code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase ( snake_case_ ): def __init__( self : Any , UpperCAmelCase__ : Optional[Any]=0.0_1 , UpperCAmelCase__ : Dict=1000 ) -> Optional[Any]: _a : Optional[int] = p_stop _a : List[str] = max_length def __iter__( self : int ) -> Tuple: _a : List[str] = 0 _a : int = False while not stop and count < self.max_length: yield count count += 1 _a : Optional[int] = random.random() < self.p_stop class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : Any=True ) -> Union[str, Any]: _a : Tuple = [ BatchSamplerShard(UpperCAmelCase__ , 2 , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) for i in range(2 ) ] _a : str = [list(UpperCAmelCase__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(UpperCAmelCase__ ) for shard in batch_sampler_shards] , [len(UpperCAmelCase__ ) for e in expected] ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> Optional[int]: # Check the shards when the dataset is a round multiple of total batch size. _a : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _a : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) _a : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _a : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _a : List[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) # Check the shards when the dataset is very small. _a : Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : int = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> Optional[int]: # Check the shards when the dataset is a round multiple of batch size. _a : Tuple = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) _a : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. _a : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) _a : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _a : Optional[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) _a : Optional[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) # Check the shards when the dataset is very small. _a : Union[str, Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) _a : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Tuple = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> Dict: # Check the shards when the dataset is a round multiple of total batch size. _a : Optional[int] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _a : Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _a : List[str] = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _a : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Any = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is very small. _a : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase__ ) _a : Dict = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) def _lowercase ( self : str ) -> Optional[Any]: # Check the shards when the dataset is a round multiple of batch size. _a : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. _a : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Tuple = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _a : str = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) # Check the shards when the dataset is very small. _a : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) _a : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Union[str, Any] = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ) -> List[Any]: _a : Tuple = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _a : Any = [BatchSamplerShard(UpperCAmelCase__ , 2 , UpperCAmelCase__ , even_batches=UpperCAmelCase__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : Any=False ) -> int: random.seed(UpperCAmelCase__ ) _a : Any = list(UpperCAmelCase__ ) _a : Tuple = [ IterableDatasetShard( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , drop_last=UpperCAmelCase__ , num_processes=UpperCAmelCase__ , process_index=UpperCAmelCase__ , split_batches=UpperCAmelCase__ , ) for i in range(UpperCAmelCase__ ) ] _a : Union[str, Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(UpperCAmelCase__ ) iterable_dataset_lists.append(list(UpperCAmelCase__ ) ) _a : str = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _a : Union[str, Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) self.assertTrue(len(UpperCAmelCase__ ) % shard_batch_size == 0 ) _a : List[str] = [] for idx in range(0 , len(UpperCAmelCase__ ) , UpperCAmelCase__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(UpperCAmelCase__ ) < len(UpperCAmelCase__ ): reference += reference self.assertListEqual(UpperCAmelCase__ , reference[: len(UpperCAmelCase__ )] ) def _lowercase ( self : Tuple ) -> List[str]: _a : Any = 42 _a : str = RandomIterableDataset() self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) # Edge case with a very small dataset _a : Optional[int] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> int: _a : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=UpperCAmelCase__ ) _a : Tuple = SkipBatchSampler(UpperCAmelCase__ , 2 ) self.assertListEqual(list(UpperCAmelCase__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: _a : Optional[int] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase ( self : int ) -> str: _a : int = DataLoader(list(range(16 ) ) , batch_size=4 ) _a : Tuple = skip_first_batches(UpperCAmelCase__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase ( self : int ) -> Any: _a : Union[str, Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(UpperCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase ( self : List[str] ) -> int: Accelerator() _a : int = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(UpperCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
369
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
0
import unittest import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , ): '''simple docstring''' _a : Dict = np.shape(UpperCamelCase__ ) _a : Dict = np.shape(UpperCamelCase__ ) _a : Union[str, Any] = np.shape(UpperCamelCase__ ) if shape_a[0] != shape_b[0]: _a : Tuple = ( """Expected the same number of rows for A and B. """ F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(UpperCamelCase__ ) if shape_b[1] != shape_c[1]: _a : List[Any] = ( """Expected the same number of columns for B and C. """ F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(UpperCamelCase__ ) _a : List[Any] = pseudo_inv if a_inv is None: try: _a : Union[str, Any] = np.linalg.inv(UpperCamelCase__ ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Dict ) -> None: _a : Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _a : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) _a : Union[str, Any] = np.array([[2, 1], [6, 3]] ) _a : Tuple = schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Union[str, Any] = np.block([[a, b], [b.T, c]] ) _a : Any = np.linalg.det(UpperCAmelCase__ ) _a : List[Any] = np.linalg.det(UpperCAmelCase__ ) _a : List[Any] = np.linalg.det(UpperCAmelCase__ ) self.assertAlmostEqual(UpperCAmelCase__ , det_a * det_s ) def _lowercase ( self : List[str] ) -> None: _a : Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _a : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) _a : Optional[Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(UpperCAmelCase__ ): schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> None: _a : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _a : Any = np.array([[0, 3], [3, 0], [2, 3]] ) _a : Dict = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(UpperCAmelCase__ ): schur_complement(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
370
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ ) UpperCamelCase : list = field(default_factory=snake_case_ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any: _a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self : Optional[int] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : nn.Module UpperCamelCase : int = 0 UpperCamelCase : List = field(default_factory=snake_case_ ) UpperCamelCase : List = field(default_factory=snake_case_ ) def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple: _a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized _a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized _a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) ) _a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while""" f""" destination module has {len(UpperCAmelCase__ )}.""" ) for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): _a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() _a : str = ResNetForImageClassification(UpperCamelCase__ ).eval() _a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) _a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." _a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one _a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , ) print(F"""Pushed {checkpoint_name}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' _a : Any = """imagenet-1k-id2label.json""" _a : Optional[int] = 1_0_0_0 _a : Any = (1, num_labels) _a : Union[str, Any] = """huggingface/label-files""" _a : Tuple = num_labels _a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Any = idalabel _a : Tuple = {v: k for k, v in idalabel.items()} _a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) _a : Union[str, Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
324
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) set_seed(770) _snake_case = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } _snake_case = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } _snake_case = os.path.dirname(os.path.abspath(__file__)) _snake_case = os.path.join(os.path.expanduser('~'), '.cache') _snake_case = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' _a : Tuple = model_type if use_small: key += "_small" return os.path.join(UpperCamelCase__ , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) hf_hub_download(repo_id=UpperCamelCase__ , filename=UpperCamelCase__ , local_dir=UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__="text" ): '''simple docstring''' if model_type == "text": _a : Optional[Any] = BarkSemanticModel _a : Union[str, Any] = BarkSemanticConfig _a : Dict = BarkSemanticGenerationConfig elif model_type == "coarse": _a : int = BarkCoarseModel _a : Union[str, Any] = BarkCoarseConfig _a : str = BarkCoarseGenerationConfig elif model_type == "fine": _a : Dict = BarkFineModel _a : List[Any] = BarkFineConfig _a : str = BarkFineGenerationConfig else: raise NotImplementedError() _a : int = F"""{model_type}_small""" if use_small else model_type _a : Optional[int] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(UpperCamelCase__ ): logger.info(F"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) _a : List[Any] = torch.load(UpperCamelCase__ , map_location=UpperCamelCase__ ) # this is a hack _a : Union[str, Any] = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: _a : Any = model_args["""vocab_size"""] _a : Optional[int] = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _a : Dict = model_args.pop("""n_head""" ) _a : str = model_args.pop("""n_embd""" ) _a : int = model_args.pop("""n_layer""" ) _a : Any = ConfigClass(**checkpoint["""model_args"""] ) _a : Optional[Any] = ModelClass(config=UpperCamelCase__ ) _a : List[str] = GenerationConfigClass() _a : Union[str, Any] = model_generation_config _a : Tuple = checkpoint["""model"""] # fixup checkpoint _a : str = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(UpperCamelCase__ ): # replace part of the key with corresponding layer name in HF implementation _a : List[Any] = k[len(UpperCamelCase__ ) :] for old_layer_name in new_layer_name_dict: _a : Dict = new_k.replace(UpperCamelCase__ , new_layer_name_dict[old_layer_name] ) _a : Optional[Any] = state_dict.pop(UpperCamelCase__ ) _a : Dict = set(state_dict.keys() ) - set(model.state_dict().keys() ) _a : Tuple = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} _a : List[Any] = set(model.state_dict().keys() ) - set(state_dict.keys() ) _a : int = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(UpperCamelCase__ ) != 0: raise ValueError(F"""extra keys found: {extra_keys}""" ) if len(UpperCamelCase__ ) != 0: raise ValueError(F"""missing keys: {missing_keys}""" ) model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _a : int = model.num_parameters(exclude_embeddings=UpperCamelCase__ ) _a : Union[str, Any] = checkpoint["""best_val_loss"""].item() logger.info(F"""model loaded: {round(n_params/1e6 , 1 )}M params, {round(UpperCamelCase__ , 3 )} loss""" ) model.eval() model.to(UpperCamelCase__ ) del checkpoint, state_dict return model def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__="text" ): '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _a : Any = """cpu""" # do conversion on cpu _a : Union[str, Any] = _get_ckpt_path(UpperCamelCase__ , use_small=UpperCamelCase__ ) _a : Any = _load_model(UpperCamelCase__ , UpperCamelCase__ , model_type=UpperCamelCase__ , use_small=UpperCamelCase__ ) # load bark initial model _a : List[str] = _bark_load_model(UpperCamelCase__ , """cpu""" , model_type=UpperCamelCase__ , use_small=UpperCamelCase__ ) if model_type == "text": _a : Any = bark_model["""model"""] if model.num_parameters(exclude_embeddings=UpperCamelCase__ ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model _a : Dict = 5 _a : List[str] = 1_0 if model_type in ["text", "coarse"]: _a : List[Any] = torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int ) _a : Dict = bark_model(UpperCamelCase__ )[0] _a : Any = model(UpperCamelCase__ ) # take last logits _a : List[Any] = output_new_model_total.logits[:, [-1], :] else: _a : Optional[Any] = 3 _a : int = 8 _a : List[str] = torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _a : Union[str, Any] = model(UpperCamelCase__ , UpperCamelCase__ ) _a : Any = bark_model(UpperCamelCase__ , UpperCamelCase__ ) _a : List[Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("""initial and new outputs are not equal""" ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): '''simple docstring''' _a : List[str] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) _a : List[Any] = BarkSemanticConfig.from_pretrained(os.path.join(UpperCamelCase__ , """config.json""" ) ) _a : Optional[int] = BarkCoarseConfig.from_pretrained(os.path.join(UpperCamelCase__ , """config.json""" ) ) _a : int = BarkFineConfig.from_pretrained(os.path.join(UpperCamelCase__ , """config.json""" ) ) _a : Optional[Any] = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) _a : Any = BarkSemanticModel.from_pretrained(UpperCamelCase__ ) _a : Any = BarkCoarseModel.from_pretrained(UpperCamelCase__ ) _a : List[str] = BarkFineModel.from_pretrained(UpperCamelCase__ ) _a : List[Any] = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) _a : Union[str, Any] = BarkConfig.from_sub_model_configs( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _a : List[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _a : List[str] = BarkModel(UpperCamelCase__ ) _a : int = semantic _a : Dict = coarseAcoustic _a : Union[str, Any] = fineAcoustic _a : str = codec _a : Optional[Any] = bark_generation_config Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) bark.save_pretrained(UpperCamelCase__ , repo_id=UpperCamelCase__ , push_to_hub=UpperCamelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') _snake_case = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
371
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
324
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class UpperCamelCase ( snake_case_ ): UpperCamelCase : int = '''lxmert''' UpperCamelCase : Tuple = {} def __init__( self : Dict , UpperCAmelCase__ : Union[str, Any]=30522 , UpperCAmelCase__ : str=768 , UpperCAmelCase__ : Any=12 , UpperCAmelCase__ : Dict=9500 , UpperCAmelCase__ : Tuple=1600 , UpperCAmelCase__ : int=400 , UpperCAmelCase__ : List[str]=3072 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : int=512 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : Union[str, Any]=0.0_2 , UpperCAmelCase__ : Optional[int]=1E-12 , UpperCAmelCase__ : int=9 , UpperCAmelCase__ : Union[str, Any]=5 , UpperCAmelCase__ : Optional[Any]=5 , UpperCAmelCase__ : Tuple=2048 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : Union[str, Any]=6.6_7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str=True , **UpperCAmelCase__ : List[Any] , ) -> Optional[int]: _a : Optional[int] = vocab_size _a : List[str] = hidden_size _a : Any = num_attention_heads _a : str = hidden_act _a : Union[str, Any] = intermediate_size _a : int = hidden_dropout_prob _a : List[str] = attention_probs_dropout_prob _a : List[str] = max_position_embeddings _a : Dict = type_vocab_size _a : int = initializer_range _a : Union[str, Any] = layer_norm_eps _a : Optional[int] = num_qa_labels _a : int = num_object_labels _a : List[Any] = num_attr_labels _a : List[Any] = l_layers _a : Tuple = x_layers _a : Union[str, Any] = r_layers _a : Dict = visual_feat_dim _a : Optional[int] = visual_pos_dim _a : Dict = visual_loss_normalizer _a : Any = task_matched _a : int = task_mask_lm _a : Any = task_obj_predict _a : int = task_qa _a : Union[str, Any] = visual_obj_loss _a : str = visual_attr_loss _a : List[Any] = visual_feat_loss _a : Optional[int] = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**UpperCAmelCase__ )
350
"""simple docstring""" _snake_case = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
324
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = LDMTextToImagePipeline UpperCamelCase : Dict = TEXT_TO_IMAGE_PARAMS - { '''negative_prompt''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', '''prompt_embeds''', } UpperCamelCase : int = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''callback''', '''callback_steps''', } UpperCamelCase : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase : int = False def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _a : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) _a : str = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) _a : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _a : Any = CLIPTextModel(UpperCAmelCase__ ) _a : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _a : List[Any] = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def _lowercase ( self : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any]=0 ) -> Optional[int]: if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : List[Any] = torch.manual_seed(UpperCAmelCase__ ) else: _a : Optional[int] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : str = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : int = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Optional[Any] = self.get_dummy_components() _a : List[Any] = LDMTextToImagePipeline(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : str = pipe(**UpperCAmelCase__ ).images _a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _a : List[str] = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any]=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> Optional[Any]: _a : Any = torch.manual_seed(UpperCAmelCase__ ) _a : Any = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 32, 32) ) _a : Dict = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase ( self : Optional[int] ) -> List[str]: _a : List[Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : str = self.get_inputs(UpperCAmelCase__ ) _a : Optional[Any] = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _a : Tuple = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _a : List[Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]=torch.floataa , UpperCAmelCase__ : Optional[Any]=0 ) -> Union[str, Any]: _a : Optional[Any] = torch.manual_seed(UpperCAmelCase__ ) _a : Tuple = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 32, 32) ) _a : Tuple = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Dict: _a : Optional[int] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = pipe(**UpperCAmelCase__ ).images[0] _a : Any = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) _a : Any = np.abs(expected_image - image ).max() assert max_diff < 1E-3
351
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _a : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] _a : Optional[int] = DisjunctiveConstraint(UpperCAmelCase__ ) self.assertTrue(isinstance(dc.token_ids , UpperCAmelCase__ ) ) with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _lowercase ( self : str ) -> Optional[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _a : List[str] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint(UpperCAmelCase__ ) # fails here def _lowercase ( self : Union[str, Any] ) -> List[Any]: _a : int = [[1, 2, 3], [1, 2, 4]] _a : List[Any] = DisjunctiveConstraint(UpperCAmelCase__ ) _a : int = dc.update(1 ) _a : str = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _a : Optional[int] = dc.update(2 ) _a : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _a : List[str] = dc.update(3 ) _a : Tuple = stepped is True and completed is True and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _lowercase ( self : Union[str, Any] ) -> int: _a : List[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _a : Dict = DisjunctiveConstraint(UpperCAmelCase__ ) _a : str = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _a : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _a : Any = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _a : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _a : List[str] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _a : Dict = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _a : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
352
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : Optional[Any] = CamembertTokenizer def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : int = vocab_file _a : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[Any] = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
0
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'spiece.model'} _snake_case = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } _snake_case = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[str] = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : List[int] = [] def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int]="<unk>" , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : List[Any]="</s>" , UpperCAmelCase__ : Optional[Any]="<pad>" , UpperCAmelCase__ : Optional[int]="[SEP]" , UpperCAmelCase__ : List[Any]="[MASK]" , UpperCAmelCase__ : Any="[CLS]" , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : List[str] , ) -> None: _a : Optional[int] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else bos_token _a : str = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else eos_token _a : Any = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else unk_token _a : Any = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else pad_token _a : Optional[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else cls_token _a : str = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _a : Tuple = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token _a : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) _a : Any = vocab_file _a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) @property def _lowercase ( self : Tuple ) -> Union[str, Any]: return self.sp_model.get_piece_size() def _lowercase ( self : Optional[int] ) -> List[Any]: _a : List[str] = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ) -> List[str]: _a : int = self.__dict__.copy() _a : str = None return state def __setstate__( self : Tuple , UpperCAmelCase__ : Dict ) -> List[str]: _a : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _a : Optional[int] = {} _a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self : Dict , UpperCAmelCase__ : str ) -> List[str]: return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : str ) -> int: return self.sp_model.piece_to_id(UpperCAmelCase__ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : int ) -> Dict: _a : List[str] = self.sp_model.IdToPiece(UpperCAmelCase__ ) return token def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[str] ) -> Tuple: _a : Tuple = [] _a : List[str] = """""" _a : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase__ ) + token _a : Any = True _a : Tuple = [] else: current_sub_tokens.append(UpperCAmelCase__ ) _a : List[str] = False out_string += self.sp_model.decode(UpperCAmelCase__ ) return out_string.strip() def _lowercase ( self : Tuple , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : Union[str, Any] , ) -> str: _a : Optional[int] = kwargs.pop("""use_source_tokenizer""" , UpperCAmelCase__ ) _a : Union[str, Any] = self.convert_ids_to_tokens(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _a : int = [] _a : Union[str, Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) _a : List[Any] = [] sub_texts.append(UpperCAmelCase__ ) else: current_sub_text.append(UpperCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _a : Optional[int] = re.sub(r""" (\[(MASK|SEP)\])""" , r"""\1""" , """ """.join(UpperCAmelCase__ ) ) else: _a : Optional[int] = """""".join(UpperCAmelCase__ ) _a : List[str] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _a : Optional[int] = self.clean_up_tokenization(UpperCAmelCase__ ) return clean_text else: return text def _lowercase ( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : str = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , """wb""" ) as fi: _a : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,) def _lowercase ( self : Dict , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[str] = [self.cls_token_id] _a : str = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase__ )) + [1] return [1] + ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1] def _lowercase ( self : Dict , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : List[str] = [self.sep_token_id] _a : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
353
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = ['''pixel_values'''] def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None: _a : int = do_resize _a : Union[str, Any] = do_rescale _a : Any = size_divisor _a : Any = resample super().__init__(**UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray: _a , _a : Tuple = get_image_size(UpperCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor _a : Optional[Any] = height // size_divisor * size_divisor _a : Union[str, Any] = width // size_divisor * size_divisor _a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) return image def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray: return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature: _a : Dict = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _a : str = size_divisor if size_divisor is not None else self.size_divisor _a : Any = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) _a : List[str] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. _a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images] if do_resize: _a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: _a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images] _a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
324
0
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = tmp_path / """file.csv""" _a : Optional[int] = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(UpperCamelCase__ , """w""" ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ ) @pytest.fixture def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[str] = tmp_path / """malformed_file.csv""" _a : Optional[int] = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(UpperCamelCase__ , """w""" ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ ) @pytest.fixture def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Tuple = tmp_path / """csv_with_image.csv""" _a : str = textwrap.dedent( F"""\ image {image_file} """ ) with open(UpperCamelCase__ , """w""" ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ ) @pytest.fixture def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : str = tmp_path / """csv_with_label.csv""" _a : int = textwrap.dedent( """\ label good bad good """ ) with open(UpperCamelCase__ , """w""" ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ ) @pytest.fixture def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Any = tmp_path / """csv_with_int_list.csv""" _a : Optional[int] = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(UpperCamelCase__ , """w""" ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Tuple = Csv() _a : Tuple = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(UpperCamelCase__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(UpperCamelCase__ ) in record.message for record in caplog.records ) @require_pil def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' with open(UpperCamelCase__ , encoding="""utf-8""" ) as f: _a : List[Any] = f.read().splitlines()[1] _a : List[str] = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) _a : Optional[Any] = csv._generate_tables([[csv_file_with_image]] ) _a : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() _a : List[str] = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' with open(UpperCamelCase__ , encoding="""utf-8""" ) as f: _a : Any = f.read().splitlines()[1:] _a : List[str] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) _a : Any = csv._generate_tables([[csv_file_with_label]] ) _a : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() _a : List[str] = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(UpperCamelCase__ ) for label in labels] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : int = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda UpperCamelCase__ : [int(UpperCamelCase__ ) for i in x.split()]} ) _a : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _a : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) _a : Dict = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
354
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
0
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ = 1_0 ): '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or n < 0: raise ValueError("""Invalid input""" ) _a : str = 1_0**n _a : Union[str, Any] = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , UpperCamelCase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(10) = }''')
355
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
324
