ) wikiaab_gpu_index_flat.add(_UpperCAmelCase ) # TODO fix for larger GPU else: lowerCAmelCase : Dict = (None, None) lowerCAmelCase : Any = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Optional[Any] = datasets.load_dataset('eli5', name='LFQA_reddit' ) lowerCAmelCase : Optional[Any] = elia['train_eli5'] lowerCAmelCase : Optional[int] = np.memmap( 'eli5_questions_reps.dat', dtype='float32', mode='r', shape=(elia_train.num_rows, 128) ) lowerCAmelCase : Optional[int] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_UpperCAmelCase ) return (elia_train, eli5_train_q_index) __A : Any = load_indexes() __A : Optional[int] = load_models() __A : List[Any] = load_train_data() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=10 ) -> Tuple: '''simple docstring''' lowerCAmelCase : List[str] = embed_questions_for_retrieval([question], _UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : List[Any] = eli5_train_q_index.search(_UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : Tuple = [elia_train[int(_UpperCAmelCase )] for i in I[0]] return nn_examples def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase="wiki40b", _UpperCAmelCase="dense", _UpperCAmelCase=10 ) -> str: '''simple docstring''' if source == "none": lowerCAmelCase : str = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": lowerCAmelCase : Optional[int] = query_qa_dense_index( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) else: lowerCAmelCase : str = query_es_index( _UpperCAmelCase, _UpperCAmelCase, index_name='english_wiki40b_snippets_100w', n_results=_UpperCAmelCase, ) lowerCAmelCase : Union[str, Any] = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] lowerCAmelCase : Dict = 'question: {} context: {}'.format(_UpperCAmelCase, _UpperCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _UpperCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _UpperCAmelCase : None), } ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=64, _UpperCAmelCase=256, _UpperCAmelCase=False, _UpperCAmelCase=2, _UpperCAmelCase=0.9_5, _UpperCAmelCase=0.8 ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): lowerCAmelCase : Tuple = qa_sas_generate( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, num_answers=1, num_beams=_UpperCAmelCase, min_len=_UpperCAmelCase, max_len=_UpperCAmelCase, do_sample=_UpperCAmelCase, temp=_UpperCAmelCase, top_p=_UpperCAmelCase, top_k=_UpperCAmelCase, max_input_length=1_024, device='cuda:0', )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar __A : int = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' __A : str = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __A : int = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) __A : Union[str, Any] = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] __A : int = st.sidebar.checkbox('''Demo options''') if demo_options: __A : Any = st.sidebar.selectbox( '''''', action_list, index=3, ) __A : Optional[int] = action_list.index(action_st) __A : Optional[Any] = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) __A : Tuple = show_type == '''Show full text of passages''' else: __A : Dict = 3 __A : Dict = True __A : Optional[int] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: __A : Tuple = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) __A : Optional[int] = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) __A : Any = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: __A : Any = '''wiki40b''' __A : Optional[int] = '''dense''' __A : Union[str, Any] = '''beam''' __A : Optional[Any] = 2 __A : Union[str, Any] = 64 __A : Dict = 256 __A : Dict = None __A : Optional[Any] = None __A : List[str] = st.sidebar.checkbox('''Generation options''') if generate_options: __A : Tuple = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) __A : str = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) __A : List[Any] = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __A : str = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __A : Optional[Any] = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __A : Tuple = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __A : Any = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __A : List[str] = None # start main text __A : int = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] __A : List[str] = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": __A : Tuple = st.text_input('''Enter your question here:''', '''''') else: __A : List[str] = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": __A : Optional[Any] = make_support(question, source=wiki_source, method='''dense''', n_results=10) __A : Tuple = make_support(question, source=wiki_source, method='''sparse''', n_results=10) __A : Optional[int] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __A : Optional[Any] = support_list[:10] __A : Union[str, Any] = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: __A : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __A : str = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): __A : Any = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) __A : Any = res[1].strip() if sec_titles == "": __A : Any = '''[{}]({})'''.format(res[0], wiki_url) else: __A : Tuple = sec_titles.split(''' & ''') __A : Tuple = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: __A : Tuple = find_nearest_training(question) __A : str = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) __A : Tuple = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) __A : str = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
357
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
0
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
358
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
0
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = 'ylacombe/bark-small' lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() lowerCAmelCase : int = 'en_speaker_1' lowerCAmelCase : Union[str, Any] = 'This is a test string' lowerCAmelCase : Any = 'speaker_embeddings_path.json' lowerCAmelCase : Any = 'speaker_embeddings' def lowercase__ ( self : Tuple , **UpperCAmelCase_ : Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = self.get_tokenizer() lowerCAmelCase : Dict = BarkProcessor(tokenizer=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowercase__ ( self : int ): lowerCAmelCase : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCAmelCase : str = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Dict = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCAmelCase : Dict = 35 lowerCAmelCase : Any = 2 lowerCAmelCase : str = 8 lowerCAmelCase : Optional[int] = { 'semantic_prompt': np.ones(UpperCAmelCase_ ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCAmelCase : List[str] = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) lowerCAmelCase : Any = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Tuple = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) lowerCAmelCase : Tuple = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCAmelCase : Optional[Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.get_tokenizer() lowerCAmelCase : Optional[int] = BarkProcessor(tokenizer=UpperCAmelCase_ ) lowerCAmelCase : int = processor(text=self.input_string ) lowerCAmelCase : str = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
359
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( lowerCAmelCase ): """simple docstring""" lowerCAmelCase_ : str = ["image_processor", "tokenizer"] lowerCAmelCase_ : Optional[int] = "Pix2StructImageProcessor" lowerCAmelCase_ : Union[str, Any] = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : List[Any] = False super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = 2048 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : Any , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: lowerCAmelCase : List[str] = self.tokenizer lowerCAmelCase : int = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowerCAmelCase : List[str] = self.image_processor( UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , max_patches=UpperCAmelCase_ , **UpperCAmelCase_ ) else: # add pixel_values and bbox lowerCAmelCase : List[Any] = self.image_processor( UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , max_patches=UpperCAmelCase_ , header_text=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and not self.image_processor.is_vqa: lowerCAmelCase : Dict = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) if "attention_mask" in text_encoding: lowerCAmelCase : Optional[Any] = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: lowerCAmelCase : str = text_encoding.pop('input_ids' ) else: lowerCAmelCase : List[str] = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase_ ) return encoding_image_processor def lowercase__ ( self : List[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Tuple ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def lowercase__ ( self : str , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : str ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.tokenizer.model_input_names lowerCAmelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
360
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
0
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) lowerCAmelCase : int = 0 lowerCAmelCase : str = str(_UpperCAmelCase ) while len(_UpperCAmelCase ) != 1: lowerCAmelCase : List[Any] = [int(_UpperCAmelCase ) for i in num_string] lowerCAmelCase : int = 1 for i in range(0, len(_UpperCAmelCase ) ): total *= numbers[i] lowerCAmelCase : Optional[Any] = str(_UpperCAmelCase ) steps += 1 return steps def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : str = str(_UpperCAmelCase ) while len(_UpperCAmelCase ) != 1: lowerCAmelCase : Optional[Any] = [int(_UpperCAmelCase ) for i in num_string] lowerCAmelCase : Dict = 0 for i in range(0, len(_UpperCAmelCase ) ): total += numbers[i] lowerCAmelCase : List[str] = str(_UpperCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
361
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowerCAmelCase : Tuple = f"{sampling_rate}" lowerCAmelCase : Union[str, Any] = '1' lowerCAmelCase : Tuple = 'f32le' lowerCAmelCase : Optional[Any] = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(_UpperCAmelCase, stdin=subprocess.PIPE, stdout=subprocess.PIPE ) as ffmpeg_process: lowerCAmelCase : Optional[int] = ffmpeg_process.communicate(_UpperCAmelCase ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowerCAmelCase : str = output_stream[0] lowerCAmelCase : List[str] = np.frombuffer(_UpperCAmelCase, np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = "f32le", ): '''simple docstring''' lowerCAmelCase : List[str] = f"{sampling_rate}" lowerCAmelCase : Union[str, Any] = '1' if format_for_conversion == "s16le": lowerCAmelCase : Optional[int] = 2 elif format_for_conversion == "f32le": lowerCAmelCase : Tuple = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) lowerCAmelCase : Optional[int] = platform.system() if system == "Linux": lowerCAmelCase : Union[str, Any] = 'alsa' lowerCAmelCase : Optional[Any] = 'default' elif system == "Darwin": lowerCAmelCase : Optional[int] = 'avfoundation' lowerCAmelCase : str = ':0' elif system == "Windows": lowerCAmelCase : Optional[Any] = 'dshow' lowerCAmelCase : List[Any] = 'default' lowerCAmelCase : Optional[Any] = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowerCAmelCase : int = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCAmelCase : Any = _ffmpeg_stream(_UpperCAmelCase, _UpperCAmelCase ) for item in iterator: yield item def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = "f32le", ): '''simple docstring''' if stream_chunk_s is not None: lowerCAmelCase : Union[str, Any] = stream_chunk_s else: lowerCAmelCase : Tuple = chunk_length_s lowerCAmelCase : Union[str, Any] = ffmpeg_microphone(_UpperCAmelCase, _UpperCAmelCase, format_for_conversion=_UpperCAmelCase ) if format_for_conversion == "s16le": lowerCAmelCase : Any = np.intaa lowerCAmelCase : str = 2 elif format_for_conversion == "f32le": lowerCAmelCase : Tuple = np.floataa lowerCAmelCase : int = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) if