code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from itertools import permutations def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _a : List[Any] = [7, 1_1, 1_3, 1_7] for i, test in enumerate(UpperCamelCase__ ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def lowerCAmelCase__ ( UpperCamelCase__ = 1_0 ): '''simple docstring''' return sum( int("""""".join(map(UpperCamelCase__ , UpperCamelCase__ ) ) ) for num in permutations(range(UpperCamelCase__ ) ) if is_substring_divisible(UpperCamelCase__ ) ) if __name__ == "__main__": print(F'''{solution() = }''')
324
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCamelCase : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) UpperCamelCase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCamelCase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ): '''simple docstring''' def _dataset(UpperCamelCase__ , UpperCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCAmelCase__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _a : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: _a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: _a : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) _a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: _a : int = tokenizer.max_len # Our input block size will be the max possible for the model else: _a : Optional[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets _a : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _a : Optional[int] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _a : Any = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _a : Union[str, Any] = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: _a : str = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _a : Union[str, Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: _a : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : int = trainer.evaluate() _a : Dict = math.exp(eval_output["""eval_loss"""] ) _a : Union[str, Any] = {"""perplexity""": perplexity} _a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
324
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class UpperCamelCase ( snake_case_ ): UpperCamelCase : str = '''bridgetower_vision_model''' def __init__( self : List[Any] , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : List[str]=16 , UpperCAmelCase__ : Dict=288 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : int=1E-05 , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Any=False , **UpperCAmelCase__ : Optional[int] , ) -> Optional[int]: super().__init__(**UpperCAmelCase__ ) _a : str = hidden_size _a : str = num_hidden_layers _a : Any = num_channels _a : List[Any] = patch_size _a : Dict = image_size _a : int = initializer_factor _a : Dict = layer_norm_eps _a : Optional[int] = stop_gradient _a : Any = share_layernorm _a : Tuple = remove_last_layer @classmethod def _lowercase ( cls : Union[str, Any] , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : List[Any] ) -> "PretrainedConfig": _a , _a : Optional[Any] = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) if config_dict.get("""model_type""" ) == "bridgetower": _a : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = '''bridgetower_text_model''' def __init__( self : List[Any] , UpperCAmelCase__ : Dict=50265 , UpperCAmelCase__ : List[Any]=768 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : Union[str, Any]=1 , UpperCAmelCase__ : List[str]=3072 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : List[Any]=514 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Optional[Any]=1E-05 , UpperCAmelCase__ : str=1 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Union[str, Any]="absolute" , UpperCAmelCase__ : Optional[int]=True , **UpperCAmelCase__ : Optional[Any] , ) -> str: super().__init__(**UpperCAmelCase__ ) _a : List[Any] = vocab_size _a : Optional[Any] = hidden_size _a : Union[str, Any] = num_hidden_layers _a : str = num_attention_heads _a : Union[str, Any] = hidden_act _a : str = initializer_factor _a : Tuple = intermediate_size _a : Optional[Any] = hidden_dropout_prob _a : List[str] = attention_probs_dropout_prob _a : Dict = max_position_embeddings _a : Optional[int] = type_vocab_size _a : Any = layer_norm_eps _a : Optional[Any] = position_embedding_type _a : Optional[Any] = use_cache _a : Optional[int] = pad_token_id _a : Optional[Any] = bos_token_id _a : Any = eos_token_id @classmethod def _lowercase ( cls : List[str] , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : List[Any] ) -> "PretrainedConfig": _a , _a : Dict = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) if config_dict.get("""model_type""" ) == "bridgetower": _a : str = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Optional[Any] = '''bridgetower''' def __init__( self : Tuple , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Optional[int]=1E-05 , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : List[str]="add" , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Tuple=None , **UpperCAmelCase__ : int , ) -> Tuple: # TODO: remove this once the Hub files are updated. _a : Optional[Any] = kwargs.pop("""text_config_dict""" , UpperCAmelCase__ ) _a : Union[str, Any] = kwargs.pop("""vision_config_dict""" , UpperCAmelCase__ ) super().__init__(**UpperCAmelCase__ ) _a : Optional[Any] = share_cross_modal_transformer_layers _a : Optional[Any] = hidden_act _a : Tuple = hidden_size _a : Dict = initializer_factor _a : int = layer_norm_eps _a : Optional[int] = share_link_tower_layers _a : Optional[Any] = link_tower_type _a : Optional[int] = num_attention_heads _a : Union[str, Any] = num_hidden_layers _a : List[Any] = tie_word_embeddings _a : List[Any] = init_layernorm_from_vision_encoder if text_config is None: _a : Union[str, Any] = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _a : Tuple = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _a : List[Any] = BridgeTowerTextConfig(**UpperCAmelCase__ ) _a : Union[str, Any] = BridgeTowerVisionConfig(**UpperCAmelCase__ ) @classmethod def _lowercase ( cls : Optional[Any] , UpperCAmelCase__ : BridgeTowerTextConfig , UpperCAmelCase__ : BridgeTowerVisionConfig , **UpperCAmelCase__ : Optional[Any] ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase__ ) def _lowercase ( self : Any ) -> Dict: _a : Any = copy.deepcopy(self.__dict__ ) _a : List[str] = self.text_config.to_dict() _a : Tuple = self.vision_config.to_dict() _a : Optional[int] = self.__class__.model_type return output
324
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _snake_case = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ ) return k def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase__ ) _a : Optional[Any] = PegasusConfig(**UpperCamelCase__ ) _a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ ) _a : str = torch_model.model.state_dict() _a : Union[str, Any] = {} for k, v in tf_weights.items(): _a : Any = rename_state_dict_key(UpperCamelCase__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _a : str = v.T _a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _a : str = mapping["""shared.weight"""] _a : Union[str, Any] = mapping["""shared.weight"""] _a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCamelCase__ ) _a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _a : Optional[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _a : List[Any] = tf.train.list_variables(UpperCamelCase__ ) _a : Optional[int] = {} _a : Dict = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ): _a : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) _a : int = array return tf_weights def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # save tokenizer first _a : Dict = Path(UpperCamelCase__ ).parent.name _a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] _a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase__ ) # convert model _a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ ) _a : Dict = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": _a : Tuple = task_specific_params _a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ ) torch_model.save_pretrained(UpperCamelCase__ ) _a : Dict = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() if args.save_dir is None: _snake_case = Path(args.tf_ckpt_path).parent.name _snake_case = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
324
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : Optional[Any] = CamembertTokenizer def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : int = vocab_file _a : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[Any] = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : int = ['''input_features''', '''is_longer'''] def __init__( self : Dict , UpperCAmelCase__ : List[str]=64 , UpperCAmelCase__ : Optional[Any]=48000 , UpperCAmelCase__ : Tuple=480 , UpperCAmelCase__ : Tuple=10 , UpperCAmelCase__ : str=1024 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : str=False , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 14000 , UpperCAmelCase__ : int = None , UpperCAmelCase__ : str = "fusion" , UpperCAmelCase__ : str = "repeatpad" , **UpperCAmelCase__ : List[Any] , ) -> int: super().__init__( feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : List[str] = top_db _a : int = truncation _a : Tuple = padding _a : Optional[int] = fft_window_size _a : List[Any] = (fft_window_size >> 1) + 1 _a : Optional[int] = hop_length _a : Dict = max_length_s _a : int = max_length_s * sampling_rate _a : Optional[int] = sampling_rate _a : str = frequency_min _a : str = frequency_max _a : List[str] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCAmelCase__ , min_frequency=UpperCAmelCase__ , max_frequency=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , norm=UpperCAmelCase__ , mel_scale="""htk""" , ) _a : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCAmelCase__ , min_frequency=UpperCAmelCase__ , max_frequency=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , norm="""slaney""" , mel_scale="""slaney""" , ) def _lowercase ( self : int ) -> Dict[str, Any]: _a : Dict = copy.deepcopy(self.__dict__ ) _a : str = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _lowercase ( self : Any , UpperCAmelCase__ : np.array , UpperCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: _a : Optional[Any] = spectrogram( UpperCAmelCase__ , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCAmelCase__ , log_mel="""dB""" , ) return log_mel_spectrogram.T def _lowercase ( self : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict ) -> List[str]: _a : Dict = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _a : Dict = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _a : List[str] = [0] # randomly choose index for each part _a : int = np.random.choice(ranges[0] ) _a : List[Any] = np.random.choice(ranges[1] ) _a : Any = np.random.choice(ranges[2] ) _a : Dict = mel[idx_front : idx_front + chunk_frames, :] _a : List[Any] = mel[idx_middle : idx_middle + chunk_frames, :] _a : Union[str, Any] = mel[idx_back : idx_back + chunk_frames, :] _a : Tuple = torch.tensor(mel[None, None, :] ) _a : Dict = torch.nn.functional.interpolate( UpperCAmelCase__ , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=UpperCAmelCase__ ) _a : Dict = mel_shrink[0][0].numpy() _a : List[Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _lowercase ( self : List[Any] , UpperCAmelCase__ : np.array , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": _a : Union[str, Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _a : List[str] = len(UpperCAmelCase__ ) - max_length _a : Dict = np.random.randint(0 , overflow + 1 ) _a : str = waveform[idx : idx + max_length] _a : List[str] = self._np_extract_fbank_features(UpperCAmelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _a : Dict = self._np_extract_fbank_features(UpperCAmelCase__ , self.mel_filters ) _a : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _a : Dict = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _a : str = np.stack([mel, mel, mel, mel] , axis=0 ) _a : List[Any] = False else: _a : int = self._random_mel_fusion(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: _a : List[str] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _a : str = int(max_length / len(UpperCAmelCase__ ) ) _a : List[Any] = np.stack(np.tile(UpperCAmelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _a : Any = int(max_length / len(UpperCAmelCase__ ) ) _a : int = np.stack(np.tile(UpperCAmelCase__ , UpperCAmelCase__ ) ) _a : Any = np.pad(UpperCAmelCase__ , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": _a : Optional[int] = self._np_extract_fbank_features(UpperCAmelCase__ , self.mel_filters ) _a : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _a : Union[str, Any] = self._np_extract_fbank_features(UpperCAmelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Optional[int] , UpperCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase__ : str = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase__ : Optional[int] , ) -> BatchFeature: _a : Union[str, Any] = truncation if truncation is not None else self.truncation _a : List[str] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _a : Union[str, Any] = isinstance(UpperCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) _a : str = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _a : Tuple = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray ): _a : Any = np.asarray(UpperCAmelCase__ , dtype=np.floataa ) elif isinstance(UpperCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _a : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _a : Optional[int] = [np.asarray(UpperCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. _a : Optional[Any] = [ self._get_input_mel(UpperCAmelCase__ , max_length if max_length else self.nb_max_samples , UpperCAmelCase__ , UpperCAmelCase__ ) for waveform in raw_speech ] _a : Union[str, Any] = [] _a : Any = [] for mel, longer in padded_inputs: input_mel.append(UpperCAmelCase__ ) is_longer.append(UpperCAmelCase__ ) if truncation == "fusion" and sum(UpperCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _a : Optional[Any] = np.random.randint(0 , len(UpperCAmelCase__ ) ) _a : Optional[int] = True if isinstance(input_mel[0] , UpperCAmelCase__ ): _a : Any = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _a : Union[str, Any] = [[longer] for longer in is_longer] _a : Optional[Any] = {"""input_features""": input_mel, """is_longer""": is_longer} _a : Optional[Any] = BatchFeature(UpperCAmelCase__ ) if return_tensors is not None: _a : str = input_features.convert_to_tensors(UpperCAmelCase__ ) return input_features
324
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ ) UpperCamelCase : list = field(default_factory=snake_case_ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any: _a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self : Optional[int] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : nn.Module UpperCamelCase : int = 0 UpperCamelCase : List = field(default_factory=snake_case_ ) UpperCamelCase : List = field(default_factory=snake_case_ ) def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple: _a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized _a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized _a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) ) _a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while""" f""" destination module has {len(UpperCAmelCase__ )}.""" ) for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): _a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() _a : str = ResNetForImageClassification(UpperCamelCase__ ).eval() _a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) _a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." _a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one _a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , ) print(F"""Pushed {checkpoint_name}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' _a : Any = """imagenet-1k-id2label.json""" _a : Optional[int] = 1_0_0_0 _a : Any = (1, num_labels) _a : Union[str, Any] = """huggingface/label-files""" _a : Tuple = num_labels _a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Any = idalabel _a : Tuple = {v: k for k, v in idalabel.items()} _a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) _a : Union[str, Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
324
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _snake_case = False class UpperCamelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : int ) -> List[Any]: _a : Optional[int] = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _a : Tuple = torch.manual_seed(0 ) _a : Union[str, Any] = pipe( image=UpperCAmelCase__ , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _a : int = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
324
1
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _a : Union[str, Any] = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b" _a : List[Any] = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b" _a : int = max(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase__ ) , b_binary.zfill(UpperCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
324
"""simple docstring""" _snake_case = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
324
1
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = FileLock(str(tmpdir / """foo.lock""" ) ) _a : List[Any] = FileLock(str(tmpdir / """foo.lock""" ) ) _a : Tuple = 0.01 with locka.acquire(): with pytest.raises(UpperCamelCase__ ): _a : Tuple = time.time() locka.acquire(UpperCamelCase__ ) assert time.time() - _start > timeout def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Tuple = """a""" * 1_0_0_0 + """.lock""" _a : Union[str, Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCamelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Optional[Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCamelCase__ ): locka.acquire(0 )
324
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : Optional[Any] = CamembertTokenizer def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : int = vocab_file _a : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[Any] = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
1
"""simple docstring""" from collections import Counter from timeit import timeit def lowerCAmelCase__ ( UpperCamelCase__ = "" , ): '''simple docstring''' return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def lowerCAmelCase__ ( UpperCamelCase__ = "" ): '''simple docstring''' if len(UpperCamelCase__ ) == 0: return True _a : int = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string _a : dict[str, int] = {} for character in lower_case_input_str: _a : Union[str, Any] = character_freq_dict.get(UpperCamelCase__ , 0 ) + 1 _a : str = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowerCAmelCase__ ( UpperCamelCase__ = "" ): '''simple docstring''' print("""\nFor string = """ , UpperCamelCase__ , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(UpperCamelCase__ ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(UpperCamelCase__ ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": _snake_case = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) _snake_case = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {'' if status else 'not '}be rearranged as a palindrome''')
324
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = ['''pixel_values'''] def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None: _a : int = do_resize _a : Union[str, Any] = do_rescale _a : Any = size_divisor _a : Any = resample super().__init__(**UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray: _a , _a : Tuple = get_image_size(UpperCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor _a : Optional[Any] = height // size_divisor * size_divisor _a : Union[str, Any] = width // size_divisor * size_divisor _a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) return image def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray: return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature: _a : Dict = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _a : str = size_divisor if size_divisor is not None else self.size_divisor _a : Any = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) _a : List[str] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. _a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images] if do_resize: _a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: _a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images] _a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
324
1
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = False ): '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _a : List[Any] = F"""Expected string as input, found {type(UpperCamelCase__ )}""" raise ValueError(UpperCamelCase__ ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _a : List[Any] = F"""Expected boolean as use_pascal parameter, found {type(UpperCamelCase__ )}""" raise ValueError(UpperCamelCase__ ) _a : List[str] = input_str.split("""_""" ) _a : str = 0 if use_pascal else 1 _a : str = words[start_index:] _a : str = [word[0].upper() + word[1:] for word in words_to_capitalize] _a : List[Any] = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
324
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase ( snake_case_ ): def __init__( self : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] ) -> List[str]: super().__init__() # make sure scheduler can always be converted to DDIM _a : List[Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self : int , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCAmelCase__ ): _a : Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _a : Optional[int] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(UpperCAmelCase__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _a : Any = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _a : List[str] = self.unet(UpperCAmelCase__ , UpperCAmelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _a : List[str] = self.scheduler.step( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , eta=UpperCAmelCase__ , use_clipped_model_output=UpperCAmelCase__ , generator=UpperCAmelCase__ ).prev_sample _a : str = (image / 2 + 0.5).clamp(0 , 1 ) _a : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a : Optional[Any] = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__ )
324
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
324
1
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ ) UpperCamelCase : list = field(default_factory=snake_case_ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any: _a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self : Optional[int] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : nn.Module UpperCamelCase : int = 0 UpperCamelCase : List = field(default_factory=snake_case_ ) UpperCamelCase : List = field(default_factory=snake_case_ ) def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple: _a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized _a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized _a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) ) _a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while""" f""" destination module has {len(UpperCAmelCase__ )}.""" ) for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): _a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() _a : str = ResNetForImageClassification(UpperCamelCase__ ).eval() _a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) _a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." _a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one _a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , ) print(F"""Pushed {checkpoint_name}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' _a : Any = """imagenet-1k-id2label.json""" _a : Optional[int] = 1_0_0_0 _a : Any = (1, num_labels) _a : Union[str, Any] = """huggingface/label-files""" _a : Tuple = num_labels _a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Any = idalabel _a : Tuple = {v: k for k, v in idalabel.items()} _a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) _a : Union[str, Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
324
"""simple docstring""" import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
324
1
"""simple docstring""" from __future__ import annotations def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' create_state_space_tree(UpperCamelCase__ , [] , 0 , [0 for i in range(len(UpperCamelCase__ ) )] ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): '''simple docstring''' if index == len(UpperCamelCase__ ): print(UpperCamelCase__ ) return for i in range(len(UpperCamelCase__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _a : str = True create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 , UpperCamelCase__ ) current_sequence.pop() _a : Tuple = False _snake_case = [3, 1, 2, 4] generate_all_permutations(sequence) _snake_case = ["A", "B", "C"] generate_all_permutations(sequence_a)
324
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') _snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _snake_case = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = CamembertTokenizer UpperCamelCase : List[Any] = CamembertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Union[str, Any] = True def _lowercase ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Tuple: _a : Optional[Any] = """<pad>""" _a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : List[str] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _a : Any = """I was born in 92000, and this is falsé.""" _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) _a : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : List[Any] = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _a : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
324
1
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = word.split() def justify(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: _a : Optional[int] = max_width - width _a : Tuple = len(UpperCamelCase__ ) if len(UpperCamelCase__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _a : List[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _a : Optional[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _a : Any = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCamelCase__ ): num_spaces_between_words_list[i] += 1 _a : Any = [] for i in range(UpperCamelCase__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCamelCase__ ) _a : Union[str, Any] = [] _a : list[str] = [] _a : Dict = 0 for word in words: if width + len(UpperCamelCase__ ) + len(UpperCamelCase__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCamelCase__ ) width += len(UpperCamelCase__ ) else: # justify the line and add it to result answer.append(justify(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) # reset new line and new width _a , _a : List[Any] = [word], len(UpperCamelCase__ ) _a : Dict = max_width - width - len(UpperCamelCase__ ) answer.append(""" """.join(UpperCamelCase__ ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
324
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _snake_case = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _snake_case = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _snake_case = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a : Optional[int] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _a : List[Any] = collections.defaultdict(UpperCamelCase__ ) _a : List[str] = collections.defaultdict(UpperCamelCase__ ) _a : Tuple = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): _a : str = None if _re_tf_models.match(UpperCamelCase__ ) is not None: _a : List[Any] = tf_models _a : int = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: _a : Any = flax_models _a : Any = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: _a : int = pt_models _a : int = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: _a : Optional[int] = True break # Try again after removing the last word in the name _a : List[Any] = """""".join(camel_case_split(UpperCamelCase__ )[:-1] ) _a : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _a : Dict = list(UpperCamelCase__ ) all_models.sort() _a : str = {"""model_type""": all_models} _a : List[Any] = [pt_models[t] for t in all_models] _a : str = [tf_models[t] for t in all_models] _a : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _a : str = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _a : List[str] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _a : str = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _a : int = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _a : int = """AutoTokenizer""" _a : Any = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _a : List[Any] = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] _a : Union[str, Any] = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names _a : str = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = get_frameworks_table() _a : Optional[Any] = Dataset.from_pandas(UpperCamelCase__ ) _a : Any = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=UpperCamelCase__ ) _a : List[Any] = Dataset.from_json(UpperCamelCase__ ) _a : List[str] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(UpperCamelCase__ ) ) } _a : str = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _a : int = sorted(table.keys() ) _a : Union[str, Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) _a : Dict = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , """pipeline_tags.json""" ) ) if commit_sha is not None: _a : List[str] = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _a : Optional[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=UpperCamelCase__ , repo_type="""dataset""" , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _a : Any = transformers_module.pipelines.SUPPORTED_TASKS _a : List[str] = [] for key in pipeline_tasks: if key not in in_table: _a : Tuple = pipeline_tasks[key]["""pt"""] if isinstance(UpperCamelCase__ , (list, tuple) ): _a : Dict = model[0] _a : List[str] = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _a : Union[str, Any] = """, """.join(UpperCamelCase__ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _snake_case = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
324
1
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : str = """""" for word_or_phrase in separated: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise Exception("""join() accepts only strings to be joined""" ) joined += word_or_phrase + separator return joined.strip(UpperCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
324
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _a : Dict = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) _a : Any = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) _a : int = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _a : List[str] = yaml.safe_dump(UpperCamelCase__ ) _a : Optional[int] = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = DatasetInfo() _a : Any = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) _a : List[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _a : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _a : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
324
1
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: _snake_case = None try: import msvcrt except ImportError: _snake_case = None try: import fcntl except ImportError: _snake_case = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _snake_case = OSError # Data # ------------------------------------------------ _snake_case = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] _snake_case = '3.0.12' _snake_case = None def lowerCAmelCase__ ( ): '''simple docstring''' global _logger _a : List[str] = _logger or logging.getLogger(__name__ ) return _logger class UpperCamelCase ( snake_case_ ): def __init__( self : Optional[int] , UpperCAmelCase__ : Tuple ) -> int: _a : List[str] = lock_file return None def __str__( self : Dict ) -> List[Any]: _a : str = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class UpperCamelCase : def __init__( self : str , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: _a : Tuple = lock return None def __enter__( self : List[str] ) -> Optional[Any]: return self.lock def __exit__( self : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] ) -> int: self.lock.release() return None class UpperCamelCase : def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=-1 , UpperCAmelCase__ : Tuple=None ) -> Any: _a : int = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long _a : Any = self.hash_filename_if_too_long(UpperCAmelCase__ , UpperCAmelCase__ ) # The path to the lock file. _a : List[str] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _a : Optional[Any] = None # The default timeout value. _a : List[str] = timeout # We use this lock primarily for the lock counter. _a : List[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _a : Tuple = 0 return None @property def _lowercase ( self : Dict ) -> Union[str, Any]: return self._lock_file @property def _lowercase ( self : Optional[int] ) -> Optional[Any]: return self._timeout @timeout.setter def _lowercase ( self : Dict , UpperCAmelCase__ : int ) -> List[str]: _a : int = float(UpperCAmelCase__ ) return None def _lowercase ( self : Tuple ) -> Tuple: raise NotImplementedError() def _lowercase ( self : List[Any] ) -> List[str]: raise NotImplementedError() @property def _lowercase ( self : Tuple ) -> int: return self._lock_file_fd is not None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : str=0.0_5 ) -> Optional[Any]: # Use the default timeout, if no timeout is provided. if timeout is None: _a : str = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _a : Any = id(self ) _a : List[str] = self._lock_file _a : Any = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(UpperCAmelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _a : Tuple = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Any=False ) -> Union[str, Any]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _a : Any = id(self ) _a : List[Any] = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() _a : Optional[int] = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self : Union[str, Any] ) -> Tuple: self.acquire() return self def __exit__( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int ) -> List[str]: self.release() return None def __del__( self : str ) -> Optional[Any]: self.release(force=UpperCAmelCase__ ) return None def _lowercase ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : int ) -> str: _a : Optional[Any] = os.path.basename(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > max_length and max_length > 0: _a : Optional[int] = os.path.dirname(UpperCAmelCase__ ) _a : Optional[int] = str(hash(UpperCAmelCase__ ) ) _a : Union[str, Any] = filename[: max_length - len(UpperCAmelCase__ ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) else: return path class UpperCamelCase ( snake_case_ ): def __init__( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]=-1 , UpperCAmelCase__ : Dict=None ) -> str: from .file_utils import relative_to_absolute_path super().__init__(UpperCAmelCase__ , timeout=UpperCAmelCase__ , max_filename_length=UpperCAmelCase__ ) _a : List[str] = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def _lowercase ( self : Optional[Any] ) -> str: _a : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _a : int = os.open(self._lock_file , UpperCAmelCase__ ) except OSError: pass else: try: msvcrt.locking(UpperCAmelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(UpperCAmelCase__ ) else: _a : str = fd return None def _lowercase ( self : Union[str, Any] ) -> str: _a : Union[str, Any] = self._lock_file_fd _a : Union[str, Any] = None msvcrt.locking(UpperCAmelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(UpperCAmelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class UpperCamelCase ( snake_case_ ): def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str=-1 , UpperCAmelCase__ : List[str]=None ) -> Union[str, Any]: _a : List[str] = os.statvfs(os.path.dirname(UpperCAmelCase__ ) ).f_namemax super().__init__(UpperCAmelCase__ , timeout=UpperCAmelCase__ , max_filename_length=UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> str: _a : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC _a : Tuple = os.open(self._lock_file , UpperCAmelCase__ ) try: fcntl.flock(UpperCAmelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(UpperCAmelCase__ ) else: _a : str = fd return None def _lowercase ( self : List[str] ) -> str: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _a : int = self._lock_file_fd _a : Dict = None fcntl.flock(UpperCAmelCase__ , fcntl.LOCK_UN ) os.close(UpperCAmelCase__ ) return None class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: _a : Optional[int] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _a : Any = os.open(self._lock_file , UpperCAmelCase__ ) except OSError: pass else: _a : Dict = fd return None def _lowercase ( self : List[str] ) -> int: os.close(self._lock_file_fd ) _a : Any = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _snake_case = None if msvcrt: _snake_case = WindowsFileLock elif fcntl: _snake_case = UnixFileLock else: _snake_case = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
324
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase ( unittest.TestCase , snake_case_ ): def _lowercase ( self : int ) -> int: _a : Optional[Any] = load_tool("""text-to-speech""" ) self.tool.setup() def _lowercase ( self : List[str] ) -> Union[str, Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : str = self.tool("""hey""" ) _a : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : int = self.tool("""hey""" ) _a : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
324