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class UpperCamelCase : def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : Any=7 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Union[str, Any]=99 , UpperCAmelCase__ : List[Any]=32 , UpperCAmelCase__ : List[str]=5 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : Any=37 , UpperCAmelCase__ : Dict="gelu" , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : int=512 , UpperCAmelCase__ : Dict=16 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : int=0.0_2 , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : Optional[int]=None , ) -> Any: _a : Optional[Any] = parent _a : List[str] = batch_size _a : Union[str, Any] = seq_length _a : Optional[int] = is_training _a : List[Any] = use_input_mask _a : List[Any] = use_token_type_ids _a : List[Any] = use_labels _a : Optional[int] = vocab_size _a : str = hidden_size _a : Any = num_hidden_layers _a : List[Any] = num_attention_heads _a : List[str] = intermediate_size _a : str = hidden_act _a : Union[str, Any] = hidden_dropout_prob _a : Dict = attention_probs_dropout_prob _a : Optional[int] = max_position_embeddings _a : Union[str, Any] = type_vocab_size _a : List[Any] = type_sequence_label_size _a : Union[str, Any] = initializer_range _a : Dict = num_labels _a : Dict = num_choices _a : int = scope def _lowercase ( self : Tuple ) -> List[Any]: _a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Tuple = None if self.use_input_mask: _a : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _a : List[str] = None _a : Any = None _a : Optional[int] = None _a : Tuple = None if self.use_labels: _a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _a : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Union[str, Any] ) -> Tuple: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=UpperCAmelCase__ , ) def _lowercase ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] ) -> Union[str, Any]: _a : Optional[Any] = FalconModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Tuple = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) _a : Optional[int] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , ) -> Union[str, Any]: _a : List[str] = True _a : Dict = FalconModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : int = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) _a : Optional[Any] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) _a : str = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , ) -> Tuple: _a : List[Any] = FalconForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , ) -> int: _a : Dict = True _a : List[Any] = True _a : int = FalconForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # first forward pass _a : Tuple = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , ) _a : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a : str = torch.cat([input_ids, next_tokens] , dim=-1 ) _a : Dict = torch.cat([input_mask, next_mask] , dim=-1 ) _a : List[Any] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )["""hidden_states"""][0] _a : int = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )["""hidden_states"""][0] # select random slice _a : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a : str = output_from_no_past[:, -3:, random_slice_idx].detach() _a : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def _lowercase ( self : str ) -> int: _a : List[str] = self.prepare_config_and_inputs() ( _a ) : Optional[Any] = config_and_inputs _a : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Any = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase : Optional[int] = (FalconForCausalLM,) if is_torch_available() else () UpperCamelCase : Dict = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase : List[Any] = False UpperCamelCase : str = False def _lowercase ( self : str ) -> Dict: _a : Optional[int] = FalconModelTester(self ) _a : Tuple = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def _lowercase ( self : Optional[Any] ) -> Tuple: self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ) -> Any: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : int ) -> Tuple: _a : int = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: _a : Optional[Any] = alibi self.model_tester.create_and_check_model(UpperCAmelCase__ , *UpperCAmelCase__ ) def _lowercase ( self : Any ) -> Any: _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _a : str = 3 _a : List[str] = input_dict["""input_ids"""] _a : Union[str, Any] = input_ids.ne(1 ).to(UpperCAmelCase__ ) _a : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a : Any = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self : List[Any] ) -> str: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : Any = 3 _a : str = """single_label_classification""" _a : Union[str, Any] = input_dict["""input_ids"""] _a : List[Any] = input_ids.ne(1 ).to(UpperCAmelCase__ ) _a : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a : Tuple = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self : Optional[Any] ) -> List[Any]: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : List[Any] = input_dict["""input_ids"""] _a : Union[str, Any] = FalconForCausalLM(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : List[str] = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) _a : Optional[Any] = input_ids.shape[0] _a : Any = model._convert_to_rw_cache(result.past_key_values ) _a : Dict = model._convert_cache_to_standard_format(UpperCAmelCase__ , UpperCAmelCase__ ) for layer in range(len(UpperCAmelCase__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def _lowercase ( self : Union[str, Any] ) -> int: _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : List[Any] = 3 _a : Any = """multi_label_classification""" _a : int = input_dict["""input_ids"""] _a : List[str] = input_ids.ne(1 ).to(UpperCAmelCase__ ) _a : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a : Union[str, Any] = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Any = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self : Optional[int] ) -> Any: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(UpperCAmelCase__ , """use_cache""" ): return _a : Optional[Any] = model_class(UpperCAmelCase__ ).to(UpperCAmelCase__ ) if "use_cache" not in inputs: _a : Tuple = True _a : str = model(**UpperCAmelCase__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return _a : Tuple = ( getattr(UpperCAmelCase__ , """decoder_layers""" , UpperCAmelCase__ ) or getattr(UpperCAmelCase__ , """num_decoder_layers""" , UpperCAmelCase__ ) or config.num_hidden_layers ) _a : Union[str, Any] = getattr(UpperCAmelCase__ , """num_kv_heads""" , config.num_attention_heads ) _a : Optional[Any] = getattr(UpperCAmelCase__ , """d_model""" , config.hidden_size ) _a : Optional[int] = embed_dim // num_attention_heads _a : Dict = outputs["""past_key_values"""] self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) _a : Union[str, Any] = inputs["""input_ids"""].shape for i in range(UpperCAmelCase__ ): if config.new_decoder_architecture: _a : Optional[Any] = config.num_attention_heads elif config.multi_query: _a : Any = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase ( self : Any ) -> Tuple: _a : Any = AutoTokenizer.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) _a : List[Any] = FalconForCausalLM.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) model.eval() model.to(UpperCAmelCase__ ) _a : str = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(UpperCAmelCase__ ) _a : Optional[int] = ( """My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.""" ) _a : Optional[Any] = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=19 ) _a : Dict = tokenizer.batch_decode(UpperCAmelCase__ )[0] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : str ) -> Dict: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: _a : Optional[int] = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) _a : int = FalconForCausalLM.from_pretrained(UpperCAmelCase__ ) model.eval() model.to(UpperCAmelCase__ ) _a : Any = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(UpperCAmelCase__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4 ) model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4 ) model.generate(**UpperCAmelCase__ , num_beams=2 , max_new_tokens=4 ) @slow def _lowercase ( self : Union[str, Any] ) -> List[str]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: _a : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) _a : Tuple = FalconForCausalLM.from_pretrained(UpperCAmelCase__ ) model.eval() model.to(device=UpperCAmelCase__ ) _a : Optional[int] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(UpperCAmelCase__ ) # Test results are the same with and without cache _a : str = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=20 , use_cache=UpperCAmelCase__ ) _a : Union[str, Any] = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=20 , use_cache=UpperCAmelCase__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
356
"""simple docstring""" import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
324
0
"""simple docstring""" from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(UpperCamelCase__ ): return ext raise Exception( F"""Unable to determine file format from file extension {path}. """ F"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[str] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) _a : Optional[Any] = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format _a : List[Any] = PipelineDataFormat.from_str( format=UpperCamelCase__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(UpperCamelCase__ , UpperCamelCase__ ) class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Pipeline , UpperCAmelCase__ : PipelineDataFormat ) -> List[Any]: _a : Any = nlp _a : List[str] = reader @staticmethod def _lowercase ( UpperCAmelCase__ : ArgumentParser ) -> Optional[Any]: _a : Any = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=UpperCAmelCase__ , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=UpperCAmelCase__ , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=UpperCAmelCase__ , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=UpperCAmelCase__ , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=UpperCAmelCase__ , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=UpperCAmelCase__ , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=UpperCAmelCase__ , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=UpperCAmelCase__ , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=UpperCAmelCase__ ) def _lowercase ( self : str ) -> Tuple: _a : int = self._nlp, [] for entry in self._reader: _a : Optional[int] = nlp(**UpperCAmelCase__ ) if self._reader.is_multi_columns else nlp(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): outputs.append(UpperCAmelCase__ ) else: outputs += output # Saving data if self._nlp.binary_output: _a : List[str] = self._reader.save_binary(UpperCAmelCase__ ) logger.warning(f"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(UpperCAmelCase__ )
357
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') _snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _snake_case = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = CamembertTokenizer UpperCamelCase : List[Any] = CamembertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Union[str, Any] = True def _lowercase ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Tuple: _a : Optional[Any] = """<pad>""" _a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : List[str] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _a : Any = """I was born in 92000, and this is falsé.""" _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) _a : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : List[Any] = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _a : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
324
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Optional[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Union[str, Any] = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Optional[Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : Optional[Any] = 1_6 elif accelerator.mixed_precision != "no": _a : List[Any] = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : Dict = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : Optional[Any] = 2 # New Code # _a : Union[str, Any] = int(args.gradient_accumulation_steps ) _a : str = int(args.local_sgd_steps ) # Initialize accelerator _a : Dict = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=UpperCamelCase__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : List[Any] = config["""lr"""] _a : List[Any] = int(config["""num_epochs"""] ) _a : int = int(config["""seed"""] ) _a : int = int(config["""batch_size"""] ) _a : int = evaluate.load("""glue""" , """mrpc""" ) set_seed(UpperCamelCase__ ) _a : str = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : Any = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : Tuple = model.to(accelerator.device ) # Instantiate optimizer _a : int = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[Any] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a : Any = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() with LocalSGD( accelerator=UpperCamelCase__ , model=UpperCamelCase__ , local_sgd_steps=UpperCamelCase__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(UpperCamelCase__ ): _a : str = model(**UpperCamelCase__ ) _a : Dict = output.loss accelerator.backward(UpperCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : List[Any] = model(**UpperCamelCase__ ) _a : List[str] = outputs.logits.argmax(dim=-1 ) _a : Optional[int] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Any = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=UpperCamelCase__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=UpperCamelCase__ , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Union[str, Any] = parser.parse_args() _a : Union[str, Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
358
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _snake_case = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _snake_case = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _snake_case = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a : Optional[int] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _a : List[Any] = collections.defaultdict(UpperCamelCase__ ) _a : List[str] = collections.defaultdict(UpperCamelCase__ ) _a : Tuple = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): _a : str = None if _re_tf_models.match(UpperCamelCase__ ) is not None: _a : List[Any] = tf_models _a : int = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: _a : Any = flax_models _a : Any = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: _a : int = pt_models _a : int = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: _a : Optional[int] = True break # Try again after removing the last word in the name _a : List[Any] = """""".join(camel_case_split(UpperCamelCase__ )[:-1] ) _a : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _a : Dict = list(UpperCamelCase__ ) all_models.sort() _a : str = {"""model_type""": all_models} _a : List[Any] = [pt_models[t] for t in all_models] _a : str = [tf_models[t] for t in all_models] _a : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _a : str = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _a : List[str] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _a : str = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _a : int = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _a : int = """AutoTokenizer""" _a : Any = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _a : List[Any] = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] _a : Union[str, Any] = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names _a : str = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = get_frameworks_table() _a : Optional[Any] = Dataset.from_pandas(UpperCamelCase__ ) _a : Any = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=UpperCamelCase__ ) _a : List[Any] = Dataset.from_json(UpperCamelCase__ ) _a : List[str] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(UpperCamelCase__ ) ) } _a : str = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _a : int = sorted(table.keys() ) _a : Union[str, Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) _a : Dict = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , """pipeline_tags.json""" ) ) if commit_sha is not None: _a : List[str] = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _a : Optional[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=UpperCamelCase__ , repo_type="""dataset""" , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _a : Any = transformers_module.pipelines.SUPPORTED_TASKS _a : List[str] = [] for key in pipeline_tasks: if key not in in_table: _a : Tuple = pipeline_tasks[key]["""pt"""] if isinstance(UpperCamelCase__ , (list, tuple) ): _a : Dict = model[0] _a : List[str] = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _a : Union[str, Any] = """, """.join(UpperCamelCase__ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _snake_case = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
324
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : str = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase : ClassVar[Features] = Features({'''image''': Image()} ) UpperCamelCase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) UpperCamelCase : str = "image" UpperCamelCase : str = "labels" def _lowercase ( self : Tuple , UpperCAmelCase__ : List[str] ) -> str: if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , UpperCAmelCase__ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) _a : int = copy.deepcopy(self ) _a : Optional[Any] = self.label_schema.copy() _a : str = features[self.label_column] _a : Any = label_schema return task_template @property def _lowercase ( self : Any ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
359
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _a : Dict = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) _a : Any = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) _a : int = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _a : List[str] = yaml.safe_dump(UpperCamelCase__ ) _a : Optional[int] = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = DatasetInfo() _a : Any = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) _a : List[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _a : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _a : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
324
0
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowerCAmelCase__ ( UpperCamelCase__=3_2 , UpperCamelCase__=1_0 , UpperCamelCase__=1_0_0 , UpperCamelCase__=1_0_2_6 , UpperCamelCase__=True , UpperCamelCase__="data/tokenized_stories_train_wikitext103.jbl" , UpperCamelCase__="igf_context_pairs.jbl" , ): '''simple docstring''' set_seed(3 ) # generate train_data and objective_set _a : int = generate_datasets( UpperCamelCase__ , UpperCamelCase__ , number=UpperCamelCase__ , min_len=1_0_2_6 , trim=UpperCamelCase__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? _a : str = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model _a : Optional[int] = load_gpta("""gpt2""" ).to(UpperCamelCase__ ) print("""computing perplexity on objective set""" ) _a : int = compute_perplexity(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).item() print("""perplexity on objective set:""" , UpperCamelCase__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=1_5 , UpperCamelCase__=1_2_8 , UpperCamelCase__=1_0_0 , UpperCamelCase__="igf_model.pt" , ): '''simple docstring''' set_seed(4_2 ) # Load pre-trained model _a : List[Any] = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model _a : Optional[Any] = SecondaryLearner(UpperCamelCase__ ) # Train secondary learner _a : List[str] = train_secondary_learner( UpperCamelCase__ , UpperCamelCase__ , max_epochs=UpperCamelCase__ , batch_size=UpperCamelCase__ , eval_freq=1_0_0 , igf_model_path=UpperCamelCase__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=3_2 , UpperCamelCase__=1_0_0_0 , UpperCamelCase__=1_6 , UpperCamelCase__=1.0 , UpperCamelCase__=recopy_gpta , UpperCamelCase__=None , UpperCamelCase__=1_0 , UpperCamelCase__="gpt2_finetuned.pt" , ): '''simple docstring''' _a : Union[str, Any] = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) _a : Any = RandomSampler(UpperCamelCase__ ) _a : int = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ ) _a : List[Any] = max_steps // (len(UpperCamelCase__ )) + 1 _a : str = 0 _a : Dict = torch.zeros((1, context_len) , dtype=torch.long , device=UpperCamelCase__ ) _a : Tuple = recopy_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) model.train() if secondary_learner is not None: secondary_learner.to(UpperCamelCase__ ) secondary_learner.eval() _a : str = [] _a : Optional[int] = 0 _a : str = [] _a : Dict = [] # Compute the performance of the transformer model at the beginning _a : Dict = compute_perplexity(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) test_perps.append(UpperCamelCase__ ) print("""Test perplexity, step""" , UpperCamelCase__ , """:""" , UpperCamelCase__ ) for epoch in range(int(UpperCamelCase__ ) ): for step, example in enumerate(UpperCamelCase__ ): torch.cuda.empty_cache() _a : List[Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) _a : List[Any] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() _a : Union[str, Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) _a : str = True if secondary_learner is not None: _a : List[str] = secondary_learner.forward( torch.tensor(UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(UpperCamelCase__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 1_0: _a : Tuple = -1 if predicted_q < threshold: _a : List[str] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) _a : Any = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() _a : str = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: _a : Optional[Any] = compute_perplexity(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) test_perps.append(UpperCamelCase__ ) print("""Test perplexity, step""" , UpperCamelCase__ , """:""" , UpperCamelCase__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 6_0: break if max_steps > 0 and global_step > 6_0: break # save finetuned transformer model torch.save(model.state_dict() , UpperCamelCase__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The input data dir. Should contain data files for WikiText.""" , ) parser.add_argument( """--model_name_or_path""" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--data_file""" , type=UpperCamelCase__ , default=UpperCamelCase__ , help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ) , ) parser.add_argument( """--igf_data_file""" , type=UpperCamelCase__ , default=UpperCamelCase__ , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , ) parser.add_argument( """--output_dir""" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The output directory where the final fine-tuned model is stored.""" , ) parser.add_argument( """--tokenizer_name""" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument("""--seed""" , type=UpperCamelCase__ , default=UpperCamelCase__ , help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""" , default=3_2 , type=UpperCamelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--size_objective_set""" , default=1_0_0 , type=UpperCamelCase__ , help="""number of articles that are long enough to be used as our objective set""" , ) parser.add_argument( """--eval_freq""" , default=1_0_0 , type=UpperCamelCase__ , help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""" , default=1_0_0_0 , type=UpperCamelCase__ , help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""" , default=1_2_8 , type=UpperCamelCase__ , help="""batch size of training data for secondary learner""" , ) parser.add_argument( """--batch_size""" , default=1_6 , type=UpperCamelCase__ , help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""" , default=1_0 , type=UpperCamelCase__ , help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ) , ) parser.add_argument( """--number""" , default=1_0_0 , type=UpperCamelCase__ , help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""" , default=1_0_2_6 , type=UpperCamelCase__ , help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""" , default=1_5 , type=UpperCamelCase__ , help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""" , default=1.0 , type=UpperCamelCase__ , help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ) , ) parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=UpperCamelCase__ , help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=3_2 , max_steps=1_0 , size_objective_set=1_0_0 , min_len=1_0_2_6 , trim=UpperCamelCase__ , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , ) # Load train data for secondary learner _a : int = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner _a : List[str] = training_secondary_learner( UpperCamelCase__ , secondary_learner_max_epochs=1_5 , secondary_learner_batch_size=1_2_8 , eval_freq=1_0_0 , igf_model_path="""igf_model.pt""" , ) # load pretrained gpt2 model _a : str = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(4_2 ) # Generate train and test data to train and evaluate gpt2 model _a : Tuple = generate_datasets( context_len=3_2 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=1_0_0 , min_len=1_0_2_6 , trim=UpperCamelCase__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , context_len=3_2 , max_steps=1_0_0_0 , batch_size=1_6 , threshold=1.0 , recopy_model=UpperCamelCase__ , secondary_learner=UpperCamelCase__ , eval_interval=1_0 , finetuned_model_name="""gpt2_finetuned.pt""" , ) if __name__ == "__main__": main()
360
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase ( unittest.TestCase , snake_case_ ): def _lowercase ( self : int ) -> int: _a : Optional[Any] = load_tool("""text-to-speech""" ) self.tool.setup() def _lowercase ( self : List[str] ) -> Union[str, Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : str = self.tool("""hey""" ) _a : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : int = self.tool("""hey""" ) _a : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
324
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'spiece.model'} _snake_case = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class UpperCamelCase ( snake_case_ ): def __init__( self : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : int=False , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : int="</s>" , UpperCAmelCase__ : Union[str, Any]="<unk>" , UpperCAmelCase__ : str="<sep>" , UpperCAmelCase__ : str="<pad>" , UpperCAmelCase__ : Optional[int]="<cls>" , UpperCAmelCase__ : Tuple="<mask>" , UpperCAmelCase__ : Dict=["<eop>", "<eod>"] , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Optional[Any] , ) -> None: _a : Dict = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token _a : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase__ , remove_space=UpperCAmelCase__ , keep_accents=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) _a : Union[str, Any] = 3 _a : Dict = do_lower_case _a : int = remove_space _a : Union[str, Any] = keep_accents _a : Any = vocab_file _a : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) _a : List[str] = jieba _a : int = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowercase ( self : Dict ) -> str: return len(self.sp_model ) def _lowercase ( self : Tuple ) -> str: _a : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ) -> List[Any]: _a : Tuple = self.__dict__.copy() _a : Optional[Any] = None return state def __setstate__( self : Union[str, Any] , UpperCAmelCase__ : str ) -> List[Any]: _a : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _a : List[str] = {} _a : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : int ) -> Optional[Any]: if self.remove_space: _a : Any = """ """.join(inputs.strip().split() ) else: _a : Union[str, Any] = inputs _a : Optional[int] = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _a : List[Any] = unicodedata.normalize("""NFKD""" , UpperCAmelCase__ ) _a : Union[str, Any] = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase__ )] ) if self.do_lower_case: _a : Optional[int] = outputs.lower() return outputs def _lowercase ( self : Dict , UpperCAmelCase__ : str ) -> List[str]: _a : Union[str, Any] = self.preprocess_text(UpperCAmelCase__ ) _a : Optional[int] = self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) _a : Optional[int] = [] for piece in pieces: if len(UpperCAmelCase__ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _a : Any = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase__ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _a : Tuple = cur_pieces[1:] else: _a : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase__ ) else: new_pieces.append(UpperCAmelCase__ ) return new_pieces def _lowercase ( self : Dict , UpperCAmelCase__ : List[str] ) -> Dict: return self.sp_model.PieceToId(UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Tuple ) -> Dict: return self.sp_model.IdToPiece(UpperCAmelCase__ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[int] ) -> Dict: _a : Any = """""".join(UpperCAmelCase__ ).replace(UpperCAmelCase__ , """ """ ).strip() return out_string def _lowercase ( self : Tuple , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : str = [self.sep_token_id] _a : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1, 1] return ([0] * len(UpperCAmelCase__ )) + [1, 1] def _lowercase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Any = [self.sep_token_id] _a : Optional[int] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Tuple = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , """wb""" ) as fi: _a : Any = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,) def _lowercase ( self : List[Any] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : str ) -> Union[str, Any]: _a : List[str] = super()._decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) _a : List[Any] = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
361