stride_length_s is None: lowerCAmelCase : int = chunk_length_s / 6 lowerCAmelCase : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_UpperCAmelCase, (int, float) ): lowerCAmelCase : List[str] = [stride_length_s, stride_length_s] lowerCAmelCase : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCAmelCase : Tuple = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCAmelCase : List[Any] = datetime.datetime.now() lowerCAmelCase : Optional[Any] = datetime.timedelta(seconds=_UpperCAmelCase ) for item in chunk_bytes_iter(_UpperCAmelCase, _UpperCAmelCase, stride=(stride_left, stride_right), stream=_UpperCAmelCase ): # Put everything back in numpy scale lowerCAmelCase : Optional[int] = np.frombuffer(item['raw'], dtype=_UpperCAmelCase ) lowerCAmelCase : List[Any] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowerCAmelCase : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = False ): '''simple docstring''' lowerCAmelCase : Any = b'' lowerCAmelCase : Any = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) lowerCAmelCase : Optional[Any] = 0 for raw in iterator: acc += raw if stream and len(_UpperCAmelCase ) < chunk_len: lowerCAmelCase : Any = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_UpperCAmelCase ) >= chunk_len: # We are flushing the accumulator lowerCAmelCase : Optional[int] = (_stride_left, stride_right) lowerCAmelCase : int = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowerCAmelCase : Any = False yield item lowerCAmelCase : Optional[int] = stride_left lowerCAmelCase : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_UpperCAmelCase ) > stride_left: lowerCAmelCase : Any = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowerCAmelCase : Dict = False yield item def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowerCAmelCase : Tuple = 2**24 # 16Mo try: with subprocess.Popen(_UpperCAmelCase, stdout=subprocess.PIPE, bufsize=_UpperCAmelCase ) as ffmpeg_process: while True: lowerCAmelCase : int = ffmpeg_process.stdout.read(_UpperCAmelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
362
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
0
from math import ceil def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 1_001 ) -> int: '''simple docstring''' lowerCAmelCase : Optional[Any] = 1 for i in range(1, int(ceil(n / 2.0 ) ) ): lowerCAmelCase : str = 2 * i + 1 lowerCAmelCase : str = 2 * i lowerCAmelCase : Tuple = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __A : int = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
363
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : int = BeautifulSoup(requests.get(_UpperCAmelCase, params=_UpperCAmelCase ).content, 'html.parser' ) lowerCAmelCase : Union[str, Any] = soup.find('div', attrs={'class': 'gs_ri'} ) lowerCAmelCase : int = div.find('div', attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": __A : Optional[Any] = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 30, '''pages''': '''3979-3990''', '''year''': 2018, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
364
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
365
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __A : Tuple = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __A : int = 25_0004 __A : Tuple = 25_0020 @require_sentencepiece @require_tokenizers class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = MBartTokenizer lowerCAmelCase_ : List[Any] = MBartTokenizerFast lowerCAmelCase_ : int = True lowerCAmelCase_ : Tuple = True def lowercase__ ( self : int ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Any = MBartTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Dict = MBartTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) lowerCAmelCase : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase : Dict = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase : Any = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def lowercase__ ( self : Tuple ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase : str = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : int = tempfile.mkdtemp() lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCAmelCase : List[Any] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase : List[Any] = tempfile.mkdtemp() lowerCAmelCase : int = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) lowerCAmelCase : Dict = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase : Union[str, Any] = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase : Optional[int] = tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): lowerCAmelCase_ : str = "facebook/mbart-large-en-ro" lowerCAmelCase_ : List[Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] lowerCAmelCase_ : Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] lowerCAmelCase_ : List[Any] = [8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2, EN_CODE] @classmethod def lowercase__ ( cls : int ): lowerCAmelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) lowerCAmelCase : int = 1 return cls def lowercase__ ( self : str ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 ) def lowercase__ ( self : str ): lowerCAmelCase : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) def lowercase__ ( self : int ): self.assertIn(UpperCAmelCase_ , self.tokenizer.all_special_ids ) lowerCAmelCase : Optional[int] = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCAmelCase : List[str] = self.tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , UpperCAmelCase_ ) lowerCAmelCase : Any = 10 lowerCAmelCase : str = self.tokenizer(UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250026, 250001] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = tempfile.mkdtemp() lowerCAmelCase : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = MBartTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase_ ) @require_torch def lowercase__ ( self : Optional[int] ): lowerCAmelCase : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , return_tensors='pt' ) lowerCAmelCase : str = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCAmelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = self.tokenizer(self.src_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=3 , return_tensors='pt' ) lowerCAmelCase : Any = self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=10 , return_tensors='pt' ) lowerCAmelCase : List[Any] = targets['input_ids'] lowerCAmelCase : List[str] = shift_tokens_right(UpperCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : str ): lowerCAmelCase : Tuple = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , { # A, test, EOS, en_XX 'input_ids': [[62, 3034, 2, 250004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } , )
366
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "deberta-v2" def __init__( self : int , UpperCAmelCase_ : Dict=128100 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : Tuple=24 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Any=6144 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : int="gelu" , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Dict = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = relative_attention lowerCAmelCase : List[Any] = max_relative_positions lowerCAmelCase : List[Any] = pad_token_id lowerCAmelCase : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: lowerCAmelCase : Tuple = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : str = pos_att_type lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : str = kwargs.get('pooler_hidden_size' , UpperCAmelCase_ ) lowerCAmelCase : Tuple = pooler_dropout lowerCAmelCase : Union[str, Any] = pooler_hidden_act class __A ( lowerCAmelCase ): @property def lowercase__ ( self : Optional[Any] ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase__ ( self : int ): return 12 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase : List[str] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
0
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __A : List[Any] = 0 __A : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __A : Any = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __A : int = tuple[int, int] class __A : def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Node | None , ): lowerCAmelCase : str = pos_x lowerCAmelCase : Tuple = pos_y lowerCAmelCase : str = (pos_y, pos_x) lowerCAmelCase : int = goal_x lowerCAmelCase : Any = goal_y lowerCAmelCase : Union[str, Any] = g_cost lowerCAmelCase : int = parent lowerCAmelCase : Dict = self.calculate_heuristic() lowerCAmelCase : Dict = self.g_cost + self.h_cost def lowercase__ ( self : Any ): lowerCAmelCase : Dict = self.pos_x - self.goal_x lowerCAmelCase : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(UpperCAmelCase_ ) + abs(UpperCAmelCase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Tuple , UpperCAmelCase_ : Node ): return self.f_cost < other.f_cost class __A : def __init__( self : int , UpperCAmelCase_ : TPosition , UpperCAmelCase_ : TPosition ): lowerCAmelCase : Union[str, Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCAmelCase_ ) lowerCAmelCase : str = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , UpperCAmelCase_ ) lowerCAmelCase : Dict = [self.start] lowerCAmelCase : list[Node] = [] lowerCAmelCase : str = False def lowercase__ ( self : List[Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase : int = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(UpperCAmelCase_ ) self.closed_nodes.append(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = self.get_successors(UpperCAmelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCAmelCase_ ) else: # retrieve the best current path lowerCAmelCase : str = self.open_nodes.pop(self.open_nodes.index(UpperCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCAmelCase_ ) else: self.open_nodes.append(UpperCAmelCase_ ) return [self.start.pos] def lowercase__ ( self : int , UpperCAmelCase_ : Node ): lowerCAmelCase : str = [] for action in delta: lowerCAmelCase : str = parent.pos_x + action[1] lowerCAmelCase : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCAmelCase_ , UpperCAmelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCAmelCase_ , ) ) return successors def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Node | None ): lowerCAmelCase : Optional[int] = node lowerCAmelCase : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase : List[Any] = current_node.parent path.reverse() return path class __A : def __init__( self : Dict , UpperCAmelCase_ : TPosition , UpperCAmelCase_ : TPosition ): lowerCAmelCase : List[Any] = AStar(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : int = AStar(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = False def lowercase__ ( self : Any ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() lowerCAmelCase : int = self.fwd_astar.open_nodes.pop(0 ) lowerCAmelCase : str = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( UpperCAmelCase_ , UpperCAmelCase_ ) self.fwd_astar.closed_nodes.append(UpperCAmelCase_ ) self.bwd_astar.closed_nodes.append(UpperCAmelCase_ ) lowerCAmelCase : Tuple = current_bwd_node lowerCAmelCase : Any = current_fwd_node lowerCAmelCase : Optional[Any] = { self.fwd_astar: self.fwd_astar.get_successors(UpperCAmelCase_ ), self.bwd_astar: self.bwd_astar.get_successors(UpperCAmelCase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(UpperCAmelCase_ ) else: # retrieve the best current path lowerCAmelCase : Union[str, Any] = astar.open_nodes.pop( astar.open_nodes.index(UpperCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(UpperCAmelCase_ ) else: astar.open_nodes.append(UpperCAmelCase_ ) return [self.fwd_astar.start.pos] def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Node , UpperCAmelCase_ : Node ): lowerCAmelCase : Optional[int] = self.fwd_astar.retrace_path(UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.bwd_astar.retrace_path(UpperCAmelCase_ ) bwd_path.pop() bwd_path.reverse() lowerCAmelCase : List[str] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __A : Any = (0, 0) __A : Optional[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __A : int = time.time() __A : Any = AStar(init, goal) __A : List[str] = a_star.search() __A : List[str] = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') __A : Optional[int] = time.time() __A : List[str] = BidirectionalAStar(init, goal) __A : Union[str, Any] = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