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset from utils import logger class UpperCamelCase ( snake_case_ ): def __init__( self : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> Optional[int]: _a : int = params _a : Dict = np.array(UpperCAmelCase__ ) _a : Optional[Any] = np.array([len(UpperCAmelCase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Optional[int] , UpperCAmelCase__ : List[Any] ) -> Optional[Any]: return (self.token_ids[index], self.lengths[index]) def __len__( self : Any ) -> List[str]: return len(self.lengths ) def _lowercase ( self : Tuple ) -> Any: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def _lowercase ( self : Any ) -> str: _a : Optional[int] = self.params.max_model_input_size _a : Dict = self.lengths > max_len logger.info(f"""Splitting {sum(UpperCAmelCase__ )} too long sequences.""" ) def divide_chunks(UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict ): return [l[i : i + n] for i in range(0 , len(UpperCAmelCase__ ) , UpperCAmelCase__ )] _a : Any = [] _a : Tuple = [] if self.params.mlm: _a , _a : Union[str, Any] = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: _a , _a : Any = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _a : List[str] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _a : Dict = np.insert(UpperCAmelCase__ , 0 , UpperCAmelCase__ ) if sub_s[-1] != sep_id: _a : int = np.insert(UpperCAmelCase__ , len(UpperCAmelCase__ ) , UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(UpperCAmelCase__ ) new_tok_ids.extend(UpperCAmelCase__ ) new_lengths.extend([len(UpperCAmelCase__ ) for l in sub_seqs] ) _a : Union[str, Any] = np.array(UpperCAmelCase__ ) _a : Union[str, Any] = np.array(UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> str: _a : Dict = len(self ) _a : str = self.lengths > 11 _a : str = self.token_ids[indices] _a : int = self.lengths[indices] _a : List[Any] = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def _lowercase ( self : str ) -> List[Any]: if "unk_token" not in self.params.special_tok_ids: return else: _a : Union[str, Any] = self.params.special_tok_ids["""unk_token"""] _a : int = len(self ) _a : List[Any] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _a : List[str] = (unk_occs / self.lengths) < 0.5 _a : Dict = self.token_ids[indices] _a : str = self.lengths[indices] _a : Dict = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def _lowercase ( self : List[Any] ) -> Dict: if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def _lowercase ( self : List[Any] , UpperCAmelCase__ : Dict ) -> Dict: _a : Dict = [t[0] for t in batch] _a : Optional[Any] = [t[1] for t in batch] assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) # Max for paddings _a : str = max(UpperCAmelCase__ ) # Pad token ids if self.params.mlm: _a : Tuple = self.params.special_tok_ids["""pad_token"""] else: _a : Optional[int] = self.params.special_tok_ids["""unk_token"""] _a : List[Any] = [list(t.astype(UpperCAmelCase__ ) ) + [pad_idx] * (max_seq_len_ - len(UpperCAmelCase__ )) for t in token_ids] assert len(tk_ ) == len(UpperCAmelCase__ ) assert all(len(UpperCAmelCase__ ) == max_seq_len_ for t in tk_ ) _a : str = torch.tensor(tk_ ) # (bs, max_seq_len_) _a : Union[str, Any] = torch.tensor(UpperCAmelCase__ ) # (bs) return tk_t, lg_t
324
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str ) -> int: _a : str = parent _a : Union[str, Any] = config_class _a : List[Any] = has_text_modality _a : List[Any] = kwargs _a : List[Any] = common_properties def _lowercase ( self : int ) -> Tuple: _a : List[str] = self.config_class(**self.inputs_dict ) _a : Dict = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase__ ): try: setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase__ ): try: _a : Optional[int] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) _a : List[str] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase__ ) def _lowercase ( self : int ) -> List[str]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = os.path.join(UpperCAmelCase__ , """config.json""" ) config_first.to_json_file(UpperCAmelCase__ ) _a : List[str] = self.config_class.from_json_file(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Union[str, Any] ) -> Dict: _a : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase__ ) _a : Dict = self.config_class.from_pretrained(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Dict ) -> Tuple: _a : List[Any] = self.config_class(**self.inputs_dict ) _a : Any = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _a : List[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) config_first.save_pretrained(UpperCAmelCase__ ) _a : List[Any] = self.config_class.from_pretrained(UpperCAmelCase__ , subfolder=UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _a : Union[str, Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Tuple ) -> List[str]: if self.config_class.is_composition: return _a : str = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Dict = copy.deepcopy(UpperCAmelCase__ ) _a : Any = self.config_class(**UpperCAmelCase__ ) _a : str = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase__ , UpperCAmelCase__ ) != value: wrong_values.append((key, getattr(UpperCAmelCase__ , UpperCAmelCase__ ), value) ) if len(UpperCAmelCase__ ) > 0: _a : List[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowercase ( self : int ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
324
1
"""simple docstring""" from __future__ import annotations def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = list(range(len(UpperCamelCase__ ) ) ) _a : Union[str, Any] = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )] index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ ) _a : float = 0 _a : list[float] = [0] * len(UpperCamelCase__ ) for i in index: if weight[i] <= capacity: _a : Union[str, Any] = 1 max_value += value[i] capacity -= weight[i] else: _a : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
324
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
324
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable _snake_case = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
324
1
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowerCAmelCase__ ( UpperCamelCase__=3_2 , UpperCamelCase__=1_0 , UpperCamelCase__=1_0_0 , UpperCamelCase__=1_0_2_6 , UpperCamelCase__=True , UpperCamelCase__="data/tokenized_stories_train_wikitext103.jbl" , UpperCamelCase__="igf_context_pairs.jbl" , ): '''simple docstring''' set_seed(3 ) # generate train_data and objective_set _a , _a : int = generate_datasets( UpperCamelCase__ , UpperCamelCase__ , number=UpperCamelCase__ , min_len=1_0_2_6 , trim=UpperCamelCase__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? _a : str = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model _a : Optional[int] = load_gpta("""gpt2""" ).to(UpperCamelCase__ ) print("""computing perplexity on objective set""" ) _a : int = compute_perplexity(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).item() print("""perplexity on objective set:""" , UpperCamelCase__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=1_5 , UpperCamelCase__=1_2_8 , UpperCamelCase__=1_0_0 , UpperCamelCase__="igf_model.pt" , ): '''simple docstring''' set_seed(4_2 ) # Load pre-trained model _a : List[Any] = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model _a : Optional[Any] = SecondaryLearner(UpperCamelCase__ ) # Train secondary learner _a : List[str] = train_secondary_learner( UpperCamelCase__ , UpperCamelCase__ , max_epochs=UpperCamelCase__ , batch_size=UpperCamelCase__ , eval_freq=1_0_0 , igf_model_path=UpperCamelCase__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=3_2 , UpperCamelCase__=1_0_0_0 , UpperCamelCase__=1_6 , UpperCamelCase__=1.0 , UpperCamelCase__=recopy_gpta , UpperCamelCase__=None , UpperCamelCase__=1_0 , UpperCamelCase__="gpt2_finetuned.pt" , ): '''simple docstring''' _a : Union[str, Any] = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) _a : Any = RandomSampler(UpperCamelCase__ ) _a : int = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ ) _a : List[Any] = max_steps // (len(UpperCamelCase__ )) + 1 _a : str = 0 _a : Dict = torch.zeros((1, context_len) , dtype=torch.long , device=UpperCamelCase__ ) _a , _a , _a : Tuple = recopy_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) model.train() if secondary_learner is not None: secondary_learner.to(UpperCamelCase__ ) secondary_learner.eval() _a : str = [] _a : Optional[int] = 0 _a : str = [] _a : Dict = [] # Compute the performance of the transformer model at the beginning _a : Dict = compute_perplexity(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) test_perps.append(UpperCamelCase__ ) print("""Test perplexity, step""" , UpperCamelCase__ , """:""" , UpperCamelCase__ ) for epoch in range(int(UpperCamelCase__ ) ): for step, example in enumerate(UpperCamelCase__ ): torch.cuda.empty_cache() _a : List[Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) _a : List[Any] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() _a : Union[str, Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) _a : str = True if secondary_learner is not None: _a : List[str] = secondary_learner.forward( torch.tensor(UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(UpperCamelCase__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 1_0: _a : Tuple = -1 if predicted_q < threshold: _a : List[str] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) _a : Any = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() _a : str = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: _a : Optional[Any] = compute_perplexity(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) test_perps.append(UpperCamelCase__ ) print("""Test perplexity, step""" , UpperCamelCase__ , """:""" , UpperCamelCase__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 6_0: break if max_steps > 0 and global_step > 6_0: break # save finetuned transformer model torch.save(model.state_dict() , UpperCamelCase__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The input data dir. Should contain data files for WikiText.""" , ) parser.add_argument( """--model_name_or_path""" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--data_file""" , type=UpperCamelCase__ , default=UpperCamelCase__ , help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ) , ) parser.add_argument( """--igf_data_file""" , type=UpperCamelCase__ , default=UpperCamelCase__ , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , ) parser.add_argument( """--output_dir""" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The output directory where the final fine-tuned model is stored.""" , ) parser.add_argument( """--tokenizer_name""" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument("""--seed""" , type=UpperCamelCase__ , default=UpperCamelCase__ , help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""" , default=3_2 , type=UpperCamelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--size_objective_set""" , default=1_0_0 , type=UpperCamelCase__ , help="""number of articles that are long enough to be used as our objective set""" , ) parser.add_argument( """--eval_freq""" , default=1_0_0 , type=UpperCamelCase__ , help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""" , default=1_0_0_0 , type=UpperCamelCase__ , help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""" , default=1_2_8 , type=UpperCamelCase__ , help="""batch size of training data for secondary learner""" , ) parser.add_argument( """--batch_size""" , default=1_6 , type=UpperCamelCase__ , help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""" , default=1_0 , type=UpperCamelCase__ , help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ) , ) parser.add_argument( """--number""" , default=1_0_0 , type=UpperCamelCase__ , help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""" , default=1_0_2_6 , type=UpperCamelCase__ , help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""" , default=1_5 , type=UpperCamelCase__ , help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""" , default=1.0 , type=UpperCamelCase__ , help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ) , ) parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=UpperCamelCase__ , help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=3_2 , max_steps=1_0 , size_objective_set=1_0_0 , min_len=1_0_2_6 , trim=UpperCamelCase__ , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , ) # Load train data for secondary learner _a : int = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner _a : List[str] = training_secondary_learner( UpperCamelCase__ , secondary_learner_max_epochs=1_5 , secondary_learner_batch_size=1_2_8 , eval_freq=1_0_0 , igf_model_path="""igf_model.pt""" , ) # load pretrained gpt2 model _a : str = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(4_2 ) # Generate train and test data to train and evaluate gpt2 model _a , _a : Tuple = generate_datasets( context_len=3_2 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=1_0_0 , min_len=1_0_2_6 , trim=UpperCamelCase__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , context_len=3_2 , max_steps=1_0_0_0 , batch_size=1_6 , threshold=1.0 , recopy_model=UpperCamelCase__ , secondary_learner=UpperCamelCase__ , eval_interval=1_0 , finetuned_model_name="""gpt2_finetuned.pt""" , ) if __name__ == "__main__": main()
324
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] ) if ( min(UpperCamelCase__ , UpperCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a : Any = 0 count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
324
1
"""simple docstring""" import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _snake_case = get_logger(__name__) class UpperCamelCase : def __init__( self : Tuple , UpperCAmelCase__ : Optional[str] = None ) -> Dict: _a : Dict = ( os.path.join(UpperCAmelCase__ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _a : Any = Extractor def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : str ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _a : Union[str, Any] = os.path.abspath(UpperCAmelCase__ ) return os.path.join(self.extract_dir , hash_url_to_filename(UpperCAmelCase__ ) ) def _lowercase ( self : int , UpperCAmelCase__ : str , UpperCAmelCase__ : bool ) -> bool: return force_extract or ( not os.path.isfile(UpperCAmelCase__ ) and not (os.path.isdir(UpperCAmelCase__ ) and os.listdir(UpperCAmelCase__ )) ) def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : bool = False ) -> str: _a : Optional[Any] = self.extractor.infer_extractor_format(UpperCAmelCase__ ) if not extractor_format: return input_path _a : Tuple = self._get_output_path(UpperCAmelCase__ ) if self._do_extract(UpperCAmelCase__ , UpperCAmelCase__ ): self.extractor.extract(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return output_path class UpperCamelCase ( snake_case_ ): @classmethod @abstractmethod def _lowercase ( cls : Any , UpperCAmelCase__ : Union[Path, str] , **UpperCAmelCase__ : List[Any] ) -> bool: ... @staticmethod @abstractmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: ... class UpperCamelCase ( snake_case_ , snake_case_ ): UpperCamelCase : List[bytes] = [] @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : int ) -> Union[str, Any]: with open(UpperCAmelCase__ , """rb""" ) as f: return f.read(UpperCAmelCase__ ) @classmethod def _lowercase ( cls : Dict , UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : bytes = b"" ) -> bool: if not magic_number: _a : Union[str, Any] = max(len(UpperCAmelCase__ ) for cls_magic_number in cls.magic_numbers ) try: _a : List[Any] = cls.read_magic_number(UpperCAmelCase__ , UpperCAmelCase__ ) except OSError: return False return any(magic_number.startswith(UpperCAmelCase__ ) for cls_magic_number in cls.magic_numbers ) class UpperCamelCase ( snake_case_ ): @classmethod def _lowercase ( cls : List[str] , UpperCAmelCase__ : Union[Path, str] , **UpperCAmelCase__ : Dict ) -> bool: return tarfile.is_tarfile(UpperCAmelCase__ ) @staticmethod def _lowercase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] ) -> str: def resolved(UpperCAmelCase__ : str ) -> str: return os.path.realpath(os.path.abspath(UpperCAmelCase__ ) ) def badpath(UpperCAmelCase__ : str , UpperCAmelCase__ : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ).startswith(UpperCAmelCase__ ) def badlink(UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str ) -> bool: # Links are interpreted relative to the directory containing the link _a : str = resolved(os.path.join(UpperCAmelCase__ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=UpperCAmelCase__ ) _a : Tuple = resolved(UpperCAmelCase__ ) for finfo in members: if badpath(finfo.name , UpperCAmelCase__ ): logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(UpperCAmelCase__ , UpperCAmelCase__ ): logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(UpperCAmelCase__ , UpperCAmelCase__ ): logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) _a : int = tarfile.open(UpperCAmelCase__ ) tar_file.extractall(UpperCAmelCase__ , members=TarExtractor.safemembers(UpperCAmelCase__ , UpperCAmelCase__ ) ) tar_file.close() class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = [b'''\x1F\x8B'''] @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: with gzip.open(UpperCAmelCase__ , """rb""" ) as gzip_file: with open(UpperCAmelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCAmelCase__ , UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = [ b'''PK\x03\x04''', b'''PK\x05\x06''', # empty archive b'''PK\x07\x08''', # spanned archive ] @classmethod def _lowercase ( cls : Any , UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : bytes = b"" ) -> bool: if super().is_extractable(UpperCAmelCase__ , magic_number=UpperCAmelCase__ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(UpperCAmelCase__ , """rb""" ) as fp: _a : Optional[Any] = _EndRecData(UpperCAmelCase__ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _a : str = fp.read(UpperCAmelCase__ ) # CD is where we expect it to be if len(UpperCAmelCase__ ) == sizeCentralDir: _a : str = struct.unpack(UpperCAmelCase__ , UpperCAmelCase__ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) with zipfile.ZipFile(UpperCAmelCase__ , """r""" ) as zip_file: zip_file.extractall(UpperCAmelCase__ ) zip_file.close() class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = [b'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: with lzma.open(UpperCAmelCase__ ) as compressed_file: with open(UpperCAmelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCAmelCase__ , UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[Any] = [b'''Rar!\x1a\x07\x00''', b'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) _a : Optional[int] = rarfile.RarFile(UpperCAmelCase__ ) rf.extractall(UpperCAmelCase__ ) rf.close() class UpperCamelCase ( snake_case_ ): UpperCamelCase : Optional[int] = [b'''\x28\xb5\x2F\xFD'''] @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd _a : Dict = zstd.ZstdDecompressor() with open(UpperCAmelCase__ , """rb""" ) as ifh, open(UpperCAmelCase__ , """wb""" ) as ofh: dctx.copy_stream(UpperCAmelCase__ , UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[str] = [b'''\x42\x5A\x68'''] @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: with bza.open(UpperCAmelCase__ , """rb""" ) as compressed_file: with open(UpperCAmelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCAmelCase__ , UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = [b'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) with pyazr.SevenZipFile(UpperCAmelCase__ , """r""" ) as archive: archive.extractall(UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Union[str, Any] = [b'''\x04\x22\x4D\x18'''] @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(UpperCAmelCase__ , """rb""" ) as compressed_file: with open(UpperCAmelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCAmelCase__ , UpperCAmelCase__ ) class UpperCamelCase : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) UpperCamelCase : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _lowercase ( cls : Dict ) -> Union[str, Any]: return max( len(UpperCAmelCase__ ) for extractor in cls.extractors.values() if issubclass(UpperCAmelCase__ , UpperCAmelCase__ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : int ) -> Union[str, Any]: try: return MagicNumberBaseExtractor.read_magic_number(UpperCAmelCase__ , magic_number_length=UpperCAmelCase__ ) except OSError: return b"" @classmethod def _lowercase ( cls : Any , UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : bool = False ) -> bool: warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=UpperCAmelCase__ , ) _a : Union[str, Any] = cls.infer_extractor_format(UpperCAmelCase__ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _lowercase ( cls : str , UpperCAmelCase__ : Union[Path, str] ) -> str: # <Added version="2.4.0"/> _a : Optional[int] = cls._get_magic_number_max_length() _a : List[Any] = cls._read_magic_number(UpperCAmelCase__ , UpperCAmelCase__ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(UpperCAmelCase__ , magic_number=UpperCAmelCase__ ): return extractor_format @classmethod def _lowercase ( cls : str , UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[BaseExtractor] = "deprecated" , ) -> None: os.makedirs(os.path.dirname(UpperCAmelCase__ ) , exist_ok=UpperCAmelCase__ ) # Prevent parallel extractions _a : Any = str(Path(UpperCAmelCase__ ).with_suffix(""".lock""" ) ) with FileLock(UpperCAmelCase__ ): shutil.rmtree(UpperCAmelCase__ , ignore_errors=UpperCAmelCase__ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=UpperCAmelCase__ , ) _a : Optional[int] = extractor if extractor != """deprecated""" else extractor_format else: _a : Optional[Any] = cls.extractors[extractor_format] return extractor.extract(UpperCAmelCase__ , UpperCAmelCase__ ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=UpperCAmelCase__ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(UpperCAmelCase__ ): return extractor.extract(UpperCAmelCase__ , UpperCAmelCase__ )
324
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
1
"""simple docstring""" class UpperCamelCase : def __init__( self : Tuple ) -> Tuple: _a : Union[str, Any] = {} def _lowercase ( self : List[str] ) -> None: print(self.vertex ) for i in self.vertex: print(UpperCAmelCase__ , """ -> """ , """ -> """.join([str(UpperCAmelCase__ ) for j in self.vertex[i]] ) ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCAmelCase__ ) else: # else make a new vertex _a : Tuple = [to_vertex] def _lowercase ( self : List[str] ) -> None: # visited array for storing already visited nodes _a : int = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : list ) -> None: # mark start vertex as visited _a : Any = True print(UpperCAmelCase__ , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": _snake_case = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
324
"""simple docstring""" from __future__ import annotations import time _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]: _a : int = pos_x _a : Union[str, Any] = pos_y _a : Tuple = (pos_y, pos_x) _a : Tuple = goal_x _a : int = goal_y _a : str = parent class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]: _a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : Optional[int] = [self.start] _a : Tuple = False def _lowercase ( self : str ) -> Path | None: while self.node_queue: _a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : Dict = True return self.retrace_path(UpperCAmelCase__ ) _a : Tuple = self.get_successors(UpperCAmelCase__ ) for node in successors: self.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]: _a : Optional[Any] = [] for action in delta: _a : str = parent.pos_x + action[1] _a : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) ) return successors def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path: _a : Dict = node _a : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : Any = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False def _lowercase ( self : Any ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[int] = True return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = current_bwd_node _a : int = current_fwd_node _a : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path: _a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ ) _a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _a : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = BreadthFirstSearch(init, goal) _snake_case = bfs.search() _snake_case = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _snake_case = time.time() _snake_case = BidirectionalBreadthFirstSearch(init, goal) _snake_case = bd_bfs.search() _snake_case = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
324
1
"""simple docstring""" import os import sys _snake_case = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _snake_case = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCAmelCase__ ( *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCAmelCase__ ( *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCAmelCase__ ( *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCAmelCase__ ( *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCAmelCase__ ( *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCAmelCase__ ( *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCAmelCase__ ( *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
324
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCamelCase : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) UpperCamelCase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCamelCase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ): '''simple docstring''' def _dataset(UpperCamelCase__ , UpperCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCAmelCase__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _a : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: _a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: _a : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) _a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: _a : int = tokenizer.max_len # Our input block size will be the max possible for the model else: _a : Optional[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets _a : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _a : Optional[int] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _a : Any = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _a : Union[str, Any] = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: _a : str = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _a : Union[str, Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: _a : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : int = trainer.evaluate() _a : Dict = math.exp(eval_output["""eval_loss"""] ) _a : Union[str, Any] = {"""perplexity""": perplexity} _a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
324
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class UpperCamelCase ( snake_case_ ): UpperCamelCase : Optional[int] = '''gpt_neo''' UpperCamelCase : Optional[int] = ['''past_key_values'''] UpperCamelCase : List[Any] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Tuple , UpperCAmelCase__ : str=50257 , UpperCAmelCase__ : List[Any]=2048 , UpperCAmelCase__ : Any=2048 , UpperCAmelCase__ : Optional[int]=24 , UpperCAmelCase__ : int=[[["global", "local"], 12]] , UpperCAmelCase__ : Dict=16 , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : int=256 , UpperCAmelCase__ : int="gelu_new" , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Dict=1E-5 , UpperCAmelCase__ : str=0.0_2 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Union[str, Any]=50256 , UpperCAmelCase__ : Optional[int]=50256 , **UpperCAmelCase__ : Any , ) -> int: _a : Tuple = vocab_size _a : int = max_position_embeddings _a : Optional[int] = hidden_size _a : Tuple = num_layers _a : List[str] = num_heads _a : str = intermediate_size _a : Optional[int] = window_size _a : Any = activation_function _a : Dict = resid_dropout _a : Dict = embed_dropout _a : List[str] = attention_dropout _a : Any = classifier_dropout _a : Tuple = layer_norm_epsilon _a : Union[str, Any] = initializer_range _a : Dict = use_cache _a : Tuple = bos_token_id _a : Tuple = eos_token_id _a : Union[str, Any] = attention_types _a : List[Any] = self.expand_attention_types_params(UpperCAmelCase__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) @staticmethod def _lowercase ( UpperCAmelCase__ : Optional[int] ) -> Dict: _a : Optional[Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' import torch _a : Union[str, Any] = input.size() _a : Optional[int] = len(UpperCamelCase__ ) _a : int = shape[dimension] _a : List[Any] = torch.arange(0 , UpperCamelCase__ , UpperCamelCase__ ) _a : List[str] = torch.div(sizedim - size , UpperCamelCase__ , rounding_mode="""floor""" ) + 1 _a : List[Any] = torch.arange(UpperCamelCase__ ) + low_indices[:min_length][:, None] _a : Optional[int] = [slice(UpperCamelCase__ )] * rank _a : Union[str, Any] = indices _a : List[Any] = input[s] _a : Optional[Any] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' import torch _a : Tuple = torch.arange(1 , UpperCamelCase__ ) _a : Tuple = torch.remainder(UpperCamelCase__ , UpperCamelCase__ ) _a : List[str] = remainders == 0 _a : Optional[Any] = candidates[divisor_indices] _a : str = torch.max(UpperCamelCase__ ) return largest_divisor, torch.div(UpperCamelCase__ , UpperCamelCase__ , rounding_mode="""floor""" ) class UpperCamelCase ( snake_case_ ): @property def _lowercase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: _a : Any = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase__ , direction="""inputs""" ) _a : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: _a : Dict = {0: """batch""", 1: """sequence"""} return common_inputs @property def _lowercase ( self : List[Any] ) -> int: return self._config.num_heads def _lowercase ( self : List[str] , UpperCAmelCase__ : PreTrainedTokenizer , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: _a : int = super(UpperCAmelCase__ , self ).generate_dummy_inputs( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , is_pair=UpperCAmelCase__ , framework=UpperCAmelCase__ ) # We need to order the input in the way they appears in the forward() _a : List[str] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _a , _a : Dict = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _a : Optional[Any] = seqlen + 2 _a : Any = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a : List[Any] = [ (torch.zeros(UpperCAmelCase__ ), torch.zeros(UpperCAmelCase__ )) for _ in range(self.num_layers ) ] _a : str = common_inputs["""attention_mask"""] if self.use_past: _a : int = ordered_inputs["""attention_mask"""].dtype _a : Optional[int] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase__ , UpperCAmelCase__ , dtype=UpperCAmelCase__ )] , dim=1 ) return ordered_inputs @property def _lowercase ( self : str ) -> int: return 13
324
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _snake_case = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ ) return k def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase__ ) _a : Optional[Any] = PegasusConfig(**UpperCamelCase__ ) _a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ ) _a : str = torch_model.model.state_dict() _a : Union[str, Any] = {} for k, v in tf_weights.items(): _a : Any = rename_state_dict_key(UpperCamelCase__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _a : str = v.T _a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _a : str = mapping["""shared.weight"""] _a : Union[str, Any] = mapping["""shared.weight"""] _a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCamelCase__ ) _a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _a : Optional[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _a : List[Any] = tf.train.list_variables(UpperCamelCase__ ) _a : Optional[int] = {} _a : Dict = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ): _a : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) _a : int = array return tf_weights def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # save tokenizer first _a : Dict = Path(UpperCamelCase__ ).parent.name _a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] _a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase__ ) # convert model _a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ ) _a : Dict = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": _a : Tuple = task_specific_params _a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ ) torch_model.save_pretrained(UpperCamelCase__ ) _a : Dict = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() if args.save_dir is None: _snake_case = Path(args.tf_ckpt_path).parent.name _snake_case = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
324
1
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase ( snake_case_ ): def __init__( self : Any , UpperCAmelCase__ : Optional[Any]=0.0_1 , UpperCAmelCase__ : Dict=1000 ) -> Optional[Any]: _a : Optional[int] = p_stop _a : List[str] = max_length def __iter__( self : int ) -> Tuple: _a : List[str] = 0 _a : int = False while not stop and count < self.max_length: yield count count += 1 _a : Optional[int] = random.random() < self.p_stop class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : Any=True ) -> Union[str, Any]: _a : Tuple = [ BatchSamplerShard(UpperCAmelCase__ , 2 , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) for i in range(2 ) ] _a : str = [list(UpperCAmelCase__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(UpperCAmelCase__ ) for shard in batch_sampler_shards] , [len(UpperCAmelCase__ ) for e in expected] ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> Optional[int]: # Check the shards when the dataset is a round multiple of total batch size. _a : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _a : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) _a : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _a : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _a : List[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) # Check the shards when the dataset is very small. _a : Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : int = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> Optional[int]: # Check the shards when the dataset is a round multiple of batch size. _a : Tuple = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) _a : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. _a : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) _a : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _a : Optional[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) _a : Optional[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) # Check the shards when the dataset is very small. _a : Union[str, Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) _a : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Tuple = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> Dict: # Check the shards when the dataset is a round multiple of total batch size. _a : Optional[int] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _a : Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _a : List[str] = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _a : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Any = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is very small. _a : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Dict = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) def _lowercase ( self : str ) -> Optional[Any]: # Check the shards when the dataset is a round multiple of batch size. _a : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. _a : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Tuple = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _a : str = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is very small. _a : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ) -> List[Any]: _a : Tuple = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _a : Any = [BatchSamplerShard(UpperCAmelCase__ , 2 , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : Any=False ) -> int: random.seed(UpperCAmelCase__ ) _a : Any = list(UpperCAmelCase__ ) _a : Tuple = [ IterableDatasetShard( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , drop_last=UpperCAmelCase__ , num_processes=UpperCAmelCase__ , process_index=UpperCAmelCase__ , split_batches=UpperCAmelCase__ , ) for i in range(UpperCAmelCase__ ) ] _a : Union[str, Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(UpperCAmelCase__ ) iterable_dataset_lists.append(list(UpperCAmelCase__ ) ) _a : str = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _a : Union[str, Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) self.assertTrue(len(UpperCAmelCase__ ) % shard_batch_size == 0 ) _a : List[str] = [] for idx in range(0 , len(UpperCAmelCase__ ) , UpperCAmelCase__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(UpperCAmelCase__ ) < len(UpperCAmelCase__ ): reference += reference self.assertListEqual(UpperCAmelCase__ , reference[: len(UpperCAmelCase__ )] ) def _lowercase ( self : Tuple ) -> List[str]: _a : Any = 42 _a : str = RandomIterableDataset() self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) # Edge case with a very small dataset _a : Optional[int] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> int: _a : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Tuple = SkipBatchSampler(UpperCAmelCase__ , 2 ) self.assertListEqual(list(UpperCAmelCase__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: _a : Optional[int] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase ( self : int ) -> str: _a : int = DataLoader(list(range(16 ) ) , batch_size=4 ) _a : Tuple = skip_first_batches(UpperCAmelCase__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase ( self : int ) -> Any: _a : Union[str, Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(UpperCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase ( self : List[str] ) -> int: Accelerator() _a : int = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(UpperCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
324
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
1