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str ) -> int: _a : str = parent _a : Union[str, Any] = config_class _a : List[Any] = has_text_modality _a : List[Any] = kwargs _a : List[Any] = common_properties def _lowercase ( self : int ) -> Tuple: _a : List[str] = self.config_class(**self.inputs_dict ) _a : Dict = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase__ ): try: setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase__ ): try: _a : Optional[int] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) _a : List[str] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase__ ) def _lowercase ( self : int ) -> List[str]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = os.path.join(UpperCAmelCase__ , """config.json""" ) config_first.to_json_file(UpperCAmelCase__ ) _a : List[str] = self.config_class.from_json_file(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Union[str, Any] ) -> Dict: _a : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase__ ) _a : Dict = self.config_class.from_pretrained(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Dict ) -> Tuple: _a : List[Any] = self.config_class(**self.inputs_dict ) _a : Any = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _a : List[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) config_first.save_pretrained(UpperCAmelCase__ ) _a : List[Any] = self.config_class.from_pretrained(UpperCAmelCase__ , subfolder=UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _a : Union[str, Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Tuple ) -> List[str]: if self.config_class.is_composition: return _a : str = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Dict = copy.deepcopy(UpperCAmelCase__ ) _a : Any = self.config_class(**UpperCAmelCase__ ) _a : str = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase__ , UpperCAmelCase__ ) != value: wrong_values.append((key, getattr(UpperCAmelCase__ , UpperCAmelCase__ ), value) ) if len(UpperCAmelCase__ ) > 0: _a : List[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowercase ( self : int ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
324
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' create_state_space_tree(UpperCamelCase__ , [] , 0 , [0 for i in range(len(UpperCamelCase__ ) )] ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): '''simple docstring''' if index == len(UpperCamelCase__ ): print(UpperCamelCase__ ) return for i in range(len(UpperCamelCase__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _a : str = True create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 , UpperCamelCase__ ) current_sequence.pop() _a : Tuple = False _snake_case = [3, 1, 2, 4] generate_all_permutations(sequence) _snake_case = ['A', 'B', 'C'] generate_all_permutations(sequence_a)
362
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
324
0
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = '▁' _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : int = BigBirdTokenizer UpperCamelCase : str = BigBirdTokenizerFast UpperCamelCase : Tuple = True UpperCamelCase : Tuple = True def _lowercase ( self : int ) -> Any: super().setUp() _a : Any = self.tokenizer_class(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : str ) -> str: _a : Union[str, Any] = """<s>""" _a : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> int: _a : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """[MASK]""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : int ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowercase ( self : Optional[int] ) -> Optional[int]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : Any = self.get_rust_tokenizer() _a : int = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : int = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Dict = tokenizer.encode(UpperCAmelCase__ ) _a : List[str] = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ) -> str: _a : Union[str, Any] = BigBirdTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) _a : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [285, 46, 10, 170, 382] , ) _a : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _a : Dict = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _lowercase ( self : Optional[int] ) -> List[str]: return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) @slow def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : List[Any] = """Hello World!""" _a : int = [65, 18536, 2260, 101, 66] self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @slow def _lowercase ( self : List[Any] ) -> List[Any]: _a : List[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off _a : Tuple = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @require_torch @slow def _lowercase ( self : str ) -> Optional[Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _a : str = list(self.big_tokenizer.get_vocab().keys() )[:10] _a : Any = """ """.join(UpperCAmelCase__ ) _a : Dict = self.big_tokenizer.encode_plus(UpperCAmelCase__ , return_tensors="""pt""" , return_token_type_ids=UpperCAmelCase__ ) _a : Tuple = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=UpperCAmelCase__ ) _a : List[str] = BigBirdConfig(attention_type="""original_full""" ) _a : int = BigBirdModel(UpperCAmelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase__ ) model(**UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> Optional[int]: _a : Any = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) _a : Optional[Any] = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids ) self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" ) @slow def _lowercase ( self : int ) -> Optional[int]: # fmt: off _a : List[Any] = {"""input_ids""": [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""google/bigbird-roberta-base""" , revision="""215c99f1600e06f83acce68422f2035b2b5c3510""" , )
363
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
324
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable _snake_case = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
364
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] ) if ( min(UpperCamelCase__ , UpperCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a : Any = 0 count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
324
0
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" _a : Optional[Any] = nn.Parameter(UpperCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" _a : Optional[int] = nn.Parameter(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = np.asarray(weights[0] ) _a : str = np.asarray(weights[1] ) _a : List[str] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase__ ).view(-1 , UpperCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = np.asarray(weights[0] ) _a : Dict = np.asarray(weights[1] ) _a : Any = np.asarray(weights[2] ) _a : List[Any] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase__ ).view(-1 , UpperCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = weights[0][0][0] _a : str = np.asarray(layer_norm_a[0] ) _a : int = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # lsh weights + output _a : Optional[int] = weights[0][1] if len(UpperCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(UpperCamelCase__ , torch_block.attention , UpperCamelCase__ ) else: set_layer_weights_in_torch_local(UpperCamelCase__ , torch_block.attention , UpperCamelCase__ ) # intermediate weighs _a : int = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCamelCase__ ) == 4: _a : int = intermediate_weights[2] # layernorm 2 _a : List[str] = np.asarray(intermediate_weights[0][0] ) _a : Any = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # intermediate dense _a : Optional[Any] = np.asarray(intermediate_weights[1][0] ) _a : Tuple = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) # intermediate out _a : Optional[Any] = np.asarray(intermediate_weights[4][0] ) _a : List[str] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = torch_model.reformer # word embeds _a : Any = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCamelCase__ ) , ) if isinstance(weights[3] , UpperCamelCase__ ): _a : Union[str, Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _a : List[str] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" _a : List[str] = nn.Parameter(torch.tensor(UpperCamelCase__ ) ) _a : str = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _a : int = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # output layer norm _a : Optional[int] = np.asarray(weights[7][0] ) _a : Dict = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # output embeddings _a : List[str] = np.asarray(weights[9][0] ) _a : str = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = ReformerConfig.from_json_file(UpperCamelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) _a : Any = ReformerModelWithLMHead(UpperCamelCase__ ) with open(UpperCamelCase__ , """rb""" ) as f: _a : Union[str, Any] = pickle.load(UpperCamelCase__ )["""weights"""] set_model_weights_in_torch(UpperCamelCase__ , UpperCamelCase__ , config.hidden_size ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
365
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
0
def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # Base Case if curr_ind == len(UpperCamelCase__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(UpperCamelCase__ ) ): if valid_connection(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # Insert current vertex into path as next transition _a : int = next_ver # Validate created path if util_hamilton_cycle(UpperCamelCase__ , UpperCamelCase__ , curr_ind + 1 ): return True # Backtrack _a : Tuple = -1 return False def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 0 ): '''simple docstring''' _a : int = [-1] * (len(UpperCamelCase__ ) + 1) # initialize start and end of path with starting index _a : str = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(UpperCamelCase__ , UpperCamelCase__ , 1 ) else []
366
"""simple docstring""" from __future__ import annotations import time _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]: _a : int = pos_x _a : Union[str, Any] = pos_y _a : Tuple = (pos_y, pos_x) _a : Tuple = goal_x _a : int = goal_y _a : str = parent class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]: _a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : Optional[int] = [self.start] _a : Tuple = False def _lowercase ( self : str ) -> Path | None: while self.node_queue: _a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : Dict = True return self.retrace_path(UpperCAmelCase__ ) _a : Tuple = self.get_successors(UpperCAmelCase__ ) for node in successors: self.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]: _a : Optional[Any] = [] for action in delta: _a : str = parent.pos_x + action[1] _a : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) ) return successors def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path: _a : Dict = node _a : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : Any = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False def _lowercase ( self : Any ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[int] = True return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = current_bwd_node _a : int = current_fwd_node _a : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path: _a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ ) _a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _a : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = BreadthFirstSearch(init, goal) _snake_case = bfs.search() _snake_case = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _snake_case = time.time() _snake_case = BidirectionalBreadthFirstSearch(init, goal) _snake_case = bd_bfs.search() _snake_case = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
324
0
"""simple docstring""" from typing import Any def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if not input_list: return [] _a : Optional[int] = [input_list.count(UpperCamelCase__ ) for value in input_list] _a : Tuple = max(UpperCamelCase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(UpperCamelCase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCamelCase : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) UpperCamelCase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCamelCase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ): '''simple docstring''' def _dataset(UpperCamelCase__ , UpperCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCAmelCase__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _a : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: _a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: _a : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) _a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: _a : int = tokenizer.max_len # Our input block size will be the max possible for the model else: _a : Optional[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets _a : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _a : Optional[int] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _a : Any = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _a : Union[str, Any] = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: _a : str = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _a : Union[str, Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: _a : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : int = trainer.evaluate() _a : Dict = math.exp(eval_output["""eval_loss"""] ) _a : Union[str, Any] = {"""perplexity""": perplexity} _a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
324
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _snake_case = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , ): '''simple docstring''' if attention_mask is None: _a : Any = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _a : int = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _a : Tuple = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _a : Dict = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _a : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any=13 , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : Optional[Any]=99 , UpperCAmelCase__ : int=16 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Optional[Any]=32 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : Dict=1 , UpperCAmelCase__ : Optional[Any]=0 , UpperCAmelCase__ : str=0.0_2 , ) -> List[str]: _a : Union[str, Any] = parent _a : Optional[Any] = batch_size _a : Optional[int] = seq_length _a : Tuple = is_training _a : Optional[int] = use_labels _a : Tuple = vocab_size _a : Optional[int] = hidden_size _a : Dict = num_hidden_layers _a : Optional[Any] = num_attention_heads _a : str = intermediate_size _a : Tuple = hidden_act _a : Tuple = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : List[Any] = max_position_embeddings _a : int = eos_token_id _a : Tuple = pad_token_id _a : str = bos_token_id _a : Dict = initializer_range def _lowercase ( self : str ) -> Optional[int]: _a : Dict = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _a : Tuple = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _a : Any = shift_tokens_right(UpperCAmelCase__ , 1 , 2 ) _a : List[str] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase__ , ) _a : Optional[int] = prepare_blenderbot_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, inputs_dict def _lowercase ( self : List[str] ) -> Optional[int]: _a : str = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] ) -> List[Any]: _a : List[str] = 20 _a : int = model_class_name(UpperCAmelCase__ ) _a : Optional[Any] = model.encode(inputs_dict["""input_ids"""] ) _a : List[str] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _a : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _a : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _a : Dict = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) _a : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _a : str = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase__ , ) _a : List[str] = model.decode(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple ) -> Union[str, Any]: _a : List[Any] = 20 _a : str = model_class_name(UpperCAmelCase__ ) _a : Tuple = model.encode(inputs_dict["""input_ids"""] ) _a : Any = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _a : str = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _a : List[str] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _a : List[str] = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) _a : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _a : Optional[int] = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) _a : Tuple = model.decode(UpperCAmelCase__ , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ ) _a : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) @require_flax class UpperCamelCase ( unittest.TestCase ): UpperCamelCase : List[str] = 99 def _lowercase ( self : Any ) -> List[str]: _a : str = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _a : Optional[int] = input_ids.shape[0] _a : int = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowercase ( self : str ) -> Union[str, Any]: _a : Dict = self._get_config_and_data() _a : List[str] = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase__ ) _a : Dict = lm_model(input_ids=UpperCAmelCase__ ) _a : List[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase__ ) def _lowercase ( self : str ) -> int: _a : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _a : List[str] = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase__ ) _a : str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _a : List[str] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _a : List[str] = lm_model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ ) _a : Union[str, Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[int]: _a : Union[str, Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _a : Optional[int] = shift_tokens_right(UpperCAmelCase__ , 1 , 2 ) _a : List[str] = np.equal(UpperCAmelCase__ , 1 ).astype(np.floataa ).sum() _a : Optional[Any] = np.equal(UpperCAmelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCAmelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class UpperCamelCase ( snake_case_ , unittest.TestCase , snake_case_ ): UpperCamelCase : List[str] = True UpperCamelCase : str = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) UpperCamelCase : List[Any] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _lowercase ( self : Optional[Any] ) -> Tuple: _a : Optional[Any] = FlaxBlenderbotModelTester(self ) def _lowercase ( self : Dict ) -> List[Any]: _a : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> str: _a : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : str ) -> List[Any]: _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _a : Union[str, Any] = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = model_class(UpperCAmelCase__ ) @jax.jit def encode_jitted(UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=None , **UpperCAmelCase__ : Union[str, Any] ): return model.encode(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) with self.subTest("""JIT Enabled""" ): _a : Optional[Any] = encode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _a : Optional[int] = encode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def _lowercase ( self : str ) -> Any: _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _a : int = model_class(UpperCAmelCase__ ) _a : Optional[Any] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _a : Any = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple ): return model.decode( decoder_input_ids=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , encoder_outputs=UpperCAmelCase__ , ) with self.subTest("""JIT Enabled""" ): _a : List[str] = decode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _a : Tuple = decode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase ( self : Dict ) -> Union[str, Any]: for model_class_name in self.all_model_classes: _a : List[Any] = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _a : List[str] = np.ones((1, 1) ) * model.config.eos_token_id _a : Any = model(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def _lowercase ( self : Dict ) -> List[str]: _a : Any = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} _a : int = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} _a : List[str] = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCAmelCase__ ) _a : Union[str, Any] = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) _a : Union[str, Any] = ["""Sam"""] _a : Dict = tokenizer(UpperCAmelCase__ , return_tensors="""jax""" ) _a : List[str] = model.generate(**UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Dict = """Sam is a great name. It means \"sun\" in Gaelic.""" _a : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase__ , **UpperCAmelCase__ ) assert generated_txt[0].strip() == tgt_text
368
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _snake_case = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ ) return k def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase__ ) _a : Optional[Any] = PegasusConfig(**UpperCamelCase__ ) _a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ ) _a : str = torch_model.model.state_dict() _a : Union[str, Any] = {} for k, v in tf_weights.items(): _a : Any = rename_state_dict_key(UpperCamelCase__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _a : str = v.T _a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _a : str = mapping["""shared.weight"""] _a : Union[str, Any] = mapping["""shared.weight"""] _a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCamelCase__ ) _a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _a : Optional[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _a : List[Any] = tf.train.list_variables(UpperCamelCase__ ) _a : Optional[int] = {} _a : Dict = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ): _a : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) _a : int = array return tf_weights def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # save tokenizer first _a : Dict = Path(UpperCamelCase__ ).parent.name _a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] _a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase__ ) # convert model _a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ ) _a : Dict = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": _a : Tuple = task_specific_params _a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ ) torch_model.save_pretrained(UpperCamelCase__ ) _a : Dict = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() if args.save_dir is None: _snake_case = Path(args.tf_ckpt_path).parent.name _snake_case = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
324
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : Dict=18 , UpperCAmelCase__ : str=30 , UpperCAmelCase__ : str=400 , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , ) -> Any: _a : Optional[Any] = size if size is not None else {"""shortest_edge""": 18} _a : Optional[int] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _a : int = parent _a : Union[str, Any] = batch_size _a : Union[str, Any] = num_channels _a : Any = image_size _a : Optional[int] = min_resolution _a : str = max_resolution _a : List[Any] = do_resize _a : Union[str, Any] = size _a : List[str] = do_center_crop _a : List[Any] = crop_size _a : Tuple = do_normalize _a : Any = image_mean _a : Tuple = image_std def _lowercase ( self : List[str] ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : Dict = LevitImageProcessor if is_vision_available() else None def _lowercase ( self : Any ) -> int: _a : Any = LevitImageProcessingTester(self ) @property def _lowercase ( self : Dict ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Optional[Any] ) -> List[str]: _a : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """size""" ) ) def _lowercase ( self : str ) -> Optional[Any]: _a : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Optional[Any] ) -> Optional[int]: # Initialize image_processing _a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input _a : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : List[str] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self : Optional[Any] ) -> List[Any]: # Initialize image_processing _a : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input _a : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : List[Any] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self : str ) -> List[Any]: # Initialize image_processing _a : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input _a : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : Optional[int] = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
369
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : str = IFInpaintingPipeline UpperCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase : Optional[int] = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowercase ( self : Union[str, Any] ) -> Tuple: return self._get_dummy_components() def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=0 ) -> Tuple: if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Dict = torch.manual_seed(UpperCAmelCase__ ) else: _a : Any = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowercase ( self : str ) -> str: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _lowercase ( self : Optional[int] ) -> Optional[int]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _lowercase ( self : Union[str, Any] ) -> int: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _lowercase ( self : List[Any] ) -> Tuple: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _lowercase ( self : List[Any] ) -> Optional[int]: self._test_save_load_local() def _lowercase ( self : int ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
370
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ ) UpperCamelCase : list = field(default_factory=snake_case_ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any: _a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self : Optional[int] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : nn.Module UpperCamelCase : int = 0 UpperCamelCase : List = field(default_factory=snake_case_ ) UpperCamelCase : List = field(default_factory=snake_case_ ) def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple: _a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized _a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized _a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) ) _a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while""" f""" destination module has {len(UpperCAmelCase__ )}.""" ) for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): _a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() _a : str = ResNetForImageClassification(UpperCamelCase__ ).eval() _a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) _a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." _a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one _a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , ) print(F"""Pushed {checkpoint_name}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' _a : Any = """imagenet-1k-id2label.json""" _a : Optional[int] = 1_0_0_0 _a : Any = (1, num_labels) _a : Union[str, Any] = """huggingface/label-files""" _a : Tuple = num_labels _a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Any = idalabel _a : Tuple = {v: k for k, v in idalabel.items()} _a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) _a : Union[str, Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
324
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
324
0
"""simple docstring""" import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = multiprocessing.Manager() _a : List[Any] = manager.list() _a : Union[str, Any] = multiprocessing.Process(target=UpperCamelCase__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("""timed out""" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil _a : Optional[Any] = shutil.rmtree _a : Any = os.rmdir _a : List[Any] = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: _a : str = {} with swallow_io(): with time_limit(UpperCamelCase__ ): exec(UpperCamelCase__ , UpperCamelCase__ ) result.append("""passed""" ) except TimeoutException: result.append("""timed out""" ) except BaseException as e: result.append(F"""failed: {e}""" ) # Needed for cleaning up. _a : Union[str, Any] = rmtree _a : Optional[Any] = rmdir _a : List[str] = chdir @contextlib.contextmanager def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' def signal_handler(UpperCamelCase__ , UpperCamelCase__ ): raise TimeoutException("""Timed out!""" ) signal.setitimer(signal.ITIMER_REAL , UpperCamelCase__ ) signal.signal(signal.SIGALRM , UpperCamelCase__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = WriteOnlyStringIO() with contextlib.redirect_stdout(UpperCamelCase__ ): with contextlib.redirect_stderr(UpperCamelCase__ ): with redirect_stdin(UpperCamelCase__ ): yield @contextlib.contextmanager def lowerCAmelCase__ ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as dirname: with chdir(UpperCamelCase__ ): yield dirname class UpperCamelCase ( snake_case_ ): pass class UpperCamelCase ( io.StringIO ): def _lowercase ( self : str , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ) -> List[str]: raise OSError def _lowercase ( self : Union[str, Any] , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Optional[Any] ) -> Optional[int]: raise OSError def _lowercase ( self : str , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[Any] ) -> List[Any]: raise OSError def _lowercase ( self : str , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Any ) -> str: return False class UpperCamelCase ( contextlib._RedirectStream ): # type: ignore UpperCamelCase : Dict = '''stdin''' @contextlib.contextmanager def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if root == ".": yield return _a : Tuple = os.getcwd() os.chdir(UpperCamelCase__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__=None ): '''simple docstring''' if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins _a : Optional[Any] = None _a : List[str] = None import os _a : Any = """1""" _a : Any = None _a : Optional[Any] = None _a : List[str] = None _a : Optional[int] = None _a : Dict = None _a : Union[str, Any] = None _a : int = None _a : Optional[Any] = None _a : Any = None _a : int = None _a : Any = None _a : str = None _a : int = None _a : Optional[int] = None _a : str = None _a : List[Any] = None _a : Optional[Any] = None _a : Any = None _a : str = None _a : Optional[Any] = None _a : List[str] = None _a : Tuple = None _a : Any = None _a : Tuple = None _a : List[Any] = None _a : int = None _a : Union[str, Any] = None import shutil _a : str = None _a : str = None _a : Union[str, Any] = None import subprocess _a : List[Any] = None # type: ignore _a : Optional[Any] = None import sys _a : Optional[Any] = None _a : List[str] = None _a : List[str] = None _a : List[Any] = None _a : Dict = None
350
"""simple docstring""" _snake_case = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
324
0