367
__A : Dict = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A : Optional[int] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A : Optional[int] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A : Tuple = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
323
0
from ..utils import DummyObject, requires_backends class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[str] = ["torch"] def __init__( self : Tuple , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Tuple = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Dict = ["torch"] def __init__( self : List[str] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Any = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : int = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = ["torch"] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Dict = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[str] = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[str] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> List[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[str] = ["torch"] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : int = ["torch"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Any = ["torch"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : Tuple , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : str , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[int] = ["torch"] def __init__( self : List[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Any = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[int] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Tuple = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Any = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[str] = ["torch"] def __init__( self : List[str] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Dict = ["torch"] def __init__( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : int = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Tuple = ["torch"] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[int] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Any ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : str = ["torch"] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Dict = ["torch"] def __init__( self : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Tuple = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : int = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = ["torch"] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Tuple , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : int = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Any ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : int = ["torch"] def __init__( self : str , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Tuple , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : str = ["torch"] def __init__( self : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Any = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[str] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : int ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Tuple = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Tuple , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : str ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[int] = ["torch"] def __init__( self : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Any , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : List[Any] = ["torch"] def __init__( self : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = ["torch"] def __init__( self : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : str , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : str = ["torch"] def __init__( self : List[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict ): requires_backends(cls , ['torch'] ) class __A ( metaclass=lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = ["torch"] def __init__( self : Optional[int] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict ): requires_backends(self , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def lowercase__ ( cls : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Any ): requires_backends(cls , ['torch'] )
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[str] = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys __A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
369
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : Tuple = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = "align_text_model" def __init__( self : Dict , UpperCAmelCase_ : int=30522 , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Any=3072 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Tuple=1E-12 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : Optional[Any]="absolute" , UpperCAmelCase_ : Dict=True , **UpperCAmelCase_ : List[Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : str = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Dict = position_embedding_type lowerCAmelCase : Tuple = use_cache lowerCAmelCase : int = pad_token_id @classmethod def lowercase__ ( cls : str , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : Optional[Any] ): cls._set_token_in_kwargs(UpperCAmelCase_ ) lowerCAmelCase : Any = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": lowerCAmelCase : List[str] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class __A ( lowerCAmelCase ): lowerCAmelCase_ : int = "align_vision_model" def __init__( self : Optional[int] , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 600 , UpperCAmelCase_ : float = 2.0 , UpperCAmelCase_ : float = 3.1 , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCAmelCase_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCAmelCase_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCAmelCase_ : List[int] = [] , UpperCAmelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCAmelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCAmelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCAmelCase_ : float = 0.25 , UpperCAmelCase_ : str = "swish" , UpperCAmelCase_ : int = 2560 , UpperCAmelCase_ : str = "mean" , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 0.0_01 , UpperCAmelCase_ : float = 0.99 , UpperCAmelCase_ : float = 0.2 , **UpperCAmelCase_ : Optional[int] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : str = num_channels lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : Any = width_coefficient lowerCAmelCase : Optional[Any] = depth_coefficient lowerCAmelCase : List[str] = depth_divisor lowerCAmelCase : Tuple = kernel_sizes lowerCAmelCase : Any = in_channels lowerCAmelCase : List[Any] = out_channels lowerCAmelCase : Union[str, Any] = depthwise_padding lowerCAmelCase : List[Any] = strides lowerCAmelCase : Tuple = num_block_repeats lowerCAmelCase : Optional[Any] = expand_ratios lowerCAmelCase : int = squeeze_expansion_ratio lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : Tuple = hidden_dim lowerCAmelCase : Tuple = pooling_type lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Union[str, Any] = batch_norm_eps lowerCAmelCase : List[Any] = batch_norm_momentum lowerCAmelCase : int = drop_connect_rate lowerCAmelCase : Union[str, Any] = sum(UpperCAmelCase_ ) * 4 @classmethod def lowercase__ ( cls : int , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : Any ): cls._set_token_in_kwargs(UpperCAmelCase_ ) lowerCAmelCase : Any = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": lowerCAmelCase : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class __A ( lowerCAmelCase ): lowerCAmelCase_ : int = "align" lowerCAmelCase_ : str = True def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=640 , UpperCAmelCase_ : Optional[int]=1.0 , UpperCAmelCase_ : Optional[int]=0.02 , **UpperCAmelCase_ : str , ): super().__init__(**UpperCAmelCase_ ) if text_config is None: lowerCAmelCase : Tuple = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: lowerCAmelCase : List[str] = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) lowerCAmelCase : int = AlignTextConfig(**UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = AlignVisionConfig(**UpperCAmelCase_ ) lowerCAmelCase : Tuple = projection_dim lowerCAmelCase : Optional[Any] = temperature_init_value lowerCAmelCase : int = initializer_range @classmethod def lowercase__ ( cls : List[Any] , UpperCAmelCase_ : AlignTextConfig , UpperCAmelCase_ : AlignVisionConfig , **UpperCAmelCase_ : Dict ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase : Tuple = self.text_config.to_dict() lowerCAmelCase : Union[str, Any] = self.vision_config.to_dict() lowerCAmelCase : Any = self.__class__.model_type return output
370
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCAmelCase : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase : Tuple = {'unk_token': '<unk>'} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any , **UpperCAmelCase_ : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Tuple , **UpperCAmelCase_ : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ): lowerCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : List[str] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : int = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = 'lower newer' lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = 'lower newer' lowerCAmelCase : Optional[int] = self.prepare_image_inputs() lowerCAmelCase : Union[str, Any] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : Any = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
323
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : str ): lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : str = BlipImageProcessor() lowerCAmelCase : int = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) lowerCAmelCase : Dict = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) lowerCAmelCase : int = InstructBlipProcessor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).tokenizer def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : List[str] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor def lowercase__ ( self : List[str] , **UpperCAmelCase_ : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).qformer_tokenizer def lowercase__ ( self : Optional[Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : int ): lowerCAmelCase : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : Dict = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : int = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : List[Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : int = self.get_image_processor() lowerCAmelCase : int = self.get_tokenizer() lowerCAmelCase : Tuple = self.get_qformer_tokenizer() lowerCAmelCase : Optional[int] = InstructBlipProcessor( tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ ) lowerCAmelCase : int = self.prepare_image_inputs() lowerCAmelCase : Optional[int] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : Dict = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : Any = self.get_qformer_tokenizer() lowerCAmelCase : int = InstructBlipProcessor( tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ ) lowerCAmelCase : List[str] = 'lower newer' lowerCAmelCase : int = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Dict = tokenizer(UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = qformer_tokenizer(UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def lowercase__ ( self : int ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : List[Any] = self.get_qformer_tokenizer() lowerCAmelCase : Union[str, Any] = InstructBlipProcessor( tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : Any ): lowerCAmelCase : int = self.get_image_processor() lowerCAmelCase : Optional[Any] = self.get_tokenizer() lowerCAmelCase : List[Any] = self.get_qformer_tokenizer() lowerCAmelCase : List[Any] = InstructBlipProcessor( tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : str = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : int = self.get_image_processor() lowerCAmelCase : List[Any] = self.get_tokenizer() lowerCAmelCase : Any = self.get_qformer_tokenizer() lowerCAmelCase : Tuple = InstructBlipProcessor( tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = 'lower newer' lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : Optional[int] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __A : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name __A : List[str] = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[PIL.Image.Image, np.ndarray] class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : PriorTransformer , UpperCAmelCase_ : CLIPVisionModel , UpperCAmelCase_ : CLIPImageProcessor , UpperCAmelCase_ : HeunDiscreteScheduler , UpperCAmelCase_ : ShapERenderer , ): super().