"""simple docstring""" from __future__ import annotations import bisect def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0 , UpperCamelCase__ = -1 ): '''simple docstring''' if hi < 0: _a : str = len(UpperCamelCase__ ) while lo < hi: _a : Optional[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _a : int = mid + 1 else: _a : Any = mid return lo def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0 , UpperCamelCase__ = -1 ): '''simple docstring''' if hi < 0: _a : Union[str, Any] = len(UpperCamelCase__ ) while lo < hi: _a : Any = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _a : List[str] = mid + 1 else: _a : Any = mid return lo def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0 , UpperCamelCase__ = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0 , UpperCamelCase__ = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = 0 _a : int = len(UpperCamelCase__ ) - 1 while left <= right: _a : List[Any] = left + (right - left) // 2 _a : List[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _a : Tuple = midpoint - 1 else: _a : str = midpoint + 1 return None def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = bisect.bisect_left(UpperCamelCase__ , UpperCamelCase__ ) if index != len(UpperCamelCase__ ) and sorted_collection[index] == item: return index return None def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if right < left: return None _a : List[Any] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , midpoint - 1 ) else: return binary_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , midpoint + 1 , UpperCamelCase__ ) if __name__ == "__main__": _snake_case = input('Enter numbers separated by comma:\n').strip() _snake_case = sorted(int(item) for item in user_input.split(',')) _snake_case = int(input('Enter a single number to be found in the list:\n')) _snake_case = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
324
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ ) UpperCamelCase : list = field(default_factory=snake_case_ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any: _a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self : Optional[int] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : nn.Module UpperCamelCase : int = 0 UpperCamelCase : List = field(default_factory=snake_case_ ) UpperCamelCase : List = field(default_factory=snake_case_ ) def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple: _a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized _a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized _a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) ) _a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while""" f""" destination module has {len(UpperCAmelCase__ )}.""" ) for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): _a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() _a : str = ResNetForImageClassification(UpperCamelCase__ ).eval() _a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) _a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." _a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one _a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , ) print(F"""Pushed {checkpoint_name}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' _a : Any = """imagenet-1k-id2label.json""" _a : Optional[int] = 1_0_0_0 _a : Any = (1, num_labels) _a : Union[str, Any] = """huggingface/label-files""" _a : Tuple = num_labels _a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Any = idalabel _a : Tuple = {v: k for k, v in idalabel.items()} _a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) _a : Union[str, Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
324
1
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[str] = iter(UpperCamelCase__ ) while True: _a : Dict = tuple(itertools.islice(UpperCamelCase__ , UpperCamelCase__ ) ) if not chunk: return yield chunk def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : int = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) _a : Union[str, Any] = """""" if len(UpperCamelCase__ ) < 2: return dirty for i in range(len(UpperCamelCase__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(UpperCamelCase__ ) & 1: clean += "X" return clean def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) _a : List[Any] = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _a : Dict = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(UpperCamelCase__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(UpperCamelCase__ ) return table def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = generate_table(UpperCamelCase__ ) _a : Dict = prepare_input(UpperCamelCase__ ) _a : Optional[int] = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase__ , 2 ): _a , _a : List[str] = divmod(table.index(UpperCamelCase__ ) , 5 ) _a , _a : List[Any] = divmod(table.index(UpperCamelCase__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = generate_table(UpperCamelCase__ ) _a : List[str] = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase__ , 2 ): _a , _a : Any = divmod(table.index(UpperCamelCase__ ) , 5 ) _a , _a : Tuple = divmod(table.index(UpperCamelCase__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
324
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
324
1
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : def __init__( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int]=13 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[Any]=32 , UpperCAmelCase__ : Any=5 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : List[Any]=37 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : Tuple=10 , UpperCAmelCase__ : List[Any]=0.0_2 , UpperCAmelCase__ : Union[str, Any]=None , ) -> Optional[Any]: _a : List[Any] = parent _a : Optional[Any] = batch_size _a : Dict = image_size _a : str = patch_size _a : Tuple = num_channels _a : str = is_training _a : Union[str, Any] = use_labels _a : Tuple = hidden_size _a : Optional[Any] = num_hidden_layers _a : List[Any] = num_attention_heads _a : int = intermediate_size _a : List[Any] = hidden_act _a : Union[str, Any] = hidden_dropout_prob _a : Optional[Any] = attention_probs_dropout_prob _a : str = type_sequence_label_size _a : Union[str, Any] = initializer_range _a : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : List[Any] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Union[str, Any] = None if self.use_labels: _a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : List[str] = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[Any] ) -> str: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] ) -> List[Any]: _a : str = ViTMSNModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : str = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] ) -> str: _a : Dict = self.type_sequence_label_size _a : Dict = ViTMSNForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Any = model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : Tuple = 1 _a : Union[str, Any] = ViTMSNForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Union[str, Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self : str ) -> Union[str, Any]: _a : Union[str, Any] = self.prepare_config_and_inputs() _a , _a , _a : str = config_and_inputs _a : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : int = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () UpperCamelCase : Union[str, Any] = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) UpperCamelCase : Tuple = False UpperCamelCase : int = False UpperCamelCase : Tuple = False UpperCamelCase : Optional[Any] = False def _lowercase ( self : Optional[int] ) -> Dict: _a : List[str] = ViTMSNModelTester(self ) _a : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 ) def _lowercase ( self : List[Any] ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def _lowercase ( self : List[str] ) -> Any: pass def _lowercase ( self : Union[str, Any] ) -> List[Any]: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Dict = model_class(UpperCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear ) ) def _lowercase ( self : str ) -> Tuple: _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(UpperCAmelCase__ ) _a : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Optional[Any] = [*signature.parameters.keys()] _a : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> Tuple: _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> Optional[Any]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ) -> List[str]: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : str = ViTMSNModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def _lowercase ( self : List[Any] ) -> List[Any]: return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def _lowercase ( self : Optional[Any] ) -> Optional[int]: torch.manual_seed(2 ) _a : List[str] = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(UpperCAmelCase__ ) _a : Any = self.default_image_processor _a : str = prepare_img() _a : Any = image_processor(images=UpperCAmelCase__ , return_tensors="""pt""" ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**UpperCAmelCase__ ) # verify the logits _a : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) _a : List[str] = torch.tensor([-0.0_8_0_3, -0.4_4_5_4, -0.2_3_7_5] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) )
324
"""simple docstring""" _snake_case = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
324
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : str = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase : ClassVar[Features] = Features({'''image''': Image()} ) UpperCamelCase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) UpperCamelCase : str = "image" UpperCamelCase : str = "labels" def _lowercase ( self : Tuple , UpperCAmelCase__ : List[str] ) -> str: if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , UpperCAmelCase__ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) _a : int = copy.deepcopy(self ) _a : Optional[Any] = self.label_schema.copy() _a : str = features[self.label_column] _a : Any = label_schema return task_template @property def _lowercase ( self : Any ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
324
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # initialize config if "resnet-50" in model_name: _a : Union[str, Any] = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: _a : str = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) _a : List[Any] = DetrConfig(use_timm_backbone=UpperCamelCase__ , backbone_config=UpperCamelCase__ ) # set label attributes _a : int = """panoptic""" in model_name if is_panoptic: _a : List[Any] = 2_5_0 else: _a : Optional[int] = 9_1 _a : Tuple = """huggingface/label-files""" _a : Dict = """coco-detection-id2label.json""" _a : Tuple = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Dict = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Optional[Any] = idalabel _a : int = {v: k for k, v in idalabel.items()} return config, is_panoptic def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # here we list all keys to be renamed (original name on the left, our name on the right) _a : Optional[int] = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = state_dict.pop(UpperCamelCase__ ) _a : str = val def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' _a : Union[str, Any] = """""" if is_panoptic: _a : Tuple = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _a : Tuple = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _a : Optional[int] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[:2_5_6, :] _a : int = in_proj_bias[:2_5_6] _a : str = in_proj_weight[2_5_6:5_1_2, :] _a : Tuple = in_proj_bias[2_5_6:5_1_2] _a : Optional[Any] = in_proj_weight[-2_5_6:, :] _a : int = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _a : List[str] = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) _a : Dict = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : int = in_proj_weight[:2_5_6, :] _a : Dict = in_proj_bias[:2_5_6] _a : Dict = in_proj_weight[2_5_6:5_1_2, :] _a : Union[str, Any] = in_proj_bias[2_5_6:5_1_2] _a : str = in_proj_weight[-2_5_6:, :] _a : Dict = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention _a : Tuple = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) _a : Union[str, Any] = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _a : Any = in_proj_weight_cross_attn[:2_5_6, :] _a : Any = in_proj_bias_cross_attn[:2_5_6] _a : Optional[Any] = in_proj_weight_cross_attn[2_5_6:5_1_2, :] _a : Optional[Any] = in_proj_bias_cross_attn[2_5_6:5_1_2] _a : List[str] = in_proj_weight_cross_attn[-2_5_6:, :] _a : str = in_proj_bias_cross_attn[-2_5_6:] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _a : Any = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=False ): '''simple docstring''' _a , _a : Tuple = get_detr_config(UpperCamelCase__ ) # load original model from torch hub _a : Dict = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F"""Converting model {model_name}...""" ) _a : List[Any] = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=UpperCamelCase__ ).eval() _a : int = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCamelCase__ ): if is_panoptic: _a : Optional[Any] = """detr.""" + src rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase__ , is_panoptic=UpperCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _a : List[str] = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _a : str = state_dict.pop(UpperCamelCase__ ) _a : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _a : Union[str, Any] = state_dict.pop(UpperCamelCase__ ) _a : Dict = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _a : Dict = state_dict.pop(UpperCamelCase__ ) _a : Any = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _a : Dict = state_dict.pop(UpperCamelCase__ ) _a : Union[str, Any] = val # finally, create HuggingFace model and load state dict _a : List[Any] = DetrForSegmentation(UpperCamelCase__ ) if is_panoptic else DetrForObjectDetection(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # verify our conversion on an image _a : Optional[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" _a : int = DetrImageProcessor(format=UpperCamelCase__ ) _a : int = processor(images=prepare_img() , return_tensors="""pt""" ) _a : Dict = encoding["""pixel_values"""] _a : Union[str, Any] = detr(UpperCamelCase__ ) _a : Union[str, Any] = model(UpperCamelCase__ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') _snake_case = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
324
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : Optional[Any] = CamembertTokenizer def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : int = vocab_file _a : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[Any] = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
1
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a , _a : Optional[int] = analyze_text(UpperCamelCase__ ) _a : str = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. _a : List[Any] = sum(single_char_strings.values() ) # one length string _a : List[str] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _a : Any = single_char_strings[ch] _a : Tuple = my_str / all_sum my_fir_sum += prob * math.loga(UpperCamelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string _a : Union[str, Any] = sum(two_char_strings.values() ) _a : Dict = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _a : List[Any] = cha + cha if sequence in two_char_strings: _a : Optional[Any] = two_char_strings[sequence] _a : Union[str, Any] = int(UpperCamelCase__ ) / all_sum my_sec_sum += prob * math.loga(UpperCamelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = Counter() # type: ignore _a : str = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(UpperCamelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCAmelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
324
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = ['''pixel_values'''] def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None: _a : int = do_resize _a : Union[str, Any] = do_rescale _a : Any = size_divisor _a : Any = resample super().__init__(**UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray: _a , _a : Tuple = get_image_size(UpperCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor _a : Optional[Any] = height // size_divisor * size_divisor _a : Union[str, Any] = width // size_divisor * size_divisor _a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) return image def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray: return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature: _a : Dict = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _a : str = size_divisor if size_divisor is not None else self.size_divisor _a : Any = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) _a : List[str] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. _a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images] if do_resize: _a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: _a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images] _a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
324
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Optional[int]=10 , UpperCAmelCase__ : str=[10, 20, 30, 40] , UpperCAmelCase__ : Optional[Any]=[1, 1, 2, 1] , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[Any]="relu" , UpperCAmelCase__ : Optional[Any]=3 , UpperCAmelCase__ : List[Any]=None , ) -> Optional[int]: _a : int = parent _a : Union[str, Any] = batch_size _a : int = image_size _a : int = num_channels _a : str = embeddings_size _a : Dict = hidden_sizes _a : Optional[Any] = depths _a : str = is_training _a : Union[str, Any] = use_labels _a : str = hidden_act _a : Optional[int] = num_labels _a : List[Any] = scope _a : Dict = len(UpperCAmelCase__ ) def _lowercase ( self : List[str] ) -> List[Any]: _a : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Tuple = self.get_config() return config, pixel_values def _lowercase ( self : Any ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] ) -> Union[str, Any]: _a : Optional[Any] = FlaxRegNetModel(config=UpperCAmelCase__ ) _a : Optional[Any] = model(UpperCAmelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase ( self : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] ) -> Dict: _a : List[Any] = self.num_labels _a : Any = FlaxRegNetForImageClassification(config=UpperCAmelCase__ ) _a : str = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Any ) -> List[str]: _a : int = self.prepare_config_and_inputs() _a , _a : str = config_and_inputs _a : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : List[Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCamelCase : Dict = False UpperCamelCase : Any = False UpperCamelCase : Optional[int] = False def _lowercase ( self : Any ) -> None: _a : Optional[Any] = FlaxRegNetModelTester(self ) _a : Dict = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def _lowercase ( self : int ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self : List[str] ) -> Union[str, Any]: return def _lowercase ( self : Any ) -> Optional[int]: _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ) -> Optional[int]: _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def _lowercase ( self : Optional[Any] ) -> List[Any]: pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def _lowercase ( self : Any ) -> List[Any]: pass def _lowercase ( self : List[str] ) -> Tuple: _a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[Any] = model_class(UpperCAmelCase__ ) _a : Optional[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> int: def check_hidden_states_output(UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] ): _a : Tuple = model_class(UpperCAmelCase__ ) _a : str = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) _a : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a : List[str] = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase__ ) , expected_num_stages + 1 ) _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : int = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[str] = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : int ) -> Optional[int]: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _a : List[Any] = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[str] ): return model(pixel_values=UpperCAmelCase__ , **UpperCAmelCase__ ) with self.subTest("""JIT Enabled""" ): _a : Optional[int] = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _a : Dict = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class UpperCamelCase ( unittest.TestCase ): @cached_property def _lowercase ( self : Dict ) -> Any: return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def _lowercase ( self : int ) -> List[str]: _a : Tuple = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) _a : List[str] = self.default_image_processor _a : Any = prepare_img() _a : Dict = image_processor(images=UpperCAmelCase__ , return_tensors="""np""" ) _a : List[Any] = model(**UpperCAmelCase__ ) # verify the logits _a : int = (1, 1000) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) _a : Optional[int] = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) )
324
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
1
"""simple docstring""" import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _snake_case = None _snake_case = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _snake_case = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class UpperCamelCase : UpperCamelCase : bool = True UpperCamelCase : Optional[str] = None # Automatically constructed UpperCamelCase : ClassVar[str] = "PIL.Image.Image" UpperCamelCase : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) UpperCamelCase : str = field(default='''Image''' , init=snake_case_ , repr=snake_case_ ) def __call__( self : Union[str, Any] ) -> Dict: return self.pa_type def _lowercase ( self : int , UpperCAmelCase__ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a : Optional[Any] = np.array(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return {"path": value, "bytes": None} elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return {"path": None, "bytes": value} elif isinstance(UpperCAmelCase__ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(UpperCAmelCase__ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : dict , UpperCAmelCase__ : Optional[int]=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: _a : Any = {} _a , _a : Any = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(UpperCAmelCase__ ): _a : Any = PIL.Image.open(UpperCAmelCase__ ) else: _a : Any = path.split("""::""" )[-1] try: _a : Any = string_to_dict(UpperCAmelCase__ , config.HUB_DATASETS_URL )["""repo_id"""] _a : Dict = token_per_repo_id.get(UpperCAmelCase__ ) except ValueError: _a : Tuple = None with xopen(UpperCAmelCase__ , """rb""" , use_auth_token=UpperCAmelCase__ ) as f: _a : Tuple = BytesIO(f.read() ) _a : int = PIL.Image.open(bytes_ ) else: _a : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def _lowercase ( self : int ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def _lowercase ( self : Dict , UpperCAmelCase__ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: if pa.types.is_string(storage.type ): _a : List[str] = pa.array([None] * len(UpperCAmelCase__ ) , type=pa.binary() ) _a : List[str] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _a : Optional[Any] = pa.array([None] * len(UpperCAmelCase__ ) , type=pa.string() ) _a : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: _a : List[str] = storage.field("""bytes""" ) else: _a : str = pa.array([None] * len(UpperCAmelCase__ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: _a : List[str] = storage.field("""path""" ) else: _a : Optional[int] = pa.array([None] * len(UpperCAmelCase__ ) , type=pa.string() ) _a : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _a : Any = pa.array( [encode_np_array(np.array(UpperCAmelCase__ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) _a : List[str] = pa.array([None] * len(UpperCAmelCase__ ) , type=pa.string() ) _a : Any = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(UpperCAmelCase__ , self.pa_type ) def _lowercase ( self : Any , UpperCAmelCase__ : pa.StructArray ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase__ : Dict ): with xopen(UpperCAmelCase__ , """rb""" ) as f: _a : Optional[Any] = f.read() return bytes_ _a : List[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _a : Tuple = pa.array( [os.path.basename(UpperCAmelCase__ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) _a : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(UpperCAmelCase__ , self.pa_type ) def lowerCAmelCase__ ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _a : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = BytesIO() if image.format in list_image_compression_formats(): _a : List[Any] = image.format else: _a : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCamelCase__ , format=UpperCamelCase__ ) return buffer.getvalue() def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if hasattr(UpperCamelCase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCamelCase__ )} def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) _a : Optional[Any] = array.dtype _a : Tuple = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER _a : Tuple = dtype.kind _a : int = dtype.itemsize _a : List[Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _a : Optional[int] = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _a : Dict = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _a : List[str] = dtype_byteorder + dtype_kind + str(UpperCamelCase__ ) _a : Tuple = np.dtype(UpperCamelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) _a : int = PIL.Image.fromarray(array.astype(UpperCamelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCamelCase__ )} def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: _a , _a : List[Any] = first_non_null_value(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCamelCase__ , np.ndarray ): _a : Dict = no_op_if_value_is_null(UpperCamelCase__ ) return [obj_to_image_dict_func(UpperCamelCase__ ) for obj in objs] elif isinstance(UpperCamelCase__ , PIL.Image.Image ): _a : List[Any] = no_op_if_value_is_null(UpperCamelCase__ ) return [obj_to_image_dict_func(UpperCamelCase__ ) for obj in objs] else: return objs else: return objs
324
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
324
1
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase ( snake_case_ ): def __init__( self : int , *UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Dict ) -> List[Any]: super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Dict = eval_examples _a : Dict = post_process_function def _lowercase ( self : Tuple , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str = "eval" ) -> Optional[int]: _a : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset _a : List[Any] = self.get_eval_dataloader(UpperCAmelCase__ ) _a : Optional[int] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a : Any = self.compute_metrics _a : Optional[Any] = None _a : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a : Tuple = time.time() try: _a : Any = eval_loop( UpperCAmelCase__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , metric_key_prefix=UpperCAmelCase__ , ) finally: _a : List[str] = compute_metrics _a : int = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCAmelCase__ , UpperCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a : Optional[Any] = self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , output.predictions ) _a : List[str] = self.compute_metrics(UpperCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): _a : Tuple = metrics.pop(UpperCAmelCase__ ) metrics.update(output.metrics ) else: _a : Optional[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCAmelCase__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a : Dict = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCAmelCase__ ) return metrics def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : str = "test" ) -> Optional[int]: _a : List[str] = self.get_test_dataloader(UpperCAmelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. _a : List[Any] = self.compute_metrics _a : Optional[Any] = None _a : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a : Optional[int] = time.time() try: _a : int = eval_loop( UpperCAmelCase__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , metric_key_prefix=UpperCAmelCase__ , ) finally: _a : List[str] = compute_metrics _a : Optional[int] = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCAmelCase__ , UpperCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a : List[Any] = self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , output.predictions , """predict""" ) _a : Optional[int] = self.compute_metrics(UpperCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): _a : Optional[Any] = metrics.pop(UpperCAmelCase__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCAmelCase__ )
324
"""simple docstring""" import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
324
1
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'spiece.model'} _snake_case = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } _snake_case = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[str] = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : List[int] = [] def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int]="<unk>" , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : List[Any]="</s>" , UpperCAmelCase__ : Optional[Any]="<pad>" , UpperCAmelCase__ : Optional[int]="[SEP]" , UpperCAmelCase__ : List[Any]="[MASK]" , UpperCAmelCase__ : Any="[CLS]" , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : List[str] , ) -> None: _a : Optional[int] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else bos_token _a : str = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else eos_token _a : Any = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else unk_token _a : Any = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else pad_token _a : Optional[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else cls_token _a : str = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _a : Tuple = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token _a : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) _a : Any = vocab_file _a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) @property def _lowercase ( self : Tuple ) -> Union[str, Any]: return self.sp_model.get_piece_size() def _lowercase ( self : Optional[int] ) -> List[Any]: _a : List[str] = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ) -> List[str]: _a : int = self.__dict__.copy() _a : str = None return state def __setstate__( self : Tuple , UpperCAmelCase__ : Dict ) -> List[str]: _a : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _a : Optional[int] = {} _a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self : Dict , UpperCAmelCase__ : str ) -> List[str]: return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : str ) -> int: return self.sp_model.piece_to_id(UpperCAmelCase__ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : int ) -> Dict: _a : List[str] = self.sp_model.IdToPiece(UpperCAmelCase__ ) return token def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[str] ) -> Tuple: _a : Tuple = [] _a : List[str] = """""" _a : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase__ ) + token _a : Any = True _a : Tuple = [] else: current_sub_tokens.append(UpperCAmelCase__ ) _a : List[str] = False out_string += self.sp_model.decode(UpperCAmelCase__ ) return out_string.strip() def _lowercase ( self : Tuple , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : Union[str, Any] , ) -> str: _a : Optional[int] = kwargs.pop("""use_source_tokenizer""" , UpperCAmelCase__ ) _a : Union[str, Any] = self.convert_ids_to_tokens(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _a : int = [] _a : Union[str, Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) _a : List[Any] = [] sub_texts.append(UpperCAmelCase__ ) else: current_sub_text.append(UpperCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _a : Optional[int] = re.sub(r""" (\[(MASK|SEP)\])""" , r"""\1""" , """ """.join(UpperCAmelCase__ ) ) else: _a : Optional[int] = """""".join(UpperCAmelCase__ ) _a : List[str] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _a : Optional[int] = self.clean_up_tokenization(UpperCAmelCase__ ) return clean_text else: return text def _lowercase ( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : str = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , """wb""" ) as fi: _a : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,) def _lowercase ( self : Dict , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[str] = [self.cls_token_id] _a : str = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase__ )) + [1] return [1] + ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1] def _lowercase ( self : Dict , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : List[str] = [self.sep_token_id] _a : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
324
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') _snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _snake_case = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = CamembertTokenizer UpperCamelCase : List[Any] = CamembertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Union[str, Any] = True def _lowercase ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Tuple: _a : Optional[Any] = """<pad>""" _a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : List[str] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _a : Any = """I was born in 92000, and this is falsé.""" _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) _a : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : List[Any] = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _a : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
324
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['MobileViTFeatureExtractor'] _snake_case = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _snake_case = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _snake_case = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _snake_case = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a : Optional[int] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _a : List[Any] = collections.defaultdict(UpperCamelCase__ ) _a : List[str] = collections.defaultdict(UpperCamelCase__ ) _a : Tuple = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): _a : str = None if _re_tf_models.match(UpperCamelCase__ ) is not None: _a : List[Any] = tf_models _a : int = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: _a : Any = flax_models _a : Any = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: _a : int = pt_models _a : int = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: _a : Optional[int] = True break # Try again after removing the last word in the name _a : List[Any] = """""".join(camel_case_split(UpperCamelCase__ )[:-1] ) _a : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _a : Dict = list(UpperCamelCase__ ) all_models.sort() _a : str = {"""model_type""": all_models} _a : List[Any] = [pt_models[t] for t in all_models] _a : str = [tf_models[t] for t in all_models] _a : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _a : str = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _a : List[str] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _a : str = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _a : int = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _a : int = """AutoTokenizer""" _a : Any = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _a : List[Any] = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] _a : Union[str, Any] = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names _a : str = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = get_frameworks_table() _a : Optional[Any] = Dataset.from_pandas(UpperCamelCase__ ) _a : Any = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=UpperCamelCase__ ) _a : List[Any] = Dataset.from_json(UpperCamelCase__ ) _a : List[str] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(UpperCamelCase__ ) ) } _a : str = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _a : int = sorted(table.keys() ) _a : Union[str, Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) _a : Dict = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , """pipeline_tags.json""" ) ) if commit_sha is not None: _a : List[str] = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _a : Optional[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=UpperCamelCase__ , repo_type="""dataset""" , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _a : Any = transformers_module.pipelines.SUPPORTED_TASKS _a : List[str] = [] for key in pipeline_tasks: if key not in in_table: _a : Tuple = pipeline_tasks[key]["""pt"""] if isinstance(UpperCamelCase__ , (list, tuple) ): _a : Dict = model[0] _a : List[str] = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _a : Union[str, Any] = """, """.join(UpperCamelCase__ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _snake_case = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
324
1