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever _snake_case = logging.getLogger(__name__) class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple=None ) -> Optional[Any]: super().__init__( UpperCAmelCase__ , question_encoder_tokenizer=UpperCAmelCase__ , generator_tokenizer=UpperCAmelCase__ , index=UpperCAmelCase__ , init_retrieval=UpperCAmelCase__ , ) _a : Optional[int] = None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : int ) -> Optional[int]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually _a : Optional[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port _a : List[Any] = str(distributed_port + 1 ) _a : Tuple = dist.new_group(ranks=UpperCAmelCase__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase ( self : Tuple ) -> List[Any]: return dist.get_rank(group=self.process_group ) == 0 def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any]=torch.floataa ) -> Dict: _a : Any = torch.empty(UpperCAmelCase__ , dtype=UpperCAmelCase__ ) dist.scatter(UpperCAmelCase__ , src=0 , scatter_list=UpperCAmelCase__ , group=self.process_group ) return target_tensor def _lowercase ( self : str ) -> Dict: _a : Any = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _a : Any = next((addr for addr in addrs if addr.startswith("""e""" )) , UpperCAmelCase__ ) return ifname def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): _a : Tuple = self._main_retrieve(UpperCAmelCase__ , UpperCAmelCase__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCAmelCase__ ) # distributed training _a : Optional[Any] = dist.get_world_size(group=self.process_group ) # gather logic _a : List[Any] = None if self._is_main(): _a : Optional[int] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(UpperCAmelCase__ )] dist.gather(torch.tensor(UpperCAmelCase__ ) , dst=0 , gather_list=UpperCAmelCase__ , group=self.process_group ) # scatter logic _a : Union[str, Any] = question_hidden_states.shape[0] _a : str = [] _a : Any = [] if self._is_main(): assert len(UpperCAmelCase__ ) == world_size _a : Dict = self._main_retrieve(torch.cat(UpperCAmelCase__ ).numpy() , UpperCAmelCase__ ) _a : Tuple = torch.tensor(UpperCAmelCase__ ), torch.tensor(UpperCAmelCase__ ) _a : Optional[int] = self._chunk_tensor(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[Any] = self._chunk_tensor(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = self._scattered(UpperCAmelCase__ , [n_queries, n_docs] , target_type=torch.intaa ) _a : Optional[Any] = self._scattered(UpperCAmelCase__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(UpperCAmelCase__ )
351
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : int = ['''input_features''', '''is_longer'''] def __init__( self : Dict , UpperCAmelCase__ : List[str]=64 , UpperCAmelCase__ : Optional[Any]=48000 , UpperCAmelCase__ : Tuple=480 , UpperCAmelCase__ : Tuple=10 , UpperCAmelCase__ : str=1024 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : str=False , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 14000 , UpperCAmelCase__ : int = None , UpperCAmelCase__ : str = "fusion" , UpperCAmelCase__ : str = "repeatpad" , **UpperCAmelCase__ : List[Any] , ) -> int: super().__init__( feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : List[str] = top_db _a : int = truncation _a : Tuple = padding _a : Optional[int] = fft_window_size _a : List[Any] = (fft_window_size >> 1) + 1 _a : Optional[int] = hop_length _a : Dict = max_length_s _a : int = max_length_s * sampling_rate _a : Optional[int] = sampling_rate _a : str = frequency_min _a : str = frequency_max _a : List[str] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCAmelCase__ , min_frequency=UpperCAmelCase__ , max_frequency=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , norm=UpperCAmelCase__ , mel_scale="""htk""" , ) _a : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCAmelCase__ , min_frequency=UpperCAmelCase__ , max_frequency=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , norm="""slaney""" , mel_scale="""slaney""" , ) def _lowercase ( self : int ) -> Dict[str, Any]: _a : Dict = copy.deepcopy(self.__dict__ ) _a : str = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _lowercase ( self : Any , UpperCAmelCase__ : np.array , UpperCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: _a : Optional[Any] = spectrogram( UpperCAmelCase__ , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCAmelCase__ , log_mel="""dB""" , ) return log_mel_spectrogram.T def _lowercase ( self : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict ) -> List[str]: _a : Dict = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _a : Dict = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _a : List[str] = [0] # randomly choose index for each part _a : int = np.random.choice(ranges[0] ) _a : List[Any] = np.random.choice(ranges[1] ) _a : Any = np.random.choice(ranges[2] ) _a : Dict = mel[idx_front : idx_front + chunk_frames, :] _a : List[Any] = mel[idx_middle : idx_middle + chunk_frames, :] _a : Union[str, Any] = mel[idx_back : idx_back + chunk_frames, :] _a : Tuple = torch.tensor(mel[None, None, :] ) _a : Dict = torch.nn.functional.interpolate( UpperCAmelCase__ , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=UpperCAmelCase__ ) _a : Dict = mel_shrink[0][0].numpy() _a : List[Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _lowercase ( self : List[Any] , UpperCAmelCase__ : np.array , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": _a : Union[str, Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _a : List[str] = len(UpperCAmelCase__ ) - max_length _a : Dict = np.random.randint(0 , overflow + 1 ) _a : str = waveform[idx : idx + max_length] _a : List[str] = self._np_extract_fbank_features(UpperCAmelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _a : Dict = self._np_extract_fbank_features(UpperCAmelCase__ , self.mel_filters ) _a : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _a : Dict = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _a : str = np.stack([mel, mel, mel, mel] , axis=0 ) _a : List[Any] = False else: _a : int = self._random_mel_fusion(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: _a : List[str] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _a : str = int(max_length / len(UpperCAmelCase__ ) ) _a : List[Any] = np.stack(np.tile(UpperCAmelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _a : Any = int(max_length / len(UpperCAmelCase__ ) ) _a : int = np.stack(np.tile(UpperCAmelCase__ , UpperCAmelCase__ ) ) _a : Any = np.pad(UpperCAmelCase__ , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": _a : Optional[int] = self._np_extract_fbank_features(UpperCAmelCase__ , self.mel_filters ) _a : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _a : Union[str, Any] = self._np_extract_fbank_features(UpperCAmelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Optional[int] , UpperCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase__ : str = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase__ : Optional[int] , ) -> BatchFeature: _a : Union[str, Any] = truncation if truncation is not None else self.truncation _a : List[str] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _a : Union[str, Any] = isinstance(UpperCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) _a : str = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _a : Tuple = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray ): _a : Any = np.asarray(UpperCAmelCase__ , dtype=np.floataa ) elif isinstance(UpperCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _a : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _a : Optional[int] = [np.asarray(UpperCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. _a : Optional[Any] = [ self._get_input_mel(UpperCAmelCase__ , max_length if max_length else self.nb_max_samples , UpperCAmelCase__ , UpperCAmelCase__ ) for waveform in raw_speech ] _a : Union[str, Any] = [] _a : Any = [] for mel, longer in padded_inputs: input_mel.append(UpperCAmelCase__ ) is_longer.append(UpperCAmelCase__ ) if truncation == "fusion" and sum(UpperCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _a : Optional[Any] = np.random.randint(0 , len(UpperCAmelCase__ ) ) _a : Optional[int] = True if isinstance(input_mel[0] , UpperCAmelCase__ ): _a : Any = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _a : Union[str, Any] = [[longer] for longer in is_longer] _a : Optional[Any] = {"""input_features""": input_mel, """is_longer""": is_longer} _a : Optional[Any] = BatchFeature(UpperCAmelCase__ ) if return_tensors is not None: _a : str = input_features.convert_to_tensors(UpperCAmelCase__ ) return input_features
352
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : Optional[Any] = CamembertTokenizer def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : int = vocab_file _a : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[Any] = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
0
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Tuple = prime_factors(UpperCamelCase__ ) if is_square_free(UpperCamelCase__ ): return -1 if len(UpperCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = ['''pixel_values'''] def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None: _a : int = do_resize _a : Union[str, Any] = do_rescale _a : Any = size_divisor _a : Any = resample super().__init__(**UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray: _a , _a : Tuple = get_image_size(UpperCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor _a : Optional[Any] = height // size_divisor * size_divisor _a : Union[str, Any] = width // size_divisor * size_divisor _a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) return image def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray: return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature: _a : Dict = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _a : str = size_divisor if size_divisor is not None else self.size_divisor _a : Any = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) _a : List[str] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. _a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images] if do_resize: _a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: _a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images] _a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
324
0
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[str] = list(UpperCamelCase__ ) _a : str = list(UpperCamelCase__ ) _a : int = 0 for i in range(len(UpperCamelCase__ ) ): if lista[i] != lista[i]: count += 1 _a : List[str] = """_""" if count > 1: return False else: return "".join(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = [] while True: _a : Optional[int] = ["""$"""] * len(UpperCamelCase__ ) _a : Dict = [] for i in range(len(UpperCamelCase__ ) ): for j in range(i + 1 , len(UpperCamelCase__ ) ): _a : Union[str, Any] = compare_string(binary[i] , binary[j] ) if k is False: _a : List[str] = """*""" _a : Union[str, Any] = """*""" temp.append("""X""" ) for i in range(len(UpperCamelCase__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(UpperCamelCase__ ) == 0: return pi _a : Union[str, Any] = list(set(UpperCamelCase__ ) ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = [] for minterm in minterms: _a : str = """""" for _ in range(UpperCamelCase__ ): _a : Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(UpperCamelCase__ ) return temp def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[str] = list(UpperCamelCase__ ) _a : Tuple = list(UpperCamelCase__ ) _a : str = 0 for i in range(len(UpperCamelCase__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [] _a : Any = [0] * len(UpperCamelCase__ ) for i in range(len(chart[0] ) ): _a : int = 0 _a : Any = -1 for j in range(len(UpperCamelCase__ ) ): if chart[j][i] == 1: count += 1 _a : Tuple = j if count == 1: _a : Tuple = 1 for i in range(len(UpperCamelCase__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(UpperCamelCase__ ) ): _a : Dict = 0 temp.append(prime_implicants[i] ) while True: _a : Union[str, Any] = 0 _a : Dict = -1 _a : int = 0 for i in range(len(UpperCamelCase__ ) ): _a : Union[str, Any] = chart[i].count(1 ) if count_n > max_n: _a : Any = count_n _a : str = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(UpperCamelCase__ ) ): _a : Dict = 0 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [[0 for x in range(len(UpperCamelCase__ ) )] for x in range(len(UpperCamelCase__ ) )] for i in range(len(UpperCamelCase__ ) ): _a : Optional[int] = prime_implicants[i].count("""_""" ) for j in range(len(UpperCamelCase__ ) ): if is_for_table(prime_implicants[i] , binary[j] , UpperCamelCase__ ): _a : Dict = 1 return chart def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = int(input("""Enter the no. of variables\n""" ) ) _a : Dict = [ float(UpperCamelCase__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _a : int = decimal_to_binary(UpperCamelCase__ , UpperCamelCase__ ) _a : Optional[int] = check(UpperCamelCase__ ) print("""Prime Implicants are:""" ) print(UpperCamelCase__ ) _a : Optional[Any] = prime_implicant_chart(UpperCamelCase__ , UpperCamelCase__ ) _a : List[Any] = selection(UpperCamelCase__ , UpperCamelCase__ ) print("""Essential Prime Implicants are:""" ) print(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
354
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
0
"""simple docstring""" from __future__ import annotations import time _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]: _a : int = pos_x _a : Union[str, Any] = pos_y _a : Tuple = (pos_y, pos_x) _a : Tuple = goal_x _a : int = goal_y _a : str = parent class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]: _a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : Optional[int] = [self.start] _a : Tuple = False def _lowercase ( self : str ) -> Path | None: while self.node_queue: _a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : Dict = True return self.retrace_path(UpperCAmelCase__ ) _a : Tuple = self.get_successors(UpperCAmelCase__ ) for node in successors: self.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]: _a : Optional[Any] = [] for action in delta: _a : str = parent.pos_x + action[1] _a : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) ) return successors def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path: _a : Dict = node _a : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : Any = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False def _lowercase ( self : Any ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[int] = True return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = current_bwd_node _a : int = current_fwd_node _a : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path: _a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ ) _a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _a : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = BreadthFirstSearch(init, goal) _snake_case = bfs.search() _snake_case = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _snake_case = time.time() _snake_case = BidirectionalBreadthFirstSearch(init, goal) _snake_case = bd_bfs.search() _snake_case = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
355
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
324
0
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _a : Union[str, Any] = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b" _a : List[Any] = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b" _a : int = max(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase__ ) , b_binary.zfill(UpperCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
356
"""simple docstring""" import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
324
0
"""simple docstring""" from itertools import permutations def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _a : List[Any] = [7, 1_1, 1_3, 1_7] for i, test in enumerate(UpperCamelCase__ ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def lowerCAmelCase__ ( UpperCamelCase__ = 1_0 ): '''simple docstring''' return sum( int("""""".join(map(UpperCamelCase__ , UpperCamelCase__ ) ) ) for num in permutations(range(UpperCamelCase__ ) ) if is_substring_divisible(UpperCamelCase__ ) ) if __name__ == "__main__": print(F'''{solution() = }''')
357
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') _snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _snake_case = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = CamembertTokenizer UpperCamelCase : List[Any] = CamembertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Union[str, Any] = True def _lowercase ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Tuple: _a : Optional[Any] = """<pad>""" _a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : List[str] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _a : Any = """I was born in 92000, and this is falsé.""" _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) _a : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : List[Any] = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _a : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
324
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( _a ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
358
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _snake_case = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _snake_case = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _snake_case = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a : Optional[int] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _a : List[Any] = collections.defaultdict(UpperCamelCase__ ) _a : List[str] = collections.defaultdict(UpperCamelCase__ ) _a : Tuple = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): _a : str = None if _re_tf_models.match(UpperCamelCase__ ) is not None: _a : List[Any] = tf_models _a : int = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: _a : Any = flax_models _a : Any = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: _a : int = pt_models _a : int = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: _a : Optional[int] = True break # Try again after removing the last word in the name _a : List[Any] = """""".join(camel_case_split(UpperCamelCase__ )[:-1] ) _a : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _a : Dict = list(UpperCamelCase__ ) all_models.sort() _a : str = {"""model_type""": all_models} _a : List[Any] = [pt_models[t] for t in all_models] _a : str = [tf_models[t] for t in all_models] _a : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _a : str = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _a : List[str] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _a : str = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _a : int = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _a : int = """AutoTokenizer""" _a : Any = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _a : List[Any] = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] _a : Union[str, Any] = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names _a : str = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = get_frameworks_table() _a : Optional[Any] = Dataset.from_pandas(UpperCamelCase__ ) _a : Any = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=UpperCamelCase__ ) _a : List[Any] = Dataset.from_json(UpperCamelCase__ ) _a : List[str] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(UpperCamelCase__ ) ) } _a : str = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _a : int = sorted(table.keys() ) _a : Union[str, Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) _a : Dict = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , """pipeline_tags.json""" ) ) if commit_sha is not None: _a : List[str] = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _a : Optional[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=UpperCamelCase__ , repo_type="""dataset""" , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _a : Any = transformers_module.pipelines.SUPPORTED_TASKS _a : List[str] = [] for key in pipeline_tasks: if key not in in_table: _a : Tuple = pipeline_tasks[key]["""pt"""] if isinstance(UpperCamelCase__ , (list, tuple) ): _a : Dict = model[0] _a : List[str] = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _a : Union[str, Any] = """, """.join(UpperCamelCase__ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _snake_case = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
324
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure)
359
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _a : Dict = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) _a : Any = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) _a : int = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _a : List[str] = yaml.safe_dump(UpperCamelCase__ ) _a : Optional[int] = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = DatasetInfo() _a : Any = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) _a : List[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _a : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _a : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
324
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class UpperCamelCase ( snake_case_ ): UpperCamelCase : str = '''bridgetower_vision_model''' def __init__( self : List[Any] , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : List[str]=16 , UpperCAmelCase__ : Dict=288 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : int=1E-05 , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Any=False , **UpperCAmelCase__ : Optional[int] , ) -> Optional[int]: super().__init__(**UpperCAmelCase__ ) _a : str = hidden_size _a : str = num_hidden_layers _a : Any = num_channels _a : List[Any] = patch_size _a : Dict = image_size _a : int = initializer_factor _a : Dict = layer_norm_eps _a : Optional[int] = stop_gradient _a : Any = share_layernorm _a : Tuple = remove_last_layer @classmethod def _lowercase ( cls : Union[str, Any] , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : List[Any] ) -> "PretrainedConfig": _a : Optional[Any] = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) if config_dict.get("""model_type""" ) == "bridgetower": _a : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = '''bridgetower_text_model''' def __init__( self : List[Any] , UpperCAmelCase__ : Dict=50265 , UpperCAmelCase__ : List[Any]=768 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : Union[str, Any]=1 , UpperCAmelCase__ : List[str]=3072 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : List[Any]=514 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Optional[Any]=1E-05 , UpperCAmelCase__ : str=1 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Union[str, Any]="absolute" , UpperCAmelCase__ : Optional[int]=True , **UpperCAmelCase__ : Optional[Any] , ) -> str: super().__init__(**UpperCAmelCase__ ) _a : List[Any] = vocab_size _a : Optional[Any] = hidden_size _a : Union[str, Any] = num_hidden_layers _a : str = num_attention_heads _a : Union[str, Any] = hidden_act _a : str = initializer_factor _a : Tuple = intermediate_size _a : Optional[Any] = hidden_dropout_prob _a : List[str] = attention_probs_dropout_prob _a : Dict = max_position_embeddings _a : Optional[int] = type_vocab_size _a : Any = layer_norm_eps _a : Optional[Any] = position_embedding_type _a : Optional[Any] = use_cache _a : Optional[int] = pad_token_id _a : Optional[Any] = bos_token_id _a : Any = eos_token_id @classmethod def _lowercase ( cls : List[str] , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : List[Any] ) -> "PretrainedConfig": _a : Dict = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) if config_dict.get("""model_type""" ) == "bridgetower": _a : str = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Optional[Any] = '''bridgetower''' def __init__( self : Tuple , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Optional[int]=1E-05 , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : List[str]="add" , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Tuple=None , **UpperCAmelCase__ : int , ) -> Tuple: # TODO: remove this once the Hub files are updated. _a : Optional[Any] = kwargs.pop("""text_config_dict""" , UpperCAmelCase__ ) _a : Union[str, Any] = kwargs.pop("""vision_config_dict""" , UpperCAmelCase__ ) super().__init__(**UpperCAmelCase__ ) _a : Optional[Any] = share_cross_modal_transformer_layers _a : Optional[Any] = hidden_act _a : Tuple = hidden_size _a : Dict = initializer_factor _a : int = layer_norm_eps _a : Optional[int] = share_link_tower_layers _a : Optional[Any] = link_tower_type _a : Optional[int] = num_attention_heads _a : Union[str, Any] = num_hidden_layers _a : List[Any] = tie_word_embeddings _a : List[Any] = init_layernorm_from_vision_encoder if text_config is None: _a : Union[str, Any] = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _a : Tuple = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _a : List[Any] = BridgeTowerTextConfig(**UpperCAmelCase__ ) _a : Union[str, Any] = BridgeTowerVisionConfig(**UpperCAmelCase__ ) @classmethod def _lowercase ( cls : Optional[Any] , UpperCAmelCase__ : BridgeTowerTextConfig , UpperCAmelCase__ : BridgeTowerVisionConfig , **UpperCAmelCase__ : Optional[Any] ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase__ ) def _lowercase ( self : Any ) -> Dict: _a : Any = copy.deepcopy(self.__dict__ ) _a : List[str] = self.text_config.to_dict() _a : Tuple = self.vision_config.to_dict() _a : Optional[int] = self.__class__.model_type return output
360
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase ( unittest.TestCase , snake_case_ ): def _lowercase ( self : int ) -> int: _a : Optional[Any] = load_tool("""text-to-speech""" ) self.tool.setup() def _lowercase ( self : List[str] ) -> Union[str, Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : str = self.tool("""hey""" ) _a : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : int = self.tool("""hey""" ) _a : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
324
0
"""simple docstring""" from __future__ import annotations import bisect def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0 , UpperCamelCase__ = -1 ): '''simple docstring''' if hi < 0: _a : str = len(UpperCamelCase__ ) while lo < hi: _a : Optional[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _a : int = mid + 1 else: _a : Any = mid return lo def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0 , UpperCamelCase__ = -1 ): '''simple docstring''' if hi < 0: _a : Union[str, Any] = len(UpperCamelCase__ ) while lo < hi: _a : Any = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _a : List[str] = mid + 1 else: _a : Any = mid return lo def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0 , UpperCamelCase__ = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0 , UpperCamelCase__ = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = 0 _a : int = len(UpperCamelCase__ ) - 1 while left <= right: _a : List[Any] = left + (right - left) // 2 _a : List[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _a : Tuple = midpoint - 1 else: _a : str = midpoint + 1 return None def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = bisect.bisect_left(UpperCamelCase__ , UpperCamelCase__ ) if index != len(UpperCamelCase__ ) and sorted_collection[index] == item: return index return None def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if right < left: return None _a : List[Any] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , midpoint - 1 ) else: return binary_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , midpoint + 1 , UpperCamelCase__ ) if __name__ == "__main__": _snake_case = input('Enter numbers separated by comma:\n').strip() _snake_case = sorted(int(item) for item in user_input.split(',')) _snake_case = int(input('Enter a single number to be found in the list:\n')) _snake_case = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
361
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str ) -> int: _a : str = parent _a : Union[str, Any] = config_class _a : List[Any] = has_text_modality _a : List[Any] = kwargs _a : List[Any] = common_properties def _lowercase ( self : int ) -> Tuple: _a : List[str] = self.config_class(**self.inputs_dict ) _a : Dict = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase__ ): try: setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase__ ): try: _a : Optional[int] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) _a : List[str] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase__ ) def _lowercase ( self : int ) -> List[str]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = os.path.join(UpperCAmelCase__ , """config.json""" ) config_first.to_json_file(UpperCAmelCase__ ) _a : List[str] = self.config_class.from_json_file(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Union[str, Any] ) -> Dict: _a : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase__ ) _a : Dict = self.config_class.from_pretrained(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Dict ) -> Tuple: _a : List[Any] = self.config_class(**self.inputs_dict ) _a : Any = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _a : List[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) config_first.save_pretrained(UpperCAmelCase__ ) _a : List[Any] = self.config_class.from_pretrained(UpperCAmelCase__ , subfolder=UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _a : Union[str, Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Tuple ) -> List[str]: if self.config_class.is_composition: return _a : str = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Dict = copy.deepcopy(UpperCAmelCase__ ) _a : Any = self.config_class(**UpperCAmelCase__ ) _a : str = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase__ , UpperCAmelCase__ ) != value: wrong_values.append((key, getattr(UpperCAmelCase__ , UpperCAmelCase__ ), value) ) if len(UpperCAmelCase__ ) > 0: _a : List[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowercase ( self : int ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
324
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers _snake_case = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Optional[int] = os.path.dirname(os.path.realpath(UpperCamelCase__ ) ) _a : List[str] = os.path.join(UpperCamelCase__ , """words.txt""" ) _a : str = """""" with open(UpperCamelCase__ ) as f: _a : Dict = f.readline() _a : Union[str, Any] = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] _a : Union[str, Any] = [ word for word in [sum(ord(UpperCamelCase__ ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(UpperCamelCase__ ) if __name__ == "__main__": print(solution())
362
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
324