__init__() self.register_modules( prior=UpperCAmelCase_ , image_encoder=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , renderer=UpperCAmelCase_ , ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ): if latents is None: lowerCAmelCase : Tuple = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) lowerCAmelCase : Dict = latents.to(UpperCAmelCase_ ) lowerCAmelCase : int = latents * scheduler.init_noise_sigma return latents def lowercase__ ( self : int , UpperCAmelCase_ : Tuple=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCAmelCase : Union[str, Any] = torch.device(f"cuda:{gpu_id}" ) lowerCAmelCase : Optional[Any] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase_ , UpperCAmelCase_ ) @property def lowercase__ ( self : Optional[int] ): if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCAmelCase_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(image[0] , torch.Tensor ): lowerCAmelCase : Any = torch.cat(UpperCAmelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCAmelCase_ , axis=0 ) if not isinstance(UpperCAmelCase_ , torch.Tensor ): lowerCAmelCase : Any = self.image_processor(UpperCAmelCase_ , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) lowerCAmelCase : List[str] = image.to(dtype=self.image_encoder.dtype , device=UpperCAmelCase_ ) lowerCAmelCase : Dict = self.image_encoder(UpperCAmelCase_ )['last_hidden_state'] lowerCAmelCase : Dict = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCAmelCase : Optional[int] = image_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase : Optional[Any] = torch.zeros_like(UpperCAmelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase : Dict = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCAmelCase_ ) def __call__( self : Tuple , UpperCAmelCase_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 25 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : float = 4.0 , UpperCAmelCase_ : int = 64 , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , ): if isinstance(UpperCAmelCase_ , PIL.Image.Image ): lowerCAmelCase : Optional[Any] = 1 elif isinstance(UpperCAmelCase_ , torch.Tensor ): lowerCAmelCase : Any = image.shape[0] elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCAmelCase : Optional[Any] = len(UpperCAmelCase_ ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCAmelCase_ )}" ) lowerCAmelCase : int = self._execution_device lowerCAmelCase : Dict = batch_size * num_images_per_prompt lowerCAmelCase : Tuple = guidance_scale > 1.0 lowerCAmelCase : Optional[int] = self._encode_image(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # prior self.scheduler.set_timesteps(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = self.scheduler.timesteps lowerCAmelCase : Union[str, Any] = self.prior.config.num_embeddings lowerCAmelCase : Union[str, Any] = self.prior.config.embedding_dim lowerCAmelCase : str = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCAmelCase : Tuple = latents.reshape(latents.shape[0] , UpperCAmelCase_ , UpperCAmelCase_ ) for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase : List[Any] = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.prior( UpperCAmelCase_ , timestep=UpperCAmelCase_ , proj_embedding=UpperCAmelCase_ , ).predicted_image_embedding # remove the variance lowerCAmelCase : str = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCAmelCase : Any = noise_pred.chunk(2 ) lowerCAmelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCAmelCase : Dict = self.scheduler.step( UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = [] for i, latent in enumerate(UpperCAmelCase_ ): print() lowerCAmelCase : List[str] = self.renderer.decode( latent[None, :] , UpperCAmelCase_ , size=UpperCAmelCase_ , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCAmelCase_ ) lowerCAmelCase : str = torch.stack(UpperCAmelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) lowerCAmelCase : str = images.cpu().numpy() if output_type == "pil": lowerCAmelCase : Dict = [self.numpy_to_pil(UpperCAmelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCAmelCase_ )
350
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
0
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): '''simple docstring''' if num <= 0: lowerCAmelCase : List[str] = f"{num}: Invalid input, please enter a positive integer." raise ValueError(_UpperCAmelCase ) lowerCAmelCase : Any = [True] * (num + 1) lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : List[str] = 2 lowerCAmelCase : List[str] = int(math.sqrt(_UpperCAmelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_UpperCAmelCase ) # Set multiples of start be False for i in range(start * start, num + 1, _UpperCAmelCase ): if sieve[i] is True: lowerCAmelCase : str = False start += 1 for j in range(end + 1, num + 1 ): if sieve[j] is True: prime.append(_UpperCAmelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
351
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def lowercase__ ( self : int ): lowerCAmelCase : List[str] = 'x = 3' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) lowerCAmelCase : Dict = 'x = y' lowerCAmelCase : List[Any] = {'y': 5} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 'y = add_two(x)' lowerCAmelCase : int = {'x': 3} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 'x = 3' lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = 'x = 3\ny = 5' lowerCAmelCase : str = {} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5} ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = 'text = f\'This is x: {x}.\'' lowerCAmelCase : str = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' lowerCAmelCase : Dict = {'x': 3} lowerCAmelCase : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2} ) lowerCAmelCase : Any = {'x': 8} lowerCAmelCase : Optional[int] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5} ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = 'test_list = [x, add_two(x)]' lowerCAmelCase : Optional[Any] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [3, 5] ) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = 'y = x' lowerCAmelCase : Optional[int] = {'x': 3} lowerCAmelCase : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_ ) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3} ) def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = 'test_list = [x, add_two(x)]\ntest_list[1]' lowerCAmelCase : List[str] = {'x': 3} lowerCAmelCase : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]} ) lowerCAmelCase : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' lowerCAmelCase : List[Any] = {'x': 3} lowerCAmelCase : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_ ) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def lowercase__ ( self : int ): lowerCAmelCase : Any = 'x = 0\nfor i in range(3):\n x = i' lowerCAmelCase : str = {} lowerCAmelCase : Dict = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_ ) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2} )
323
0
"""simple docstring""" from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
352
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __A ( nn.Module ): lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : float = 0.0 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : bool = True lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = False lowerCAmelCase_ : jnp.dtype = jnp.floataa def lowercase__ ( self : Dict ): lowerCAmelCase : Dict = [] lowerCAmelCase : Optional[Any] = [] for i in range(self.num_layers ): lowerCAmelCase : Dict = self.in_channels if i == 0 else self.out_channels lowerCAmelCase : Optional[int] = FlaxResnetBlockaD( in_channels=UpperCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) lowerCAmelCase : Tuple = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = resnets lowerCAmelCase : str = attentions if self.add_downsample: lowerCAmelCase : List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int=True ): lowerCAmelCase : Optional[Any] = () for resnet, attn in zip(self.resnets , self.attentions ): lowerCAmelCase : List[Any] = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) lowerCAmelCase : Dict = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: lowerCAmelCase : str = self.downsamplers_a(UpperCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class __A ( nn.Module ): lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : float = 0.0 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : bool = True lowerCAmelCase_ : jnp.dtype = jnp.floataa def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = [] for i in range(self.num_layers ): lowerCAmelCase : List[str] = self.in_channels if i == 0 else self.out_channels lowerCAmelCase : Tuple = FlaxResnetBlockaD( in_channels=UpperCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = resnets if self.add_downsample: lowerCAmelCase : List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=True ): lowerCAmelCase : Any = () for resnet in self.resnets: lowerCAmelCase : Tuple = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: lowerCAmelCase : List[str] = self.downsamplers_a(UpperCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class __A ( nn.Module ): lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : float = 0.0 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : bool = True lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = False lowerCAmelCase_ : jnp.dtype = jnp.floataa def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : str = [] lowerCAmelCase : List[str] = [] for i in range(self.num_layers ): lowerCAmelCase : Optional[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowerCAmelCase : Union[str, Any] = self.prev_output_channel if i == 0 else self.out_channels lowerCAmelCase : List[str] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = resnets lowerCAmelCase : Union[str, Any] = attentions if self.add_upsample: lowerCAmelCase : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states lowerCAmelCase : Tuple = res_hidden_states_tuple[-1] lowerCAmelCase : List[Any] = res_hidden_states_tuple[:-1] lowerCAmelCase : Optional[int] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowerCAmelCase : str = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) lowerCAmelCase : Dict = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) if self.add_upsample: lowerCAmelCase : Dict = self.upsamplers_a(UpperCAmelCase_ ) return hidden_states class __A ( nn.Module ): lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : float = 0.0 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : bool = True lowerCAmelCase_ : jnp.dtype = jnp.floataa def lowercase__ ( self : Tuple ): lowerCAmelCase : int = [] for i in range(self.num_layers ): lowerCAmelCase : Tuple = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowerCAmelCase : Union[str, Any] = self.prev_output_channel if i == 0 else self.out_channels lowerCAmelCase : str = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = resnets if self.add_upsample: lowerCAmelCase : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]=True ): for resnet in self.resnets: # pop res hidden states lowerCAmelCase : Union[str, Any] = res_hidden_states_tuple[-1] lowerCAmelCase : Tuple = res_hidden_states_tuple[:-1] lowerCAmelCase : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowerCAmelCase : Tuple = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) if self.add_upsample: lowerCAmelCase : Tuple = self.upsamplers_a(UpperCAmelCase_ ) return hidden_states class __A ( nn.Module ): lowerCAmelCase_ : int lowerCAmelCase_ : float = 0.0 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = False lowerCAmelCase_ : jnp.dtype = jnp.floataa def lowercase__ ( self : Any ): # there is always at least one resnet lowerCAmelCase : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] lowerCAmelCase : List[str] = [] for _ in range(self.num_layers ): lowerCAmelCase : List[str] = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_ ) lowerCAmelCase : Dict = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = resnets lowerCAmelCase : Any = attentions def __call__( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int=True ): lowerCAmelCase : List[str] = self.resnets[0](UpperCAmelCase_ , UpperCAmelCase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): lowerCAmelCase : Optional[Any] = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) lowerCAmelCase : List[str] = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) return hidden_states