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCamelCase ( unittest.TestCase ): def __init__( self : str , UpperCAmelCase__ : int , UpperCAmelCase__ : str=13 , UpperCAmelCase__ : Union[str, Any]=7 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : List[Any]=99 , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : Optional[int]=5 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Tuple=37 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Union[str, Any]=512 , UpperCAmelCase__ : List[str]=16 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : Dict=0.0_2 , UpperCAmelCase__ : Optional[Any]=4 , ) -> Any: _a : str = parent _a : int = batch_size _a : List[str] = seq_length _a : Optional[Any] = is_training _a : List[str] = use_attention_mask _a : int = use_token_type_ids _a : int = use_labels _a : List[Any] = vocab_size _a : List[str] = hidden_size _a : Union[str, Any] = num_hidden_layers _a : str = num_attention_heads _a : str = intermediate_size _a : Optional[int] = hidden_act _a : Dict = hidden_dropout_prob _a : int = attention_probs_dropout_prob _a : Optional[Any] = max_position_embeddings _a : Union[str, Any] = type_vocab_size _a : Dict = type_sequence_label_size _a : List[Any] = initializer_range _a : Tuple = num_choices def _lowercase ( self : str ) -> int: _a : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : List[Any] = None if self.use_attention_mask: _a : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _a : Union[str, Any] = None if self.use_token_type_ids: _a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Optional[Any] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self : Any ) -> Optional[Any]: _a : Tuple = self.prepare_config_and_inputs() _a , _a , _a , _a : Any = config_and_inputs _a : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase ( self : Tuple ) -> Dict: _a : int = FlaxAlbertModelTester(self ) @slow def _lowercase ( self : str ) -> int: for model_class_name in self.all_model_classes: _a : Optional[int] = model_class_name.from_pretrained("""albert-base-v2""" ) _a : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase__ ) @require_flax class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: _a : List[str] = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) _a : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _a : Any = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a : Any = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] _a : List[Any] = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase__ ) _a : Optional[int] = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1E-4 ) )
324
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _a : Dict = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) _a : Any = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) _a : int = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _a : List[str] = yaml.safe_dump(UpperCamelCase__ ) _a : Optional[int] = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = DatasetInfo() _a : Any = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) _a : List[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _a : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _a : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
324
1
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
324
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase ( unittest.TestCase , snake_case_ ): def _lowercase ( self : int ) -> int: _a : Optional[Any] = load_tool("""text-to-speech""" ) self.tool.setup() def _lowercase ( self : List[str] ) -> Union[str, Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : str = self.tool("""hey""" ) _a : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : int = self.tool("""hey""" ) _a : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
324
1
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _snake_case = logging.getLogger(__name__) if __name__ == "__main__": _snake_case = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=3_0522, type=int) _snake_case = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: _snake_case = pickle.load(fp) logger.info('Counting occurrences for MLM.') _snake_case = Counter() for tk_ids in data: counter.update(tk_ids) _snake_case = [0] * args.vocab_size for k, v in counter.items(): _snake_case = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
324
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str ) -> int: _a : str = parent _a : Union[str, Any] = config_class _a : List[Any] = has_text_modality _a : List[Any] = kwargs _a : List[Any] = common_properties def _lowercase ( self : int ) -> Tuple: _a : List[str] = self.config_class(**self.inputs_dict ) _a : Dict = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase__ ): try: setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase__ ): try: _a : Optional[int] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) _a : List[str] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase__ ) def _lowercase ( self : int ) -> List[str]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = os.path.join(UpperCAmelCase__ , """config.json""" ) config_first.to_json_file(UpperCAmelCase__ ) _a : List[str] = self.config_class.from_json_file(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Union[str, Any] ) -> Dict: _a : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase__ ) _a : Dict = self.config_class.from_pretrained(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Dict ) -> Tuple: _a : List[Any] = self.config_class(**self.inputs_dict ) _a : Any = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _a : List[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) config_first.save_pretrained(UpperCAmelCase__ ) _a : List[Any] = self.config_class.from_pretrained(UpperCAmelCase__ , subfolder=UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _a : Union[str, Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Tuple ) -> List[str]: if self.config_class.is_composition: return _a : str = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Dict = copy.deepcopy(UpperCAmelCase__ ) _a : Any = self.config_class(**UpperCAmelCase__ ) _a : str = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase__ , UpperCAmelCase__ ) != value: wrong_values.append((key, getattr(UpperCAmelCase__ , UpperCAmelCase__ ), value) ) if len(UpperCAmelCase__ ) > 0: _a : List[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowercase ( self : int ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
324
1
"""simple docstring""" from __future__ import annotations def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if not nums: return 0 _a : List[str] = nums[0] _a : Any = 0 for num in nums[1:]: _a , _a : Tuple = ( max_excluding + num, max(UpperCamelCase__ , UpperCamelCase__ ), ) return max(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
324
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
324
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]=7 , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : int=30 , UpperCAmelCase__ : List[str]=400 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Dict=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Tuple=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[int]=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _a : Any = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} _a : int = parent _a : Tuple = batch_size _a : str = num_channels _a : Any = min_resolution _a : Dict = max_resolution _a : Union[str, Any] = do_resize _a : List[str] = size _a : Tuple = do_normalize _a : str = image_mean _a : Union[str, Any] = image_std _a : Any = do_rescale _a : int = rescale_factor _a : Optional[Any] = do_pad def _lowercase ( self : List[str] ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any=False ) -> Optional[Any]: if not batched: _a : List[Any] = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image ): _a , _a : int = image.size else: _a , _a : Optional[Any] = image.shape[1], image.shape[2] if w < h: _a : Union[str, Any] = int(self.size["""shortest_edge"""] * h / w ) _a : Any = self.size["""shortest_edge"""] elif w > h: _a : Tuple = self.size["""shortest_edge"""] _a : Dict = int(self.size["""shortest_edge"""] * w / h ) else: _a : Tuple = self.size["""shortest_edge"""] _a : List[str] = self.size["""shortest_edge"""] else: _a : Union[str, Any] = [] for image in image_inputs: _a , _a : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _a : int = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : item[0] )[0] _a : int = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : List[str] = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : Optional[int] ) -> Optional[int]: _a : int = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : Optional[Any] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Union[str, Any] ) -> List[str]: _a : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_rescale""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_pad""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """size""" ) ) def _lowercase ( self : str ) -> Optional[int]: _a : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase__ ) _a : List[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase__ ) def _lowercase ( self : Any ) -> str: pass def _lowercase ( self : List[Any] ) -> Optional[int]: # Initialize image_processing _a : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input _a : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _a , _a : str = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a , _a : List[Any] = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) _a : Union[str, Any] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ) -> int: # Initialize image_processing _a : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input _a : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _a , _a : Tuple = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a : Optional[Any] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values _a , _a : int = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Dict ) -> Dict: # Initialize image_processing _a : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input _a : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _a , _a : Optional[Any] = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _a : int = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values _a , _a : Dict = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Dict ) -> Optional[Any]: # prepare image and target _a : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: _a : Optional[int] = json.loads(f.read() ) _a : List[str] = {"""image_id""": 39769, """annotations""": target} # encode them _a : Optional[int] = DeformableDetrImageProcessor() _a : Optional[int] = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors="""pt""" ) # verify pixel values _a : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase__ ) _a : int = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) # verify area _a : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase__ ) ) # verify boxes _a : int = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase__ ) _a : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase__ , atol=1E-3 ) ) # verify image_id _a : str = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase__ ) ) # verify is_crowd _a : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase__ ) ) # verify class_labels _a : List[str] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase__ ) ) # verify orig_size _a : List[str] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase__ ) ) # verify size _a : Optional[int] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase__ ) ) @slow def _lowercase ( self : Union[str, Any] ) -> Dict: # prepare image, target and masks_path _a : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: _a : List[str] = json.loads(f.read() ) _a : Any = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} _a : Optional[int] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them _a : Dict = DeformableDetrImageProcessor(format="""coco_panoptic""" ) _a : str = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors="""pt""" ) # verify pixel values _a : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase__ ) _a : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) # verify area _a : int = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase__ ) ) # verify boxes _a : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase__ ) _a : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase__ , atol=1E-3 ) ) # verify image_id _a : List[str] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase__ ) ) # verify is_crowd _a : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase__ ) ) # verify class_labels _a : str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase__ ) ) # verify masks _a : Union[str, Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCAmelCase__ ) # verify orig_size _a : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase__ ) ) # verify size _a : Optional[int] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase__ ) )
324
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
324
1
"""simple docstring""" from __future__ import annotations _snake_case = list[list[int]] # assigning initial values to the grid _snake_case = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution _snake_case = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if location := find_empty_location(UpperCamelCase__ ): _a , _a : Dict = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 1_0 ): if is_safe(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): _a : int = digit if sudoku(UpperCamelCase__ ) is not None: return grid _a : List[str] = 0 return None def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for row in grid: for cell in row: print(UpperCamelCase__ , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') _snake_case = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
324
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] ) if ( min(UpperCamelCase__ , UpperCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a : Any = 0 count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
324
1
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
324
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
1
"""simple docstring""" import math import sys def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if number != int(UpperCamelCase__ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 _a : Optional[Any] = [-1] * (number + 1) _a : Tuple = 0 for i in range(1 , number + 1 ): _a : List[str] = sys.maxsize _a : Optional[Any] = int(math.sqrt(UpperCamelCase__ ) ) for j in range(1 , root + 1 ): _a : Union[str, Any] = 1 + answers[i - (j**2)] _a : Dict = min(UpperCamelCase__ , UpperCamelCase__ ) _a : Tuple = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
324
"""simple docstring""" from __future__ import annotations import time _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]: _a : int = pos_x _a : Union[str, Any] = pos_y _a : Tuple = (pos_y, pos_x) _a : Tuple = goal_x _a : int = goal_y _a : str = parent class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]: _a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : Optional[int] = [self.start] _a : Tuple = False def _lowercase ( self : str ) -> Path | None: while self.node_queue: _a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : Dict = True return self.retrace_path(UpperCAmelCase__ ) _a : Tuple = self.get_successors(UpperCAmelCase__ ) for node in successors: self.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]: _a : Optional[Any] = [] for action in delta: _a : str = parent.pos_x + action[1] _a : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) ) return successors def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path: _a : Dict = node _a : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : Any = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False def _lowercase ( self : Any ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[int] = True return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = current_bwd_node _a : int = current_fwd_node _a : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path: _a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ ) _a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _a : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = BreadthFirstSearch(init, goal) _snake_case = bfs.search() _snake_case = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _snake_case = time.time() _snake_case = BidirectionalBreadthFirstSearch(init, goal) _snake_case = bd_bfs.search() _snake_case = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
324
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } _snake_case = { 'google/rembert': 256, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : str = VOCAB_FILES_NAMES UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Optional[int] = RemBertTokenizer def __init__( self : List[Any] , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : Tuple="[CLS]" , UpperCAmelCase__ : List[str]="[SEP]" , UpperCAmelCase__ : List[Any]="<unk>" , UpperCAmelCase__ : str="[SEP]" , UpperCAmelCase__ : Dict="<pad>" , UpperCAmelCase__ : Tuple="[CLS]" , UpperCAmelCase__ : str="[MASK]" , **UpperCAmelCase__ : Tuple , ) -> str: # Mask token behave like a normal word, i.e. include the space before it _a : Dict = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , remove_space=UpperCAmelCase__ , keep_accents=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : str = do_lower_case _a : Dict = remove_space _a : Union[str, Any] = keep_accents _a : str = vocab_file _a : Optional[int] = False if not self.vocab_file else True def _lowercase ( self : Tuple , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Optional[int] = [self.sep_token_id] _a : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1] return [1] + ([0] * len(UpperCAmelCase__ )) + [1] def _lowercase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Optional[int] = [self.sep_token_id] _a : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error("""Vocabulary path ({}) should be a directory""".format(UpperCAmelCase__ ) ) return _a : Any = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCamelCase : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) UpperCamelCase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCamelCase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ): '''simple docstring''' def _dataset(UpperCamelCase__ , UpperCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCAmelCase__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _a : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: _a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: _a : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) _a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: _a : int = tokenizer.max_len # Our input block size will be the max possible for the model else: _a : Optional[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets _a : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _a : Optional[int] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _a : Any = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _a : Union[str, Any] = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: _a : str = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _a : Union[str, Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: _a : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : int = trainer.evaluate() _a : Dict = math.exp(eval_output["""eval_loss"""] ) _a : Union[str, Any] = {"""perplexity""": perplexity} _a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
324
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class UpperCamelCase ( unittest.TestCase ): UpperCamelCase : Dict = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase : List[str] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _lowercase ( self : str ) -> int: _a : Tuple = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output _a : Dict = text_generator("""This is a test""" , do_sample=UpperCAmelCase__ ) self.assertEqual( UpperCAmelCase__ , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) _a : Dict = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( UpperCAmelCase__ , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) _a : int = text_generator("""This is a test""" , do_sample=UpperCAmelCase__ , num_return_sequences=2 , return_tensors=UpperCAmelCase__ ) self.assertEqual( UpperCAmelCase__ , [ {"""generated_token_ids""": ANY(UpperCAmelCase__ )}, {"""generated_token_ids""": ANY(UpperCAmelCase__ )}, ] , ) _a : Dict = text_generator.model.config.eos_token_id _a : List[Any] = """<pad>""" _a : Union[str, Any] = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=UpperCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCAmelCase__ , ) self.assertEqual( UpperCAmelCase__ , [ [ {"""generated_token_ids""": ANY(UpperCAmelCase__ )}, {"""generated_token_ids""": ANY(UpperCAmelCase__ )}, ], [ {"""generated_token_ids""": ANY(UpperCAmelCase__ )}, {"""generated_token_ids""": ANY(UpperCAmelCase__ )}, ], ] , ) @require_tf def _lowercase ( self : Dict ) -> Optional[int]: _a : Optional[int] = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output _a : List[Any] = text_generator("""This is a test""" , do_sample=UpperCAmelCase__ ) self.assertEqual( UpperCAmelCase__ , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) _a : Optional[Any] = text_generator(["""This is a test""", """This is a second test"""] , do_sample=UpperCAmelCase__ ) self.assertEqual( UpperCAmelCase__ , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int ) -> int: _a : str = TextGenerationPipeline(model=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ ) return text_generator, ["This is a test", "Another test"] def _lowercase ( self : Dict ) -> Union[str, Any]: _a : Tuple = """Hello I believe in""" _a : Any = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) _a : int = text_generator(UpperCAmelCase__ ) self.assertEqual( UpperCAmelCase__ , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) _a : Tuple = text_generator(UpperCAmelCase__ , stop_sequence=""" fe""" ) self.assertEqual(UpperCAmelCase__ , [{"""generated_text""": """Hello I believe in fe"""}] ) def _lowercase ( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] ) -> Dict: _a : List[str] = text_generator.model _a : Tuple = text_generator.tokenizer _a : Union[str, Any] = text_generator("""This is a test""" ) self.assertEqual(UpperCAmelCase__ , [{"""generated_text""": ANY(UpperCAmelCase__ )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) _a : int = text_generator("""This is a test""" , return_full_text=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [{"""generated_text""": ANY(UpperCAmelCase__ )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) _a : Dict = pipeline(task="""text-generation""" , model=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , return_full_text=UpperCAmelCase__ ) _a : List[str] = text_generator("""This is a test""" ) self.assertEqual(UpperCAmelCase__ , [{"""generated_text""": ANY(UpperCAmelCase__ )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) _a : Tuple = text_generator("""This is a test""" , return_full_text=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [{"""generated_text""": ANY(UpperCAmelCase__ )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) _a : Union[str, Any] = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=UpperCAmelCase__ ) self.assertEqual( UpperCAmelCase__ , [ [{"""generated_text""": ANY(UpperCAmelCase__ )}, {"""generated_text""": ANY(UpperCAmelCase__ )}], [{"""generated_text""": ANY(UpperCAmelCase__ )}, {"""generated_text""": ANY(UpperCAmelCase__ )}], ] , ) if text_generator.tokenizer.pad_token is not None: _a : Optional[Any] = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCAmelCase__ ) self.assertEqual( UpperCAmelCase__ , [ [{"""generated_text""": ANY(UpperCAmelCase__ )}, {"""generated_text""": ANY(UpperCAmelCase__ )}], [{"""generated_text""": ANY(UpperCAmelCase__ )}, {"""generated_text""": ANY(UpperCAmelCase__ )}], ] , ) with self.assertRaises(UpperCAmelCase__ ): _a : Dict = text_generator("""test""" , return_full_text=UpperCAmelCase__ , return_text=UpperCAmelCase__ ) with self.assertRaises(UpperCAmelCase__ ): _a : str = text_generator("""test""" , return_full_text=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ ) with self.assertRaises(UpperCAmelCase__ ): _a : Tuple = text_generator("""test""" , return_text=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _a : List[Any] = text_generator("""""" ) self.assertEqual(UpperCAmelCase__ , [{"""generated_text""": ANY(UpperCAmelCase__ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _a : str = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _a : Dict = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 500 , max_new_tokens=20 ) _a : List[Any] = text_generator("""This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(UpperCAmelCase__ ): text_generator( """This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _lowercase ( self : Any ) -> str: import torch # Classic `model_kwargs` _a : Optional[Any] = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _a : Tuple = pipe("""This is a test""" ) self.assertEqual( UpperCAmelCase__ , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _a : Optional[Any] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _a : Dict = pipe("""This is a test""" ) self.assertEqual( UpperCAmelCase__ , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _a : str = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _a : Union[str, Any] = pipe("""This is a test""" ) self.assertEqual( UpperCAmelCase__ , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def _lowercase ( self : Any ) -> List[Any]: import torch _a : Any = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def _lowercase ( self : Optional[Any] ) -> Optional[Any]: import torch _a : List[str] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=UpperCAmelCase__ , top_p=0.5 ) def _lowercase ( self : Optional[Any] ) -> int: _a : Any = """Hello world""" _a : int = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": _a : List[Any] = logging.get_logger("""transformers.generation.tf_utils""" ) else: _a : Tuple = logging.get_logger("""transformers.generation.utils""" ) _a : Optional[Any] = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(UpperCAmelCase__ ) as cl: _a : List[Any] = text_generator(UpperCAmelCase__ , max_length=10 , max_new_tokens=1 ) self.assertIn(UpperCAmelCase__ , cl.out ) # The user only sets one -> no warning with CaptureLogger(UpperCAmelCase__ ) as cl: _a : str = text_generator(UpperCAmelCase__ , max_new_tokens=1 ) self.assertNotIn(UpperCAmelCase__ , cl.out ) with CaptureLogger(UpperCAmelCase__ ) as cl: _a : Union[str, Any] = text_generator(UpperCAmelCase__ , max_length=10 ) self.assertNotIn(UpperCAmelCase__ , cl.out )
324
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _snake_case = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ ) return k def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase__ ) _a : Optional[Any] = PegasusConfig(**UpperCamelCase__ ) _a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ ) _a : str = torch_model.model.state_dict() _a : Union[str, Any] = {} for k, v in tf_weights.items(): _a : Any = rename_state_dict_key(UpperCamelCase__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _a : str = v.T _a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _a : str = mapping["""shared.weight"""] _a : Union[str, Any] = mapping["""shared.weight"""] _a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCamelCase__ ) _a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _a : Optional[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _a : List[Any] = tf.train.list_variables(UpperCamelCase__ ) _a : Optional[int] = {} _a : Dict = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ): _a : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) _a : int = array return tf_weights def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # save tokenizer first _a : Dict = Path(UpperCamelCase__ ).parent.name _a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] _a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase__ ) # convert model _a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ ) _a : Dict = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": _a : Tuple = task_specific_params _a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ ) torch_model.save_pretrained(UpperCamelCase__ ) _a : Dict = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() if args.save_dir is None: _snake_case = Path(args.tf_ckpt_path).parent.name _snake_case = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
324
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class UpperCamelCase ( snake_case_ ): UpperCamelCase : str = '''switch_transformers''' UpperCamelCase : Union[str, Any] = ['''past_key_values'''] UpperCamelCase : Tuple = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int]=32128 , UpperCAmelCase__ : Tuple=768 , UpperCAmelCase__ : int=64 , UpperCAmelCase__ : List[Any]=2048 , UpperCAmelCase__ : Any=64 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Tuple=12 , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : Any=12 , UpperCAmelCase__ : Union[str, Any]=8 , UpperCAmelCase__ : str=False , UpperCAmelCase__ : str=0.0_1 , UpperCAmelCase__ : Union[str, Any]="float32" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Any=32 , UpperCAmelCase__ : Any=128 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : List[str]=1E-6 , UpperCAmelCase__ : Dict=0.0_0_1 , UpperCAmelCase__ : int=0.0_0_1 , UpperCAmelCase__ : Union[str, Any]=1.0 , UpperCAmelCase__ : Optional[Any]="relu" , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : str=1 , **UpperCAmelCase__ : List[Any] , ) -> Union[str, Any]: _a : List[str] = vocab_size _a : List[str] = d_model _a : str = d_kv _a : Tuple = d_ff _a : List[str] = num_sparse_encoder_layers _a : int = num_layers _a : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _a : Dict = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _a : Dict = self.num_layers // self.num_sparse_encoder_layers else: _a : Optional[int] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _a : Optional[int] = self.num_decoder_layers // self.num_sparse_decoder_layers else: _a : str = self.num_decoder_layers # HACK: this will create 0 sparse layers _a : str = num_heads _a : Any = num_experts _a : List[Any] = expert_capacity _a : Dict = router_bias _a : Dict = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) _a : List[Any] = router_dtype _a : Optional[Any] = router_ignore_padding_tokens _a : Union[str, Any] = relative_attention_num_buckets _a : Any = relative_attention_max_distance _a : Any = dropout_rate _a : Tuple = layer_norm_epsilon _a : List[Any] = initializer_factor _a : Optional[Any] = feed_forward_proj _a : Optional[Any] = use_cache _a : List[str] = add_router_probs _a : Any = router_z_loss_coef _a : List[Any] = router_aux_loss_coef _a : Optional[Any] = self.feed_forward_proj.split("""-""" ) _a : Any = act_info[-1] _a : Any = act_info[0] == """gated""" if len(UpperCAmelCase__ ) > 1 and act_info[0] != "gated" or len(UpperCAmelCase__ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _a : Tuple = """gelu_new""" super().__init__( pad_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__ , )
324
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[str] = '''transfo-xl''' UpperCamelCase : Optional[int] = ['''mems'''] UpperCamelCase : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Dict , UpperCAmelCase__ : int=267735 , UpperCAmelCase__ : Union[str, Any]=[20000, 40000, 200000] , UpperCAmelCase__ : Union[str, Any]=1024 , UpperCAmelCase__ : Optional[Any]=1024 , UpperCAmelCase__ : Optional[int]=16 , UpperCAmelCase__ : Any=64 , UpperCAmelCase__ : Optional[int]=4096 , UpperCAmelCase__ : str=4 , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : str=18 , UpperCAmelCase__ : str=1600 , UpperCAmelCase__ : Any=1000 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : List[str]=0 , UpperCAmelCase__ : Union[str, Any]=-1 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Any="normal" , UpperCAmelCase__ : Union[str, Any]=0.0_1 , UpperCAmelCase__ : Any=0.0_1 , UpperCAmelCase__ : str=0.0_2 , UpperCAmelCase__ : Tuple=1E-5 , UpperCAmelCase__ : Tuple=0 , **UpperCAmelCase__ : str , ) -> List[str]: _a : str = vocab_size _a : Dict = [] self.cutoffs.extend(UpperCAmelCase__ ) if proj_share_all_but_first: _a : Tuple = [False] + [True] * len(self.cutoffs ) else: _a : Tuple = [False] + [False] * len(self.cutoffs ) _a : Optional[int] = d_model _a : str = d_embed _a : Optional[Any] = d_head _a : int = d_inner _a : Optional[Any] = div_val _a : Optional[Any] = pre_lnorm _a : Any = n_layer _a : Optional[Any] = n_head _a : Optional[Any] = mem_len _a : Optional[int] = same_length _a : Union[str, Any] = attn_type _a : Any = clamp_len _a : Any = sample_softmax _a : Optional[Any] = adaptive _a : List[Any] = dropout _a : Optional[Any] = dropatt _a : List[Any] = untie_r _a : str = init _a : Any = init_range _a : Dict = proj_init_std _a : Optional[Any] = init_std _a : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) @property def _lowercase ( self : str ) -> Dict: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _lowercase ( self : List[str] , UpperCAmelCase__ : Any ) -> Any: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
324
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ ) UpperCamelCase : list = field(default_factory=snake_case_ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any: _a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self : Optional[int] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : nn.Module UpperCamelCase : int = 0 UpperCamelCase : List = field(default_factory=snake_case_ ) UpperCamelCase : List = field(default_factory=snake_case_ ) def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple: _a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized _a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized _a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) ) _a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while""" f""" destination module has {len(UpperCAmelCase__ )}.""" ) for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): _a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() _a : str = ResNetForImageClassification(UpperCamelCase__ ).eval() _a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) _a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." _a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one _a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , ) print(F"""Pushed {checkpoint_name}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' _a : Any = """imagenet-1k-id2label.json""" _a : Optional[int] = 1_0_0_0 _a : Any = (1, num_labels) _a : Union[str, Any] = """huggingface/label-files""" _a : Tuple = num_labels _a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Any = idalabel _a : Tuple = {v: k for k, v in idalabel.items()} _a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) _a : Union[str, Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
324
1
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : Dict = BarthezTokenizer UpperCamelCase : int = BarthezTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : List[Any] = True def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: super().setUp() _a : Any = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=UpperCAmelCase__ ) _a : Dict = tokenizer def _lowercase ( self : Optional[Any] ) -> Dict: _a : int = """<pad>""" _a : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> Optional[Any]: _a : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 101122 ) def _lowercase ( self : Any ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def _lowercase ( self : Union[str, Any] ) -> Any: _a : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _a : Tuple = [0, 57, 3018, 70307, 91, 2] _a : List[Any] = self.tokenizer( UpperCAmelCase__ , max_length=len(UpperCAmelCase__ ) , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _a : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : int ) -> Union[str, Any]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Optional[int] = self.get_rust_tokenizer() _a : Any = """I was born in 92000, and this is falsé.""" _a : int = tokenizer.tokenize(UpperCAmelCase__ ) _a : Any = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : str = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = self.get_rust_tokenizer() _a : Dict = tokenizer.encode(UpperCAmelCase__ ) _a : Optional[Any] = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Dict ) -> List[Any]: # fmt: off _a : List[str] = {"""input_ids""": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _a : Dict = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=UpperCAmelCase__ , )
324
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
324
1
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever _snake_case = logging.getLogger(__name__) class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple=None ) -> Optional[Any]: super().__init__( UpperCAmelCase__ , question_encoder_tokenizer=UpperCAmelCase__ , generator_tokenizer=UpperCAmelCase__ , index=UpperCAmelCase__ , init_retrieval=UpperCAmelCase__ , ) _a : Optional[int] = None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : int ) -> Optional[int]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually _a : Optional[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port _a : List[Any] = str(distributed_port + 1 ) _a : Tuple = dist.new_group(ranks=UpperCAmelCase__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase ( self : Tuple ) -> List[Any]: return dist.get_rank(group=self.process_group ) == 0 def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any]=torch.floataa ) -> Dict: _a : Any = torch.empty(UpperCAmelCase__ , dtype=UpperCAmelCase__ ) dist.scatter(UpperCAmelCase__ , src=0 , scatter_list=UpperCAmelCase__ , group=self.process_group ) return target_tensor def _lowercase ( self : str ) -> Dict: _a : Any = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _a : Any = next((addr for addr in addrs if addr.startswith("""e""" )) , UpperCAmelCase__ ) return ifname def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): _a , _a : Tuple = self._main_retrieve(UpperCAmelCase__ , UpperCAmelCase__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCAmelCase__ ) # distributed training _a : Optional[Any] = dist.get_world_size(group=self.process_group ) # gather logic _a : List[Any] = None if self._is_main(): _a : Optional[int] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(UpperCAmelCase__ )] dist.gather(torch.tensor(UpperCAmelCase__ ) , dst=0 , gather_list=UpperCAmelCase__ , group=self.process_group ) # scatter logic _a : Union[str, Any] = question_hidden_states.shape[0] _a : str = [] _a : Any = [] if self._is_main(): assert len(UpperCAmelCase__ ) == world_size _a , _a : Dict = self._main_retrieve(torch.cat(UpperCAmelCase__ ).numpy() , UpperCAmelCase__ ) _a , _a : Tuple = torch.tensor(UpperCAmelCase__ ), torch.tensor(UpperCAmelCase__ ) _a : Optional[int] = self._chunk_tensor(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[Any] = self._chunk_tensor(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = self._scattered(UpperCAmelCase__ , [n_queries, n_docs] , target_type=torch.intaa ) _a : Optional[Any] = self._scattered(UpperCAmelCase__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(UpperCAmelCase__ )