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class UpperCamelCase ( snake_case_ ): UpperCamelCase : Optional[Any] = '''xmod''' def __init__( self : Optional[int] , UpperCAmelCase__ : Dict=30522 , UpperCAmelCase__ : int=768 , UpperCAmelCase__ : Optional[int]=12 , UpperCAmelCase__ : Tuple=12 , UpperCAmelCase__ : Any=3072 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : List[str]=512 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : int=0.0_2 , UpperCAmelCase__ : Any=1E-12 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Optional[int]=0 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=False , UpperCAmelCase__ : int=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Optional[Any]=("en_XX",) , UpperCAmelCase__ : Optional[int]=None , **UpperCAmelCase__ : Any , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) _a : List[str] = vocab_size _a : List[str] = hidden_size _a : Tuple = num_hidden_layers _a : str = num_attention_heads _a : int = hidden_act _a : str = intermediate_size _a : Optional[Any] = hidden_dropout_prob _a : Union[str, Any] = attention_probs_dropout_prob _a : int = max_position_embeddings _a : Optional[Any] = type_vocab_size _a : List[Any] = initializer_range _a : str = layer_norm_eps _a : int = position_embedding_type _a : int = use_cache _a : int = classifier_dropout _a : int = pre_norm _a : Dict = adapter_reduction_factor _a : List[str] = adapter_layer_norm _a : List[str] = adapter_reuse_layer_norm _a : str = ln_before_adapter _a : Optional[Any] = list(UpperCAmelCase__ ) _a : Any = default_language class UpperCamelCase ( snake_case_ ): @property def _lowercase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _a : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
363
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
324
0
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: _a : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _a : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _a : List[Any] = """xvjiarui/stable-diffusion-2-inpainting""" _a : Tuple = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase__ , safety_checker=UpperCAmelCase__ ) _a : str = """Face of a yellow cat, high resolution, sitting on a park bench""" _a : List[Any] = jax.random.PRNGKey(0 ) _a : Any = 50 _a : Dict = jax.device_count() _a : Optional[int] = num_samples * [prompt] _a : int = num_samples * [init_image] _a : Dict = num_samples * [mask_image] _a : str = pipeline.prepare_inputs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # shard inputs and rng _a : Any = replicate(UpperCAmelCase__ ) _a : Optional[Any] = jax.random.split(UpperCAmelCase__ , jax.device_count() ) _a : Tuple = shard(UpperCAmelCase__ ) _a : List[str] = shard(UpperCAmelCase__ ) _a : Any = shard(UpperCAmelCase__ ) _a : List[str] = pipeline( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ) _a : List[Any] = output.images.reshape(UpperCAmelCase__ , 512 , 512 , 3 ) _a : Union[str, Any] = images[0, 253:256, 253:256, -1] _a : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _a : Union[str, Any] = jnp.array( [0.3_6_1_1_3_0_7, 0.3_7_6_4_9_7_3_6, 0.3_7_5_7_4_0_8, 0.3_8_2_1_3_9_5_3, 0.3_9_2_9_5_1_6_7, 0.3_8_4_1_6_3_1, 0.4_1_5_5_4_9_7_8, 0.4_1_3_7_4_7_5, 0.4_2_1_7_0_8_4] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
364
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] ) if ( min(UpperCamelCase__ , UpperCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a : Any = 0 count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
324
0
"""simple docstring""" from math import sqrt def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase__ ( UpperCamelCase__ = 1_0_0_0_1 ): '''simple docstring''' _a : str = 0 _a : Dict = 1 while count != nth and number < 3: number += 1 if is_prime(UpperCamelCase__ ): count += 1 while count != nth: number += 2 if is_prime(UpperCamelCase__ ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
365
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
0
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : def __init__( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int]=13 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[Any]=32 , UpperCAmelCase__ : Any=5 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : List[Any]=37 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : Tuple=10 , UpperCAmelCase__ : List[Any]=0.0_2 , UpperCAmelCase__ : Union[str, Any]=None , ) -> Optional[Any]: _a : List[Any] = parent _a : Optional[Any] = batch_size _a : Dict = image_size _a : str = patch_size _a : Tuple = num_channels _a : str = is_training _a : Union[str, Any] = use_labels _a : Tuple = hidden_size _a : Optional[Any] = num_hidden_layers _a : List[Any] = num_attention_heads _a : int = intermediate_size _a : List[Any] = hidden_act _a : Union[str, Any] = hidden_dropout_prob _a : Optional[Any] = attention_probs_dropout_prob _a : str = type_sequence_label_size _a : Union[str, Any] = initializer_range _a : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : List[Any] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Union[str, Any] = None if self.use_labels: _a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : List[str] = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[Any] ) -> str: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] ) -> List[Any]: _a : str = ViTMSNModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : str = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] ) -> str: _a : Dict = self.type_sequence_label_size _a : Dict = ViTMSNForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Any = model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : Tuple = 1 _a : Union[str, Any] = ViTMSNForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Union[str, Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self : str ) -> Union[str, Any]: _a : Union[str, Any] = self.prepare_config_and_inputs() _a : str = config_and_inputs _a : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : int = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () UpperCamelCase : Union[str, Any] = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) UpperCamelCase : Tuple = False UpperCamelCase : int = False UpperCamelCase : Tuple = False UpperCamelCase : Optional[Any] = False def _lowercase ( self : Optional[int] ) -> Dict: _a : List[str] = ViTMSNModelTester(self ) _a : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 ) def _lowercase ( self : List[Any] ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def _lowercase ( self : List[str] ) -> Any: pass def _lowercase ( self : Union[str, Any] ) -> List[Any]: _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Dict = model_class(UpperCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear ) ) def _lowercase ( self : str ) -> Tuple: _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(UpperCAmelCase__ ) _a : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Optional[Any] = [*signature.parameters.keys()] _a : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> Tuple: _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> Optional[Any]: _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self : List[str] ) -> List[str]: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : str = ViTMSNModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def _lowercase ( self : List[Any] ) -> List[Any]: return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def _lowercase ( self : Optional[Any] ) -> Optional[int]: torch.manual_seed(2 ) _a : List[str] = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(UpperCAmelCase__ ) _a : Any = self.default_image_processor _a : str = prepare_img() _a : Any = image_processor(images=UpperCAmelCase__ , return_tensors="""pt""" ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**UpperCAmelCase__ ) # verify the logits _a : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) _a : List[str] = torch.tensor([-0.0_8_0_3, -0.4_4_5_4, -0.2_3_7_5] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) )
366
"""simple docstring""" from __future__ import annotations import time _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]: _a : int = pos_x _a : Union[str, Any] = pos_y _a : Tuple = (pos_y, pos_x) _a : Tuple = goal_x _a : int = goal_y _a : str = parent class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]: _a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : Optional[int] = [self.start] _a : Tuple = False def _lowercase ( self : str ) -> Path | None: while self.node_queue: _a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : Dict = True return self.retrace_path(UpperCAmelCase__ ) _a : Tuple = self.get_successors(UpperCAmelCase__ ) for node in successors: self.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]: _a : Optional[Any] = [] for action in delta: _a : str = parent.pos_x + action[1] _a : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) ) return successors def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path: _a : Dict = node _a : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : Any = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False def _lowercase ( self : Any ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[int] = True return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = current_bwd_node _a : int = current_fwd_node _a : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path: _a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ ) _a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _a : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = BreadthFirstSearch(init, goal) _snake_case = bfs.search() _snake_case = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _snake_case = time.time() _snake_case = BidirectionalBreadthFirstSearch(init, goal) _snake_case = bd_bfs.search() _snake_case = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
324
0
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = analyze_text(UpperCamelCase__ ) _a : str = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. _a : List[Any] = sum(single_char_strings.values() ) # one length string _a : List[str] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _a : Any = single_char_strings[ch] _a : Tuple = my_str / all_sum my_fir_sum += prob * math.loga(UpperCamelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string _a : Union[str, Any] = sum(two_char_strings.values() ) _a : Dict = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _a : List[Any] = cha + cha if sequence in two_char_strings: _a : Optional[Any] = two_char_strings[sequence] _a : Union[str, Any] = int(UpperCamelCase__ ) / all_sum my_sec_sum += prob * math.loga(UpperCamelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = Counter() # type: ignore _a : str = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(UpperCamelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCAmelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
367
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCamelCase : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) UpperCamelCase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCamelCase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ): '''simple docstring''' def _dataset(UpperCamelCase__ , UpperCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCAmelCase__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _a : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: _a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: _a : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) _a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: _a : int = tokenizer.max_len # Our input block size will be the max possible for the model else: _a : Optional[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets _a : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _a : Optional[int] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _a : Any = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _a : Union[str, Any] = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: _a : str = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _a : Union[str, Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: _a : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : int = trainer.evaluate() _a : Dict = math.exp(eval_output["""eval_loss"""] ) _a : Union[str, Any] = {"""perplexity""": perplexity} _a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
324
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset from utils import logger class UpperCamelCase ( snake_case_ ): def __init__( self : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> Optional[int]: _a : int = params _a : Dict = np.array(UpperCAmelCase__ ) _a : Optional[Any] = np.array([len(UpperCAmelCase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Optional[int] , UpperCAmelCase__ : List[Any] ) -> Optional[Any]: return (self.token_ids[index], self.lengths[index]) def __len__( self : Any ) -> List[str]: return len(self.lengths ) def _lowercase ( self : Tuple ) -> Any: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def _lowercase ( self : Any ) -> str: _a : Optional[int] = self.params.max_model_input_size _a : Dict = self.lengths > max_len logger.info(f"""Splitting {sum(UpperCAmelCase__ )} too long sequences.""" ) def divide_chunks(UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict ): return [l[i : i + n] for i in range(0 , len(UpperCAmelCase__ ) , UpperCAmelCase__ )] _a : Any = [] _a : Tuple = [] if self.params.mlm: _a : Union[str, Any] = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: _a : Any = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _a : List[str] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _a : Dict = np.insert(UpperCAmelCase__ , 0 , UpperCAmelCase__ ) if sub_s[-1] != sep_id: _a : int = np.insert(UpperCAmelCase__ , len(UpperCAmelCase__ ) , UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(UpperCAmelCase__ ) new_tok_ids.extend(UpperCAmelCase__ ) new_lengths.extend([len(UpperCAmelCase__ ) for l in sub_seqs] ) _a : Union[str, Any] = np.array(UpperCAmelCase__ ) _a : Union[str, Any] = np.array(UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> str: _a : Dict = len(self ) _a : str = self.lengths > 11 _a : str = self.token_ids[indices] _a : int = self.lengths[indices] _a : List[Any] = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def _lowercase ( self : str ) -> List[Any]: if "unk_token" not in self.params.special_tok_ids: return else: _a : Union[str, Any] = self.params.special_tok_ids["""unk_token"""] _a : int = len(self ) _a : List[Any] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _a : List[str] = (unk_occs / self.lengths) < 0.5 _a : Dict = self.token_ids[indices] _a : str = self.lengths[indices] _a : Dict = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def _lowercase ( self : List[Any] ) -> Dict: if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def _lowercase ( self : List[Any] , UpperCAmelCase__ : Dict ) -> Dict: _a : Dict = [t[0] for t in batch] _a : Optional[Any] = [t[1] for t in batch] assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) # Max for paddings _a : str = max(UpperCAmelCase__ ) # Pad token ids if self.params.mlm: _a : Tuple = self.params.special_tok_ids["""pad_token"""] else: _a : Optional[int] = self.params.special_tok_ids["""unk_token"""] _a : List[Any] = [list(t.astype(UpperCAmelCase__ ) ) + [pad_idx] * (max_seq_len_ - len(UpperCAmelCase__ )) for t in token_ids] assert len(tk_ ) == len(UpperCAmelCase__ ) assert all(len(UpperCAmelCase__ ) == max_seq_len_ for t in tk_ ) _a : str = torch.tensor(tk_ ) # (bs, max_seq_len_) _a : Union[str, Any] = torch.tensor(UpperCAmelCase__ ) # (bs) return tk_t, lg_t
368
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _snake_case = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ ) return k def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase__ ) _a : Optional[Any] = PegasusConfig(**UpperCamelCase__ ) _a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ ) _a : str = torch_model.model.state_dict() _a : Union[str, Any] = {} for k, v in tf_weights.items(): _a : Any = rename_state_dict_key(UpperCamelCase__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _a : str = v.T _a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _a : str = mapping["""shared.weight"""] _a : Union[str, Any] = mapping["""shared.weight"""] _a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCamelCase__ ) _a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _a : Optional[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _a : List[Any] = tf.train.list_variables(UpperCamelCase__ ) _a : Optional[int] = {} _a : Dict = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ): _a : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) _a : int = array return tf_weights def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # save tokenizer first _a : Dict = Path(UpperCamelCase__ ).parent.name _a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] _a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase__ ) # convert model _a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ ) _a : Dict = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": _a : Tuple = task_specific_params _a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ ) torch_model.save_pretrained(UpperCamelCase__ ) _a : Dict = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() if args.save_dir is None: _snake_case = Path(args.tf_ckpt_path).parent.name _snake_case = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
324
0
"""simple docstring""" import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( snake_case_ ): UpperCamelCase : int = '''facebook/bart-large-mnli''' UpperCamelCase : List[Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) UpperCamelCase : Any = '''text_classifier''' UpperCamelCase : List[str] = AutoTokenizer UpperCamelCase : Dict = AutoModelForSequenceClassification UpperCamelCase : List[Any] = ['''text''', ['''text''']] UpperCamelCase : Dict = ['''text'''] def _lowercase ( self : Optional[int] ) -> Dict: super().setup() _a : Tuple = self.model.config _a : int = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): _a : List[Any] = int(UpperCAmelCase__ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] ) -> int: _a : Optional[int] = labels return self.pre_processor( [text] * len(UpperCAmelCase__ ) , [f"""This example is {label}""" for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Any ) -> str: _a : str = outputs.logits _a : Optional[int] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
369
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = "x" , UpperCamelCase__ = 1_0**-1_0 , UpperCamelCase__ = 1 , ): '''simple docstring''' _a : Tuple = symbols(UpperCamelCase__ ) _a : Union[str, Any] = lambdify(UpperCamelCase__ , UpperCamelCase__ ) _a : List[Any] = lambdify(UpperCamelCase__ , diff(UpperCamelCase__ , UpperCamelCase__ ) ) _a : Union[str, Any] = starting_point while True: if diff_function(UpperCamelCase__ ) != 0: _a : Dict = prev_guess - multiplicity * func(UpperCamelCase__ ) / diff_function( UpperCamelCase__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _a : Optional[int] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial # Find fourth Root of 5 print(F'''The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}''') # Find value of e print( 'The root of log(y) - 1 = 0 is ', F'''{newton_raphson('log(y) - 1', 2, variable='y')}''', ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', F'''{newton_raphson('exp(x) - 1', 10, precision=0.0_05)}''', ) # Find root of cos(x) print(F'''The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}''')
370
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ ) UpperCamelCase : list = field(default_factory=snake_case_ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any: _a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self : Optional[int] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : nn.Module UpperCamelCase : int = 0 UpperCamelCase : List = field(default_factory=snake_case_ ) UpperCamelCase : List = field(default_factory=snake_case_ ) def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple: _a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized _a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized _a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) ) _a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while""" f""" destination module has {len(UpperCAmelCase__ )}.""" ) for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): _a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() _a : str = ResNetForImageClassification(UpperCamelCase__ ).eval() _a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) _a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." _a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one _a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , ) print(F"""Pushed {checkpoint_name}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' _a : Any = """imagenet-1k-id2label.json""" _a : Optional[int] = 1_0_0_0 _a : Any = (1, num_labels) _a : Union[str, Any] = """huggingface/label-files""" _a : Tuple = num_labels _a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Any = idalabel _a : Tuple = {v: k for k, v in idalabel.items()} _a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) _a : Union[str, Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
324
0
import fire from utils import calculate_rouge, save_json def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , **UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = [x.strip() for x in open(UpperCamelCase__ ).readlines()] _a : int = [x.strip() for x in open(UpperCamelCase__ ).readlines()][: len(UpperCamelCase__ )] _a : int = calculate_rouge(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) if save_path is not None: save_json(UpperCamelCase__ , UpperCamelCase__ , indent=UpperCamelCase__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
371
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
324
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
350
"""simple docstring""" _snake_case = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
324
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: _snake_case = None try: import msvcrt except ImportError: _snake_case = None try: import fcntl except ImportError: _snake_case = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _snake_case = OSError # Data # ------------------------------------------------ _snake_case = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] _snake_case = '3.0.12' _snake_case = None def lowerCAmelCase__ ( ): '''simple docstring''' global _logger _a : List[str] = _logger or logging.getLogger(__name__ ) return _logger class UpperCamelCase ( snake_case_ ): def __init__( self : Optional[int] , UpperCAmelCase__ : Tuple ) -> int: _a : List[str] = lock_file return None def __str__( self : Dict ) -> List[Any]: _a : str = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class UpperCamelCase : def __init__( self : str , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: _a : Tuple = lock return None def __enter__( self : List[str] ) -> Optional[Any]: return self.lock def __exit__( self : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] ) -> int: self.lock.release() return None class UpperCamelCase : def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=-1 , UpperCAmelCase__ : Tuple=None ) -> Any: _a : int = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long _a : Any = self.hash_filename_if_too_long(UpperCAmelCase__ , UpperCAmelCase__ ) # The path to the lock file. _a : List[str] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _a : Optional[Any] = None # The default timeout value. _a : List[str] = timeout # We use this lock primarily for the lock counter. _a : List[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _a : Tuple = 0 return None @property def _lowercase ( self : Dict ) -> Union[str, Any]: return self._lock_file @property def _lowercase ( self : Optional[int] ) -> Optional[Any]: return self._timeout @timeout.setter def _lowercase ( self : Dict , UpperCAmelCase__ : int ) -> List[str]: _a : int = float(UpperCAmelCase__ ) return None def _lowercase ( self : Tuple ) -> Tuple: raise NotImplementedError() def _lowercase ( self : List[Any] ) -> List[str]: raise NotImplementedError() @property def _lowercase ( self : Tuple ) -> int: return self._lock_file_fd is not None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : str=0.0_5 ) -> Optional[Any]: # Use the default timeout, if no timeout is provided. if timeout is None: _a : str = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _a : Any = id(self ) _a : List[str] = self._lock_file _a : Any = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(UpperCAmelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _a : Tuple = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Any=False ) -> Union[str, Any]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _a : Any = id(self ) _a : List[Any] = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() _a : Optional[int] = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self : Union[str, Any] ) -> Tuple: self.acquire() return self def __exit__( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int ) -> List[str]: self.release() return None def __del__( self : str ) -> Optional[Any]: self.release(force=UpperCAmelCase__ ) return None def _lowercase ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : int ) -> str: _a : Optional[Any] = os.path.basename(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > max_length and max_length > 0: _a : Optional[int] = os.path.dirname(UpperCAmelCase__ ) _a : Optional[int] = str(hash(UpperCAmelCase__ ) ) _a : Union[str, Any] = filename[: max_length - len(UpperCAmelCase__ ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) else: return path class UpperCamelCase ( snake_case_ ): def __init__( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]=-1 , UpperCAmelCase__ : Dict=None ) -> str: from .file_utils import relative_to_absolute_path super().__init__(UpperCAmelCase__ , timeout=UpperCAmelCase__ , max_filename_length=UpperCAmelCase__ ) _a : List[str] = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def _lowercase ( self : Optional[Any] ) -> str: _a : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _a : int = os.open(self._lock_file , UpperCAmelCase__ ) except OSError: pass else: try: msvcrt.locking(UpperCAmelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(UpperCAmelCase__ ) else: _a : str = fd return None def _lowercase ( self : Union[str, Any] ) -> str: _a : Union[str, Any] = self._lock_file_fd _a : Union[str, Any] = None msvcrt.locking(UpperCAmelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(UpperCAmelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class UpperCamelCase ( snake_case_ ): def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str=-1 , UpperCAmelCase__ : List[str]=None ) -> Union[str, Any]: _a : List[str] = os.statvfs(os.path.dirname(UpperCAmelCase__ ) ).f_namemax super().__init__(UpperCAmelCase__ , timeout=UpperCAmelCase__ , max_filename_length=UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> str: _a : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC _a : Tuple = os.open(self._lock_file , UpperCAmelCase__ ) try: fcntl.flock(UpperCAmelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(UpperCAmelCase__ ) else: _a : str = fd return None def _lowercase ( self : List[str] ) -> str: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _a : int = self._lock_file_fd _a : Dict = None fcntl.flock(UpperCAmelCase__ , fcntl.LOCK_UN ) os.close(UpperCAmelCase__ ) return None class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: _a : Optional[int] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _a : Any = os.open(self._lock_file , UpperCAmelCase__ ) except OSError: pass else: _a : Dict = fd return None def _lowercase ( self : List[str] ) -> int: os.close(self._lock_file_fd ) _a : Any = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _snake_case = None if msvcrt: _snake_case = WindowsFileLock elif fcntl: _snake_case = UnixFileLock else: _snake_case = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
351
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
0
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig _snake_case = logging.getLogger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : str = '''masked_bert''' def __init__( self : Dict , UpperCAmelCase__ : Optional[Any]=30522 , UpperCAmelCase__ : Dict=768 , UpperCAmelCase__ : Any=12 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : int=3072 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=512 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Union[str, Any]=0.0_2 , UpperCAmelCase__ : int=1E-12 , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : str="topK" , UpperCAmelCase__ : Dict="constant" , UpperCAmelCase__ : str=0.0 , **UpperCAmelCase__ : Union[str, Any] , ) -> int: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Optional[Any] = vocab_size _a : List[Any] = hidden_size _a : Optional[Any] = num_hidden_layers _a : Tuple = num_attention_heads _a : Optional[int] = hidden_act _a : Tuple = intermediate_size _a : Optional[Any] = hidden_dropout_prob _a : int = attention_probs_dropout_prob _a : Dict = max_position_embeddings _a : Tuple = type_vocab_size _a : Optional[Any] = initializer_range _a : str = layer_norm_eps _a : Optional[int] = pruning_method _a : Optional[Any] = mask_init _a : Union[str, Any] = mask_scale
352
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : Optional[Any] = CamembertTokenizer def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : int = vocab_file _a : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[Any] = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : Optional[Any] = CamembertTokenizer def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : int = vocab_file _a : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[Any] = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
353
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = ['''pixel_values'''] def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None: _a : int = do_resize _a : Union[str, Any] = do_rescale _a : Any = size_divisor _a : Any = resample super().__init__(**UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray: _a , _a : Tuple = get_image_size(UpperCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor _a : Optional[Any] = height // size_divisor * size_divisor _a : Union[str, Any] = width // size_divisor * size_divisor _a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) return image def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray: return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature: _a : Dict = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _a : str = size_divisor if size_divisor is not None else self.size_divisor _a : Any = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) _a : List[str] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. _a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images] if do_resize: _a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: _a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images] _a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