353
from __future__ import annotations from typing import Any class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Tuple = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Dict , UpperCAmelCase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Dict = self.find_component(UpperCAmelCase_ ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : Union[str, Any] = self.find_component(UpperCAmelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : str = [] lowerCAmelCase : Tuple = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : str = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[Any] = self.m_component[u] lowerCAmelCase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 lowerCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
323
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __A : int = logging.get_logger(__name__) __A : Dict = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Optional[int] = "longformer" def __init__( self : Optional[Any] , UpperCAmelCase_ : Union[List[int], int] = 512 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 30522 , UpperCAmelCase_ : int = 768 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 3072 , UpperCAmelCase_ : str = "gelu" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 1E-12 , UpperCAmelCase_ : bool = False , **UpperCAmelCase_ : Optional[int] , ): super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : int = attention_window lowerCAmelCase : str = sep_token_id lowerCAmelCase : Tuple = bos_token_id lowerCAmelCase : Optional[Any] = eos_token_id lowerCAmelCase : Any = vocab_size lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : str = hidden_act lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : str = type_vocab_size lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : int = layer_norm_eps lowerCAmelCase : Optional[Any] = onnx_export class __A ( lowerCAmelCase ): def __init__( self : Any , UpperCAmelCase_ : "PretrainedConfig" , UpperCAmelCase_ : str = "default" , UpperCAmelCase_ : "List[PatchingSpec]" = None ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : int = True @property def lowercase__ ( self : int ): if self.task == "multiple-choice": lowerCAmelCase : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = super().outputs if self.task == "default": lowerCAmelCase : Optional[int] = {0: 'batch'} return outputs @property def lowercase__ ( self : Optional[int] ): return 1E-4 @property def lowercase__ ( self : Any ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : "PreTrainedTokenizerBase" , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): lowerCAmelCase : int = super().generate_dummy_inputs( preprocessor=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCAmelCase : Optional[Any] = torch.zeros_like(inputs['input_ids'] ) # make every second token global lowerCAmelCase : str = 1 return inputs
354
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __A : Dict = False __A : Optional[Any] = logging.get_logger(__name__) __A : Tuple = '''ybelkada/fonts''' def SCREAMING_SNAKE_CASE__ ( ) -> str: '''simple docstring''' if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " 'Pix2StructImageProcessor. Please upgrade torch.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase, ['torch'] ) _check_torch_version() lowerCAmelCase : str = image_tensor.unsqueeze(0 ) lowerCAmelCase : Union[str, Any] = torch.nn.functional.unfold(_UpperCAmelCase, (patch_height, patch_width), stride=(patch_height, patch_width) ) lowerCAmelCase : Union[str, Any] = patches.reshape(image_tensor.size(0 ), image_tensor.size(1 ), _UpperCAmelCase, _UpperCAmelCase, -1 ) lowerCAmelCase : Tuple = patches.permute(0, 4, 2, 3, 1 ).reshape( image_tensor.size(2 ) // patch_height, image_tensor.size(3 ) // patch_width, image_tensor.size(1 ) * patch_height * patch_width, ) return patches.unsqueeze(0 ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = 36, _UpperCAmelCase = "black", _UpperCAmelCase = "white", _UpperCAmelCase = 5, _UpperCAmelCase = 5, _UpperCAmelCase = 5, _UpperCAmelCase = 5, _UpperCAmelCase = None, _UpperCAmelCase = None, ) -> Image.Image: '''simple docstring''' requires_backends(_UpperCAmelCase, 'vision' ) # Add new lines so that each line is no more than 80 characters. lowerCAmelCase : int = textwrap.TextWrapper(width=80 ) lowerCAmelCase : Any = wrapper.wrap(text=_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = '\n'.join(_UpperCAmelCase ) if font_bytes is not None and font_path is None: lowerCAmelCase : int = io.BytesIO(_UpperCAmelCase ) elif font_path is not None: lowerCAmelCase : List[Any] = font_path else: lowerCAmelCase : str = hf_hub_download(_UpperCAmelCase, 'Arial.TTF' ) lowerCAmelCase : List[Any] = ImageFont.truetype(_UpperCAmelCase, encoding='UTF-8', size=_UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowerCAmelCase : str = ImageDraw.Draw(Image.new('RGB', (1, 1), _UpperCAmelCase ) ) lowerCAmelCase : Dict = temp_draw.textbbox((0, 0), _UpperCAmelCase, _UpperCAmelCase ) # Create the actual image with a bit of padding around the text. lowerCAmelCase : List[str] = text_width + left_padding + right_padding lowerCAmelCase : Dict = text_height + top_padding + bottom_padding lowerCAmelCase : Dict = Image.new('RGB', (image_width, image_height), _UpperCAmelCase ) lowerCAmelCase : Optional[int] = ImageDraw.Draw(_UpperCAmelCase ) draw.text(xy=(left_padding, top_padding), text=_UpperCAmelCase, fill=_UpperCAmelCase, font=_UpperCAmelCase ) return image def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase, 'vision' ) # Convert to PIL image if necessary lowerCAmelCase : List[Any] = to_pil_image(_UpperCAmelCase ) lowerCAmelCase : int = render_text(_UpperCAmelCase, **_UpperCAmelCase ) lowerCAmelCase : List[str] = max(header_image.width, image.width ) lowerCAmelCase : str = int(image.height * (new_width / image.width) ) lowerCAmelCase : Tuple = int(header_image.height * (new_width / header_image.width) ) lowerCAmelCase : str = Image.new('RGB', (new_width, new_height + new_header_height), 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ), (0, 0) ) new_image.paste(image.resize((new_width, new_height) ), (0, new_header_height) ) # Convert back to the original framework if necessary lowerCAmelCase : List[str] = to_numpy_array(_UpperCAmelCase ) if infer_channel_dimension_format(_UpperCAmelCase ) == ChannelDimension.LAST: lowerCAmelCase : Tuple = to_channel_dimension_format(_UpperCAmelCase, ChannelDimension.LAST ) return new_image class __A ( lowerCAmelCase ): lowerCAmelCase_ : str = ["flattened_patches"] def __init__( self : Optional[int] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : int = 2048 , UpperCAmelCase_ : bool = False , **UpperCAmelCase_ : Optional[int] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : List[Any] = patch_size if patch_size is not None else {'height': 16, 'width': 16} lowerCAmelCase : Dict = do_normalize lowerCAmelCase : Optional[Any] = do_convert_rgb lowerCAmelCase : List[str] = max_patches lowerCAmelCase : Any = is_vqa def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : dict , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self.extract_flattened_patches , 'torch' ) _check_torch_version() # convert to torch lowerCAmelCase : Dict = to_channel_dimension_format(UpperCAmelCase_ , ChannelDimension.FIRST ) lowerCAmelCase : Optional[Any] = torch.from_numpy(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size['height'], patch_size['width'] lowerCAmelCase : str = get_image_size(UpperCAmelCase_ ) # maximize scale s.t. lowerCAmelCase : str = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowerCAmelCase : List[str] = max(min(math.floor(scale * image_height / patch_height ) , UpperCAmelCase_ ) , 1 ) lowerCAmelCase : int = max(min(math.floor(scale * image_width / patch_width ) , UpperCAmelCase_ ) , 1 ) lowerCAmelCase : Dict = max(num_feasible_rows * patch_height , 1 ) lowerCAmelCase : str = max(num_feasible_cols * patch_width , 1 ) lowerCAmelCase : Tuple = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='bilinear' , align_corners=UpperCAmelCase_ , antialias=UpperCAmelCase_ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowerCAmelCase : Any = torch_extract_patches(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = patches.shape lowerCAmelCase : Union[str, Any] = patches_shape[1] lowerCAmelCase : List[str] = patches_shape[2] lowerCAmelCase : Optional[Any] = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowerCAmelCase : Tuple = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowerCAmelCase : Dict = torch.arange(UpperCAmelCase_ ).reshape([rows, 1] ).repeat(1 , UpperCAmelCase_ ).reshape([rows * columns, 1] ) lowerCAmelCase : Optional[Any] = torch.arange(UpperCAmelCase_ ).reshape([1, columns] ).repeat(UpperCAmelCase_ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowerCAmelCase : List[Any] = row_ids.to(torch.floataa ) lowerCAmelCase : Optional[int] = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowerCAmelCase : Optional[Any] = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowerCAmelCase : str = torch.nn.functional.pad(UpperCAmelCase_ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowerCAmelCase : Dict = to_numpy_array(UpperCAmelCase_ ) return result def lowercase__ ( self : List[str] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any] ): if image.dtype == np.uinta: lowerCAmelCase : List[str] = image.astype(np.floataa ) # take mean across the whole `image` lowerCAmelCase : Union[str, Any] = np.mean(UpperCAmelCase_ ) lowerCAmelCase : Dict = np.std(UpperCAmelCase_ ) lowerCAmelCase : List[str] = max(UpperCAmelCase_ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , **UpperCAmelCase_ ) def lowercase__ ( self : str , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : int , ): lowerCAmelCase : Any = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase : Any = patch_size if patch_size is not None else self.patch_size lowerCAmelCase : Union[str, Any] = max_patches if max_patches is not None else self.max_patches lowerCAmelCase : Union[str, Any] = self.is_vqa if kwargs.get('data_format' , UpperCAmelCase_ ) is not None: raise ValueError('data_format is not an accepted input as the outputs are ' ) lowerCAmelCase : Optional[Any] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase : Optional[int] = [convert_to_rgb(UpperCAmelCase_ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase : str = [to_numpy_array(UpperCAmelCase_ ) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.' ) lowerCAmelCase : Tuple = kwargs.pop('font_bytes' , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = kwargs.pop('font_path' , UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : Dict = [header_text] * len(UpperCAmelCase_ ) lowerCAmelCase : List[str] = [ render_header(UpperCAmelCase_ , header_text[i] , font_bytes=UpperCAmelCase_ , font_path=UpperCAmelCase_ ) for i, image in enumerate(UpperCAmelCase_ ) ] if do_normalize: lowerCAmelCase : Any = [self.normalize(image=UpperCAmelCase_ ) for image in images] # convert to torch tensor and permute lowerCAmelCase : List[Any] = [ self.extract_flattened_patches(image=UpperCAmelCase_ , max_patches=UpperCAmelCase_ , patch_size=UpperCAmelCase_ ) for image in images ] # create attention mask in numpy lowerCAmelCase : Dict = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowerCAmelCase : Dict = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks} , tensor_type=UpperCAmelCase_ ) return encoded_outputs