324
"""simple docstring""" _snake_case = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
324
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = '''open-llama''' def __init__( self : Any , UpperCAmelCase__ : Tuple=100000 , UpperCAmelCase__ : Any=4096 , UpperCAmelCase__ : Tuple=11008 , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : int=32 , UpperCAmelCase__ : Optional[int]="silu" , UpperCAmelCase__ : str=2048 , UpperCAmelCase__ : int=0.0_2 , UpperCAmelCase__ : Optional[Any]=1E-6 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=False , UpperCAmelCase__ : int=True , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : int=None , **UpperCAmelCase__ : Any , ) -> Union[str, Any]: _a : Union[str, Any] = vocab_size _a : int = max_position_embeddings _a : Union[str, Any] = hidden_size _a : Optional[int] = intermediate_size _a : List[str] = num_hidden_layers _a : Dict = num_attention_heads _a : List[str] = hidden_act _a : Dict = initializer_range _a : Union[str, Any] = rms_norm_eps _a : str = use_cache _a : int = kwargs.pop( """use_memorry_efficient_attention""" , UpperCAmelCase__ ) _a : int = hidden_dropout_prob _a : Tuple = attention_dropout_prob _a : List[str] = use_stable_embedding _a : int = shared_input_output_embedding _a : int = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , tie_word_embeddings=UpperCAmelCase__ , **UpperCAmelCase__ , ) def _lowercase ( self : List[Any] ) -> Optional[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) _a : List[Any] = self.rope_scaling.get("""type""" , UpperCAmelCase__ ) _a : List[Any] = self.rope_scaling.get("""factor""" , UpperCAmelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
324
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
1
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') _snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _snake_case = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = CamembertTokenizer UpperCamelCase : List[Any] = CamembertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Union[str, Any] = True def _lowercase ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Tuple: _a : Optional[Any] = """<pad>""" _a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : List[str] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _a : Any = """I was born in 92000, and this is falsé.""" _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) _a : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : List[Any] = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _a : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
324
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : Optional[Any] = CamembertTokenizer def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : int = vocab_file _a : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[Any] = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
1
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : def __init__( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]=0.2 , UpperCAmelCase__ : Tuple=0.2 ) -> Union[str, Any]: _a : Optional[int] = bp_numa _a : List[str] = bp_numa _a : str = bp_numa _a : Optional[int] = conva_get[:2] _a : str = conva_get[2] _a : str = size_pa _a : List[Any] = rate_w _a : int = rate_t _a : Optional[int] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] _a : Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _a : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _a : List[str] = -2 * np.random.rand(self.conva[1] ) + 1 _a : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 _a : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 def _lowercase ( self : List[Any] , UpperCAmelCase__ : Any ) -> List[Any]: # save model dict with pickle _a : Optional[Any] = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(UpperCAmelCase__ , """wb""" ) as f: pickle.dump(UpperCAmelCase__ , UpperCAmelCase__ ) print(f"""Model saved: {save_path}""" ) @classmethod def _lowercase ( cls : Any , UpperCAmelCase__ : Tuple ) -> List[Any]: # read saved model with open(UpperCAmelCase__ , """rb""" ) as f: _a : Optional[int] = pickle.load(UpperCAmelCase__ ) # noqa: S301 _a : List[str] = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) _a : Any = model_dic.get("""size_pooling1""" ) _a : List[str] = model_dic.get("""num_bp1""" ) _a : int = model_dic.get("""num_bp2""" ) _a : Optional[Any] = model_dic.get("""num_bp3""" ) _a : str = model_dic.get("""rate_weight""" ) _a : int = model_dic.get("""rate_thre""" ) # create model instance _a : List[Any] = CNN(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # modify model parameter _a : Union[str, Any] = model_dic.get("""w_conv1""" ) _a : Tuple = model_dic.get("""wkj""" ) _a : List[str] = model_dic.get("""vji""" ) _a : Union[str, Any] = model_dic.get("""thre_conv1""" ) _a : List[Any] = model_dic.get("""thre_bp2""" ) _a : int = model_dic.get("""thre_bp3""" ) return conv_ins def _lowercase ( self : List[Any] , UpperCAmelCase__ : Tuple ) -> int: return 1 / (1 + np.exp(-1 * x )) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] ) -> Optional[Any]: return round(UpperCAmelCase__ , 3 ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict ) -> Union[str, Any]: # convolution process _a : Any = convs[0] _a : Optional[Any] = convs[1] _a : Optional[int] = np.shape(UpperCAmelCase__ )[0] # get the data slice of original image data, data_focus _a : Tuple = [] for i_focus in range(0 , size_data - size_conv + 1 , UpperCAmelCase__ ): for j_focus in range(0 , size_data - size_conv + 1 , UpperCAmelCase__ ): _a : Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(UpperCAmelCase__ ) # calculate the feature map of every single kernel, and saved as list of matrix _a : List[Any] = [] _a : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(UpperCAmelCase__ ): _a : Optional[int] = [] for i_focus in range(len(UpperCAmelCase__ ) ): _a : Optional[Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(UpperCAmelCase__ ) ) _a : Dict = np.asmatrix(UpperCAmelCase__ ).reshape( UpperCAmelCase__ , UpperCAmelCase__ ) data_featuremap.append(UpperCAmelCase__ ) # expanding the data slice to One dimenssion _a : List[str] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(UpperCAmelCase__ ) ) _a : int = np.asarray(UpperCAmelCase__ ) return focus_list, data_featuremap def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any]="average_pool" ) -> List[Any]: # pooling process _a : Optional[int] = len(featuremaps[0] ) _a : Tuple = int(size_map / size_pooling ) _a : Tuple = [] for i_map in range(len(UpperCAmelCase__ ) ): _a : List[str] = featuremaps[i_map] _a : Optional[int] = [] for i_focus in range(0 , UpperCAmelCase__ , UpperCAmelCase__ ): for j_focus in range(0 , UpperCAmelCase__ , UpperCAmelCase__ ): _a : List[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(UpperCAmelCase__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(UpperCAmelCase__ ) ) _a : Optional[Any] = np.asmatrix(UpperCAmelCase__ ).reshape(UpperCAmelCase__ , UpperCAmelCase__ ) featuremap_pooled.append(UpperCAmelCase__ ) return featuremap_pooled def _lowercase ( self : int , UpperCAmelCase__ : Tuple ) -> Dict: # expanding three dimension data to one dimension list _a : int = [] for i in range(len(UpperCAmelCase__ ) ): _a : Dict = np.shape(data[i] ) _a : int = data[i].reshape(1 , shapes[0] * shapes[1] ) _a : Optional[int] = data_listed.getA().tolist()[0] data_expanded.extend(UpperCAmelCase__ ) _a : List[str] = np.asarray(UpperCAmelCase__ ) return data_expanded def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> Dict: # expanding matrix to one dimension list _a : List[Any] = np.asarray(UpperCAmelCase__ ) _a : str = np.shape(UpperCAmelCase__ ) _a : Any = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _lowercase ( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] ) -> str: _a : int = [] _a : Dict = 0 for i_map in range(UpperCAmelCase__ ): _a : Tuple = np.ones((size_map, size_map) ) for i in range(0 , UpperCAmelCase__ , UpperCAmelCase__ ): for j in range(0 , UpperCAmelCase__ , UpperCAmelCase__ ): _a : Optional[Any] = pd_pool[ i_pool ] _a : Tuple = i_pool + 1 _a : int = np.multiply( UpperCAmelCase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(UpperCAmelCase__ ) return pd_all def _lowercase ( self : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any]=bool ) -> Any: # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(UpperCAmelCase__ )) ) print((""" - - Shape: Teach_Data """, np.shape(UpperCAmelCase__ )) ) _a : Any = 0 _a : str = [] _a : Optional[Any] = 10000 while rp < n_repeat and mse >= error_accuracy: _a : Union[str, Any] = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(UpperCAmelCase__ ) ): # print('------------Learning Image: %d--------------'%p) _a : int = np.asmatrix(datas_train[p] ) _a : int = np.asarray(datas_teach[p] ) _a , _a : List[Any] = self.convolute( UpperCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _a : Optional[int] = self.pooling(UpperCAmelCase__ , self.size_poolinga ) _a : List[Any] = np.shape(UpperCAmelCase__ ) _a : Any = self._expand(UpperCAmelCase__ ) _a : Optional[Any] = data_bp_input _a : Optional[Any] = np.dot(UpperCAmelCase__ , self.vji.T ) - self.thre_bpa _a : Optional[int] = self.sig(UpperCAmelCase__ ) _a : str = np.dot(UpperCAmelCase__ , self.wkj.T ) - self.thre_bpa _a : List[Any] = self.sig(UpperCAmelCase__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _a : Any = np.multiply( (data_teach - bp_outa) , np.multiply(UpperCAmelCase__ , (1 - bp_outa) ) ) _a : List[Any] = np.multiply( np.dot(UpperCAmelCase__ , self.wkj ) , np.multiply(UpperCAmelCase__ , (1 - bp_outa) ) ) _a : Union[str, Any] = np.dot(UpperCAmelCase__ , self.vji ) _a : Tuple = pd_i_all / (self.size_poolinga * self.size_poolinga) _a : List[str] = pd_conva_pooled.T.getA().tolist() _a : str = self._calculate_gradient_from_pool( UpperCAmelCase__ , UpperCAmelCase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): _a : Tuple = self._expand_mat(pd_conva_all[k_conv] ) _a : Tuple = self.rate_weight * np.dot(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) _a : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer _a : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _a : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight _a : Dict = self.thre_bpa - pd_k_all * self.rate_thre _a : List[str] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _a : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _a : Tuple = rp + 1 _a : Union[str, Any] = error_count / patterns all_mse.append(UpperCAmelCase__ ) def draw_error(): _a : Dict = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(UpperCAmelCase__ , """+-""" ) plt.plot(UpperCAmelCase__ , """r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(UpperCAmelCase__ , alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : int ) -> Union[str, Any]: # model predict _a : Union[str, Any] = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(UpperCAmelCase__ )) ) for p in range(len(UpperCAmelCase__ ) ): _a : List[Any] = np.asmatrix(datas_test[p] ) _a , _a : str = self.convolute( UpperCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _a : List[Any] = self.pooling(UpperCAmelCase__ , self.size_poolinga ) _a : List[Any] = self._expand(UpperCAmelCase__ ) _a : str = data_bp_input _a : Optional[int] = bp_outa * self.vji.T - self.thre_bpa _a : Optional[int] = self.sig(UpperCAmelCase__ ) _a : Any = bp_outa * self.wkj.T - self.thre_bpa _a : Tuple = self.sig(UpperCAmelCase__ ) produce_out.extend(bp_outa.getA().tolist() ) _a : int = [list(map(self.do_round , UpperCAmelCase__ ) ) for each in produce_out] return np.asarray(UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Any ) -> int: # return the data of image after convoluting process so we can check it out _a : Optional[int] = np.asmatrix(UpperCAmelCase__ ) _a , _a : Tuple = self.convolute( UpperCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _a : Any = self.pooling(UpperCAmelCase__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
324
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = ['''pixel_values'''] def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None: _a : int = do_resize _a : Union[str, Any] = do_rescale _a : Any = size_divisor _a : Any = resample super().__init__(**UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray: _a , _a : Tuple = get_image_size(UpperCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor _a : Optional[Any] = height // size_divisor * size_divisor _a : Union[str, Any] = width // size_divisor * size_divisor _a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) return image def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray: return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature: _a : Dict = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _a : str = size_divisor if size_divisor is not None else self.size_divisor _a : Any = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) _a : List[str] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. _a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images] if do_resize: _a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: _a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images] _a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
324
1
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _snake_case = TypeVar('T') class UpperCamelCase ( Generic[T] ): UpperCamelCase : deque[T] # Cache store of keys UpperCamelCase : set[T] # References of the keys in cache UpperCamelCase : int = 10 # Maximum capacity of cache def __init__( self : Any , UpperCAmelCase__ : int ) -> None: _a : int = deque() _a : Optional[Any] = set() if not n: _a : Tuple = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: _a : Union[str, Any] = n def _lowercase ( self : List[str] , UpperCAmelCase__ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _a : List[Any] = self.dq_store.pop() self.key_reference.remove(UpperCAmelCase__ ) else: self.dq_store.remove(UpperCAmelCase__ ) self.dq_store.appendleft(UpperCAmelCase__ ) self.key_reference.add(UpperCAmelCase__ ) def _lowercase ( self : str ) -> None: for k in self.dq_store: print(UpperCAmelCase__ ) def __repr__( self : int ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() _snake_case = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
324
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
1
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _snake_case = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , ): '''simple docstring''' if attention_mask is None: _a : Any = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _a : int = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _a : Tuple = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _a : Dict = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _a : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any=13 , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : Optional[Any]=99 , UpperCAmelCase__ : int=16 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Optional[Any]=32 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : Dict=1 , UpperCAmelCase__ : Optional[Any]=0 , UpperCAmelCase__ : str=0.0_2 , ) -> List[str]: _a : Union[str, Any] = parent _a : Optional[Any] = batch_size _a : Optional[int] = seq_length _a : Tuple = is_training _a : Optional[int] = use_labels _a : Tuple = vocab_size _a : Optional[int] = hidden_size _a : Dict = num_hidden_layers _a : Optional[Any] = num_attention_heads _a : str = intermediate_size _a : Tuple = hidden_act _a : Tuple = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : List[Any] = max_position_embeddings _a : int = eos_token_id _a : Tuple = pad_token_id _a : str = bos_token_id _a : Dict = initializer_range def _lowercase ( self : str ) -> Optional[int]: _a : Dict = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _a : Tuple = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _a : Any = shift_tokens_right(UpperCAmelCase__ , 1 , 2 ) _a : List[str] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase__ , ) _a : Optional[int] = prepare_blenderbot_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, inputs_dict def _lowercase ( self : List[str] ) -> Optional[int]: _a , _a : str = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] ) -> List[Any]: _a : List[str] = 20 _a : int = model_class_name(UpperCAmelCase__ ) _a : Optional[Any] = model.encode(inputs_dict["""input_ids"""] ) _a , _a : List[str] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _a : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _a : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _a : Dict = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) _a : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _a : str = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase__ , ) _a : List[str] = model.decode(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple ) -> Union[str, Any]: _a : List[Any] = 20 _a : str = model_class_name(UpperCAmelCase__ ) _a : Tuple = model.encode(inputs_dict["""input_ids"""] ) _a , _a : Any = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _a : str = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _a : List[str] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _a : List[str] = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) _a : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _a : Optional[int] = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) _a : Tuple = model.decode(UpperCAmelCase__ , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ ) _a : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) @require_flax class UpperCamelCase ( unittest.TestCase ): UpperCamelCase : List[str] = 99 def _lowercase ( self : Any ) -> List[str]: _a : str = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _a : Optional[int] = input_ids.shape[0] _a : int = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowercase ( self : str ) -> Union[str, Any]: _a , _a , _a : Dict = self._get_config_and_data() _a : List[str] = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase__ ) _a : Dict = lm_model(input_ids=UpperCAmelCase__ ) _a : List[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase__ ) def _lowercase ( self : str ) -> int: _a : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _a : List[str] = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase__ ) _a : str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _a : List[str] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _a : List[str] = lm_model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ ) _a : Union[str, Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[int]: _a : Union[str, Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _a : Optional[int] = shift_tokens_right(UpperCAmelCase__ , 1 , 2 ) _a : List[str] = np.equal(UpperCAmelCase__ , 1 ).astype(np.floataa ).sum() _a : Optional[Any] = np.equal(UpperCAmelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCAmelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class UpperCamelCase ( snake_case_ , unittest.TestCase , snake_case_ ): UpperCamelCase : List[str] = True UpperCamelCase : str = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) UpperCamelCase : List[Any] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _lowercase ( self : Optional[Any] ) -> Tuple: _a : Optional[Any] = FlaxBlenderbotModelTester(self ) def _lowercase ( self : Dict ) -> List[Any]: _a , _a : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> str: _a , _a : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : str ) -> List[Any]: _a , _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _a : Union[str, Any] = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = model_class(UpperCAmelCase__ ) @jax.jit def encode_jitted(UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=None , **UpperCAmelCase__ : Union[str, Any] ): return model.encode(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) with self.subTest("""JIT Enabled""" ): _a : Optional[Any] = encode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _a : Optional[int] = encode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def _lowercase ( self : str ) -> Any: _a , _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _a : int = model_class(UpperCAmelCase__ ) _a : Optional[Any] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _a : Any = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple ): return model.decode( decoder_input_ids=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , encoder_outputs=UpperCAmelCase__ , ) with self.subTest("""JIT Enabled""" ): _a : List[str] = decode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _a : Tuple = decode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase ( self : Dict ) -> Union[str, Any]: for model_class_name in self.all_model_classes: _a : List[Any] = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _a : List[str] = np.ones((1, 1) ) * model.config.eos_token_id _a : Any = model(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def _lowercase ( self : Dict ) -> List[str]: _a : Any = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} _a : int = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} _a : List[str] = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCAmelCase__ ) _a : Union[str, Any] = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) _a : Union[str, Any] = ["""Sam"""] _a : Dict = tokenizer(UpperCAmelCase__ , return_tensors="""jax""" ) _a : List[str] = model.generate(**UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Dict = """Sam is a great name. It means \"sun\" in Gaelic.""" _a : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase__ , **UpperCAmelCase__ ) assert generated_txt[0].strip() == tgt_text
324
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
324
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _snake_case = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
"""simple docstring""" import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
324
1
"""simple docstring""" from __future__ import annotations import pandas as pd def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = [0] * no_of_processes _a : List[str] = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(UpperCamelCase__ ): _a : Dict = burst_time[i] _a : int = 0 _a : List[str] = 0 _a : List[str] = 9_9_9_9_9_9_9_9_9 _a : Tuple = 0 _a : int = False # Process until all processes are completed while complete != no_of_processes: for j in range(UpperCamelCase__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: _a : Tuple = remaining_time[j] _a : Optional[int] = j _a : Dict = True if not check: increment_time += 1 continue remaining_time[short] -= 1 _a : Tuple = remaining_time[short] if minm == 0: _a : Any = 9_9_9_9_9_9_9_9_9 if remaining_time[short] == 0: complete += 1 _a : Tuple = False # Find finish time of current process _a : Union[str, Any] = increment_time + 1 # Calculate waiting time _a : Optional[Any] = finish_time - arrival_time[short] _a : Optional[int] = finar - burst_time[short] if waiting_time[short] < 0: _a : Tuple = 0 # Increment time increment_time += 1 return waiting_time def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = [0] * no_of_processes for i in range(UpperCamelCase__ ): _a : Any = burst_time[i] + waiting_time[i] return turn_around_time def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[str] = 0 _a : Optional[int] = 0 for i in range(UpperCamelCase__ ): _a : Union[str, Any] = total_waiting_time + waiting_time[i] _a : Optional[Any] = total_turn_around_time + turn_around_time[i] print(F"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') _snake_case = int(input()) _snake_case = [0] * no_of_processes _snake_case = [0] * no_of_processes _snake_case = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) _snake_case , _snake_case = map(int, input().split()) _snake_case = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _snake_case = burst_time _snake_case = no_of_processes _snake_case = waiting_time _snake_case = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) _snake_case = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
324
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') _snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _snake_case = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = CamembertTokenizer UpperCamelCase : List[Any] = CamembertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Union[str, Any] = True def _lowercase ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Tuple: _a : Optional[Any] = """<pad>""" _a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : List[str] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _a : Any = """I was born in 92000, and this is falsé.""" _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) _a : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : List[Any] = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _a : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
324
1
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING _snake_case = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class UpperCamelCase ( snake_case_ ): def __init__( self : str , **UpperCAmelCase__ : List[Any] ) -> str: super().__init__(**UpperCAmelCase__ ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , """vision""" ) self.check_model_type(UpperCAmelCase__ ) def __call__( self : Any , UpperCAmelCase__ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase__ : Union[str, List[str]] = None , **UpperCAmelCase__ : int , ) -> str: if "text_queries" in kwargs: _a : Any = kwargs.pop("""text_queries""" ) if isinstance(UpperCAmelCase__ , (str, Image.Image) ): _a : str = {"""image""": image, """candidate_labels""": candidate_labels} else: _a : Union[str, Any] = image _a : Tuple = super().__call__(UpperCAmelCase__ , **UpperCAmelCase__ ) return results def _lowercase ( self : int , **UpperCAmelCase__ : Any ) -> int: _a : Tuple = {} if "threshold" in kwargs: _a : Optional[int] = kwargs["""threshold"""] if "top_k" in kwargs: _a : List[str] = kwargs["""top_k"""] return {}, {}, postprocess_params def _lowercase ( self : Any , UpperCAmelCase__ : Optional[Any] ) -> str: _a : Any = load_image(inputs["""image"""] ) _a : str = inputs["""candidate_labels"""] if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a : Optional[int] = candidate_labels.split(""",""" ) _a : Dict = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCAmelCase__ ): _a : int = self.tokenizer(UpperCAmelCase__ , return_tensors=self.framework ) _a : Optional[Any] = self.image_processor(UpperCAmelCase__ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCAmelCase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _lowercase ( self : Any , UpperCAmelCase__ : int ) -> Union[str, Any]: _a : Union[str, Any] = model_inputs.pop("""target_size""" ) _a : Any = model_inputs.pop("""candidate_label""" ) _a : List[Any] = model_inputs.pop("""is_last""" ) _a : Optional[Any] = self.model(**UpperCAmelCase__ ) _a : List[str] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def _lowercase ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Optional[Any]=None ) -> Dict: _a : List[Any] = [] for model_output in model_outputs: _a : Dict = model_output["""candidate_label"""] _a : List[Any] = BaseModelOutput(UpperCAmelCase__ ) _a : int = self.image_processor.post_process_object_detection( outputs=UpperCAmelCase__ , threshold=UpperCAmelCase__ , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): _a : Optional[int] = outputs["""scores"""][index].item() _a : Tuple = self._get_bounding_box(outputs["""boxes"""][index][0] ) _a : List[str] = {"""score""": score, """label""": label, """box""": box} results.append(UpperCAmelCase__ ) _a : Optional[Any] = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : x["score"] , reverse=UpperCAmelCase__ ) if top_k: _a : Optional[Any] = results[:top_k] return results def _lowercase ( self : List[str] , UpperCAmelCase__ : "torch.Tensor" ) -> Dict[str, int]: if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) _a , _a , _a , _a : List[str] = box.int().tolist() _a : Any = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
324
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _snake_case = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _snake_case = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _snake_case = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a : Optional[int] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _a : List[Any] = collections.defaultdict(UpperCamelCase__ ) _a : List[str] = collections.defaultdict(UpperCamelCase__ ) _a : Tuple = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): _a : str = None if _re_tf_models.match(UpperCamelCase__ ) is not None: _a : List[Any] = tf_models _a : int = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: _a : Any = flax_models _a : Any = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: _a : int = pt_models _a : int = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: _a : Optional[int] = True break # Try again after removing the last word in the name _a : List[Any] = """""".join(camel_case_split(UpperCamelCase__ )[:-1] ) _a : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _a : Dict = list(UpperCamelCase__ ) all_models.sort() _a : str = {"""model_type""": all_models} _a : List[Any] = [pt_models[t] for t in all_models] _a : str = [tf_models[t] for t in all_models] _a : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _a : str = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _a : List[str] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _a : str = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _a : int = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _a : int = """AutoTokenizer""" _a : Any = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _a : List[Any] = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] _a : Union[str, Any] = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names _a : str = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = get_frameworks_table() _a : Optional[Any] = Dataset.from_pandas(UpperCamelCase__ ) _a : Any = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=UpperCamelCase__ ) _a : List[Any] = Dataset.from_json(UpperCamelCase__ ) _a : List[str] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(UpperCamelCase__ ) ) } _a : str = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _a : int = sorted(table.keys() ) _a : Union[str, Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) _a : Dict = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , """pipeline_tags.json""" ) ) if commit_sha is not None: _a : List[str] = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _a : Optional[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=UpperCamelCase__ , repo_type="""dataset""" , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _a : Any = transformers_module.pipelines.SUPPORTED_TASKS _a : List[str] = [] for key in pipeline_tasks: if key not in in_table: _a : Tuple = pipeline_tasks[key]["""pt"""] if isinstance(UpperCamelCase__ , (list, tuple) ): _a : Dict = model[0] _a : List[str] = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _a : Union[str, Any] = """, """.join(UpperCamelCase__ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _snake_case = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
324
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = LDMTextToImagePipeline UpperCamelCase : Dict = TEXT_TO_IMAGE_PARAMS - { '''negative_prompt''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', '''prompt_embeds''', } UpperCamelCase : int = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''callback''', '''callback_steps''', } UpperCamelCase : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase : int = False def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _a : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) _a : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) _a : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _a : Any = CLIPTextModel(UpperCAmelCase__ ) _a : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _a : List[Any] = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def _lowercase ( self : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any]=0 ) -> Optional[int]: if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : List[Any] = torch.manual_seed(UpperCAmelCase__ ) else: _a : Optional[int] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : str = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : int = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Optional[Any] = self.get_dummy_components() _a : List[Any] = LDMTextToImagePipeline(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : str = pipe(**UpperCAmelCase__ ).images _a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _a : List[str] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any]=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> Optional[Any]: _a : Any = torch.manual_seed(UpperCAmelCase__ ) _a : Any = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 32, 32) ) _a : Dict = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase ( self : Optional[int] ) -> List[str]: _a : List[Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : str = self.get_inputs(UpperCAmelCase__ ) _a : Optional[Any] = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _a : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _a : List[Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]=torch.floataa , UpperCAmelCase__ : Optional[Any]=0 ) -> Union[str, Any]: _a : Optional[Any] = torch.manual_seed(UpperCAmelCase__ ) _a : Tuple = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 32, 32) ) _a : Tuple = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Dict: _a : Optional[int] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = pipe(**UpperCAmelCase__ ).images[0] _a : Any = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) _a : Any = np.abs(expected_image - image ).max() assert max_diff < 1E-3
324
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _a : Dict = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) _a : Any = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) _a : int = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _a : List[str] = yaml.safe_dump(UpperCamelCase__ ) _a : Optional[int] = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = DatasetInfo() _a : Any = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) _a : List[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _a : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _a : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
324
1
"""simple docstring""" from timeit import timeit _snake_case = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Any = 0 _a : Union[str, Any] = len(UpperCamelCase__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = len(UpperCamelCase__ ) // 2 _a : int = len(UpperCamelCase__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(UpperCamelCase__ ) ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if len(UpperCamelCase__ ) <= 2: return True if s[0] == s[len(UpperCamelCase__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return s == s[::-1] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = F"""all({name}(key) is value for key, value in test_data.items())""" _a : Optional[int] = F"""from __main__ import test_data, {name}""" _a : Dict = 5_0_0_0_0_0 _a : List[str] = timeit(stmt=UpperCamelCase__ , setup=UpperCamelCase__ , number=UpperCamelCase__ ) print(F"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F'''{key:21} {value}''') print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
324
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase ( unittest.TestCase , snake_case_ ): def _lowercase ( self : int ) -> int: _a : Optional[Any] = load_tool("""text-to-speech""" ) self.tool.setup() def _lowercase ( self : List[str] ) -> Union[str, Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : str = self.tool("""hey""" ) _a : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : int = self.tool("""hey""" ) _a : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
324