324
0
from __future__ import annotations from collections import deque class UpperCamelCase : def __init__( self : str , UpperCAmelCase__ : list[str] ) -> Dict: _a : list[dict] = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(UpperCAmelCase__ ) self.set_fail_transitions() def _lowercase ( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : str ) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str ) -> None: _a : Optional[int] = 0 for character in keyword: _a : Optional[int] = self.find_next_state(UpperCAmelCase__ , UpperCAmelCase__ ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) _a : str = len(self.adlist ) - 1 else: _a : int = next_state self.adlist[current_state]["output"].append(UpperCAmelCase__ ) def _lowercase ( self : Any ) -> None: _a : deque = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCAmelCase__ ) _a : int = 0 while q: _a : Tuple = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCAmelCase__ ) _a : str = self.adlist[r]["""fail_state"""] while ( self.find_next_state(UpperCAmelCase__ , self.adlist[child]["""value"""] ) is None and state != 0 ): _a : Tuple = self.adlist[state]["""fail_state"""] _a : List[Any] = self.find_next_state( UpperCAmelCase__ , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: _a : str = 0 _a : Dict = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def _lowercase ( self : Tuple , UpperCAmelCase__ : str ) -> dict[str, list[int]]: _a : dict = {} # returns a dict with keywords and list of its occurrences _a : str = 0 for i in range(len(UpperCAmelCase__ ) ): while ( self.find_next_state(UpperCAmelCase__ , string[i] ) is None and current_state != 0 ): _a : Tuple = self.adlist[current_state]["""fail_state"""] _a : Optional[Any] = self.find_next_state(UpperCAmelCase__ , string[i] ) if next_state is None: _a : Any = 0 else: _a : Optional[Any] = next_state for key in self.adlist[current_state]["output"]: if key not in result: _a : Any = [] result[key].append(i - len(UpperCAmelCase__ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
0
"""simple docstring""" _snake_case = [ (1000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : int = {"""I""": 1, """V""": 5, """X""": 1_0, """L""": 5_0, """C""": 1_0_0, """D""": 5_0_0, """M""": 1_0_0_0} _a : Optional[Any] = 0 _a : Optional[Any] = 0 while place < len(UpperCamelCase__ ): if (place + 1 < len(UpperCamelCase__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Tuple = [] for arabic, roman in ROMAN: (_a) : Dict = divmod(UpperCamelCase__ , UpperCamelCase__ ) result.append(roman * factor ) if number == 0: break return "".join(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
355
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
324
0
"""simple docstring""" from functools import reduce _snake_case = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCAmelCase__ ( UpperCamelCase__ = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda UpperCamelCase__ , UpperCamelCase__ : str(int(UpperCamelCase__ ) * int(UpperCamelCase__ ) ) , n[i : i + 1_3] ) ) for i in range(len(UpperCamelCase__ ) - 1_2 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
356
"""simple docstring""" import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
324
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif stress < 0: raise ValueError("""Stress cannot be negative""" ) elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""" ) elif area < 0: raise ValueError("""Area cannot be negative""" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') _snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _snake_case = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = CamembertTokenizer UpperCamelCase : List[Any] = CamembertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Union[str, Any] = True def _lowercase ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Tuple: _a : Optional[Any] = """<pad>""" _a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : List[str] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _a : Any = """I was born in 92000, and this is falsé.""" _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) _a : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : List[Any] = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _a : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
324
0
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = len(UpperCamelCase__ ), len(grid[0] ) if ( min(UpperCamelCase__ , UpperCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a : Any = 0 count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _snake_case = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _snake_case = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _snake_case = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a : Optional[int] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _a : List[Any] = collections.defaultdict(UpperCamelCase__ ) _a : List[str] = collections.defaultdict(UpperCamelCase__ ) _a : Tuple = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): _a : str = None if _re_tf_models.match(UpperCamelCase__ ) is not None: _a : List[Any] = tf_models _a : int = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: _a : Any = flax_models _a : Any = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: _a : int = pt_models _a : int = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: _a : Optional[int] = True break # Try again after removing the last word in the name _a : List[Any] = """""".join(camel_case_split(UpperCamelCase__ )[:-1] ) _a : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _a : Dict = list(UpperCamelCase__ ) all_models.sort() _a : str = {"""model_type""": all_models} _a : List[Any] = [pt_models[t] for t in all_models] _a : str = [tf_models[t] for t in all_models] _a : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _a : str = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _a : List[str] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _a : str = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _a : int = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _a : int = """AutoTokenizer""" _a : Any = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _a : List[Any] = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] _a : Union[str, Any] = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names _a : str = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = get_frameworks_table() _a : Optional[Any] = Dataset.from_pandas(UpperCamelCase__ ) _a : Any = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=UpperCamelCase__ ) _a : List[Any] = Dataset.from_json(UpperCamelCase__ ) _a : List[str] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(UpperCamelCase__ ) ) } _a : str = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _a : int = sorted(table.keys() ) _a : Union[str, Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) _a : Dict = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , """pipeline_tags.json""" ) ) if commit_sha is not None: _a : List[str] = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _a : Optional[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=UpperCamelCase__ , repo_type="""dataset""" , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _a : Any = transformers_module.pipelines.SUPPORTED_TASKS _a : List[str] = [] for key in pipeline_tasks: if key not in in_table: _a : Tuple = pipeline_tasks[key]["""pt"""] if isinstance(UpperCamelCase__ , (list, tuple) ): _a : Dict = model[0] _a : List[str] = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _a : Union[str, Any] = """, """.join(UpperCamelCase__ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _snake_case = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
324
0
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[str] = {} _a : List[str] = job["""started_at"""] _a : List[str] = job["""completed_at"""] _a : List[Any] = date_parser.parse(UpperCamelCase__ ) _a : Union[str, Any] = date_parser.parse(UpperCamelCase__ ) _a : Tuple = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _a : List[Any] = start _a : Dict = end _a : Any = duration_in_min return job_info def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' _a : Optional[int] = None if token is not None: _a : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} _a : List[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" _a : List[str] = requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).json() _a : int = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(UpperCamelCase__ ) for job in result["""jobs"""]} ) _a : str = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(UpperCamelCase__ ): _a : Optional[int] = requests.get(url + F"""&page={i + 2}""" , headers=UpperCamelCase__ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(UpperCamelCase__ ) for job in result["""jobs"""]} ) return job_time except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') _snake_case = parser.parse_args() _snake_case = get_job_time(args.workflow_run_id) _snake_case = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v['duration']}''')
359
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _a : Dict = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) _a : Any = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) _a : int = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _a : List[str] = yaml.safe_dump(UpperCamelCase__ ) _a : Optional[int] = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = DatasetInfo() _a : Any = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) _a : List[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _a : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _a : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
324
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class UpperCamelCase ( snake_case_ ): UpperCamelCase : str = '''switch_transformers''' UpperCamelCase : Union[str, Any] = ['''past_key_values'''] UpperCamelCase : Tuple = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int]=32128 , UpperCAmelCase__ : Tuple=768 , UpperCAmelCase__ : int=64 , UpperCAmelCase__ : List[Any]=2048 , UpperCAmelCase__ : Any=64 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Tuple=12 , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : Any=12 , UpperCAmelCase__ : Union[str, Any]=8 , UpperCAmelCase__ : str=False , UpperCAmelCase__ : str=0.0_1 , UpperCAmelCase__ : Union[str, Any]="float32" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Any=32 , UpperCAmelCase__ : Any=128 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : List[str]=1E-6 , UpperCAmelCase__ : Dict=0.0_0_1 , UpperCAmelCase__ : int=0.0_0_1 , UpperCAmelCase__ : Union[str, Any]=1.0 , UpperCAmelCase__ : Optional[Any]="relu" , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : str=1 , **UpperCAmelCase__ : List[Any] , ) -> Union[str, Any]: _a : List[str] = vocab_size _a : List[str] = d_model _a : str = d_kv _a : Tuple = d_ff _a : List[str] = num_sparse_encoder_layers _a : int = num_layers _a : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _a : Dict = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _a : Dict = self.num_layers // self.num_sparse_encoder_layers else: _a : Optional[int] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _a : Optional[int] = self.num_decoder_layers // self.num_sparse_decoder_layers else: _a : str = self.num_decoder_layers # HACK: this will create 0 sparse layers _a : str = num_heads _a : Any = num_experts _a : List[Any] = expert_capacity _a : Dict = router_bias _a : Dict = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) _a : List[Any] = router_dtype _a : Optional[Any] = router_ignore_padding_tokens _a : Union[str, Any] = relative_attention_num_buckets _a : Any = relative_attention_max_distance _a : Any = dropout_rate _a : Tuple = layer_norm_epsilon _a : List[Any] = initializer_factor _a : Optional[Any] = feed_forward_proj _a : Optional[Any] = use_cache _a : List[str] = add_router_probs _a : Any = router_z_loss_coef _a : List[Any] = router_aux_loss_coef _a : Optional[Any] = self.feed_forward_proj.split("""-""" ) _a : Any = act_info[-1] _a : Any = act_info[0] == """gated""" if len(UpperCAmelCase__ ) > 1 and act_info[0] != "gated" or len(UpperCAmelCase__ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _a : Tuple = """gelu_new""" super().__init__( pad_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__ , )
360
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase ( unittest.TestCase , snake_case_ ): def _lowercase ( self : int ) -> int: _a : Optional[Any] = load_tool("""text-to-speech""" ) self.tool.setup() def _lowercase ( self : List[str] ) -> Union[str, Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : str = self.tool("""hey""" ) _a : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : int = self.tool("""hey""" ) _a : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
324
0
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _snake_case = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _a : Tuple = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _a : int = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) else: _a : Tuple = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _a : Any = ProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) _a : List[Any] = ["""key_proj""", """value_proj""", """query_proj"""] _a : Tuple = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _a : Dict = key.split(""".""" ) if attributes[0] == "lm_head": _a : Any = prophet _a : Tuple = prophet_old else: _a : Any = prophet.prophetnet _a : int = prophet_old.model _a : List[Any] = False for attribute in attributes: if attribute in mapping: _a : Any = mapping[attribute] if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0: _a : str = attribute elif hasattr(UpperCamelCase__ , UpperCamelCase__ ): _a : str = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _a : Tuple = old_model.weight logger.info(F"""{attribute} is initialized.""" ) _a : Tuple = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _a : Union[str, Any] = old_model.bias logger.info(F"""{attribute} is initialized""" ) _a : Optional[int] = True break elif attribute in special_keys and hasattr(UpperCamelCase__ , """in_proj_weight""" ): _a : Optional[int] = old_model.in_proj_weight.shape[0] // 3 _a : List[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _a : Optional[int] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _a : List[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _a : Dict = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _a : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _a : Dict = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _a : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _a : List[str] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_1_2, "We want 512 position_embeddings." _a : List[Any] = nn.Parameter(old_model.embed_positions.weight[:5_1_2, :] ) _a : Dict = True break if attribute.isdigit(): _a : Optional[Any] = model[int(UpperCamelCase__ )] _a : Dict = old_model[int(UpperCamelCase__ )] else: _a : List[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_attribute == "": _a : List[Any] = old_model else: if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError(F"""{old_model} does not have {old_attribute}""" ) _a : List[str] = getattr(UpperCamelCase__ , UpperCamelCase__ ) if not is_key_init: raise ValueError(F"""{key} was not correctly initialized!""" ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
361
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str ) -> int: _a : str = parent _a : Union[str, Any] = config_class _a : List[Any] = has_text_modality _a : List[Any] = kwargs _a : List[Any] = common_properties def _lowercase ( self : int ) -> Tuple: _a : List[str] = self.config_class(**self.inputs_dict ) _a : Dict = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase__ ): try: setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase__ ): try: _a : Optional[int] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) _a : List[str] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase__ ) def _lowercase ( self : int ) -> List[str]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = os.path.join(UpperCAmelCase__ , """config.json""" ) config_first.to_json_file(UpperCAmelCase__ ) _a : List[str] = self.config_class.from_json_file(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Union[str, Any] ) -> Dict: _a : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase__ ) _a : Dict = self.config_class.from_pretrained(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Dict ) -> Tuple: _a : List[Any] = self.config_class(**self.inputs_dict ) _a : Any = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _a : List[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) config_first.save_pretrained(UpperCAmelCase__ ) _a : List[Any] = self.config_class.from_pretrained(UpperCAmelCase__ , subfolder=UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _a : Union[str, Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Tuple ) -> List[str]: if self.config_class.is_composition: return _a : str = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Dict = copy.deepcopy(UpperCAmelCase__ ) _a : Any = self.config_class(**UpperCAmelCase__ ) _a : str = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase__ , UpperCAmelCase__ ) != value: wrong_values.append((key, getattr(UpperCAmelCase__ , UpperCAmelCase__ ), value) ) if len(UpperCAmelCase__ ) > 0: _a : List[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowercase ( self : int ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
324
0
"""simple docstring""" from copy import deepcopy class UpperCamelCase : def __init__( self : int , UpperCAmelCase__ : list[int] | None = None , UpperCAmelCase__ : int | None = None ) -> None: if arr is None and size is not None: _a : Dict = size _a : Tuple = [0] * size elif arr is not None: self.init(UpperCAmelCase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def _lowercase ( self : Tuple , UpperCAmelCase__ : list[int] ) -> None: _a : Optional[int] = len(UpperCAmelCase__ ) _a : int = deepcopy(UpperCAmelCase__ ) for i in range(1 , self.size ): _a : str = self.next_(UpperCAmelCase__ ) if j < self.size: self.tree[j] += self.tree[i] def _lowercase ( self : Optional[Any] ) -> list[int]: _a : int = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): _a : Optional[int] = self.next_(UpperCAmelCase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _lowercase ( UpperCAmelCase__ : int ) -> int: return index + (index & (-index)) @staticmethod def _lowercase ( UpperCAmelCase__ : int ) -> int: return index - (index & (-index)) def _lowercase ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value _a : List[str] = self.next_(UpperCAmelCase__ ) def _lowercase ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> None: self.add(UpperCAmelCase__ , value - self.get(UpperCAmelCase__ ) ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : int ) -> int: if right == 0: return 0 _a : int = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] _a : Union[str, Any] = self.prev(UpperCAmelCase__ ) return result def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: return self.prefix(UpperCAmelCase__ ) - self.prefix(UpperCAmelCase__ ) def _lowercase ( self : int , UpperCAmelCase__ : int ) -> int: return self.query(UpperCAmelCase__ , index + 1 ) def _lowercase ( self : Tuple , UpperCAmelCase__ : int ) -> int: value -= self.tree[0] if value < 0: return -1 _a : Any = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 _a : str = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
324
0
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCamelCase ( unittest.TestCase ): UpperCamelCase : Optional[Any] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING UpperCamelCase : List[str] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def _lowercase ( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Any ) -> Optional[Any]: _a : Optional[Any] = AudioClassificationPipeline(model=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) # test with a raw waveform _a : Tuple = np.zeros((34000,) ) _a : Optional[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def _lowercase ( self : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] ) -> int: _a : Union[str, Any] = examples _a : Optional[Any] = audio_classifier(UpperCAmelCase__ ) # by default a model is initialized with num_labels=2 self.assertEqual( UpperCAmelCase__ , [ {"""score""": ANY(UpperCAmelCase__ ), """label""": ANY(UpperCAmelCase__ )}, {"""score""": ANY(UpperCAmelCase__ ), """label""": ANY(UpperCAmelCase__ )}, ] , ) _a : List[str] = audio_classifier(UpperCAmelCase__ , top_k=1 ) self.assertEqual( UpperCAmelCase__ , [ {"""score""": ANY(UpperCAmelCase__ ), """label""": ANY(UpperCAmelCase__ )}, ] , ) self.run_torchaudio(UpperCAmelCase__ ) @require_torchaudio def _lowercase ( self : str , UpperCAmelCase__ : List[str] ) -> List[Any]: import datasets # test with a local file _a : Any = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _a : int = dataset[0]["""audio"""]["""array"""] _a : List[Any] = audio_classifier(UpperCAmelCase__ ) self.assertEqual( UpperCAmelCase__ , [ {"""score""": ANY(UpperCAmelCase__ ), """label""": ANY(UpperCAmelCase__ )}, {"""score""": ANY(UpperCAmelCase__ ), """label""": ANY(UpperCAmelCase__ )}, ] , ) @require_torch def _lowercase ( self : Tuple ) -> Any: _a : str = """anton-l/wav2vec2-random-tiny-classifier""" _a : str = pipeline("""audio-classification""" , model=UpperCAmelCase__ ) _a : Optional[int] = np.ones((8000,) ) _a : Any = audio_classifier(UpperCAmelCase__ , top_k=4 ) _a : int = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _a : List[Any] = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(UpperCAmelCase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _a : Tuple = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _a : Tuple = audio_classifier(UpperCAmelCase__ , top_k=4 ) self.assertIn(nested_simplify(UpperCAmelCase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def _lowercase ( self : str ) -> List[Any]: import datasets _a : List[Any] = """superb/wav2vec2-base-superb-ks""" _a : List[str] = pipeline("""audio-classification""" , model=UpperCAmelCase__ ) _a : Optional[Any] = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _a : List[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _a : List[str] = audio_classifier(UpperCAmelCase__ , top_k=4 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def _lowercase ( self : Tuple ) -> Union[str, Any]: pass
363
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
324
0
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : Any=18 , UpperCAmelCase__ : List[str]=30 , UpperCAmelCase__ : Tuple=400 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[Any]=False , ) -> Optional[Any]: _a : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20} _a : int = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _a : Optional[int] = parent _a : int = batch_size _a : List[Any] = num_channels _a : Dict = image_size _a : Optional[Any] = min_resolution _a : Any = max_resolution _a : Dict = do_resize _a : Union[str, Any] = size _a : str = do_center_crop _a : Tuple = crop_size _a : int = do_normalize _a : Optional[Any] = image_mean _a : List[str] = image_std _a : int = do_reduce_labels def _lowercase ( self : Dict ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _a : Optional[int] = Image.open(dataset[0]["""file"""] ) _a : Tuple = Image.open(dataset[1]["""file"""] ) return image, map def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _a : List[Any] = Image.open(ds[0]["""file"""] ) _a : Tuple = Image.open(ds[1]["""file"""] ) _a : List[Any] = Image.open(ds[2]["""file"""] ) _a : List[Any] = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : List[str] = BeitImageProcessor if is_vision_available() else None def _lowercase ( self : Tuple ) -> Optional[Any]: _a : Union[str, Any] = BeitImageProcessingTester(self ) @property def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Dict ) -> Tuple: _a : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """center_crop""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """image_std""" ) ) def _lowercase ( self : Any ) -> Any: _a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase__ ) _a : List[str] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=UpperCAmelCase__ ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase__ ) def _lowercase ( self : List[str] ) -> int: pass def _lowercase ( self : Any ) -> Dict: # Initialize image_processing _a : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input _a : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : Dict = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self : Union[str, Any] ) -> Tuple: # Initialize image_processing _a : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input _a : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : int = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self : Optional[Any] ) -> List[str]: # Initialize image_processing _a : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input _a : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : Dict = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self : int ) -> Union[str, Any]: # Initialize image_processing _a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) _a : List[Any] = [] for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _a : int = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched _a : List[Any] = image_processing(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) _a : Optional[int] = prepare_semantic_single_inputs() _a : List[str] = image_processing(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) _a : Any = prepare_semantic_batch_inputs() _a : int = image_processing(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def _lowercase ( self : Optional[int] ) -> Dict: # Initialize image_processing _a : int = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _a : Union[str, Any] = prepare_semantic_single_inputs() _a : Union[str, Any] = image_processing(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) _a : List[str] = True _a : Union[str, Any] = image_processing(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
364
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] ) if ( min(UpperCamelCase__ , UpperCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a : Any = 0 count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
324
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _snake_case = random.Random() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=1.0 , UpperCamelCase__=None , UpperCamelCase__=None ): '''simple docstring''' if rng is None: _a : Union[str, Any] = global_rng _a : Optional[int] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase ( unittest.TestCase ): def __init__( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str=7 , UpperCAmelCase__ : Tuple=400 , UpperCAmelCase__ : List[str]=2000 , UpperCAmelCase__ : str=1 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : int=16000 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : str=True , ) -> Optional[int]: _a : Optional[int] = parent _a : Optional[int] = batch_size _a : str = min_seq_length _a : Union[str, Any] = max_seq_length _a : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a : Dict = feature_size _a : int = padding_value _a : Any = sampling_rate _a : str = return_attention_mask _a : Any = do_normalize def _lowercase ( self : Tuple ) -> Optional[Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase ( self : List[str] , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : Union[str, Any]=False ) -> str: def _flatten(UpperCAmelCase__ : str ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: _a : str = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _a : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a : Tuple = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : Tuple = WavaVecaFeatureExtractor def _lowercase ( self : Dict ) -> List[str]: _a : Tuple = WavaVecaFeatureExtractionTester(self ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Optional[int] ) -> Optional[int]: self.assertTrue(np.all(np.mean(UpperCAmelCase__ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase__ , axis=0 ) - 1 ) < 1E-3 ) ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _a : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _a : List[Any] = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input _a : Tuple = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values _a : str = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched _a : int = feat_extract(UpperCAmelCase__ , return_tensors="""np""" ).input_values _a : Optional[int] = feat_extract(UpperCAmelCase__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _a : Optional[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _a : int = np.asarray(UpperCAmelCase__ ) _a : Tuple = feat_extract(UpperCAmelCase__ , return_tensors="""np""" ).input_values _a : List[Any] = feat_extract(UpperCAmelCase__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def _lowercase ( self : Tuple ) -> Tuple: _a : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _a : Optional[Any] = ["""longest""", """max_length""", """do_not_pad"""] _a : Dict = [None, 1600, None] for max_length, padding in zip(UpperCAmelCase__ , UpperCAmelCase__ ): _a : Any = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors="""np""" ) _a : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowercase ( self : List[str] ) -> str: _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : List[str] = range(800 , 1400 , 200 ) _a : int = [floats_list((1, x) )[0] for x in lengths] _a : str = ["""longest""", """max_length""", """do_not_pad"""] _a : Optional[int] = [None, 1600, None] for max_length, padding in zip(UpperCAmelCase__ , UpperCAmelCase__ ): _a : List[Any] = feat_extract(UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding=UpperCAmelCase__ ) _a : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowercase ( self : int ) -> Dict: _a : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _a : Optional[Any] = feat_extract( UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=1000 , padding="""max_length""" , return_tensors="""np""" ) _a : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _a : Tuple = feat_extract( UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=1000 , padding="""longest""" , return_tensors="""np""" ) _a : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) _a : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _a : Optional[int] = feat_extract( UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=2000 , padding="""longest""" , return_tensors="""np""" ) _a : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def _lowercase ( self : str ) -> Optional[int]: import torch _a : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a : str = np.random.rand(100 ).astype(np.floataa ) _a : Optional[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _a : Tuple = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _a : Tuple = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def _lowercase ( self : Union[str, Any] ) -> Optional[int]: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: _a : Optional[Any] = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) _a : List[str] = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase__ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