355
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __A : def __init__( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]=14 , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[Any]=99 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : str=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : List[str]=0.02 , ): lowerCAmelCase : Dict = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : int = is_training lowerCAmelCase : str = use_input_mask lowerCAmelCase : int = use_token_type_ids lowerCAmelCase : List[Any] = use_labels lowerCAmelCase : str = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Dict = rotary_dim lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Optional[int] = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Tuple = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : int = max_position_embeddings lowerCAmelCase : Dict = initializer_range lowerCAmelCase : int = None lowerCAmelCase : List[Any] = vocab_size - 1 lowerCAmelCase : Dict = vocab_size - 1 lowerCAmelCase : Union[str, Any] = vocab_size - 1 def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[Any] = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase__ ( self : Dict ): lowerCAmelCase : int = self.prepare_config_and_inputs() lowerCAmelCase : List[str] = config_and_inputs lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ): lowerCAmelCase : Optional[int] = 20 lowerCAmelCase : List[Any] = model_class_name(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) lowerCAmelCase : Union[str, Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase : Optional[int] = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) lowerCAmelCase : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCAmelCase : List[Any] = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase_ , ) lowerCAmelCase : List[Any] = model(UpperCAmelCase_ ) lowerCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : List[str] = 20 lowerCAmelCase : Any = model_class_name(UpperCAmelCase_ ) lowerCAmelCase : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase : Optional[Any] = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase : Any = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) lowerCAmelCase : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCAmelCase : Dict = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) lowerCAmelCase : Union[str, Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) @require_flax class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowerCAmelCase_ : Tuple = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase__ ( self : List[Any] ): lowerCAmelCase : Tuple = FlaxGPTJModelTester(self ) def lowercase__ ( self : int ): for model_class_name in self.all_model_classes: lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @tooslow def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) lowerCAmelCase : int = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ ) lowerCAmelCase : Tuple = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) lowerCAmelCase : List[str] = False lowerCAmelCase : List[str] = model.config.eos_token_id lowerCAmelCase : Optional[Any] = jax.jit(model.generate ) lowerCAmelCase : List[str] = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase : Optional[Any] = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @is_pt_flax_cross_test def lowercase__ ( self : Optional[int] ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase : Optional[Any] = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase : Any = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase : Union[str, Any] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = pt_inputs['input_ids'].shape lowerCAmelCase : Tuple = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Any = 0 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[str] = 0 lowerCAmelCase : int = 1 lowerCAmelCase : Optional[Any] = pt_model_class(UpperCAmelCase_ ).eval() lowerCAmelCase : int = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) lowerCAmelCase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = fx_state with torch.no_grad(): lowerCAmelCase : List[str] = pt_model(**UpperCAmelCase_ ).to_tuple() lowerCAmelCase : Optional[int] = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[str] = model_class.from_pretrained(UpperCAmelCase_ , from_pt=UpperCAmelCase_ ) lowerCAmelCase : str = fx_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase : List[str] = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase : str = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = pt_model_class(UpperCAmelCase_ ).eval() lowerCAmelCase : Optional[int] = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) lowerCAmelCase : Dict = load_flax_weights_in_pytorch_model(UpperCAmelCase_ , fx_model.params ) lowerCAmelCase : List[str] = pt_inputs['input_ids'].shape lowerCAmelCase : Any = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Union[str, Any] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase : List[Any] = pt_model(**UpperCAmelCase_ ).to_tuple() lowerCAmelCase : int = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase_ ) lowerCAmelCase : List[str] = pt_model_class.from_pretrained(UpperCAmelCase_ , from_flax=UpperCAmelCase_ ) with torch.no_grad(): lowerCAmelCase : Tuple = pt_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def lowercase__ ( self : Dict ): for model_class_name in self.all_model_classes: lowerCAmelCase : str = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) lowerCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ )
356
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' lowerCAmelCase : Optional[int] = 0.0 for coeff in reversed(_UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": __A : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) __A : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
323
0
import mpmath # for roots of unity import numpy as np class __A : def __init__( self : Optional[int] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : str=None ): # Input as list lowerCAmelCase : str = list(poly_a or [0] )[:] lowerCAmelCase : Dict = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowerCAmelCase : Union[str, Any] = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowerCAmelCase : Optional[Any] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowerCAmelCase : Tuple = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowerCAmelCase : List[str] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowerCAmelCase : Optional[Any] = self.__multiply() def lowercase__ ( self : str , UpperCAmelCase_ : Tuple ): lowerCAmelCase : Dict = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase_ ) <= 1: return dft[0] # lowerCAmelCase : Dict = self.c_max_length // 2 while next_ncol > 0: lowerCAmelCase : Tuple = [[] for i in range(UpperCAmelCase_ )] lowerCAmelCase : List[str] = self.root**next_ncol # First half of next step lowerCAmelCase : Any = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowerCAmelCase : str = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowerCAmelCase : List[str] = new_dft lowerCAmelCase : int = next_ncol // 2 return dft[0] def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.__dft('A' ) lowerCAmelCase : Any = self.__dft('B' ) lowerCAmelCase : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowerCAmelCase : Optional[Any] = 2 while next_ncol <= self.c_max_length: lowerCAmelCase : Optional[Any] = [[] for i in range(UpperCAmelCase_ )] lowerCAmelCase : int = self.root ** (next_ncol // 2) lowerCAmelCase : str = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowerCAmelCase : List[str] = new_inverse_c next_ncol *= 2 # Unpack lowerCAmelCase : int = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Optional[int] ): lowerCAmelCase : str = 'A = ' + ' + '.join( f"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowerCAmelCase : List[str] = 'B = ' + ' + '.join( f"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowerCAmelCase : List[str] = 'A*B = ' + ' + '.join( f"{coef}*x^{i}" for coef, i in enumerate(self.product ) ) return f"{a}\n{b}\n{c}" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
357
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[Any]=99 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : List[str]=36 , UpperCAmelCase_ : Union[str, Any]=6 , UpperCAmelCase_ : Union[str, Any]=6 , UpperCAmelCase_ : List[str]=6 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : str=None , ): lowerCAmelCase : Any = parent lowerCAmelCase : List[str] = batch_size lowerCAmelCase : Optional[int] = seq_length lowerCAmelCase : Dict = is_training lowerCAmelCase : Tuple = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : str = vocab_size lowerCAmelCase : Optional[int] = embedding_size lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : str = num_hidden_groups lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : List[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : List[Any] = type_sequence_label_size lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Union[str, Any] = num_labels lowerCAmelCase : Any = num_choices lowerCAmelCase : Dict = scope def lowercase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Dict = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : str = None if self.use_token_type_ids: lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Dict = None lowerCAmelCase : Any = None lowerCAmelCase : List[str] = None if self.use_labels: lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Union[str, Any] ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowercase__ ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ): lowerCAmelCase : str = AlbertModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Any = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Dict = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple ): lowerCAmelCase : str = AlbertForPreTraining(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Optional[Any] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , sentence_order_label=UpperCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[Any] = AlbertForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Union[str, Any] = AlbertForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : str = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : int = AlbertForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Tuple = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : int = self.num_labels lowerCAmelCase : List[str] = AlbertForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : List[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : Dict = AlbertForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Dict = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( lowerCAmelCase ) : Optional[Any] = config_and_inputs lowerCAmelCase : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Dict = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ : int = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : int = True def lowercase__ ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any]=False ): lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) if return_labels: if model_class in get_values(UpperCAmelCase_ ): lowerCAmelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) return inputs_dict def lowercase__ ( self : int ): lowerCAmelCase : Any = AlbertModelTester(self ) lowerCAmelCase : Any = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : Any ): self.config_tester.run_common_tests() def lowercase__ ( self : int ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : Union[str, Any] = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) @slow def lowercase__ ( self : int ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = AlbertModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_torch class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Dict ): lowerCAmelCase : List[Any] = AlbertModel.from_pretrained('albert-base-v2' ) lowerCAmelCase : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCAmelCase : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase : Dict = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] lowerCAmelCase : str = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCAmelCase_ ) lowerCAmelCase : Dict = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