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _snake_case = logging.get_logger(__name__) # General docstring _snake_case = 'ResNetConfig' # Base docstring _snake_case = 'microsoft/resnet-50' _snake_case = [1, 2048, 7, 7] # Image classification docstring _snake_case = 'microsoft/resnet-50' _snake_case = 'tiger cat' _snake_case = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase ( nn.Module ): def __init__( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : str = "relu" ) -> Any: super().__init__() _a : Union[str, Any] = nn.Convad( UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=UpperCAmelCase__ , stride=UpperCAmelCase__ , padding=kernel_size // 2 , bias=UpperCAmelCase__ ) _a : Union[str, Any] = nn.BatchNormad(UpperCAmelCase__ ) _a : int = ACTaFN[activation] if activation is not None else nn.Identity() def _lowercase ( self : Any , UpperCAmelCase__ : Tensor ) -> Tensor: _a : Dict = self.convolution(UpperCAmelCase__ ) _a : Optional[int] = self.normalization(UpperCAmelCase__ ) _a : Optional[int] = self.activation(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self : int , UpperCAmelCase__ : ResNetConfig ) -> Optional[int]: super().__init__() _a : List[str] = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _a : List[str] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _a : int = config.num_channels def _lowercase ( self : List[Any] , UpperCAmelCase__ : Tensor ) -> Tensor: _a : Optional[int] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) _a : List[Any] = self.embedder(UpperCAmelCase__ ) _a : Union[str, Any] = self.pooler(UpperCAmelCase__ ) return embedding class UpperCamelCase ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 2 ) -> List[str]: super().__init__() _a : Tuple = nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , stride=UpperCAmelCase__ , bias=UpperCAmelCase__ ) _a : List[Any] = nn.BatchNormad(UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tensor: _a : Optional[Any] = self.convolution(UpperCAmelCase__ ) _a : Optional[Any] = self.normalization(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : str = "relu" ) -> Any: super().__init__() _a : List[str] = in_channels != out_channels or stride != 1 _a : Dict = ( ResNetShortCut(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _a : int = nn.Sequential( ResNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) , ResNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , activation=UpperCAmelCase__ ) , ) _a : List[Any] = ACTaFN[activation] def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]: _a : str = hidden_state _a : Tuple = self.layer(UpperCAmelCase__ ) _a : Union[str, Any] = self.shortcut(UpperCAmelCase__ ) hidden_state += residual _a : Optional[int] = self.activation(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : str = "relu" , UpperCAmelCase__ : int = 4 ) -> Optional[int]: super().__init__() _a : int = in_channels != out_channels or stride != 1 _a : Dict = out_channels // reduction _a : Optional[int] = ( ResNetShortCut(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _a : List[str] = nn.Sequential( ResNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) , ResNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=UpperCAmelCase__ ) , ) _a : Optional[Any] = ACTaFN[activation] def _lowercase ( self : Tuple , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: _a : Optional[int] = hidden_state _a : Tuple = self.layer(UpperCAmelCase__ ) _a : Optional[Any] = self.shortcut(UpperCAmelCase__ ) hidden_state += residual _a : List[Any] = self.activation(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self : Any , UpperCAmelCase__ : ResNetConfig , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) -> List[str]: super().__init__() _a : Optional[Any] = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer _a : Any = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ , activation=config.hidden_act ) , *[layer(UpperCAmelCase__ , UpperCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _lowercase ( self : Any , UpperCAmelCase__ : Tensor ) -> Tensor: _a : int = input for layer in self.layers: _a : int = layer(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self : Dict , UpperCAmelCase__ : ResNetConfig ) -> List[Any]: super().__init__() _a : List[str] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( UpperCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _a : Any = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(UpperCAmelCase__ , config.depths[1:] ): self.stages.append(ResNetStage(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , depth=UpperCAmelCase__ ) ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention: _a : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _a : int = hidden_states + (hidden_state,) _a : Optional[int] = stage_module(UpperCAmelCase__ ) if output_hidden_states: _a : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=UpperCAmelCase__ , hidden_states=UpperCAmelCase__ , ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[Any] = ResNetConfig UpperCamelCase : Tuple = '''resnet''' UpperCamelCase : Union[str, Any] = '''pixel_values''' UpperCamelCase : Any = True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Dict ) -> Optional[int]: if isinstance(UpperCAmelCase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(UpperCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]=False ) -> Optional[Any]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a : Tuple = value _snake_case = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _snake_case = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , snake_case_ , ) class UpperCamelCase ( snake_case_ ): def __init__( self : Tuple , UpperCAmelCase__ : Union[str, Any] ) -> Optional[Any]: super().__init__(UpperCAmelCase__ ) _a : Union[str, Any] = config _a : Optional[Any] = ResNetEmbeddings(UpperCAmelCase__ ) _a : Union[str, Any] = ResNetEncoder(UpperCAmelCase__ ) _a : Optional[int] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowercase ( self : Any , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: _a : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : Dict = return_dict if return_dict is not None else self.config.use_return_dict _a : Union[str, Any] = self.embedder(UpperCAmelCase__ ) _a : Dict = self.encoder( UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) _a : Union[str, Any] = encoder_outputs[0] _a : Any = self.pooler(UpperCAmelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase__ , pooler_output=UpperCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , snake_case_ , ) class UpperCamelCase ( snake_case_ ): def __init__( self : Optional[int] , UpperCAmelCase__ : Dict ) -> Dict: super().__init__(UpperCAmelCase__ ) _a : Union[str, Any] = config.num_labels _a : int = ResNetModel(UpperCAmelCase__ ) # classification head _a : Tuple = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[torch.LongTensor] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: _a : Dict = return_dict if return_dict is not None else self.config.use_return_dict _a : Union[str, Any] = self.resnet(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) _a : List[Any] = outputs.pooler_output if return_dict else outputs[1] _a : Any = self.classifier(UpperCAmelCase__ ) _a : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _a : Optional[int] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _a : Any = """single_label_classification""" else: _a : str = """multi_label_classification""" if self.config.problem_type == "regression": _a : Dict = MSELoss() if self.num_labels == 1: _a : Any = loss_fct(logits.squeeze() , labels.squeeze() ) else: _a : Optional[Any] = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config.problem_type == "single_label_classification": _a : Dict = CrossEntropyLoss() _a : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _a : Tuple = BCEWithLogitsLoss() _a : Tuple = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ ) if not return_dict: _a : str = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase__ , logits=UpperCAmelCase__ , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , snake_case_ , ) class UpperCamelCase ( snake_case_ , snake_case_ ): def __init__( self : Any , UpperCAmelCase__ : Optional[int] ) -> Tuple: super().__init__(UpperCAmelCase__ ) super()._init_backbone(UpperCAmelCase__ ) _a : Dict = [config.embedding_size] + config.hidden_sizes _a : List[str] = ResNetEmbeddings(UpperCAmelCase__ ) _a : Optional[Any] = ResNetEncoder(UpperCAmelCase__ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) @replace_return_docstrings(output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None ) -> BackboneOutput: _a : int = return_dict if return_dict is not None else self.config.use_return_dict _a : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : Any = self.embedder(UpperCAmelCase__ ) _a : Dict = self.encoder(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) _a : Union[str, Any] = outputs.hidden_states _a : Any = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _a : Dict = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=UpperCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCAmelCase__ , )
324
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str ) -> int: _a : str = parent _a : Union[str, Any] = config_class _a : List[Any] = has_text_modality _a : List[Any] = kwargs _a : List[Any] = common_properties def _lowercase ( self : int ) -> Tuple: _a : List[str] = self.config_class(**self.inputs_dict ) _a : Dict = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase__ ): try: setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase__ ): try: _a : Optional[int] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) _a : List[str] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase__ ) def _lowercase ( self : int ) -> List[str]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = os.path.join(UpperCAmelCase__ , """config.json""" ) config_first.to_json_file(UpperCAmelCase__ ) _a : List[str] = self.config_class.from_json_file(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Union[str, Any] ) -> Dict: _a : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase__ ) _a : Dict = self.config_class.from_pretrained(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Dict ) -> Tuple: _a : List[Any] = self.config_class(**self.inputs_dict ) _a : Any = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _a : List[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) config_first.save_pretrained(UpperCAmelCase__ ) _a : List[Any] = self.config_class.from_pretrained(UpperCAmelCase__ , subfolder=UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _a : Union[str, Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Tuple ) -> List[str]: if self.config_class.is_composition: return _a : str = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Dict = copy.deepcopy(UpperCAmelCase__ ) _a : Any = self.config_class(**UpperCAmelCase__ ) _a : str = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase__ , UpperCAmelCase__ ) != value: wrong_values.append((key, getattr(UpperCAmelCase__ , UpperCAmelCase__ ), value) ) if len(UpperCAmelCase__ ) > 0: _a : List[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowercase ( self : int ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
324
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = '▁' _snake_case = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } _snake_case = { 'google/pegasus-xsum': 512, } class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Optional[Any] = PegasusTokenizer UpperCamelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Union[str, Any]="<pad>" , UpperCAmelCase__ : List[Any]="</s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : int="<mask_2>" , UpperCAmelCase__ : int="<mask_1>" , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : str=103 , **UpperCAmelCase__ : int , ) -> Union[str, Any]: _a : List[Any] = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError( f"""additional_special_tokens should be of type {type(UpperCAmelCase__ )}, but is""" f""" {type(UpperCAmelCase__ )}""" ) _a : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(UpperCAmelCase__ ) , self.offset - 1 ) ] if len(set(UpperCAmelCase__ ) ) != len(UpperCAmelCase__ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) _a : str = additional_special_tokens_extended else: _a : Union[str, Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , mask_token_sent=UpperCAmelCase__ , offset=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : str = vocab_file _a : Union[str, Any] = False if not self.vocab_file else True def _lowercase ( self : Any , UpperCAmelCase__ : List[str] ) -> Tuple: _a : int = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def _lowercase ( self : List[Any] , UpperCAmelCase__ : List , UpperCAmelCase__ : Optional[List] = None , UpperCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase__ ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowercase ( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Tuple = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
324
1
"""simple docstring""" _snake_case = [0, 2, 4, 6, 8] _snake_case = [1, 3, 5, 7, 9] def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _a : List[Any] = 0 for digit in range(1_0 ): _a : int = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , UpperCamelCase__ , UpperCamelCase__ ) return result _a : List[str] = 0 for digita in range(1_0 ): _a : str = digita if (remainder + digita) % 2 == 0: _a : Union[str, Any] = ODD_DIGITS else: _a : Optional[Any] = EVEN_DIGITS for digita in other_parity_digits: _a : str = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , UpperCamelCase__ , UpperCamelCase__ , ) return result def lowerCAmelCase__ ( UpperCamelCase__ = 9 ): '''simple docstring''' _a : Optional[int] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(UpperCamelCase__ , 0 , [0] * length , UpperCamelCase__ ) return result if __name__ == "__main__": print(F'''{solution() = }''')
324
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
324
1
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if isinstance(UpperCamelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class UpperCamelCase : def _lowercase ( self : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] ) -> str: pass def _lowercase ( self : Tuple ) -> Tuple: pass def _lowercase ( self : Optional[Any] ) -> Any: pass def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float ) -> str: _a : str = np.abs((a - b) ).max() self.assertLessEqual(UpperCAmelCase__ , UpperCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def _lowercase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Tuple ) -> Tuple: _a : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[Any] = FlaxVisionTextDualEncoderModel(UpperCAmelCase__ ) _a : int = model(input_ids=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowercase ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=None , **UpperCAmelCase__ : Any ) -> List[Any]: _a , _a : List[Any] = self.get_vision_text_model(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = {"""vision_model""": vision_model, """text_model""": text_model} _a : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCAmelCase__ ) _a : Union[str, Any] = model(input_ids=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowercase ( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=None , **UpperCAmelCase__ : str ) -> int: _a , _a : Dict = self.get_vision_text_model(UpperCAmelCase__ , UpperCAmelCase__ ) _a : str = {"""vision_model""": vision_model, """text_model""": text_model} _a : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCAmelCase__ ) _a : List[str] = model(input_ids=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) _a : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase__ ) _a : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCAmelCase__ ) _a : str = model(input_ids=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) _a : Union[str, Any] = after_output[0] _a : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCAmelCase__ , 1E-3 ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any]=None , **UpperCAmelCase__ : List[str] ) -> str: _a , _a : Optional[Any] = self.get_vision_text_model(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[Any] = {"""vision_model""": vision_model, """text_model""": text_model} _a : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCAmelCase__ ) _a : List[str] = model( input_ids=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , output_attentions=UpperCAmelCase__ ) _a : List[str] = output.vision_model_output.attentions self.assertEqual(len(UpperCAmelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Any = to_atuple(vision_model.config.image_size ) _a : Union[str, Any] = to_atuple(vision_model.config.patch_size ) _a : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _a : str = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _a : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(UpperCAmelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowercase ( self : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple ) -> Tuple: pt_model.to(UpperCAmelCase__ ) pt_model.eval() # prepare inputs _a : List[str] = inputs_dict _a : List[str] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _a : Optional[Any] = pt_model(**UpperCAmelCase__ ).to_tuple() _a : List[Any] = fx_model(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(UpperCAmelCase__ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase__ ) _a : int = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) _a : str = fx_model_loaded(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(UpperCAmelCase__ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase__ ) _a : Optional[Any] = VisionTextDualEncoderModel.from_pretrained(UpperCAmelCase__ , from_flax=UpperCAmelCase__ ) pt_model_loaded.to(UpperCAmelCase__ ) pt_model_loaded.eval() with torch.no_grad(): _a : int = pt_model_loaded(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(UpperCAmelCase__ , pt_output_loaded.numpy() , 4E-2 ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str ) -> Tuple: _a : List[str] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = VisionTextDualEncoderModel(UpperCAmelCase__ ) _a : Union[str, Any] = FlaxVisionTextDualEncoderModel(UpperCAmelCase__ ) _a : Union[str, Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase__ ) _a : Optional[Any] = fx_state self.check_pt_flax_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] ) -> Dict: _a : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Union[str, Any] = VisionTextDualEncoderModel(UpperCAmelCase__ ) _a : Dict = FlaxVisionTextDualEncoderModel(UpperCAmelCase__ ) _a : List[str] = load_flax_weights_in_pytorch_model(UpperCAmelCase__ , fx_model.params ) self.check_pt_flax_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Any ) -> List[str]: _a : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**UpperCAmelCase__ ) def _lowercase ( self : Any ) -> str: _a : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> Optional[Any]: _a : Any = self.prepare_config_and_inputs() self.check_save_load(**UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> List[str]: _a : Any = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**UpperCAmelCase__ ) @is_pt_flax_cross_test def _lowercase ( self : Optional[int] ) -> int: _a : int = self.prepare_config_and_inputs() _a : List[Any] = config_inputs_dict.pop("""vision_config""" ) _a : Dict = config_inputs_dict.pop("""text_config""" ) _a : Optional[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.check_equivalence_flax_to_pt(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Any ) -> Dict: _a , _a : List[Any] = self.get_pretrained_model_and_inputs() _a : Optional[int] = model_a(**UpperCAmelCase__ ) _a : Dict = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(UpperCAmelCase__ ) _a : int = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCAmelCase__ ) _a : List[str] = model_a(**UpperCAmelCase__ ) _a : str = after_outputs[0] _a : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCAmelCase__ , 1E-5 ) @require_flax class UpperCamelCase ( snake_case_ , unittest.TestCase ): def _lowercase ( self : List[str] ) -> Any: _a : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=UpperCAmelCase__ , text_from_pt=UpperCAmelCase__ , ) _a : str = 13 _a : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _a : str = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _a : Any = random_attention_mask([batch_size, 4] ) _a : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] ) -> Any: _a : Union[str, Any] = FlaxViTModel(UpperCAmelCase__ ) _a : List[str] = FlaxBertModel(UpperCAmelCase__ ) return vision_model, text_model def _lowercase ( self : int ) -> Tuple: _a : int = FlaxViTModelTester(self ) _a : Optional[int] = FlaxBertModelTester(self ) _a : Tuple = vit_model_tester.prepare_config_and_inputs() _a : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() _a , _a : Union[str, Any] = vision_config_and_inputs _a , _a , _a , _a : int = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class UpperCamelCase ( snake_case_ , unittest.TestCase ): def _lowercase ( self : Optional[int] ) -> Tuple: _a : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=UpperCAmelCase__ , text_from_pt=UpperCAmelCase__ , ) _a : Tuple = 13 _a : Tuple = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _a : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _a : Tuple = random_attention_mask([batch_size, 4] ) _a : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowercase ( self : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple ) -> Optional[Any]: _a : Union[str, Any] = FlaxCLIPVisionModel(UpperCAmelCase__ ) _a : str = FlaxBertModel(UpperCAmelCase__ ) return vision_model, text_model def _lowercase ( self : int ) -> Dict: _a : str = FlaxCLIPVisionModelTester(self ) _a : str = FlaxBertModelTester(self ) _a : str = clip_model_tester.prepare_config_and_inputs() _a : str = bert_model_tester.prepare_config_and_inputs() _a , _a : Dict = vision_config_and_inputs _a , _a , _a , _a : List[Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase ( self : int ) -> Tuple: _a : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) _a : List[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) _a : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _a : List[Any] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors="""np""" ) _a : List[Any] = model(**UpperCAmelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _a : Tuple = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , UpperCAmelCase__ , atol=1E-3 ) )
324
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] ) if ( min(UpperCamelCase__ , UpperCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a : Any = 0 count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
324
1
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _snake_case = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _snake_case = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _snake_case = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def _lowercase ( self : Dict ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Dict=False ) -> Union[str, Any]: if rouge_types is None: _a : int = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] _a : Any = rouge_scorer.RougeScorer(rouge_types=UpperCAmelCase__ , use_stemmer=UpperCAmelCase__ ) if use_aggregator: _a : Dict = scoring.BootstrapAggregator() else: _a : str = [] for ref, pred in zip(UpperCAmelCase__ , UpperCAmelCase__ ): _a : List[Any] = scorer.score(UpperCAmelCase__ , UpperCAmelCase__ ) if use_aggregator: aggregator.add_scores(UpperCAmelCase__ ) else: scores.append(UpperCAmelCase__ ) if use_aggregator: _a : Optional[int] = aggregator.aggregate() else: _a : Optional[Any] = {} for key in scores[0]: _a : Tuple = [score[key] for score in scores] return result
324
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class UpperCamelCase ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=13 , UpperCAmelCase__ : Any=7 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : List[Any]=99 , UpperCAmelCase__ : Tuple=32 , UpperCAmelCase__ : str=5 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : List[Any]=37 , UpperCAmelCase__ : Tuple="gelu" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : Optional[int]=512 , UpperCAmelCase__ : List[str]=16 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Tuple=0.0_2 , UpperCAmelCase__ : List[str]=4 , ) -> Union[str, Any]: _a : Any = parent _a : List[str] = batch_size _a : int = seq_length _a : Union[str, Any] = is_training _a : Optional[Any] = use_attention_mask _a : Any = use_token_type_ids _a : List[str] = use_labels _a : Any = vocab_size _a : Dict = hidden_size _a : Tuple = num_hidden_layers _a : Union[str, Any] = num_attention_heads _a : Optional[Any] = intermediate_size _a : List[Any] = hidden_act _a : int = hidden_dropout_prob _a : Dict = attention_probs_dropout_prob _a : Optional[int] = max_position_embeddings _a : Any = type_vocab_size _a : Union[str, Any] = type_sequence_label_size _a : str = initializer_range _a : Tuple = num_choices def _lowercase ( self : List[str] ) -> List[str]: _a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : str = None if self.use_attention_mask: _a : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _a : List[Any] = None if self.use_token_type_ids: _a : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : List[Any] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self : Tuple ) -> Tuple: _a : str = self.prepare_config_and_inputs() _a , _a , _a , _a : Dict = config_and_inputs _a : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _lowercase ( self : int ) -> int: _a : List[Any] = self.prepare_config_and_inputs() _a , _a , _a , _a : List[str] = config_and_inputs _a : Any = True _a : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = True UpperCamelCase : Any = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase ( self : List[str] ) -> Dict: _a : Tuple = FlaxRobertaPreLayerNormModelTester(self ) @slow def _lowercase ( self : Union[str, Any] ) -> Any: for model_class_name in self.all_model_classes: _a : Optional[Any] = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=UpperCAmelCase__ ) _a : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase__ ) @require_flax class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase ( self : int ) -> List[str]: _a : str = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=UpperCAmelCase__ ) _a : List[Any] = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] , dtype=jnp.intaa ) _a : int = model(UpperCAmelCase__ )[0] _a : Optional[Any] = [1, 11, 50265] self.assertEqual(list(output.shape ) , UpperCAmelCase__ ) # compare the actual values for a slice. _a : Optional[Any] = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) ) @slow def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: _a : List[Any] = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=UpperCAmelCase__ ) _a : Optional[Any] = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] , dtype=jnp.intaa ) _a : List[Any] = model(UpperCAmelCase__ )[0] # compare the actual values for a slice. _a : Tuple = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
324
"""simple docstring""" from __future__ import annotations import time _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]: _a : int = pos_x _a : Union[str, Any] = pos_y _a : Tuple = (pos_y, pos_x) _a : Tuple = goal_x _a : int = goal_y _a : str = parent class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]: _a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : Optional[int] = [self.start] _a : Tuple = False def _lowercase ( self : str ) -> Path | None: while self.node_queue: _a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : Dict = True return self.retrace_path(UpperCAmelCase__ ) _a : Tuple = self.get_successors(UpperCAmelCase__ ) for node in successors: self.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]: _a : Optional[Any] = [] for action in delta: _a : str = parent.pos_x + action[1] _a : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) ) return successors def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path: _a : Dict = node _a : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : Any = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False def _lowercase ( self : Any ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[int] = True return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = current_bwd_node _a : int = current_fwd_node _a : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path: _a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ ) _a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _a : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = BreadthFirstSearch(init, goal) _snake_case = bfs.search() _snake_case = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _snake_case = time.time() _snake_case = BidirectionalBreadthFirstSearch(init, goal) _snake_case = bd_bfs.search() _snake_case = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
324
1
"""simple docstring""" import re def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(UpperCamelCase__ , UpperCamelCase__ ) ) if __name__ == "__main__": _snake_case = '0094702343221' print(is_sri_lankan_phone_number(phone))
324
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCamelCase : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) UpperCamelCase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCamelCase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ): '''simple docstring''' def _dataset(UpperCamelCase__ , UpperCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCAmelCase__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _a : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: _a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: _a : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) _a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: _a : int = tokenizer.max_len # Our input block size will be the max possible for the model else: _a : Optional[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets _a : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _a : Optional[int] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _a : Any = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _a : Union[str, Any] = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: _a : str = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _a : Union[str, Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: _a : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : int = trainer.evaluate() _a : Dict = math.exp(eval_output["""eval_loss"""] ) _a : Union[str, Any] = {"""perplexity""": perplexity} _a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
324
1
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _snake_case = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Tuple = list(s_dict.keys() ) for key in keys: _a : Dict = key for k, v in WHISPER_MAPPING.items(): if k in key: _a : Union[str, Any] = new_key.replace(UpperCamelCase__ , UpperCamelCase__ ) print(F"""{key} -> {new_key}""" ) _a : Dict = s_dict.pop(UpperCamelCase__ ) return s_dict def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a , _a : str = emb.weight.shape _a : Optional[int] = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) _a : int = emb.weight.data return lin_layer def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) _a : str = os.path.basename(UpperCamelCase__ ) _a : List[Any] = url.split("""/""" )[-2] _a : int = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ) and not os.path.isfile(UpperCamelCase__ ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(UpperCamelCase__ ): _a : Optional[Any] = open(UpperCamelCase__ , """rb""" ).read() if hashlib.shaaaa(UpperCamelCase__ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(UpperCamelCase__ ) as source, open(UpperCamelCase__ , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=8_0 , unit="""iB""" , unit_scale=UpperCamelCase__ , unit_divisor=1_0_2_4 ) as loop: while True: _a : List[str] = source.read(8_1_9_2 ) if not buffer: break output.write(UpperCamelCase__ ) loop.update(len(UpperCamelCase__ ) ) _a : List[str] = open(UpperCamelCase__ , """rb""" ).read() if hashlib.shaaaa(UpperCamelCase__ ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if ".pt" not in checkpoint_path: _a : Dict = _download(_MODELS[checkpoint_path] ) else: _a : Union[str, Any] = torch.load(UpperCamelCase__ , map_location="""cpu""" ) _a : Dict = original_checkpoint["""dims"""] _a : List[str] = original_checkpoint["""model_state_dict"""] _a : Any = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(UpperCamelCase__ ) rename_keys(UpperCamelCase__ ) _a : Optional[Any] = True _a : int = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] _a : List[Any] = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=UpperCamelCase__ , decoder_ffn_dim=UpperCamelCase__ , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) _a : List[Any] = WhisperForConditionalGeneration(UpperCamelCase__ ) _a , _a : List[Any] = model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0 and not set(UpperCamelCase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F""" but all the following weights are missing {missing}""" ) if tie_embeds: _a : Union[str, Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _a : Union[str, Any] = proj_out_weights model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
324
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _snake_case = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ ) return k def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase__ ) _a : Optional[Any] = PegasusConfig(**UpperCamelCase__ ) _a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ ) _a : str = torch_model.model.state_dict() _a : Union[str, Any] = {} for k, v in tf_weights.items(): _a : Any = rename_state_dict_key(UpperCamelCase__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _a : str = v.T _a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _a : str = mapping["""shared.weight"""] _a : Union[str, Any] = mapping["""shared.weight"""] _a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCamelCase__ ) _a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _a : Optional[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _a : List[Any] = tf.train.list_variables(UpperCamelCase__ ) _a : Optional[int] = {} _a : Dict = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ): _a : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) _a : int = array return tf_weights def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # save tokenizer first _a : Dict = Path(UpperCamelCase__ ).parent.name _a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] _a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase__ ) # convert model _a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ ) _a : Dict = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": _a : Tuple = task_specific_params _a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ ) torch_model.save_pretrained(UpperCamelCase__ ) _a : Dict = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() if args.save_dir is None: _snake_case = Path(args.tf_ckpt_path).parent.name _snake_case = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
324
1
"""simple docstring""" import unittest import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , ): '''simple docstring''' _a : Dict = np.shape(UpperCamelCase__ ) _a : Dict = np.shape(UpperCamelCase__ ) _a : Union[str, Any] = np.shape(UpperCamelCase__ ) if shape_a[0] != shape_b[0]: _a : Tuple = ( """Expected the same number of rows for A and B. """ F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(UpperCamelCase__ ) if shape_b[1] != shape_c[1]: _a : List[Any] = ( """Expected the same number of columns for B and C. """ F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(UpperCamelCase__ ) _a : List[Any] = pseudo_inv if a_inv is None: try: _a : Union[str, Any] = np.linalg.inv(UpperCamelCase__ ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Dict ) -> None: _a : Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _a : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) _a : Union[str, Any] = np.array([[2, 1], [6, 3]] ) _a : Tuple = schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Union[str, Any] = np.block([[a, b], [b.T, c]] ) _a : Any = np.linalg.det(UpperCAmelCase__ ) _a : List[Any] = np.linalg.det(UpperCAmelCase__ ) _a : List[Any] = np.linalg.det(UpperCAmelCase__ ) self.assertAlmostEqual(UpperCAmelCase__ , det_a * det_s ) def _lowercase ( self : List[str] ) -> None: _a : Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _a : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) _a : Optional[Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(UpperCAmelCase__ ): schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> None: _a : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _a : Any = np.array([[0, 3], [3, 0], [2, 3]] ) _a : Dict = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(UpperCAmelCase__ ): schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
324
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
1
"""simple docstring""" import logging import os from .state import PartialState class UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def _lowercase ( UpperCAmelCase__ : Tuple ) -> List[Any]: _a : Optional[int] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowercase ( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Optional[Any] ) -> str: if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) _a : Any = kwargs.pop("""main_process_only""" , UpperCAmelCase__ ) _a : str = kwargs.pop("""in_order""" , UpperCAmelCase__ ) if self.isEnabledFor(UpperCAmelCase__ ): if self._should_log(UpperCAmelCase__ ): _a , _a : Optional[Any] = self.process(UpperCAmelCase__ , UpperCAmelCase__ ) self.logger.log(UpperCAmelCase__ , UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ) elif in_order: _a : Union[str, Any] = PartialState() for i in range(state.num_processes ): if i == state.process_index: _a , _a : Dict = self.process(UpperCAmelCase__ , UpperCAmelCase__ ) self.logger.log(UpperCAmelCase__ , UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ) state.wait_for_everyone() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' if log_level is None: _a : int = os.environ.get("""ACCELERATE_LOG_LEVEL""" , UpperCamelCase__ ) _a : Optional[int] = logging.getLogger(UpperCamelCase__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(UpperCamelCase__ , {} )
324