365
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # initialize config if "resnet-50" in model_name: _a : Union[str, Any] = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: _a : str = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) _a : List[Any] = DetrConfig(use_timm_backbone=UpperCamelCase__ , backbone_config=UpperCamelCase__ ) # set label attributes _a : int = """panoptic""" in model_name if is_panoptic: _a : List[Any] = 2_5_0 else: _a : Optional[int] = 9_1 _a : Tuple = """huggingface/label-files""" _a : Dict = """coco-detection-id2label.json""" _a : Tuple = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Dict = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Optional[Any] = idalabel _a : int = {v: k for k, v in idalabel.items()} return config, is_panoptic def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = state_dict.pop(UpperCamelCase__ ) _a : str = val def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' _a : Union[str, Any] = """""" if is_panoptic: _a : Tuple = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _a : Tuple = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _a : Optional[int] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[:2_5_6, :] _a : int = in_proj_bias[:2_5_6] _a : str = in_proj_weight[2_5_6:5_1_2, :] _a : Tuple = in_proj_bias[2_5_6:5_1_2] _a : Optional[Any] = in_proj_weight[-2_5_6:, :] _a : int = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _a : List[str] = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) _a : Dict = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : int = in_proj_weight[:2_5_6, :] _a : Dict = in_proj_bias[:2_5_6] _a : Dict = in_proj_weight[2_5_6:5_1_2, :] _a : Union[str, Any] = in_proj_bias[2_5_6:5_1_2] _a : str = in_proj_weight[-2_5_6:, :] _a : Dict = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention _a : Tuple = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) _a : Union[str, Any] = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _a : Any = in_proj_weight_cross_attn[:2_5_6, :] _a : Any = in_proj_bias_cross_attn[:2_5_6] _a : Optional[Any] = in_proj_weight_cross_attn[2_5_6:5_1_2, :] _a : Optional[Any] = in_proj_bias_cross_attn[2_5_6:5_1_2] _a : List[str] = in_proj_weight_cross_attn[-2_5_6:, :] _a : str = in_proj_bias_cross_attn[-2_5_6:] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _a : Any = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=False ): '''simple docstring''' _a : Tuple = get_detr_config(UpperCamelCase__ ) # load original model from torch hub _a : Dict = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F"""Converting model {model_name}...""" ) _a : List[Any] = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=UpperCamelCase__ ).eval() _a : int = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCamelCase__ ): if is_panoptic: _a : Optional[Any] = """detr.""" + src rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase__ , is_panoptic=UpperCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _a : List[str] = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _a : str = state_dict.pop(UpperCamelCase__ ) _a : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _a : Union[str, Any] = state_dict.pop(UpperCamelCase__ ) _a : Dict = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _a : Dict = state_dict.pop(UpperCamelCase__ ) _a : Any = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _a : Dict = state_dict.pop(UpperCamelCase__ ) _a : Union[str, Any] = val # finally, create HuggingFace model and load state dict _a : List[Any] = DetrForSegmentation(UpperCamelCase__ ) if is_panoptic else DetrForObjectDetection(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # verify our conversion on an image _a : Optional[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" _a : int = DetrImageProcessor(format=UpperCamelCase__ ) _a : int = processor(images=prepare_img() , return_tensors="""pt""" ) _a : Dict = encoding["""pixel_values"""] _a : Union[str, Any] = detr(UpperCamelCase__ ) _a : Union[str, Any] = model(UpperCamelCase__ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') _snake_case = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
366
"""simple docstring""" from __future__ import annotations import time _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]: _a : int = pos_x _a : Union[str, Any] = pos_y _a : Tuple = (pos_y, pos_x) _a : Tuple = goal_x _a : int = goal_y _a : str = parent class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]: _a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : Optional[int] = [self.start] _a : Tuple = False def _lowercase ( self : str ) -> Path | None: while self.node_queue: _a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : Dict = True return self.retrace_path(UpperCAmelCase__ ) _a : Tuple = self.get_successors(UpperCAmelCase__ ) for node in successors: self.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]: _a : Optional[Any] = [] for action in delta: _a : str = parent.pos_x + action[1] _a : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) ) return successors def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path: _a : Dict = node _a : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : Any = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False def _lowercase ( self : Any ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[int] = True return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = current_bwd_node _a : int = current_fwd_node _a : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path: _a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ ) _a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _a : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = BreadthFirstSearch(init, goal) _snake_case = bfs.search() _snake_case = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _snake_case = time.time() _snake_case = BidirectionalBreadthFirstSearch(init, goal) _snake_case = bd_bfs.search() _snake_case = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
324
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if not nums: return 0 _a : List[str] = nums[0] _a : Any = 0 for num in nums[1:]: _a : Tuple = ( max_excluding + num, max(UpperCamelCase__ , UpperCamelCase__ ), ) return max(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCamelCase : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) UpperCamelCase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCamelCase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ): '''simple docstring''' def _dataset(UpperCamelCase__ , UpperCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCAmelCase__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _a : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: _a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: _a : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) _a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: _a : int = tokenizer.max_len # Our input block size will be the max possible for the model else: _a : Optional[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets _a : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _a : Optional[int] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _a : Any = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _a : Union[str, Any] = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: _a : str = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _a : Union[str, Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: _a : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : int = trainer.evaluate() _a : Dict = math.exp(eval_output["""eval_loss"""] ) _a : Union[str, Any] = {"""perplexity""": perplexity} _a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
324
0
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase ( unittest.TestCase , snake_case_ ): def _lowercase ( self : int ) -> int: _a : Optional[Any] = load_tool("""text-to-speech""" ) self.tool.setup() def _lowercase ( self : List[str] ) -> Union[str, Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : str = self.tool("""hey""" ) _a : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : int = self.tool("""hey""" ) _a : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
368
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _snake_case = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ ) return k def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase__ ) _a : Optional[Any] = PegasusConfig(**UpperCamelCase__ ) _a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ ) _a : str = torch_model.model.state_dict() _a : Union[str, Any] = {} for k, v in tf_weights.items(): _a : Any = rename_state_dict_key(UpperCamelCase__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _a : str = v.T _a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _a : str = mapping["""shared.weight"""] _a : Union[str, Any] = mapping["""shared.weight"""] _a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCamelCase__ ) _a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _a : Optional[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _a : List[Any] = tf.train.list_variables(UpperCamelCase__ ) _a : Optional[int] = {} _a : Dict = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ): _a : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) _a : int = array return tf_weights def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # save tokenizer first _a : Dict = Path(UpperCamelCase__ ).parent.name _a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] _a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase__ ) # convert model _a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ ) _a : Dict = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": _a : Tuple = task_specific_params _a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ ) torch_model.save_pretrained(UpperCamelCase__ ) _a : Dict = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() if args.save_dir is None: _snake_case = Path(args.tf_ckpt_path).parent.name _snake_case = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
324
0
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = word.split() def justify(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: _a : Optional[int] = max_width - width _a : Tuple = len(UpperCamelCase__ ) if len(UpperCamelCase__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _a : List[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _a : Optional[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _a : Any = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCamelCase__ ): num_spaces_between_words_list[i] += 1 _a : Any = [] for i in range(UpperCamelCase__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCamelCase__ ) _a : Union[str, Any] = [] _a : list[str] = [] _a : Dict = 0 for word in words: if width + len(UpperCamelCase__ ) + len(UpperCamelCase__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCamelCase__ ) width += len(UpperCamelCase__ ) else: # justify the line and add it to result answer.append(justify(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) # reset new line and new width _a : List[Any] = [word], len(UpperCamelCase__ ) _a : Dict = max_width - width - len(UpperCamelCase__ ) answer.append(""" """.join(UpperCamelCase__ ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
369
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _snake_case = logging.get_logger(__name__) _snake_case = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class UpperCamelCase : def __init__( self : Dict , UpperCAmelCase__ : List[Any]=None , **UpperCAmelCase__ : int ) -> str: logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) _a : Optional[Any] = model _a : List[Any] = kwargs.get("""model_save_dir""" , UpperCAmelCase__ ) _a : List[str] = kwargs.get("""latest_model_name""" , UpperCAmelCase__ ) def __call__( self : Optional[int] , **UpperCAmelCase__ : List[Any] ) -> Optional[Any]: _a : str = {k: np.array(UpperCAmelCase__ ) for k, v in kwargs.items()} return self.model.run(UpperCAmelCase__ , UpperCAmelCase__ ) @staticmethod def _lowercase ( UpperCAmelCase__ : Union[str, Path] , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[Any]=None ) -> Tuple: if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) _a : Any = """CPUExecutionProvider""" return ort.InferenceSession(UpperCAmelCase__ , providers=[provider] , sess_options=UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Union[str, Path] , UpperCAmelCase__ : Optional[str] = None , **UpperCAmelCase__ : Optional[Any] ) -> int: _a : Union[str, Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME _a : List[Any] = self.model_save_dir.joinpath(self.latest_model_name ) _a : Any = Path(UpperCAmelCase__ ).joinpath(UpperCAmelCase__ ) try: shutil.copyfile(UpperCAmelCase__ , UpperCAmelCase__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _a : List[Any] = self.model_save_dir.joinpath(UpperCAmelCase__ ) if src_path.exists(): _a : str = Path(UpperCAmelCase__ ).joinpath(UpperCAmelCase__ ) try: shutil.copyfile(UpperCAmelCase__ , UpperCAmelCase__ ) except shutil.SameFileError: pass def _lowercase ( self : Tuple , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : str , ) -> Tuple: if os.path.isfile(UpperCAmelCase__ ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) # saving model weights/files self._save_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) @classmethod def _lowercase ( cls : Any , UpperCAmelCase__ : Union[str, Path] , UpperCAmelCase__ : Optional[Union[bool, str, None]] = None , UpperCAmelCase__ : Optional[Union[str, None]] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional["ort.SessionOptions"] = None , **UpperCAmelCase__ : Optional[Any] , ) -> Tuple: _a : Dict = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCAmelCase__ ): _a : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , provider=UpperCAmelCase__ , sess_options=UpperCAmelCase__ ) _a : Optional[int] = Path(UpperCAmelCase__ ) # load model from hub else: # download model _a : Union[str, Any] = hf_hub_download( repo_id=UpperCAmelCase__ , filename=UpperCAmelCase__ , use_auth_token=UpperCAmelCase__ , revision=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , force_download=UpperCAmelCase__ , ) _a : Optional[int] = Path(UpperCAmelCase__ ).parent _a : Union[str, Any] = Path(UpperCAmelCase__ ).name _a : int = OnnxRuntimeModel.load_model(UpperCAmelCase__ , provider=UpperCAmelCase__ , sess_options=UpperCAmelCase__ ) return cls(model=UpperCAmelCase__ , **UpperCAmelCase__ ) @classmethod def _lowercase ( cls : Tuple , UpperCAmelCase__ : Union[str, Path] , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , **UpperCAmelCase__ : Union[str, Any] , ) -> str: _a : str = None if len(str(UpperCAmelCase__ ).split("""@""" ) ) == 2: _a : List[str] = model_id.split("""@""" ) return cls._from_pretrained( model_id=UpperCAmelCase__ , revision=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , force_download=UpperCAmelCase__ , use_auth_token=UpperCAmelCase__ , **UpperCAmelCase__ , )
370
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ ) UpperCamelCase : list = field(default_factory=snake_case_ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any: _a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self : Optional[int] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : nn.Module UpperCamelCase : int = 0 UpperCamelCase : List = field(default_factory=snake_case_ ) UpperCamelCase : List = field(default_factory=snake_case_ ) def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple: _a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized _a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized _a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) ) _a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while""" f""" destination module has {len(UpperCAmelCase__ )}.""" ) for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): _a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() _a : str = ResNetForImageClassification(UpperCamelCase__ ).eval() _a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) _a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." _a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one _a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , ) print(F"""Pushed {checkpoint_name}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' _a : Any = """imagenet-1k-id2label.json""" _a : Optional[int] = 1_0_0_0 _a : Any = (1, num_labels) _a : Union[str, Any] = """huggingface/label-files""" _a : Tuple = num_labels _a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Any = idalabel _a : Tuple = {v: k for k, v in idalabel.items()} _a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) _a : Union[str, Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
324
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['MobileViTFeatureExtractor'] _snake_case = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
324
0
"""simple docstring""" import math import sys def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if number != int(UpperCamelCase__ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 _a : Optional[Any] = [-1] * (number + 1) _a : Tuple = 0 for i in range(1 , number + 1 ): _a : List[str] = sys.maxsize _a : Optional[Any] = int(math.sqrt(UpperCamelCase__ ) ) for j in range(1 , root + 1 ): _a : Union[str, Any] = 1 + answers[i - (j**2)] _a : Dict = min(UpperCamelCase__ , UpperCamelCase__ ) _a : Tuple = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" _snake_case = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
324
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[str] = '''transfo-xl''' UpperCamelCase : Optional[int] = ['''mems'''] UpperCamelCase : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Dict , UpperCAmelCase__ : int=267735 , UpperCAmelCase__ : Union[str, Any]=[20000, 40000, 200000] , UpperCAmelCase__ : Union[str, Any]=1024 , UpperCAmelCase__ : Optional[Any]=1024 , UpperCAmelCase__ : Optional[int]=16 , UpperCAmelCase__ : Any=64 , UpperCAmelCase__ : Optional[int]=4096 , UpperCAmelCase__ : str=4 , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : str=18 , UpperCAmelCase__ : str=1600 , UpperCAmelCase__ : Any=1000 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : List[str]=0 , UpperCAmelCase__ : Union[str, Any]=-1 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Any="normal" , UpperCAmelCase__ : Union[str, Any]=0.0_1 , UpperCAmelCase__ : Any=0.0_1 , UpperCAmelCase__ : str=0.0_2 , UpperCAmelCase__ : Tuple=1E-5 , UpperCAmelCase__ : Tuple=0 , **UpperCAmelCase__ : str , ) -> List[str]: _a : str = vocab_size _a : Dict = [] self.cutoffs.extend(UpperCAmelCase__ ) if proj_share_all_but_first: _a : Tuple = [False] + [True] * len(self.cutoffs ) else: _a : Tuple = [False] + [False] * len(self.cutoffs ) _a : Optional[int] = d_model _a : str = d_embed _a : Optional[Any] = d_head _a : int = d_inner _a : Optional[Any] = div_val _a : Optional[Any] = pre_lnorm _a : Any = n_layer _a : Optional[Any] = n_head _a : Optional[Any] = mem_len _a : Optional[int] = same_length _a : Union[str, Any] = attn_type _a : Any = clamp_len _a : Any = sample_softmax _a : Optional[Any] = adaptive _a : List[Any] = dropout _a : Optional[Any] = dropatt _a : List[Any] = untie_r _a : str = init _a : Any = init_range _a : Dict = proj_init_std _a : Optional[Any] = init_std _a : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) @property def _lowercase ( self : str ) -> Dict: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _lowercase ( self : List[str] , UpperCAmelCase__ : Any ) -> Any: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
351
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _snake_case = logging.getLogger(__name__) _snake_case = 'pytorch_model.bin' @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The name of the task to train on.'''} , ) UpperCamelCase : Optional[List[str]] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class UpperCamelCase : UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) UpperCamelCase : Optional[bool] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) UpperCamelCase : Optional[int] = dataclasses.field( default=snake_case_ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _a : Union[str, Any] = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _a : Any = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) _a : str = dataset.sort("""probability""" , reverse=UpperCamelCase__ ) _a : Any = dataset.select(range(UpperCamelCase__ ) ) _a : Tuple = dataset.remove_columns(["""label""", """probability"""] ) _a : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) _a : Dict = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) _a : Union[str, Any] = dataset.shuffle(seed=args.seed ) _a : Optional[int] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _a : Dict = STModelArguments(model_name_or_path=UpperCamelCase__ ) _a : Union[str, Any] = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) _a : Any = STTrainingArguments(output_dir=UpperCamelCase__ ) _a : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks _a : Union[str, Any] = {} _a : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _a : int = args.train_file _a : List[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _a : Union[str, Any] = args.eval_file for key in data_files: _a : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _a : str = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _a : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format _a : Dict = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() _a : str = None _a : int = None _a : str = 0 _a : List[Any] = False # Show the progress bar _a : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _a : Union[str, Any] = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _a : str = os.path.join(UpperCamelCase__ , """stage-1""" ) _a : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) _a : int = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _a : Dict = os.path.join(UpperCamelCase__ , """best-checkpoint""" ) _a : List[str] = os.path.join(UpperCamelCase__ , """stage-2""" ) # Update arguments_dict _a : int = model_path _a : Dict = data_files["""train"""] _a : int = current_output_dir _a : Any = os.path.join(UpperCamelCase__ , """best-checkpoint""" , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , UpperCamelCase__ ) _a : List[Any] = iteration _a : int = data_dir_format(iteration + 1 ) _a : Dict = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , """best-checkpoint""" ) ) _a : Union[str, Any] = config.idalabel _a : Any = os.path.join(UpperCamelCase__ , """eval_results_best-checkpoint.json""" ) _a : Any = os.path.join(UpperCamelCase__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , """r""" ) as f: _a : Tuple = float(json.load(UpperCamelCase__ )[args.eval_metric] ) _a : Dict = os.path.join(UpperCamelCase__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. _a : List[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _a : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() _a : List[str] = os.path.join(UpperCamelCase__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _a : Any = eval_result if best_iteration is None: _a : Union[str, Any] = new_iteration _a : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _a : Union[str, Any] = new_iteration _a : List[str] = new_eval_result _a : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _a : Tuple = new_iteration _a : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _a : Union[str, Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , UpperCamelCase__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(UpperCamelCase__ , """eval_results_best-iteration.json""" ) , )
324
0
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _snake_case = logging.get_logger(__name__) # General docstring _snake_case = 'ResNetConfig' # Base docstring _snake_case = 'microsoft/resnet-50' _snake_case = [1, 2048, 7, 7] # Image classification docstring _snake_case = 'microsoft/resnet-50' _snake_case = 'tiger cat' _snake_case = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase ( nn.Module ): def __init__( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : str = "relu" ) -> Any: super().__init__() _a : Union[str, Any] = nn.Convad( UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=UpperCAmelCase__ , stride=UpperCAmelCase__ , padding=kernel_size // 2 , bias=UpperCAmelCase__ ) _a : Union[str, Any] = nn.BatchNormad(UpperCAmelCase__ ) _a : int = ACTaFN[activation] if activation is not None else nn.Identity() def _lowercase ( self : Any , UpperCAmelCase__ : Tensor ) -> Tensor: _a : Dict = self.convolution(UpperCAmelCase__ ) _a : Optional[int] = self.normalization(UpperCAmelCase__ ) _a : Optional[int] = self.activation(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self : int , UpperCAmelCase__ : ResNetConfig ) -> Optional[int]: super().__init__() _a : List[str] = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _a : List[str] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _a : int = config.num_channels def _lowercase ( self : List[Any] , UpperCAmelCase__ : Tensor ) -> Tensor: _a : Optional[int] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) _a : List[Any] = self.embedder(UpperCAmelCase__ ) _a : Union[str, Any] = self.pooler(UpperCAmelCase__ ) return embedding class UpperCamelCase ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 2 ) -> List[str]: super().__init__() _a : Tuple = nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , stride=UpperCAmelCase__ , bias=UpperCAmelCase__ ) _a : List[Any] = nn.BatchNormad(UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tensor: _a : Optional[Any] = self.convolution(UpperCAmelCase__ ) _a : Optional[Any] = self.normalization(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : str = "relu" ) -> Any: super().__init__() _a : List[str] = in_channels != out_channels or stride != 1 _a : Dict = ( ResNetShortCut(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _a : int = nn.Sequential( ResNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) , ResNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , activation=UpperCAmelCase__ ) , ) _a : List[Any] = ACTaFN[activation] def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]: _a : str = hidden_state _a : Tuple = self.layer(UpperCAmelCase__ ) _a : Union[str, Any] = self.shortcut(UpperCAmelCase__ ) hidden_state += residual _a : Optional[int] = self.activation(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : str = "relu" , UpperCAmelCase__ : int = 4 ) -> Optional[int]: super().__init__() _a : int = in_channels != out_channels or stride != 1 _a : Dict = out_channels // reduction _a : Optional[int] = ( ResNetShortCut(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _a : List[str] = nn.Sequential( ResNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) , ResNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=UpperCAmelCase__ ) , ) _a : Optional[Any] = ACTaFN[activation] def _lowercase ( self : Tuple , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: _a : Optional[int] = hidden_state _a : Tuple = self.layer(UpperCAmelCase__ ) _a : Optional[Any] = self.shortcut(UpperCAmelCase__ ) hidden_state += residual _a : List[Any] = self.activation(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self : Any , UpperCAmelCase__ : ResNetConfig , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) -> List[str]: super().__init__() _a : Optional[Any] = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer _a : Any = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ , activation=config.hidden_act ) , *[layer(UpperCAmelCase__ , UpperCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _lowercase ( self : Any , UpperCAmelCase__ : Tensor ) -> Tensor: _a : int = input for layer in self.layers: _a : int = layer(UpperCAmelCase__ ) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self : Dict , UpperCAmelCase__ : ResNetConfig ) -> List[Any]: super().__init__() _a : List[str] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( UpperCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _a : Any = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(UpperCAmelCase__ , config.depths[1:] ): self.stages.append(ResNetStage(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , depth=UpperCAmelCase__ ) ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention: _a : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _a : int = hidden_states + (hidden_state,) _a : Optional[int] = stage_module(UpperCAmelCase__ ) if output_hidden_states: _a : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=UpperCAmelCase__ , hidden_states=UpperCAmelCase__ , ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[Any] = ResNetConfig UpperCamelCase : Tuple = '''resnet''' UpperCamelCase : Union[str, Any] = '''pixel_values''' UpperCamelCase : Any = True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Dict ) -> Optional[int]: if isinstance(UpperCAmelCase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(UpperCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]=False ) -> Optional[Any]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a : Tuple = value _snake_case = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _snake_case = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , snake_case_ , ) class UpperCamelCase ( snake_case_ ): def __init__( self : Tuple , UpperCAmelCase__ : Union[str, Any] ) -> Optional[Any]: super().__init__(UpperCAmelCase__ ) _a : Union[str, Any] = config _a : Optional[Any] = ResNetEmbeddings(UpperCAmelCase__ ) _a : Union[str, Any] = ResNetEncoder(UpperCAmelCase__ ) _a : Optional[int] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowercase ( self : Any , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: _a : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : Dict = return_dict if return_dict is not None else self.config.use_return_dict _a : Union[str, Any] = self.embedder(UpperCAmelCase__ ) _a : Dict = self.encoder( UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) _a : Union[str, Any] = encoder_outputs[0] _a : Any = self.pooler(UpperCAmelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase__ , pooler_output=UpperCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , snake_case_ , ) class UpperCamelCase ( snake_case_ ): def __init__( self : Optional[int] , UpperCAmelCase__ : Dict ) -> Dict: super().__init__(UpperCAmelCase__ ) _a : Union[str, Any] = config.num_labels _a : int = ResNetModel(UpperCAmelCase__ ) # classification head _a : Tuple = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[torch.LongTensor] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: _a : Dict = return_dict if return_dict is not None else self.config.use_return_dict _a : Union[str, Any] = self.resnet(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) _a : List[Any] = outputs.pooler_output if return_dict else outputs[1] _a : Any = self.classifier(UpperCAmelCase__ ) _a : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _a : Optional[int] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _a : Any = """single_label_classification""" else: _a : str = """multi_label_classification""" if self.config.problem_type == "regression": _a : Dict = MSELoss() if self.num_labels == 1: _a : Any = loss_fct(logits.squeeze() , labels.squeeze() ) else: _a : Optional[Any] = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config.problem_type == "single_label_classification": _a : Dict = CrossEntropyLoss() _a : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _a : Tuple = BCEWithLogitsLoss() _a : Tuple = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ ) if not return_dict: _a : str = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase__ , logits=UpperCAmelCase__ , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , snake_case_ , ) class UpperCamelCase ( snake_case_ , snake_case_ ): def __init__( self : Any , UpperCAmelCase__ : Optional[int] ) -> Tuple: super().__init__(UpperCAmelCase__ ) super()._init_backbone(UpperCAmelCase__ ) _a : Dict = [config.embedding_size] + config.hidden_sizes _a : List[str] = ResNetEmbeddings(UpperCAmelCase__ ) _a : Optional[Any] = ResNetEncoder(UpperCAmelCase__ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) @replace_return_docstrings(output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None ) -> BackboneOutput: _a : int = return_dict if return_dict is not None else self.config.use_return_dict _a : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : Any = self.embedder(UpperCAmelCase__ ) _a : Dict = self.encoder(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) _a : Union[str, Any] = outputs.hidden_states _a : Any = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _a : Dict = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=UpperCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCAmelCase__ , )