358
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[Any] = '' else: lowerCAmelCase : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase : List[Any] = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : int = in_proj_bias[: config.hidden_size] lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Any = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Optional[int] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : List[str] = dct.pop(_UpperCAmelCase ) lowerCAmelCase : Dict = val def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : str = ViTMSNConfig() lowerCAmelCase : str = 1_000 lowerCAmelCase : List[str] = 'datasets/huggingface/label-files' lowerCAmelCase : int = 'imagenet-1k-id2label.json' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase : Optional[Any] = 384 lowerCAmelCase : List[Any] = 1_536 lowerCAmelCase : Union[str, Any] = 6 elif "l16" in checkpoint_url: lowerCAmelCase : List[Any] = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : Any = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase : Any = 4 elif "l7" in checkpoint_url: lowerCAmelCase : int = 7 lowerCAmelCase : str = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : str = 24 lowerCAmelCase : Tuple = 16 lowerCAmelCase : Dict = 0.1 lowerCAmelCase : List[str] = ViTMSNModel(_UpperCAmelCase ) lowerCAmelCase : int = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['target_encoder'] lowerCAmelCase : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCAmelCase ) lowerCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase, base_model=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, base_model=_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Dict = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Any = ViTImageProcessor( size=config.image_size, image_mean=_UpperCAmelCase, image_std=_UpperCAmelCase ) lowerCAmelCase : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Union[str, Any] = model(**_UpperCAmelCase ) lowerCAmelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowerCAmelCase : Union[str, Any] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowerCAmelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : List[str] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
0
"""simple docstring""" import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __A : Optional[Any] = datasets.logging.get_logger(__name__) __A : Tuple = '''\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } ''' __A : List[str] = '''\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project\'s README at https://github.com/google-research/bleurt#readme for more information. ''' __A : int = ''' BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: \'scores\': List of scores. Examples: >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> bleurt = datasets.load_metric("bleurt") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results["scores"]]) [1.03, 1.04] ''' __A : List[Any] = { '''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''', '''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''', '''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''', '''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''', '''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''', '''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''', '''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''', '''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''', '''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''', '''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def lowercase__ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/google-research/bleurt' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/bleurt'] , reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'] , ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : int ): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( 'Using default BLEURT-Base checkpoint for sequence maximum length 128. ' 'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').' ) lowerCAmelCase : Union[str, Any] = 'bleurt-base-128' if self.config_name.lower() in CHECKPOINT_URLS: lowerCAmelCase : Union[str, Any] = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: lowerCAmelCase : Optional[Any] = self.config_name.upper() else: raise KeyError( f"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}" ) # download the model checkpoint specified by self.config_name and set up the scorer lowerCAmelCase : Dict = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) lowerCAmelCase : List[str] = score.BleurtScorer(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ): lowerCAmelCase : Optional[Any] = self.scorer.score(references=UpperCAmelCase_ , candidates=UpperCAmelCase_ ) return {"scores": scores}
359
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('String lengths must match!' ) lowerCAmelCase : Tuple = 0 for chara, chara in zip(_UpperCAmelCase, _UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
323
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __A : Union[str, Any] = get_logger() __A : Optional[dict] = None class __A ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Dict ): super().__init__(features=UpperCAmelCase_ ) import jax from jaxlib.xla_client import Device if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError( f"Expected {device} to be a `str` not {type(UpperCAmelCase_ )}, as `jaxlib.xla_extension.Device` " 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) lowerCAmelCase : List[Any] = device if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase : Optional[int] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"Device with string identifier {self.device} not listed among the available " f"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " f"device: {str(jax.devices()[0] )}." ) lowerCAmelCase : Any = str(jax.devices()[0] ) lowerCAmelCase : Optional[int] = jnp_array_kwargs @staticmethod def lowercase__ ( ): import jax return {str(UpperCAmelCase_ ): device for device in jax.devices()} def lowercase__ ( self : str , UpperCAmelCase_ : Union[str, Any] ): import jax import jax.numpy as jnp if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and column: if all( isinstance(UpperCAmelCase_ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCAmelCase_ , axis=0 ) return column def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple ): import jax import jax.numpy as jnp if isinstance(UpperCAmelCase_ , (str, bytes, type(UpperCAmelCase_ )) ): return value elif isinstance(UpperCAmelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase : Dict = {} if isinstance(UpperCAmelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowerCAmelCase : int = {'dtype': jnp.intaa} else: lowerCAmelCase : str = {'dtype': jnp.intaa} elif isinstance(UpperCAmelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase : Optional[int] = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase_ , PIL.Image.Image ): lowerCAmelCase : List[Any] = np.asarray(UpperCAmelCase_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase : List[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCAmelCase_ , **{**default_dtype, **self.jnp_array_kwargs} ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCAmelCase_ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCAmelCase_ , '__array__' ) and not isinstance(UpperCAmelCase_ , jax.Array ): lowerCAmelCase : int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase_ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCAmelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCAmelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCAmelCase_ ) def lowercase__ ( self : int , UpperCAmelCase_ : dict ): return map_nested(self._recursive_tensorize , UpperCAmelCase_ , map_list=UpperCAmelCase_ ) def lowercase__ ( self : int , UpperCAmelCase_ : pa.Table ): lowerCAmelCase : int = self.numpy_arrow_extractor().extract_row(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = self.python_features_decoder.decode_row(UpperCAmelCase_ ) return self.recursive_tensorize(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : pa.Table ): lowerCAmelCase : Any = self.numpy_arrow_extractor().extract_column(UpperCAmelCase_ ) lowerCAmelCase : Any = self.python_features_decoder.decode_column(UpperCAmelCase_ , pa_table.column_names[0] ) lowerCAmelCase : Any = self.recursive_tensorize(UpperCAmelCase_ ) lowerCAmelCase : Tuple = self._consolidate(UpperCAmelCase_ ) return column def lowercase__ ( self : List[str] , UpperCAmelCase_ : pa.Table ): lowerCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase_ ) lowerCAmelCase : str = self.python_features_decoder.decode_batch(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.recursive_tensorize(UpperCAmelCase_ ) for column_name in batch: lowerCAmelCase : List[Any] = self._consolidate(batch[column_name] ) return batch
360
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
0
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Optional[int] = os.path.join(args.tf_model_dir, 'parameters.json' ) lowerCAmelCase : str = json.loads(open(_UpperCAmelCase ).read() ) if not params: raise ValueError( f"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." ) if not args.output.endswith('.pt' ): lowerCAmelCase : Dict = args.output + '.pt' lowerCAmelCase : Optional[int] = OrderedDict() with tf.device('/CPU:0' ): lowerCAmelCase : str = tf.train.load_checkpoint(args.tf_model_dir ) lowerCAmelCase : Optional[int] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCAmelCase : int = reader.get_tensor(_UpperCAmelCase ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): lowerCAmelCase : Optional[Any] = int(key_name[9] ) elif key_name.startswith('pasts/out' ): lowerCAmelCase : Optional[Any] = 8 lowerCAmelCase : Any = 'model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCAmelCase : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase : List[str] = torch.tensor(_UpperCAmelCase ) elif key_name.startswith('model/moe' ): lowerCAmelCase : Optional[Any] = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): lowerCAmelCase : Optional[int] = 'model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player lowerCAmelCase : Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase : Optional[Any] = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('/softmlp/kernel' ): lowerCAmelCase : Any = 'model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player lowerCAmelCase : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase : Union[str, Any] = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): lowerCAmelCase : List[Any] = key_name[-9:-7] for i in range(16 ): lowerCAmelCase : str = 'model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) lowerCAmelCase : str = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCAmelCase : int = torch.tensor(_UpperCAmelCase ) elif key_name.startswith('model/mlp' ): lowerCAmelCase : List[str] = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): lowerCAmelCase : Optional[Any] = 'model.blocks.%d.feed_forward.mlp.wi.weight' % player lowerCAmelCase : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase : str = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('/p1/bias' ): lowerCAmelCase : int = 'model.blocks.%d.feed_forward.mlp.wi.bias' % player lowerCAmelCase : Tuple = vnp.copy() # same because it is one dimensional lowerCAmelCase : Tuple = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('/p2/kernel' ): lowerCAmelCase : int = 'model.blocks.