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ ) UpperCamelCase : list = field(default_factory=snake_case_ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any: _a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self : Optional[int] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : nn.Module UpperCamelCase : int = 0 UpperCamelCase : List = field(default_factory=snake_case_ ) UpperCamelCase : List = field(default_factory=snake_case_ ) def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple: _a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized _a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized _a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) ) _a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while""" f""" destination module has {len(UpperCAmelCase__ )}.""" ) for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): _a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() _a : str = ResNetForImageClassification(UpperCamelCase__ ).eval() _a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) _a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." _a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one _a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , ) print(F"""Pushed {checkpoint_name}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' _a : Any = """imagenet-1k-id2label.json""" _a : Optional[int] = 1_0_0_0 _a : Any = (1, num_labels) _a : Union[str, Any] = """huggingface/label-files""" _a : Tuple = num_labels _a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Any = idalabel _a : Tuple = {v: k for k, v in idalabel.items()} _a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) _a : Union[str, Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
324
1
"""simple docstring""" from __future__ import annotations from collections import deque class UpperCamelCase : def __init__( self : str , UpperCAmelCase__ : list[str] ) -> Dict: _a : list[dict] = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(UpperCAmelCase__ ) self.set_fail_transitions() def _lowercase ( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : str ) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str ) -> None: _a : Optional[int] = 0 for character in keyword: _a : Optional[int] = self.find_next_state(UpperCAmelCase__ , UpperCAmelCase__ ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) _a : str = len(self.adlist ) - 1 else: _a : int = next_state self.adlist[current_state]["output"].append(UpperCAmelCase__ ) def _lowercase ( self : Any ) -> None: _a : deque = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCAmelCase__ ) _a : int = 0 while q: _a : Tuple = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCAmelCase__ ) _a : str = self.adlist[r]["""fail_state"""] while ( self.find_next_state(UpperCAmelCase__ , self.adlist[child]["""value"""] ) is None and state != 0 ): _a : Tuple = self.adlist[state]["""fail_state"""] _a : List[Any] = self.find_next_state( UpperCAmelCase__ , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: _a : str = 0 _a : Dict = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def _lowercase ( self : Tuple , UpperCAmelCase__ : str ) -> dict[str, list[int]]: _a : dict = {} # returns a dict with keywords and list of its occurrences _a : str = 0 for i in range(len(UpperCAmelCase__ ) ): while ( self.find_next_state(UpperCAmelCase__ , string[i] ) is None and current_state != 0 ): _a : Tuple = self.adlist[current_state]["""fail_state"""] _a : Optional[Any] = self.find_next_state(UpperCAmelCase__ , string[i] ) if next_state is None: _a : Any = 0 else: _a : Optional[Any] = next_state for key in self.adlist[current_state]["output"]: if key not in result: _a : Any = [] result[key].append(i - len(UpperCAmelCase__ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
324
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
324
1
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = '''t5''' UpperCamelCase : Tuple = ['''past_key_values'''] UpperCamelCase : Tuple = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : str , UpperCAmelCase__ : Dict=32128 , UpperCAmelCase__ : Dict=512 , UpperCAmelCase__ : Union[str, Any]=64 , UpperCAmelCase__ : str=2048 , UpperCAmelCase__ : Union[str, Any]=6 , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Any=8 , UpperCAmelCase__ : List[Any]=32 , UpperCAmelCase__ : Any=128 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : str=1E-6 , UpperCAmelCase__ : Dict=1.0 , UpperCAmelCase__ : Tuple="relu" , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=1 , **UpperCAmelCase__ : Union[str, Any] , ) -> Union[str, Any]: _a : int = vocab_size _a : str = d_model _a : str = d_kv _a : List[Any] = d_ff _a : List[str] = num_layers _a : Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _a : Union[str, Any] = num_heads _a : Tuple = relative_attention_num_buckets _a : Optional[int] = relative_attention_max_distance _a : Optional[Any] = dropout_rate _a : str = layer_norm_epsilon _a : List[str] = initializer_factor _a : int = feed_forward_proj _a : Optional[Any] = use_cache _a : Optional[Any] = self.feed_forward_proj.split("""-""" ) _a : Dict = act_info[-1] _a : List[str] = act_info[0] == 'gated' if len(__a ) > 1 and act_info[0] != "gated" or len(__a ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """\'gated-gelu\' or \'relu\'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _a : Dict = 'gelu_new' super().__init__( pad_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , **__a , ) class UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): @property def _lowercase ( self : str ) -> Mapping[str, Mapping[int, str]]: _a : Union[str, Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: _a : Tuple = 'past_encoder_sequence + sequence' _a : Dict = {0: 'batch'} _a : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _a : Tuple = {0: 'batch', 1: 'decoder_sequence'} _a : int = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__a , direction="""inputs""" ) return common_inputs @property def _lowercase ( self : List[Any] ) -> int: return 13
350
"""simple docstring""" _snake_case = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
324
0
"""simple docstring""" from __future__ import annotations from statistics import mean def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[Any] = [0] * no_of_processes _a : str = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowercase__ ): _a : List[Any] = burst_time[i] _a : list[int] = [] _a : Optional[int] = 0 _a : List[str] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _a : List[str] = [] _a : Optional[int] = -1 for i in range(lowercase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowercase__ ) if len(lowercase__ ) > 0: _a : Any = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _a : Any = i total_time += burst_time[target_process] completed += 1 _a : Union[str, Any] = 0 _a : Optional[Any] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : str = [0] * no_of_processes for i in range(lowercase__ ): _a : List[Any] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') _snake_case = 4 _snake_case = [2, 5, 3, 7] _snake_case = [0, 0, 0, 0] _snake_case = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _snake_case = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
351
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
0
"""simple docstring""" from __future__ import annotations import math def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if num <= 0: _a : Optional[Any] = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(__UpperCAmelCase ) _a : Tuple = [True] * (num + 1) _a : Optional[Any] = [] _a : Dict = 2 _a : List[str] = int(math.sqrt(__UpperCAmelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__UpperCAmelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , __UpperCAmelCase ): if sieve[i] is True: _a : List[str] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(__UpperCAmelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
352
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : Optional[Any] = CamembertTokenizer def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : int = vocab_file _a : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[Any] = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
0
"""simple docstring""" import requests from bsa import BeautifulSoup def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" ) _a : Optional[Any] = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) _a : Any = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": _snake_case = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
353
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = ['''pixel_values'''] def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None: _a : int = do_resize _a : Union[str, Any] = do_rescale _a : Any = size_divisor _a : Any = resample super().__init__(**UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray: _a , _a : Tuple = get_image_size(UpperCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor _a : Optional[Any] = height // size_divisor * size_divisor _a : Union[str, Any] = width // size_divisor * size_divisor _a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) return image def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray: return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature: _a : Dict = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _a : str = size_divisor if size_divisor is not None else self.size_divisor _a : Any = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) _a : List[str] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. _a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images] if do_resize: _a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: _a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images] _a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
324
0
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex _a : int = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack _a : str = -1 return False def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[str] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
354
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
0
"""simple docstring""" import argparse import datetime def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[str] = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _a : Optional[int] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(__a ) < 1_1: raise ValueError("""Must be 10 characters long""" ) # Get month _a : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 1_3: raise ValueError("""Month must be between 1 - 12""" ) _a : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be \'-\' or \'/\'""" ) # Get day _a : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 3_2: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator _a : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be \'-\' or \'/\'""" ) # Get year _a : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation _a : Dict = datetime.date(int(__a ) , int(__a ) , int(__a ) ) # Start math if m <= 2: _a : Optional[Any] = y - 1 _a : Any = m + 1_2 # maths var _a : int = int(str(__a )[:2] ) _a : int = int(str(__a )[2:] ) _a : int = int(2.6 * m - 5.39 ) _a : int = int(c / 4 ) _a : int = int(k / 4 ) _a : int = int(d + k ) _a : int = int(t + u + v + x ) _a : int = int(z - (2 * c) ) _a : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response _a : str = F"""Your date {date_input}, is a {days[str(__a )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _snake_case = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) _snake_case = parser.parse_args() zeller(args.date_input)
355
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
324
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = ShapEImgaImgPipeline UpperCamelCase : Dict = ['image'] UpperCamelCase : str = ['image'] UpperCamelCase : int = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] UpperCamelCase : int = False @property def _lowercase ( self : Union[str, Any] ) -> Any: return 32 @property def _lowercase ( self : Tuple ) -> Optional[int]: return 32 @property def _lowercase ( self : str ) -> Dict: return self.time_input_dim * 4 @property def _lowercase ( self : Optional[int] ) -> List[Any]: return 8 @property def _lowercase ( self : List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) _a : Optional[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _a : Tuple = CLIPVisionModel(UpperCAmelCase__ ) return model @property def _lowercase ( self : Tuple ) -> List[str]: _a : Tuple = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCAmelCase__ , do_normalize=UpperCAmelCase__ , do_resize=UpperCAmelCase__ , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor @property def _lowercase ( self : int ) -> Tuple: torch.manual_seed(0 ) _a : Optional[Any] = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _a : str = PriorTransformer(**UpperCAmelCase__ ) return model @property def _lowercase ( self : Tuple ) -> str: torch.manual_seed(0 ) _a : List[Any] = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _a : List[str] = ShapERenderer(**UpperCAmelCase__ ) return model def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: _a : Optional[Any] = self.dummy_prior _a : Optional[Any] = self.dummy_image_encoder _a : Union[str, Any] = self.dummy_image_processor _a : Optional[Any] = self.dummy_renderer _a : Union[str, Any] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=UpperCAmelCase__ , clip_sample=UpperCAmelCase__ , clip_sample_range=1.0 , ) _a : Dict = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def _lowercase ( self : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any]=0 ) -> List[str]: _a : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Optional[int] = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : int = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _lowercase ( self : Union[str, Any] ) -> List[str]: _a : Optional[Any] = """cpu""" _a : Tuple = self.get_dummy_components() _a : List[Any] = self.pipeline_class(**UpperCAmelCase__ ) _a : str = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[Any] = pipe(**self.get_dummy_inputs(UpperCAmelCase__ ) ) _a : int = output.images[0] _a : Dict = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _a : List[Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Union[str, Any] ) -> List[Any]: self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _lowercase ( self : Any ) -> List[str]: _a : int = torch_device == """cpu""" _a : Optional[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCAmelCase__ , relax_max_difference=UpperCAmelCase__ , ) def _lowercase ( self : Tuple ) -> int: _a : str = self.get_dummy_components() _a : int = self.pipeline_class(**UpperCAmelCase__ ) _a : Optional[int] = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Tuple = 1 _a : Any = 2 _a : Tuple = self.get_dummy_inputs(UpperCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: _a : Tuple = batch_size * [inputs[key]] _a : List[Any] = pipe(**UpperCAmelCase__ , num_images_per_prompt=UpperCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : int ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[int] ) -> Optional[int]: _a : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) _a : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) _a : str = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) _a : int = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[Any] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 ) _a : Dict = pipe( UpperCAmelCase__ , generator=UpperCAmelCase__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__ )
356
"""simple docstring""" import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
324
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if "img_encoder.pos_embed" in name: _a : List[str] = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: _a : str = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: _a : Optional[int] = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: _a : Optional[Any] = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: _a : Optional[int] = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: _a : Dict = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: _a : int = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: _a : str = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: _a : Optional[int] = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: _a : Optional[Any] = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: _a : str = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: _a : List[Any] = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: _a : Any = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: _a : Optional[int] = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: _a : Union[str, Any] = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: _a : Any = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: _a : Tuple = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: _a : Tuple = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: _a : List[Any] = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: _a : str = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: _a : Union[str, Any] = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: _a : List[str] = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: _a : Union[str, Any] = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: _a : Any = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _a : List[Any] = orig_state_dict.pop(__A ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _a : Tuple = key.split(""".""" ) _a , _a : Optional[Any] = int(key_split[2] ), int(key_split[4] ) _a : Dict = config.vision_config.hidden_size if "weight" in key: _a : List[str] = val[:dim, :] _a : Any = val[dim : dim * 2, :] _a : Any = val[-dim:, :] else: _a : List[str] = val[:dim] _a : Optional[Any] = val[dim : dim * 2] _a : Dict = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _a : Tuple = key.split(""".""" ) _a : Optional[Any] = int(key_split[3] ) _a : Dict = config.text_config.hidden_size if "weight" in key: _a : Optional[int] = val[:dim, :] _a : Union[str, Any] = val[ dim : dim * 2, : ] _a : str = val[-dim:, :] else: _a : Optional[int] = val[:dim] _a : Dict = val[dim : dim * 2] _a : Optional[int] = val[-dim:] else: _a : str = rename_key(__A ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _a : Any = val.squeeze_() else: _a : str = val return orig_state_dict def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _a : List[Any] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="groupvit-gcc-yfcc" , UpperCamelCase__=False ): '''simple docstring''' _a : List[Any] = GroupViTConfig() _a : str = GroupViTModel(__A ).eval() _a : int = torch.load(__A , map_location="""cpu""" )["""model"""] _a : Optional[Any] = convert_state_dict(__A , __A ) _a , _a : List[str] = model.load_state_dict(__A , strict=__A ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__A ) == 0) # verify result _a : Dict = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) _a : Optional[int] = prepare_img() _a : Tuple = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=__A , padding=__A , return_tensors="""pt""" ) with torch.no_grad(): _a : Optional[Any] = model(**__A ) if model_name == "groupvit-gcc-yfcc": _a : Dict = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": _a : Dict = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , __A , atol=1e-3 ) processor.save_pretrained(__A ) model.save_pretrained(__A ) print("""Successfully saved processor and model to""" , __A ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(__A , organization="""nielsr""" ) model.push_to_hub(__A , organization="""nielsr""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) _snake_case = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
357
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') _snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _snake_case = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = CamembertTokenizer UpperCamelCase : List[Any] = CamembertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Union[str, Any] = True def _lowercase ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Tuple: _a : Optional[Any] = """<pad>""" _a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : List[str] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _a : Any = """I was born in 92000, and this is falsé.""" _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) _a : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : List[Any] = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _a : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
324
0
"""simple docstring""" import datasets from .evaluate import evaluate _snake_case = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' _snake_case = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' _snake_case = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def _lowercase ( self : int ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def _lowercase ( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: _a : List[str] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} _a : Union[str, Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] _a : Optional[int] = evaluate(dataset=_UpperCamelCase , predictions=_UpperCamelCase ) return score
358
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _snake_case = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _snake_case = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _snake_case = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a : Optional[int] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _a : List[Any] = collections.defaultdict(UpperCamelCase__ ) _a : List[str] = collections.defaultdict(UpperCamelCase__ ) _a : Tuple = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): _a : str = None if _re_tf_models.match(UpperCamelCase__ ) is not None: _a : List[Any] = tf_models _a : int = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: _a : Any = flax_models _a : Any = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: _a : int = pt_models _a : int = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: _a : Optional[int] = True break # Try again after removing the last word in the name _a : List[Any] = """""".join(camel_case_split(UpperCamelCase__ )[:-1] ) _a : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _a : Dict = list(UpperCamelCase__ ) all_models.sort() _a : str = {"""model_type""": all_models} _a : List[Any] = [pt_models[t] for t in all_models] _a : str = [tf_models[t] for t in all_models] _a : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _a : str = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _a : List[str] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _a : str = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _a : int = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _a : int = """AutoTokenizer""" _a : Any = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _a : List[Any] = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] _a : Union[str, Any] = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names _a : str = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = get_frameworks_table() _a : Optional[Any] = Dataset.from_pandas(UpperCamelCase__ ) _a : Any = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=UpperCamelCase__ ) _a : List[Any] = Dataset.from_json(UpperCamelCase__ ) _a : List[str] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(UpperCamelCase__ ) ) } _a : str = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _a : int = sorted(table.keys() ) _a : Union[str, Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) _a : Dict = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , """pipeline_tags.json""" ) ) if commit_sha is not None: _a : List[str] = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _a : Optional[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=UpperCamelCase__ , repo_type="""dataset""" , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _a : Any = transformers_module.pipelines.SUPPORTED_TASKS _a : List[str] = [] for key in pipeline_tasks: if key not in in_table: _a : Tuple = pipeline_tasks[key]["""pt"""] if isinstance(UpperCamelCase__ , (list, tuple) ): _a : Dict = model[0] _a : List[str] = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _a : Union[str, Any] = """, """.join(UpperCamelCase__ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _snake_case = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
324
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : int = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 1_8, 2] _a : str = True if """large""" in model_name or """huge""" in model_name else False _a : Optional[Any] = True if """large""" in model_name or """huge""" in model_name else False _a : List[str] = True if """large""" in model_name or """huge""" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _a : Optional[Any] = [3, 3, 3, 3] _a : Any = [5, 5, 5, 5] elif "fl4" in model_name: _a : Tuple = [4, 4, 4, 4] _a : List[Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _a : Optional[int] = [3, 3, 3, 3] if "lrf" in model_name: _a : Optional[int] = [3, 3, 3, 3] else: _a : int = [2, 2, 2, 2] if "tiny" in model_name: _a : Dict = 9_6 elif "small" in model_name: _a : List[Any] = 9_6 elif "base" in model_name: _a : Optional[int] = 1_2_8 elif "large" in model_name: _a : List[Any] = 1_9_2 elif "xlarge" in model_name: _a : Any = 2_5_6 elif "huge" in model_name: _a : int = 3_5_2 # set label information _a : int = """huggingface/label-files""" if "large" in model_name or "huge" in model_name: _a : Optional[int] = """imagenet-22k-id2label.json""" else: _a : Optional[int] = """imagenet-1k-id2label.json""" _a : List[str] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : int = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Union[str, Any] = {v: k for k, v in idalabel.items()} _a : int = FocalNetConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , ) return config def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if "patch_embed.proj" in name: _a : str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _a : Union[str, Any] = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: _a : Union[str, Any] = """encoder.""" + name if "encoder.layers" in name: _a : List[Any] = name.replace("""encoder.layers""" , """encoder.stages""" ) if "downsample.proj" in name: _a : Optional[Any] = name.replace("""downsample.proj""" , """downsample.projection""" ) if "blocks" in name: _a : Any = name.replace("""blocks""" , """layers""" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _a : Any = name.replace("""modulation.f""" , """modulation.projection_in""" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _a : List[str] = name.replace("""modulation.h""" , """modulation.projection_context""" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _a : List[Any] = name.replace("""modulation.proj""" , """modulation.projection_out""" ) if name == "norm.weight": _a : Tuple = """layernorm.weight""" if name == "norm.bias": _a : Union[str, Any] = """layernorm.bias""" if "head" in name: _a : Tuple = name.replace("""head""" , """classifier""" ) else: _a : int = """focalnet.""" + name return name def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' # fmt: off _a : str = { """focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""", """focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""", """focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""", """focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""", """focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""", """focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""", """focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""", """focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""", """focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""", """focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""", } # fmt: on _a : Union[str, Any] = model_name_to_url[model_name] print("""Checkpoint URL: """ , UpperCamelCase__ ) _a : int = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location="""cpu""" )["""model"""] # rename keys for key in state_dict.copy().keys(): _a : Any = state_dict.pop(UpperCamelCase__ ) _a : Dict = val _a : str = get_focalnet_config(UpperCamelCase__ ) _a : int = FocalNetForImageClassification(UpperCamelCase__ ) model.eval() # load state dict model.load_state_dict(UpperCamelCase__ ) # verify conversion _a : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" _a : List[Any] = BitImageProcessor( do_resize=UpperCamelCase__ , size={"""shortest_edge""": 2_5_6} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=2_2_4 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , ) _a : Tuple = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) _a : Dict = processor(images=UpperCamelCase__ , return_tensors="""pt""" ) _a : Optional[Any] = transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) _a : Optional[Any] = image_transforms(UpperCamelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1e-4 ) _a : Optional[int] = model(**UpperCamelCase__ ) _a : Dict = outputs.logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) print("""First values of logits:""" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _a : int = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": _a : Any = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": _a : Union[str, Any] = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": _a : Any = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": _a : Union[str, Any] = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": _a : Optional[Any] = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) _snake_case = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
359
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _a : Dict = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) _a : Any = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) _a : int = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _a : List[str] = yaml.safe_dump(UpperCamelCase__ ) _a : Optional[int] = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = DatasetInfo() _a : Any = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) _a : List[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _a : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _a : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
324
0
"""simple docstring""" import requests from bsa import BeautifulSoup def lowerCAmelCase__ ( UpperCamelCase__ = "AAPL" ): '''simple docstring''' _a : List[Any] = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" _a : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , """html.parser""" ) _a : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
360
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase ( unittest.TestCase , snake_case_ ): def _lowercase ( self : int ) -> int: _a : Optional[Any] = load_tool("""text-to-speech""" ) self.tool.setup() def _lowercase ( self : List[str] ) -> Union[str, Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : str = self.tool("""hey""" ) _a : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : int = self.tool("""hey""" ) _a : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
324
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
361
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str ) -> int: _a : str = parent _a : Union[str, Any] = config_class _a : List[Any] = has_text_modality _a : List[Any] = kwargs _a : List[Any] = common_properties def _lowercase ( self : int ) -> Tuple: _a : List[str] = self.config_class(**self.inputs_dict ) _a : Dict = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase__ ): try: setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase__ ): try: _a : Optional[int] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) _a : List[str] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase__ ) def _lowercase ( self : int ) -> List[str]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = os.path.join(UpperCAmelCase__ , """config.json""" ) config_first.to_json_file(UpperCAmelCase__ ) _a : List[str] = self.config_class.from_json_file(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Union[str, Any] ) -> Dict: _a : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase__ ) _a : Dict = self.config_class.from_pretrained(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Dict ) -> Tuple: _a : List[Any] = self.config_class(**self.inputs_dict ) _a : Any = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _a : List[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) config_first.save_pretrained(UpperCAmelCase__ ) _a : List[Any] = self.config_class.from_pretrained(UpperCAmelCase__ , subfolder=UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _a : Union[str, Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Tuple ) -> List[str]: if self.config_class.is_composition: return _a : str = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Dict = copy.deepcopy(UpperCAmelCase__ ) _a : Any = self.config_class(**UpperCAmelCase__ ) _a : str = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase__ , UpperCAmelCase__ ) != value: wrong_values.append((key, getattr(UpperCAmelCase__ , UpperCAmelCase__ ), value) ) if len(UpperCAmelCase__ ) > 0: _a : List[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowercase ( self : int ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
324
0
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _snake_case = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , """sklearn""" ) return (preds == labels).mean() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , """sklearn""" ) _a : Optional[int] = simple_accuracy(lowercase__ , lowercase__ ) _a : int = fa_score(y_true=lowercase__ , y_pred=lowercase__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , """sklearn""" ) _a : str = pearsonr(lowercase__ , lowercase__ )[0] _a : Tuple = spearmanr(lowercase__ , lowercase__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , """sklearn""" ) assert len(lowercase__ ) == len(lowercase__ ), F"""Predictions and labels have mismatched lengths {len(lowercase__ )} and {len(lowercase__ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(lowercase__ , lowercase__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "mrpc": return acc_and_fa(lowercase__ , lowercase__ ) elif task_name == "sts-b": return pearson_and_spearman(lowercase__ , lowercase__ ) elif task_name == "qqp": return acc_and_fa(lowercase__ , lowercase__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "rte": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "hans": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} else: raise KeyError(lowercase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , """sklearn""" ) if len(lowercase__ ) != len(lowercase__ ): raise ValueError(F"""Predictions and labels have mismatched lengths {len(lowercase__ )} and {len(lowercase__ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} else: raise KeyError(lowercase__ )
362
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
324
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
363
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
324
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Any = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): _a : List[str] = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): _a : List[str] = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _a : List[str] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] _a : Any = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _a : Any = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _a : Tuple = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] _a : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _a : Any = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: _a : str = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 _a : int = key[key.find("""block""" ) + len("""block""" )] _a : List[Any] = key.replace(F"""block{idx}""" , F"""block.{int(a_ )-1}""" ) if "attn.q" in key: _a : str = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: _a : Tuple = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: _a : List[Any] = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: _a : Dict = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: _a : Tuple = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: _a : List[str] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: _a : Optional[int] = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) _a : Any = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _a : List[str] = key[key.find("""linear_c""" ) + len("""linear_c""" )] _a : Optional[Any] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _a : int = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: _a : List[Any] = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: _a : Union[str, Any] = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: _a : List[str] = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: _a : int = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: _a : List[Any] = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: _a : Tuple = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): _a : Dict = key.replace("""module.last_layer_depth""" , """head.head""" ) _a : Tuple = value return new_state_dict def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _a : Union[str, Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _a : str = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _a : str = kv_weight[ : config.hidden_sizes[i], : ] _a : str = kv_bias[: config.hidden_sizes[i]] _a : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _a : List[Any] = kv_bias[config.hidden_sizes[i] :] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" _a : Any = Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=None ): '''simple docstring''' _a : Any = GLPNConfig(hidden_sizes=[6_4, 1_2_8, 3_2_0, 5_1_2] , decoder_hidden_size=6_4 , depths=[3, 8, 2_7, 3] ) # load image processor (only resize + rescale) _a : Optional[Any] = GLPNImageProcessor() # prepare image _a : List[str] = prepare_img() _a : Any = image_processor(images=a_ , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict _a : Union[str, Any] = torch.load(a_ , map_location=torch.device("""cpu""" ) ) # rename keys _a : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_ , a_ ) # create HuggingFace model and load state dict _a : Any = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _a : int = model(a_ ) _a : Optional[Any] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _a : List[Any] = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: _a : List[Any] = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) _a : int = torch.Size([1, 4_8_0, 6_4_0] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , a_ , atol=1e-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=a_ , ) image_processor.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=a_ , ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) _snake_case = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
364
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] ) if ( min(UpperCamelCase__ , UpperCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a : Any = 0 count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
324
0
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = 0 while len(__a ) > 1: _a : Optional[int] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _a : Dict = files.index(min(__a ) ) temp += files[min_index] files.pop(__a ) files.append(__a ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
0
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
366
"""simple docstring""" from __future__ import annotations import time _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]: _a : int = pos_x _a : Union[str, Any] = pos_y _a : Tuple = (pos_y, pos_x) _a : Tuple = goal_x _a : int = goal_y _a : str = parent class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]: _a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : Optional[int] = [self.start] _a : Tuple = False def _lowercase ( self : str ) -> Path | None: while self.node_queue: _a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : Dict = True return self.retrace_path(UpperCAmelCase__ ) _a : Tuple = self.get_successors(UpperCAmelCase__ ) for node in successors: self.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]: _a : Optional[Any] = [] for action in delta: _a : str = parent.pos_x + action[1] _a : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) ) return successors def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path: _a : Dict = node _a : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : Any = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False def _lowercase ( self : Any ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[int] = True return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = current_bwd_node _a : int = current_fwd_node _a : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path: _a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ ) _a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _a : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = BreadthFirstSearch(init, goal) _snake_case = bfs.search() _snake_case = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _snake_case = time.time() _snake_case = BidirectionalBreadthFirstSearch(init, goal) _snake_case = bd_bfs.search() _snake_case = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
324
0
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) _a : List[Any] = sum(a_ ) / len(a_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(a_ ) if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCamelCase : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) UpperCamelCase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCamelCase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ): '''simple docstring''' def _dataset(UpperCamelCase__ , UpperCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCAmelCase__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _a : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: _a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: _a : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) _a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: _a : int = tokenizer.max_len # Our input block size will be the max possible for the model else: _a : Optional[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets _a : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _a : Optional[int] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _a : Any = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _a : Union[str, Any] = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: _a : str = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _a : Union[str, Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: _a : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : int = trainer.evaluate() _a : Dict = math.exp(eval_output["""eval_loss"""] ) _a : Union[str, Any] = {"""perplexity""": perplexity} _a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
324
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : def __init__( self : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int=13 , UpperCAmelCase__ : Dict=30 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : int=32 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : str=4 , UpperCAmelCase__ : int=37 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[Any]=10 , UpperCAmelCase__ : Tuple=0.0_2 , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : List[str]=None , ) -> Optional[int]: _a : Dict = parent _a : str = batch_size _a : Optional[Any] = image_size _a : Union[str, Any] = patch_size _a : List[str] = num_channels _a : Tuple = is_training _a : Union[str, Any] = use_labels _a : List[Any] = hidden_size _a : str = num_hidden_layers _a : int = num_attention_heads _a : Any = intermediate_size _a : int = hidden_act _a : Dict = hidden_dropout_prob _a : Union[str, Any] = attention_probs_dropout_prob _a : str = type_sequence_label_size _a : List[str] = initializer_range _a : List[Any] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Optional[Any] = (image_size // patch_size) ** 2 _a : Optional[Any] = num_patches + 1 def _lowercase ( self : List[str] ) -> int: _a : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : List[Any] = None if self.use_labels: _a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : str = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[int] ) -> List[str]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def _lowercase ( self : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: _a : str = TFViTModel(config=_SCREAMING_SNAKE_CASE ) _a : Tuple = model(_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _a : Optional[Any] = self.image_size // 2 _a : str = pixel_values[:, :, :image_size, :image_size] _a : Tuple = model(_SCREAMING_SNAKE_CASE , interpolate_pos_encoding=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) _a : Any = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def _lowercase ( self : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] ) -> str: _a : List[Any] = self.type_sequence_label_size _a : Optional[Any] = TFViTForImageClassification(_SCREAMING_SNAKE_CASE ) _a : str = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _a : Union[str, Any] = self.image_size // 2 _a : Optional[int] = pixel_values[:, :, :image_size, :image_size] _a : Optional[Any] = model(_SCREAMING_SNAKE_CASE , interpolate_pos_encoding=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : List[str] = 1 _a : Tuple = TFViTForImageClassification(_SCREAMING_SNAKE_CASE ) _a : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : List[str] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self : Any ) -> str: _a : Tuple = self.prepare_config_and_inputs() _a , _a , _a : Any = config_and_inputs _a : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): UpperCamelCase : Any = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () UpperCamelCase : List[Any] = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) UpperCamelCase : int = False UpperCamelCase : Tuple = False UpperCamelCase : Tuple = False def _lowercase ( self : Optional[int] ) -> List[Any]: _a : Optional[Any] = TFViTModelTester(self ) _a : Optional[int] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _lowercase ( self : Tuple ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def _lowercase ( self : Dict ) -> List[str]: pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: pass def _lowercase ( self : Union[str, Any] ) -> Optional[int]: _a , _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Tuple = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , tf.keras.layers.Layer ) ) def _lowercase ( self : Union[str, Any] ) -> Tuple: _a , _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) _a : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def _lowercase ( self : int ) -> List[Any]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _lowercase ( self : Union[str, Any] ) -> int: _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self : Dict ) -> List[str]: _a : int = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def _lowercase ( self : Any ) -> List[Any]: return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def _lowercase ( self : Tuple ) -> Optional[Any]: _a : Tuple = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) _a : Union[str, Any] = self.default_image_processor _a : List[Any] = prepare_img() _a : Dict = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""tf""" ) # forward pass _a : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits _a : Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) _a : Union[str, Any] = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
368
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _snake_case = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ ) return k def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase__ ) _a : Optional[Any] = PegasusConfig(**UpperCamelCase__ ) _a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ ) _a : str = torch_model.model.state_dict() _a : Union[str, Any] = {} for k, v in tf_weights.items(): _a : Any = rename_state_dict_key(UpperCamelCase__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _a : str = v.T _a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _a : str = mapping["""shared.weight"""] _a : Union[str, Any] = mapping["""shared.weight"""] _a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCamelCase__ ) _a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _a : Optional[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _a : List[Any] = tf.train.list_variables(UpperCamelCase__ ) _a : Optional[int] = {} _a : Dict = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ): _a : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) _a : int = array return tf_weights def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # save tokenizer first _a : Dict = Path(UpperCamelCase__ ).parent.name _a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] _a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase__ ) # convert model _a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ ) _a : Dict = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": _a : Tuple = task_specific_params _a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ ) torch_model.save_pretrained(UpperCamelCase__ ) _a : Dict = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() if args.save_dir is None: _snake_case = Path(args.tf_ckpt_path).parent.name _snake_case = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
324
0
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, 'r', encoding='utf-8') as f: _snake_case = json.load(f) @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Dict , UpperCAmelCase__ : Optional[Any] ) -> List[str]: return FSMTTokenizer.from_pretrained(_lowerCamelCase ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[int] ) -> Tuple: _a : Dict = FSMTForConditionalGeneration.from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _lowercase ( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple ) -> str: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality _a : List[str] = f"""facebook/wmt19-{pair}""" _a : Union[str, Any] = self.get_tokenizer(_lowerCamelCase ) _a : List[str] = self.get_model(_lowerCamelCase ) _a : Optional[Any] = bleu_data[pair]['''src'''] _a : Dict = bleu_data[pair]['''tgt'''] _a : Tuple = tokenizer(_lowerCamelCase , return_tensors="""pt""" , truncation=_lowerCamelCase , padding="""longest""" ).to(_lowerCamelCase ) _a : Union[str, Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _a : Tuple = tokenizer.batch_decode( _lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) _a : int = calculate_bleu(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) self.assertGreaterEqual(scores["""bleu"""] , _lowerCamelCase )
369
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
0
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase : Tuple = BioGptTokenizer UpperCamelCase : List[Any] = False def _lowercase ( self : Union[str, Any] ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a : Any = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] _a : Optional[Any] = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _a : Tuple = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] _a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Tuple ) -> str: _a : Optional[int] = """lower newer""" _a : Any = """lower newer""" return input_text, output_text def _lowercase ( self : Any ) -> List[Any]: _a : Dict = BioGptTokenizer(self.vocab_file , self.merges_file ) _a : int = """lower""" _a : List[str] = ["""low""", """er</w>"""] _a : Any = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _a : Any = tokens + ["""<unk>"""] _a : int = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @slow def _lowercase ( self : List[Any] ) -> Any: _a : Union[str, Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) _a : Union[str, Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) _a : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) _a : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) _a : Dict = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
370
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ ) UpperCamelCase : list = field(default_factory=snake_case_ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any: _a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self : Optional[int] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : nn.Module UpperCamelCase : int = 0 UpperCamelCase : List = field(default_factory=snake_case_ ) UpperCamelCase : List = field(default_factory=snake_case_ ) def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple: _a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized _a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized _a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) ) _a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while""" f""" destination module has {len(UpperCAmelCase__ )}.""" ) for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): _a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() _a : str = ResNetForImageClassification(UpperCamelCase__ ).eval() _a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) _a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." _a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one _a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , ) print(F"""Pushed {checkpoint_name}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' _a : Any = """imagenet-1k-id2label.json""" _a : Optional[int] = 1_0_0_0 _a : Any = (1, num_labels) _a : Union[str, Any] = """huggingface/label-files""" _a : Tuple = num_labels _a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Any = idalabel _a : Tuple = {v: k for k, v in idalabel.items()} _a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) _a : Union[str, Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
324
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
324
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _snake_case = 'src/transformers' _snake_case = 'docs/source/en/tasks' def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' with open(__a , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _a : Tuple = f.readlines() # Find the start prompt. _a : Optional[Any] = 0 while not lines[start_index].startswith(__a ): start_index += 1 start_index += 1 _a : Tuple = start_index while not lines[end_index].startswith(__a ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) _snake_case = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _snake_case = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = TASK_GUIDE_TO_MODELS[task_guide] _a : Union[str, Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__a , set() ) _a : List[Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' _a , _a , _a , _a : str = _find_text_in_file( filename=os.path.join(__a , __a ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) _a : Optional[Any] = get_model_list_for_task(__a ) if current_list != new_list: if overwrite: with open(os.path.join(__a , __a ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" """ to fix this.""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _snake_case = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
350
"""simple docstring""" _snake_case = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
324
0
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _snake_case = logging.get_logger(__name__) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: _a : List[str] = os.path.abspath(__lowerCamelCase ) logger.info(F"""Loading PyTorch weights from {pt_path}""" ) _a : List[str] = torch.load(__lowerCamelCase , map_location="""cpu""" ) logger.info(F"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) _a : Optional[int] = convert_pytorch_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files _a : Optional[int] = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase , __lowerCamelCase ) return flax_state_dict def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(UpperCamelCase__ ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm _a : int = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean _a : Dict = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var _a : Optional[Any] = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding _a : int = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer _a : Any = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): _a : Any = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _a : Dict = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): _a : int = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _a : List[str] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _a : Any = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 _a : int = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): _a : Optional[Any] = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): _a : str = pt_tuple_key[-2] + "_v" if name is not None: _a : Dict = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # convert pytorch tensor to numpy _a : List[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} _a : int = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: _a : List[str] = flax_model.params["params"] else: _a : List[str] = flax_model.params _a : Tuple = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _a : Optional[int] = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(__lowerCamelCase ) _a : Any = {} _a : Optional[int] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _a : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _a : int = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _a : List[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _a : int = pt_tuple_key[1:] # Correctly rename weight parameters _a : List[str] = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary _a : int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _a : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: _a : Tuple = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown _a : Union[str, Any] = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown _a : Dict = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' import torch # Load the index _a : Union[str, Any] = {} for shard_file in shard_filenames: # load using msgpack utils _a : Tuple = torch.load(__lowerCamelCase ) _a : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} _a : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _a : Optional[Any] = flax_model.params["params"] _a : Union[str, Any] = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: _a : str = flax_model.params _a : Any = flatten_dict(__lowerCamelCase ) _a : Union[str, Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _a : str = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _a : List[Any] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _a : Dict = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _a : List[Any] = pt_tuple_key[1:] # Correctly rename weight parameters _a : str = rename_key_and_reshape_tensor( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # add model prefix if necessary _a : Optional[Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _a : Tuple = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: _a : List[Any] = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: _a : List[str] = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) continue # also add unexpected weight so that warning is thrown _a : Optional[int] = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown _a : List[str] = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = os.path.abspath(__lowerCamelCase ) logger.info(F"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class _a : List[str] = getattr(__lowerCamelCase , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase , """rb""" ) as state_f: try: _a : List[str] = from_bytes(__lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _a : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda UpperCamelCase__ : x.dtype == jnp.bfloataa , __lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _a : Any = jax.tree_util.tree_map( lambda UpperCamelCase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCamelCase ) _a : Tuple = flatten_dict(__lowerCamelCase ) _a : List[Any] = pt_model.state_dict() _a : Tuple = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) _a : int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys _a : Optional[Any] = [] _a : Any = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _a : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix _a : Optional[Any] = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: _a : List[str] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: _a : List[str] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer _a : Optional[int] = flax_key_tuple[:-1] + ("weight",) _a : str = jnp.transpose(__lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer _a : Dict = flax_key_tuple[:-1] + ("weight",) _a : Any = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _a : Optional[int] = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: _a : Tuple = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: _a : Dict = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: _a : Optional[Any] = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: _a : Any = ".".join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. _a : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: _a : Union[str, Any] = key.split(""".""" ) _a : int = None if key_components[-3::2] == ["parametrizations", "original0"]: _a : List[str] = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: _a : str = key_components[-2] + "_v" if name is not None: _a : Optional[int] = key_components[:-3] + [name] _a : Tuple = ".".join(__lowerCamelCase ) _a : Union[str, Any] = key if flax_key in special_pt_names: _a : Optional[Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict _a : Any = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase , np.ndarray ) else flax_tensor _a : str = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list _a : List[str] = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(F"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(__lowerCamelCase ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) else: logger.warning( F"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" """If your task is similar to the task the model of the checkpoint was trained on, """ F"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
351
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
0
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ = 6_0_0_8_5_1_4_7_5_1_4_3 ): '''simple docstring''' try: _a : int = int(_snake_case ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _a : Tuple = 1 _a : str = 2 while i * i <= n: while n % i == 0: _a : List[Any] = i n //= i i += 1 if n > 1: _a : Optional[int] = n return int(_snake_case ) if __name__ == "__main__": print(F'''{solution() = }''')
352
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : Optional[Any] = CamembertTokenizer def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : int = vocab_file _a : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[Any] = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
0
"""simple docstring""" import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy _snake_case = logging.get_logger(__name__) _snake_case = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } _snake_case = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } _snake_case = { """jukebox""": 512, } class UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = VOCAB_FILES_NAMES UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Tuple = PRETRAINED_LYRIC_TOKENS_SIZES UpperCamelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str]=["v3", "v2", "v2"] , UpperCAmelCase__ : Dict=512 , UpperCAmelCase__ : Optional[int]=5 , UpperCAmelCase__ : Dict="<|endoftext|>" , **UpperCAmelCase__ : List[str] , ) -> str: _a : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token super().__init__( unk_token=snake_case__ , n_genres=snake_case__ , version=snake_case__ , max_n_lyric_tokens=snake_case__ , **snake_case__ , ) _a : Tuple = version _a : Optional[int] = max_n_lyric_tokens _a : Tuple = n_genres with open(snake_case__ , encoding="""utf-8""" ) as vocab_handle: _a : List[str] = json.load(snake_case__ ) with open(snake_case__ , encoding="""utf-8""" ) as vocab_handle: _a : List[Any] = json.load(snake_case__ ) with open(snake_case__ , encoding="""utf-8""" ) as vocab_handle: _a : Optional[Any] = json.load(snake_case__ ) _a : Any = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: _a : Union[str, Any] = oov.replace(r"""\-\'""" , r"""\-+\'""" ) _a : Optional[int] = regex.compile(snake_case__ ) _a : Tuple = {v: k for k, v in self.artists_encoder.items()} _a : Union[str, Any] = {v: k for k, v in self.genres_encoder.items()} _a : Optional[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def _lowercase ( self : str ) -> List[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def _lowercase ( self : str ) -> Dict: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple ) -> Dict: _a : Optional[Any] = [self.artists_encoder.get(snake_case__ , 0 ) for artist in list_artists] for genres in range(len(snake_case__ ) ): _a : List[str] = [self.genres_encoder.get(snake_case__ , 0 ) for genre in list_genres[genres]] _a : Any = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) _a : List[str] = [[self.lyrics_encoder.get(snake_case__ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def _lowercase ( self : List[str] , UpperCAmelCase__ : List[Any] ) -> Union[str, Any]: return list(snake_case__ ) def _lowercase ( self : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Any ) -> int: _a : Optional[int] = self.prepare_for_tokenization(snake_case__ , snake_case__ , snake_case__ ) _a : str = self._tokenize(snake_case__ ) return artist, genre, lyrics def _lowercase ( self : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int = False ) -> Union[str, Any]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": _a : int = artists[idx].lower() _a : Tuple = [genres[idx].lower()] else: _a : Optional[int] = self._normalize(artists[idx] ) + '.v2' _a : str = [ self._normalize(snake_case__ ) + '.v2' for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": _a : Tuple = regex.compile(r"""[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+""" ) _a : str = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' _a : int = {vocab[index]: index + 1 for index in range(len(snake_case__ ) )} _a : Tuple = 0 _a : Optional[Any] = len(snake_case__ ) + 1 _a : List[str] = self.vocab _a : Any = {v: k for k, v in self.vocab.items()} _a : List[Any] = '' else: _a : List[str] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+""" ) _a : List[str] = self._run_strip_accents(snake_case__ ) _a : Optional[int] = lyrics.replace("""\\""" , """\n""" ) _a : Tuple = self.out_of_vocab.sub("""""" , snake_case__ ), [], [] return artists, genres, lyrics def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[Any] ) -> str: _a : List[str] = unicodedata.normalize("""NFD""" , snake_case__ ) _a : Optional[Any] = [] for char in text: _a : Dict = unicodedata.category(snake_case__ ) if cat == "Mn": continue output.append(snake_case__ ) return "".join(snake_case__ ) def _lowercase ( self : str , UpperCAmelCase__ : List[str] ) -> Optional[Any]: _a : str = ( [chr(snake_case__ ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(snake_case__ ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(snake_case__ ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ['.'] ) _a : List[str] = frozenset(snake_case__ ) _a : List[str] = re.compile(r"""_+""" ) _a : Optional[Any] = ''.join([c if c in accepted else """_""" for c in text.lower()] ) _a : Optional[int] = pattern.sub("""_""" , snake_case__ ).strip("""_""" ) return text def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] ) -> List[str]: return " ".join(snake_case__ ) def _lowercase ( self : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] = None , UpperCAmelCase__ : str = False ) -> Any: if not isinstance(snake_case__ , snake_case__ ): _a : Dict = TensorType(snake_case__ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf _a : List[str] = tf.constant _a : str = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch _a : Union[str, Any] = torch.tensor _a : int = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 _a : int = jnp.array _a : Optional[Any] = _is_jax else: _a : List[Any] = np.asarray _a : List[Any] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: _a : Dict = [inputs] if not is_tensor(snake_case__ ): _a : Tuple = as_tensor(snake_case__ ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.""" ) return inputs def __call__( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any]="" , UpperCAmelCase__ : Tuple="pt" ) -> str: _a : Dict = [0, 0, 0] _a : List[Any] = [artist] * len(self.version ) _a : Tuple = [genres] * len(self.version ) _a : Optional[Any] = self.tokenize(snake_case__ , snake_case__ , snake_case__ ) _a : List[Any] = self._convert_token_to_id(snake_case__ , snake_case__ , snake_case__ ) _a : Optional[Any] = [-INFINITY] * len(full_tokens[-1] ) _a : List[str] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=snake_case__ ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] = None ) -> List[Any]: if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Tuple = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=snake_case__ ) ) _a : Dict = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=snake_case__ ) ) _a : List[str] = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=snake_case__ ) ) return (artists_file, genres_file, lyrics_file) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> Optional[Any]: _a : Dict = self.artists_decoder.get(snake_case__ ) _a : Optional[int] = [self.genres_decoder.get(snake_case__ ) for genre in genres_index] _a : Any = [self.lyrics_decoder.get(snake_case__ ) for character in lyric_index] return artist, genres, lyrics
353
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = ['''pixel_values'''] def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None: _a : int = do_resize _a : Union[str, Any] = do_rescale _a : Any = size_divisor _a : Any = resample super().__init__(**UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray: _a , _a : Tuple = get_image_size(UpperCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor _a : Optional[Any] = height // size_divisor * size_divisor _a : Union[str, Any] = width // size_divisor * size_divisor _a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) return image def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray: return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature: _a : Dict = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _a : str = size_divisor if size_divisor is not None else self.size_divisor _a : Any = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) _a : List[str] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. _a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images] if do_resize: _a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: _a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images] _a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
324
0
import itertools import math def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase__ ( ): '''simple docstring''' _a : str = 2 while True: if is_prime(UpperCamelCase__ ): yield num num += 1 def lowerCAmelCase__ ( UpperCamelCase__ = 1_0_0_0_1 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , UpperCamelCase__ ) ) if __name__ == "__main__": print(F'''{solution() = }''')
354
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
0
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = list(snake_case_ ) _a : Optional[int] = list(snake_case_ ) _a : Optional[Any] = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _a : Tuple = """_""" if count > 1: return False else: return "".join(snake_case_ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : int = [] while True: _a : Union[str, Any] = ["""$"""] * len(snake_case_ ) _a : Optional[int] = [] for i in range(len(snake_case_ ) ): for j in range(i + 1 , len(snake_case_ ) ): _a : str = compare_string(binary[i] , binary[j] ) if k is False: _a : Any = """*""" _a : Union[str, Any] = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _a : Optional[Any] = list(set(snake_case_ ) ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = [] for minterm in minterms: _a : List[str] = """""" for _ in range(snake_case_ ): _a : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = list(snake_case_ ) _a : Optional[int] = list(snake_case_ ) _a : List[Any] = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = [] _a : Optional[Any] = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _a : Tuple = 0 _a : Optional[Any] = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _a : Union[str, Any] = j if count == 1: _a : Optional[int] = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _a : Union[str, Any] = 0 temp.append(prime_implicants[i] ) while True: _a : Optional[int] = 0 _a : Optional[int] = -1 _a : List[Any] = 0 for i in range(len(snake_case_ ) ): _a : Tuple = chart[i].count(1 ) if count_n > max_n: _a : Tuple = count_n _a : Any = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _a : Optional[Any] = 0 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[str] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _a : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i] , binary[j] , snake_case_ ): _a : Optional[Any] = 1 return chart def lowerCAmelCase__ ( ): '''simple docstring''' _a : Any = int(input("""Enter the no. of variables\n""" ) ) _a : Tuple = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _a : int = decimal_to_binary(snake_case_ , snake_case_ ) _a : List[str] = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _a : Dict = prime_implicant_chart(snake_case_ , snake_case_ ) _a : List[Any] = selection(snake_case_ , snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
355
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
324
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class UpperCamelCase ( __UpperCamelCase ): UpperCamelCase : Optional[int] = """gptsan-japanese""" UpperCamelCase : Optional[Any] = [ """past_key_values""", ] UpperCamelCase : int = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Union[str, Any] , UpperCAmelCase__ : Any=36000 , UpperCAmelCase__ : List[str]=1280 , UpperCAmelCase__ : List[Any]=1024 , UpperCAmelCase__ : Optional[int]=8192 , UpperCAmelCase__ : List[Any]=4096 , UpperCAmelCase__ : Dict=128 , UpperCAmelCase__ : Optional[int]=10 , UpperCAmelCase__ : int=0 , UpperCAmelCase__ : Any=16 , UpperCAmelCase__ : str=16 , UpperCAmelCase__ : int=128 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : int=1E-5 , UpperCAmelCase__ : int=False , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : str="float32" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : int=False , UpperCAmelCase__ : str=0.0_0_2 , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : List[str]=35998 , UpperCAmelCase__ : int=35995 , UpperCAmelCase__ : Union[str, Any]=35999 , **UpperCAmelCase__ : Tuple , ) -> List[Any]: _a : int = vocab_size _a : Tuple = max_position_embeddings _a : Dict = d_model _a : Optional[Any] = d_ff _a : Dict = d_ext _a : Union[str, Any] = d_spout _a : Dict = num_switch_layers _a : Dict = num_ext_layers _a : Union[str, Any] = num_switch_layers + num_ext_layers _a : Union[str, Any] = num_heads _a : Optional[Any] = num_experts _a : Dict = expert_capacity _a : Any = dropout_rate _a : List[str] = layer_norm_epsilon _a : Union[str, Any] = router_bias _a : Union[str, Any] = router_jitter_noise _a : Any = router_dtype _a : Dict = router_ignore_padding_tokens _a : List[Any] = output_hidden_states _a : Dict = output_attentions _a : Any = initializer_factor _a : Union[str, Any] = output_router_logits _a : Tuple = use_cache super().__init__( separator_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
356
"""simple docstring""" import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
324
0