%d.feed_forward.mlp.wo.weight' % player lowerCAmelCase : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase : Tuple = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('/p2/bias' ): lowerCAmelCase : Tuple = 'model.blocks.%d.feed_forward.mlp.wo.bias' % player lowerCAmelCase : Dict = vnp.copy() # same because it is one dimensional lowerCAmelCase : str = torch.tensor(_UpperCAmelCase ) elif key_name.startswith('model/ln' ): lowerCAmelCase : Optional[Any] = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): lowerCAmelCase : Optional[Any] = 'model.blocks.%d.feed_forward.norm.bias' % player lowerCAmelCase : Union[str, Any] = vnp.copy() # same because it is one dimensional lowerCAmelCase : Union[str, Any] = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('/g' ): lowerCAmelCase : Dict = 'model.blocks.%d.feed_forward.norm.weight' % player lowerCAmelCase : Optional[Any] = vnp.copy() # same because it is one dimensional lowerCAmelCase : Union[str, Any] = torch.tensor(_UpperCAmelCase ) elif key_name.startswith('model/att' ): lowerCAmelCase : Union[str, Any] = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): lowerCAmelCase : List[str] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCAmelCase : Optional[int] = state[:, 0, :, :] lowerCAmelCase : Dict = state[:, 1, :, :] lowerCAmelCase : Union[str, Any] = state[:, 2, :, :] lowerCAmelCase : Optional[Any] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase : Dict = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase : str = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase : Any = 'model.blocks.%d.self_attn.self_attn.q_proj.weight' % player lowerCAmelCase : str = torch.tensor(_UpperCAmelCase ) lowerCAmelCase : List[str] = 'model.blocks.%d.self_attn.self_attn.k_proj.weight' % player lowerCAmelCase : str = torch.tensor(_UpperCAmelCase ) lowerCAmelCase : str = 'model.blocks.%d.self_attn.self_attn.v_proj.weight' % player lowerCAmelCase : Union[str, Any] = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('/o/kernel' ): lowerCAmelCase : Tuple = 'model.blocks.%d.self_attn.self_attn.out_proj.weight' % player lowerCAmelCase : List[str] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase : List[str] = torch.tensor(_UpperCAmelCase ) elif key_name.startswith('model/an' ): lowerCAmelCase : Tuple = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): lowerCAmelCase : int = 'model.blocks.%d.self_attn.norm.bias' % player lowerCAmelCase : List[str] = vnp.copy() # same because it is one dimensional lowerCAmelCase : Union[str, Any] = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('/g' ): lowerCAmelCase : Tuple = 'model.blocks.%d.self_attn.norm.weight' % player lowerCAmelCase : Dict = vnp.copy() # same because it is one dimensional lowerCAmelCase : str = torch.tensor(_UpperCAmelCase ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): lowerCAmelCase : Tuple = {'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] lowerCAmelCase : int = 'model.%s.weight' % nlayer lowerCAmelCase : Optional[Any] = vnp.copy() # same in embedded lowerCAmelCase : Tuple = torch.tensor(_UpperCAmelCase ) if key_name.startswith('model/wte' ): lowerCAmelCase : Optional[Any] = 'lm_head.weight' lowerCAmelCase : Optional[int] = vnp.copy() # same in embedded lowerCAmelCase : Dict = torch.tensor(_UpperCAmelCase ) elif key_name.startswith('model/wob' ): lowerCAmelCase : str = 'final_logits_bias' lowerCAmelCase : int = vnp.copy() # same in embedded lowerCAmelCase : Union[str, Any] = state.reshape((1, -1) ) lowerCAmelCase : List[str] = torch.tensor(_UpperCAmelCase ) elif key_name == "model/dense/kernel": lowerCAmelCase : Optional[int] = 'model.last_project.weight' lowerCAmelCase : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase : Optional[Any] = torch.tensor(_UpperCAmelCase ) elif key_name == "model/dense_1/bias": lowerCAmelCase : Optional[int] = 'model.last_project.bias' lowerCAmelCase : List[Any] = vnp.copy() # same because it is one dimensional lowerCAmelCase : Union[str, Any] = torch.tensor(_UpperCAmelCase ) torch.save(_UpperCAmelCase, args.output ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') __A : Optional[int] = parser.parse_args() convert_tf_gptsan_to_pt(args)
361
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase_ : Optional[Any] = "dinat" lowerCAmelCase_ : Dict = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : Dict=[2, 4, 8, 16] , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase_ : int=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-5 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : str = embed_dim lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = len(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = num_heads lowerCAmelCase : Tuple = kernel_size lowerCAmelCase : List[str] = dilations lowerCAmelCase : Any = mlp_ratio lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) ) lowerCAmelCase : int = layer_scale_init_value lowerCAmelCase : Optional[Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase_ ) + 1 )] lowerCAmelCase , lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
323
0
import flax.linen as nn import jax import jax.numpy as jnp class __A ( nn.Module ): lowerCAmelCase_ : int lowerCAmelCase_ : jnp.dtype = jnp.floataa def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : int = hidden_states.shape lowerCAmelCase : Optional[Any] = jax.image.resize( UpperCAmelCase_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) lowerCAmelCase : List[Any] = self.conv(UpperCAmelCase_ ) return hidden_states class __A ( nn.Module ): lowerCAmelCase_ : int lowerCAmelCase_ : jnp.dtype = jnp.floataa def lowercase__ ( self : List[Any] ): lowerCAmelCase : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Dict , UpperCAmelCase_ : Optional[int] ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowerCAmelCase : Any = self.conv(UpperCAmelCase_ ) return hidden_states class __A ( nn.Module ): lowerCAmelCase_ : int lowerCAmelCase_ : int = None lowerCAmelCase_ : float = 0.0 lowerCAmelCase_ : bool = None lowerCAmelCase_ : jnp.dtype = jnp.floataa def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels lowerCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowerCAmelCase : Optional[int] = nn.Conv( UpperCAmelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCAmelCase : Optional[Any] = nn.Dense(UpperCAmelCase_ , dtype=self.dtype ) lowerCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowerCAmelCase : Tuple = nn.Dropout(self.dropout_prob ) lowerCAmelCase : Any = nn.Conv( UpperCAmelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCAmelCase : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCAmelCase : Optional[Any] = None if use_nin_shortcut: lowerCAmelCase : List[Any] = nn.Conv( UpperCAmelCase_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict=True ): lowerCAmelCase : Union[str, Any] = hidden_states lowerCAmelCase : str = self.norma(UpperCAmelCase_ ) lowerCAmelCase : str = nn.swish(UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.conva(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.time_emb_proj(nn.swish(UpperCAmelCase_ ) ) lowerCAmelCase : str = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase_ , 1 ) , 1 ) lowerCAmelCase : int = hidden_states + temb lowerCAmelCase : Optional[Any] = self.norma(UpperCAmelCase_ ) lowerCAmelCase : Tuple = nn.swish(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.dropout(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = self.conva(UpperCAmelCase_ ) if self.conv_shortcut is not None: lowerCAmelCase : Any = self.conv_shortcut(UpperCAmelCase_ ) return hidden_states + residual
362
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : Any = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } __A : List[Any] = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } __A : Any = '''</w>''' __A : Union[str, Any] = '''@@ ''' def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Any = set() lowerCAmelCase : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length __A : str = {'''facebook/s2t-wav2vec2-large-en-de''': 1024} class __A ( lowerCAmelCase ): lowerCAmelCase_ : int = VOCAB_FILES_NAMES lowerCAmelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]="<s>" , UpperCAmelCase_ : int="<pad>" , UpperCAmelCase_ : List[str]="</s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__( unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCAmelCase : Tuple = do_lower_case with open(UpperCAmelCase_ , encoding='utf-8' ) as vocab_handle: lowerCAmelCase : List[str] = json.load(UpperCAmelCase_ ) lowerCAmelCase : Dict = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"No merges files provided. {self.__class__.__name__} can only be used for decoding." ) lowerCAmelCase : str = None lowerCAmelCase : Tuple = None else: with open(UpperCAmelCase_ , encoding='utf-8' ) as merges_handle: lowerCAmelCase : Tuple = merges_handle.read().split('\n' )[:-1] lowerCAmelCase : Dict = [tuple(merge.split()[:2] ) for merge in merges] lowerCAmelCase : List[Any] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[int] = {} @property def lowercase__ ( self : str ): return len(self.decoder ) def lowercase__ ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : Any = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowerCAmelCase : int = get_pairs(UpperCAmelCase_ ) if not pairs: return token while True: lowerCAmelCase : List[str] = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : self.bpe_ranks.get(UpperCAmelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase : Optional[Any] = bigram lowerCAmelCase : List[str] = [] lowerCAmelCase : Tuple = 0 while i < len(UpperCAmelCase_ ): try: lowerCAmelCase : List[str] = word.index(UpperCAmelCase_ , UpperCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase : Dict = j if word[i] == first and i < len(UpperCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase : Optional[Any] = tuple(UpperCAmelCase_ ) lowerCAmelCase : Tuple = new_word if len(UpperCAmelCase_ ) == 1: break else: lowerCAmelCase : Dict = get_pairs(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = ' '.join(UpperCAmelCase_ ) if word == "\n " + BPE_TOKEN_MERGES: lowerCAmelCase : Dict = '\n' + BPE_TOKEN_MERGES if word.endswith(UpperCAmelCase_ ): lowerCAmelCase : Optional[int] = word.replace(UpperCAmelCase_ , '' ) lowerCAmelCase : Tuple = word.replace(' ' , UpperCAmelCase_ ) lowerCAmelCase : Dict = word return word def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : str ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: lowerCAmelCase : Optional[Any] = text.lower() lowerCAmelCase : Optional[Any] = text.split() lowerCAmelCase : Optional[int] = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCAmelCase_ ).split(' ' ) ) ) return split_tokens def lowercase__ ( self : List[str] , UpperCAmelCase_ : str ): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Any , UpperCAmelCase_ : int ): lowerCAmelCase : Union[str, Any] = self.decoder.get(UpperCAmelCase_ , self.unk_token ) return result def lowercase__ ( self : int , UpperCAmelCase_ : List[str] ): lowerCAmelCase : List[Any] = ' '.join(UpperCAmelCase_ ) # make sure @@ tokens are concatenated lowerCAmelCase : int = ''.join(string.split(UpperCAmelCase_ ) ) return string def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase : int = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase : List[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ ) + '\n' ) lowerCAmelCase : Union[str, Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_ : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) lowerCAmelCase : List[str] = token_index writer.write(' '.join(UpperCAmelCase_ ) + '\n' ) index += 1 return (vocab_file, merges_file)
363
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : List[str] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Any = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __A : Tuple = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __A : List[str] = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[Any] = np.expand_dims(test_image, axis=0) __A : int = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : Optional[int] = '''Normal''' if result[0][0] == 1: __A : str = '''Abnormality detected'''
323
0