352
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _snake_case = { 'camembert-base': 512, } _snake_case = '▁' class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase : Optional[Any] = CamembertTokenizer def __init__( self : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase__ : Optional[Any] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) _a : int = vocab_file _a : int = False if not self.vocab_file else True def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[Any] = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[str] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
324
0
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # word like '180' or '身高' or '神' for char in word: _a : str = ord(UpperCamelCase__ ) if not _is_chinese_char(UpperCamelCase__ ): return 0 return 1 def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Any = set() for token in tokens: _a : List[str] = len(UpperCamelCase__ ) > 1 and is_chinese(UpperCamelCase__ ) if chinese_word: word_set.add(UpperCamelCase__ ) _a : Optional[int] = list(UpperCamelCase__ ) return word_list def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if not chinese_word_set: return bert_tokens _a : Union[str, Any] = max([len(UpperCamelCase__ ) for w in chinese_word_set] ) _a : Tuple = bert_tokens _a : List[str] = 0, len(UpperCamelCase__ ) while start < end: _a : Optional[Any] = True if is_chinese(bert_word[start] ): _a : List[Any] = min(end - start , UpperCamelCase__ ) for i in range(UpperCamelCase__ , 1 , -1 ): _a : Optional[Any] = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _a : Tuple = """##""" + bert_word[j] _a : Any = start + i _a : Tuple = False break if single_word: start += 1 return bert_word def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[Any] = [] for i in range(0 , len(UpperCamelCase__ ) , 1_0_0 ): _a : Optional[int] = ltp_tokenizer.seg(lines[i : i + 1_0_0] )[0] _a : Dict = [get_chinese_word(UpperCamelCase__ ) for r in res] ltp_res.extend(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) _a : Optional[Any] = [] for i in range(0 , len(UpperCamelCase__ ) , 1_0_0 ): _a : Optional[Any] = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=5_1_2 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) _a : int = [] for input_ids, chinese_word in zip(UpperCamelCase__ , UpperCamelCase__ ): _a : Any = [] for id in input_ids: _a : List[str] = bert_tokenizer._convert_id_to_token(UpperCamelCase__ ) input_tokens.append(UpperCamelCase__ ) _a : int = add_sub_symbol(UpperCamelCase__ , UpperCamelCase__ ) _a : Optional[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase__ ): if token[:2] == "##": _a : Dict = token[2:] # save chinese tokens' pos if len(UpperCamelCase__ ) == 1 and _is_chinese_char(ord(UpperCamelCase__ ) ): ref_id.append(UpperCamelCase__ ) ref_ids.append(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) return ref_ids def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: _a : Optional[Any] = f.readlines() _a : List[str] = [line.strip() for line in data if len(UpperCamelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a : int = LTP(args.ltp ) # faster in GPU device _a : Any = BertTokenizer.from_pretrained(args.bert ) _a : Union[str, Any] = prepare_ref(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: _a : int = [json.dumps(UpperCamelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCamelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') _snake_case = parser.parse_args() main(args)
353
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Dict = ['''pixel_values'''] def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[Any]=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : List[str] , ) -> None: _a : int = do_resize _a : Union[str, Any] = do_rescale _a : Any = size_divisor _a : Any = resample super().__init__(**UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[Any] ) -> np.ndarray: _a , _a : Tuple = get_image_size(UpperCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor _a : Optional[Any] = height // size_divisor * size_divisor _a : Union[str, Any] = width // size_divisor * size_divisor _a : Any = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) return image def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray: return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> BatchFeature: _a : Dict = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _a : str = size_divisor if size_divisor is not None else self.size_divisor _a : Any = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) _a : List[str] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. _a : Tuple = [to_numpy_array(UpperCAmelCase__ ) for img in images] if do_resize: _a : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: _a : str = [self.rescale(UpperCAmelCase__ , scale=1 / 255 ) for image in images] _a : Any = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
324
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = '''vision-encoder-decoder''' UpperCamelCase : List[Any] = True def __init__( self : List[Any] , **UpperCAmelCase__ : Optional[int] ) -> Any: super().__init__(**UpperCAmelCase__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) _a : List[str] = kwargs.pop("""encoder""" ) _a : Optional[int] = encoder_config.pop("""model_type""" ) _a : Optional[Any] = kwargs.pop("""decoder""" ) _a : List[Any] = decoder_config.pop("""model_type""" ) _a : int = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Optional[Any] = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Optional[Any] = True @classmethod def _lowercase ( cls : str , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Optional[Any] ) -> PretrainedConfig: logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _a : Optional[int] = True _a : List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> str: _a : List[str] = copy.deepcopy(self.__dict__ ) _a : Any = self.encoder.to_dict() _a : Union[str, Any] = self.decoder.to_dict() _a : Tuple = self.__class__.model_type return output class UpperCamelCase ( snake_case_ ): UpperCamelCase : Optional[int] = version.parse('''1.11''' ) @property def _lowercase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase ( self : Dict ) -> float: return 1E-4 @property def _lowercase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class UpperCamelCase ( snake_case_ ): @property def _lowercase ( self : Any ) -> Mapping[str, Mapping[int, str]]: _a : Optional[int] = OrderedDict() _a : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _a : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _a : Union[str, Any] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def _lowercase ( self : Optional[int] , UpperCAmelCase__ : "PreTrainedTokenizerBase" , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: import torch _a : int = OrderedDict() _a : Any = super().generate_dummy_inputs( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , is_pair=UpperCAmelCase__ , framework=UpperCAmelCase__ ) _a : List[Any] = dummy_input["""input_ids"""].shape _a : Tuple = (batch, encoder_sequence, self._config.encoder_hidden_size) _a : Optional[int] = dummy_input.pop("""input_ids""" ) _a : List[Any] = dummy_input.pop("""attention_mask""" ) _a : Tuple = torch.zeros(UpperCAmelCase__ ) return common_inputs class UpperCamelCase ( snake_case_ ): @property def _lowercase ( self : Optional[int] ) -> None: pass def _lowercase ( self : Any , UpperCAmelCase__ : PretrainedConfig ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(UpperCAmelCase__ ) def _lowercase ( self : int , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : str = "default" ) -> OnnxConfig: _a : str = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(UpperCAmelCase__ , UpperCAmelCase__ )
354
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
0
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
355
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
324
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
356
"""simple docstring""" import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
324
0
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _snake_case = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def lowerCAmelCase__ ( ): '''simple docstring''' _a : Any = argparse.ArgumentParser() parser.add_argument("""-f""" ) _a : Dict = parser.parse_args() return args.f def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__="eval" ): '''simple docstring''' _a : List[Any] = os.path.join(UpperCamelCase__ , F"""{split}_results.json""" ) if os.path.exists(UpperCamelCase__ ): with open(UpperCamelCase__ , """r""" ) as f: return json.load(UpperCamelCase__ ) raise ValueError(F"""can't find {path}""" ) _snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Optional[int] ) -> int: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): run_flax_glue.main() _a : Tuple = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) @slow def _lowercase ( self : Union[str, Any] ) -> int: _a : str = self.get_auto_remove_tmp_dir() _a : List[str] = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): run_clm_flax.main() _a : Union[str, Any] = get_results(UpperCAmelCase__ ) self.assertLess(result["""eval_perplexity"""] , 100 ) @slow def _lowercase ( self : str ) -> int: _a : Any = self.get_auto_remove_tmp_dir() _a : Tuple = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): run_summarization_flax.main() _a : Tuple = get_results(UpperCAmelCase__ , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 10 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def _lowercase ( self : Union[str, Any] ) -> Optional[int]: _a : Dict = self.get_auto_remove_tmp_dir() _a : Optional[Any] = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): run_mlm_flax.main() _a : Optional[int] = get_results(UpperCAmelCase__ ) self.assertLess(result["""eval_perplexity"""] , 42 ) @slow def _lowercase ( self : Any ) -> Optional[Any]: _a : int = self.get_auto_remove_tmp_dir() _a : Optional[Any] = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): run_ta_mlm_flax.main() _a : Optional[Any] = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.4_2 ) @slow def _lowercase ( self : Any ) -> Any: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Dict = 7 if get_gpu_count() > 1 else 2 _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : str = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): run_flax_ner.main() _a : Optional[Any] = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def _lowercase ( self : str ) -> int: _a : int = self.get_auto_remove_tmp_dir() _a : Optional[Any] = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(UpperCAmelCase__ , """argv""" , UpperCAmelCase__ ): run_qa.main() _a : Optional[Any] = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result["""eval_f1"""] , 30 ) self.assertGreaterEqual(result["""eval_exact"""] , 30 )
357
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') _snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _snake_case = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = CamembertTokenizer UpperCamelCase : List[Any] = CamembertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Union[str, Any] = True def _lowercase ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Tuple: _a : Optional[Any] = """<pad>""" _a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : List[str] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _a : Any = """I was born in 92000, and this is falsé.""" _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) _a : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : List[Any] = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _a : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
324
0
"""simple docstring""" from timeit import timeit _snake_case = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Any = 0 _a : Union[str, Any] = len(UpperCamelCase__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = len(UpperCamelCase__ ) // 2 _a : int = len(UpperCamelCase__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(UpperCamelCase__ ) ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if len(UpperCamelCase__ ) <= 2: return True if s[0] == s[len(UpperCamelCase__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return s == s[::-1] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = F"""all({name}(key) is value for key, value in test_data.items())""" _a : Optional[int] = F"""from __main__ import test_data, {name}""" _a : Dict = 5_0_0_0_0_0 _a : List[str] = timeit(stmt=UpperCamelCase__ , setup=UpperCamelCase__ , number=UpperCamelCase__ ) print(F"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F'''{key:21} {value}''') print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
358
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _snake_case = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _snake_case = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _snake_case = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a : Optional[int] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _a : List[Any] = collections.defaultdict(UpperCamelCase__ ) _a : List[str] = collections.defaultdict(UpperCamelCase__ ) _a : Tuple = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): _a : str = None if _re_tf_models.match(UpperCamelCase__ ) is not None: _a : List[Any] = tf_models _a : int = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: _a : Any = flax_models _a : Any = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: _a : int = pt_models _a : int = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: _a : Optional[int] = True break # Try again after removing the last word in the name _a : List[Any] = """""".join(camel_case_split(UpperCamelCase__ )[:-1] ) _a : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _a : Dict = list(UpperCamelCase__ ) all_models.sort() _a : str = {"""model_type""": all_models} _a : List[Any] = [pt_models[t] for t in all_models] _a : str = [tf_models[t] for t in all_models] _a : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _a : str = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _a : List[str] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _a : str = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _a : int = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _a : int = """AutoTokenizer""" _a : Any = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _a : List[Any] = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] _a : Union[str, Any] = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names _a : str = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = get_frameworks_table() _a : Optional[Any] = Dataset.from_pandas(UpperCamelCase__ ) _a : Any = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=UpperCamelCase__ ) _a : List[Any] = Dataset.from_json(UpperCamelCase__ ) _a : List[str] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(UpperCamelCase__ ) ) } _a : str = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _a : int = sorted(table.keys() ) _a : Union[str, Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) _a : Dict = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , """pipeline_tags.json""" ) ) if commit_sha is not None: _a : List[str] = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _a : Optional[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=UpperCamelCase__ , repo_type="""dataset""" , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _a : Any = transformers_module.pipelines.SUPPORTED_TASKS _a : List[str] = [] for key in pipeline_tasks: if key not in in_table: _a : Tuple = pipeline_tasks[key]["""pt"""] if isinstance(UpperCamelCase__ , (list, tuple) ): _a : Dict = model[0] _a : List[str] = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _a : Union[str, Any] = """, """.join(UpperCamelCase__ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _snake_case = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
324
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : int = 2 _a : List[str] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(UpperCamelCase__ ) if n > 1: factors.append(UpperCamelCase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _a : Dict = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) _a : Any = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) _a : int = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _a : List[str] = yaml.safe_dump(UpperCamelCase__ ) _a : Optional[int] = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = DatasetInfo() _a : Any = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) _a : List[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _a : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _a : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
324
0
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) _a : int = str(UpperCamelCase__ ) _a : str = """""".join(sorted(UpperCamelCase__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def lowerCAmelCase__ ( UpperCamelCase__ = 9_9 ): '''simple docstring''' if not 0 < percent < 1_0_0: raise ValueError("""solution() only accepts values from 0 to 100""" ) _a : List[str] = 0 _a : List[str] = 1 while True: if check_bouncy(UpperCamelCase__ ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
360
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase ( unittest.TestCase , snake_case_ ): def _lowercase ( self : int ) -> int: _a : Optional[Any] = load_tool("""text-to-speech""" ) self.tool.setup() def _lowercase ( self : List[str] ) -> Union[str, Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : str = self.tool("""hey""" ) _a : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _a : int = self.tool("""hey""" ) _a : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
324
0
"""simple docstring""" import argparse from collections import defaultdict import yaml _snake_case = 'docs/source/en/_toctree.yml' def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = defaultdict(UpperCamelCase__ ) _a : Optional[Any] = [] _a : str = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(UpperCamelCase__ ) _a : List[Any] = new_doc_list _a : Dict = [key for key, value in counts.items() if value > 1] _a : Any = [] for duplicate_key in duplicates: _a : Optional[int] = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(UpperCamelCase__ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) _a : Optional[Any] = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(UpperCamelCase__ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(UpperCamelCase__ ) # Sort return overview_doc def lowerCAmelCase__ ( UpperCamelCase__=False ): '''simple docstring''' with open(UpperCamelCase__ , encoding="""utf-8""" ) as f: _a : Dict = yaml.safe_load(f.read() ) # Get to the API doc _a : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : Optional[Any] = content[api_idx]["""sections"""] # Then to the model doc _a : str = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _a : List[Any] = api_doc[scheduler_idx]["""sections"""] _a : List[str] = clean_doc_toc(UpperCamelCase__ ) _a : Optional[int] = False if new_scheduler_doc != scheduler_doc: _a : List[str] = True if overwrite: _a : Tuple = new_scheduler_doc if diff: if overwrite: _a : Optional[int] = api_doc with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def lowerCAmelCase__ ( UpperCamelCase__=False ): '''simple docstring''' with open(UpperCamelCase__ , encoding="""utf-8""" ) as f: _a : Optional[int] = yaml.safe_load(f.read() ) # Get to the API doc _a : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : Any = content[api_idx]["""sections"""] # Then to the model doc _a : Tuple = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _a : Optional[int] = False _a : Dict = api_doc[pipeline_idx]["""sections"""] _a : List[str] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _a : Any = pipeline_doc["""section"""] _a : Tuple = clean_doc_toc(UpperCamelCase__ ) if overwrite: _a : Optional[int] = new_sub_pipeline_doc new_pipeline_docs.append(UpperCamelCase__ ) # sort overall pipeline doc _a : Optional[Any] = clean_doc_toc(UpperCamelCase__ ) if new_pipeline_docs != pipeline_docs: _a : Optional[int] = True if overwrite: _a : Optional[Any] = new_pipeline_docs if diff: if overwrite: _a : Any = api_doc with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _snake_case = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
361
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str ) -> int: _a : str = parent _a : Union[str, Any] = config_class _a : List[Any] = has_text_modality _a : List[Any] = kwargs _a : List[Any] = common_properties def _lowercase ( self : int ) -> Tuple: _a : List[str] = self.config_class(**self.inputs_dict ) _a : Dict = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase__ ): try: setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase__ ): try: _a : Optional[int] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) _a : List[str] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase__ ) def _lowercase ( self : int ) -> List[str]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = os.path.join(UpperCAmelCase__ , """config.json""" ) config_first.to_json_file(UpperCAmelCase__ ) _a : List[str] = self.config_class.from_json_file(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Union[str, Any] ) -> Dict: _a : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase__ ) _a : Dict = self.config_class.from_pretrained(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Dict ) -> Tuple: _a : List[Any] = self.config_class(**self.inputs_dict ) _a : Any = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _a : List[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) config_first.save_pretrained(UpperCAmelCase__ ) _a : List[Any] = self.config_class.from_pretrained(UpperCAmelCase__ , subfolder=UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _a : Union[str, Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Tuple ) -> List[str]: if self.config_class.is_composition: return _a : str = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Dict = copy.deepcopy(UpperCAmelCase__ ) _a : Any = self.config_class(**UpperCAmelCase__ ) _a : str = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase__ , UpperCAmelCase__ ) != value: wrong_values.append((key, getattr(UpperCAmelCase__ , UpperCAmelCase__ ), value) ) if len(UpperCAmelCase__ ) > 0: _a : List[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowercase ( self : int ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
324
0
"""simple docstring""" import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _snake_case = get_logger(__name__) class UpperCamelCase : def __init__( self : Tuple , UpperCAmelCase__ : Optional[str] = None ) -> Dict: _a : Dict = ( os.path.join(UpperCAmelCase__ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _a : Any = Extractor def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : str ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _a : Union[str, Any] = os.path.abspath(UpperCAmelCase__ ) return os.path.join(self.extract_dir , hash_url_to_filename(UpperCAmelCase__ ) ) def _lowercase ( self : int , UpperCAmelCase__ : str , UpperCAmelCase__ : bool ) -> bool: return force_extract or ( not os.path.isfile(UpperCAmelCase__ ) and not (os.path.isdir(UpperCAmelCase__ ) and os.listdir(UpperCAmelCase__ )) ) def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : bool = False ) -> str: _a : Optional[Any] = self.extractor.infer_extractor_format(UpperCAmelCase__ ) if not extractor_format: return input_path _a : Tuple = self._get_output_path(UpperCAmelCase__ ) if self._do_extract(UpperCAmelCase__ , UpperCAmelCase__ ): self.extractor.extract(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return output_path class UpperCamelCase ( snake_case_ ): @classmethod @abstractmethod def _lowercase ( cls : Any , UpperCAmelCase__ : Union[Path, str] , **UpperCAmelCase__ : List[Any] ) -> bool: ... @staticmethod @abstractmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: ... class UpperCamelCase ( snake_case_ , snake_case_ ): UpperCamelCase : List[bytes] = [] @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : int ) -> Union[str, Any]: with open(UpperCAmelCase__ , """rb""" ) as f: return f.read(UpperCAmelCase__ ) @classmethod def _lowercase ( cls : Dict , UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : bytes = b"" ) -> bool: if not magic_number: _a : Union[str, Any] = max(len(UpperCAmelCase__ ) for cls_magic_number in cls.magic_numbers ) try: _a : List[Any] = cls.read_magic_number(UpperCAmelCase__ , UpperCAmelCase__ ) except OSError: return False return any(magic_number.startswith(UpperCAmelCase__ ) for cls_magic_number in cls.magic_numbers ) class UpperCamelCase ( snake_case_ ): @classmethod def _lowercase ( cls : List[str] , UpperCAmelCase__ : Union[Path, str] , **UpperCAmelCase__ : Dict ) -> bool: return tarfile.is_tarfile(UpperCAmelCase__ ) @staticmethod def _lowercase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] ) -> str: def resolved(UpperCAmelCase__ : str ) -> str: return os.path.realpath(os.path.abspath(UpperCAmelCase__ ) ) def badpath(UpperCAmelCase__ : str , UpperCAmelCase__ : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ).startswith(UpperCAmelCase__ ) def badlink(UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str ) -> bool: # Links are interpreted relative to the directory containing the link _a : str = resolved(os.path.join(UpperCAmelCase__ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=UpperCAmelCase__ ) _a : Tuple = resolved(UpperCAmelCase__ ) for finfo in members: if badpath(finfo.name , UpperCAmelCase__ ): logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(UpperCAmelCase__ , UpperCAmelCase__ ): logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(UpperCAmelCase__ , UpperCAmelCase__ ): logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) _a : int = tarfile.open(UpperCAmelCase__ ) tar_file.extractall(UpperCAmelCase__ , members=TarExtractor.safemembers(UpperCAmelCase__ , UpperCAmelCase__ ) ) tar_file.close() class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = [b'''\x1F\x8B'''] @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: with gzip.open(UpperCAmelCase__ , """rb""" ) as gzip_file: with open(UpperCAmelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCAmelCase__ , UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = [ b'''PK\x03\x04''', b'''PK\x05\x06''', # empty archive b'''PK\x07\x08''', # spanned archive ] @classmethod def _lowercase ( cls : Any , UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : bytes = b"" ) -> bool: if super().is_extractable(UpperCAmelCase__ , magic_number=UpperCAmelCase__ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(UpperCAmelCase__ , """rb""" ) as fp: _a : Optional[Any] = _EndRecData(UpperCAmelCase__ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _a : str = fp.read(UpperCAmelCase__ ) # CD is where we expect it to be if len(UpperCAmelCase__ ) == sizeCentralDir: _a : str = struct.unpack(UpperCAmelCase__ , UpperCAmelCase__ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) with zipfile.ZipFile(UpperCAmelCase__ , """r""" ) as zip_file: zip_file.extractall(UpperCAmelCase__ ) zip_file.close() class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = [b'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: with lzma.open(UpperCAmelCase__ ) as compressed_file: with open(UpperCAmelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCAmelCase__ , UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[Any] = [b'''Rar!\x1a\x07\x00''', b'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) _a : Optional[int] = rarfile.RarFile(UpperCAmelCase__ ) rf.extractall(UpperCAmelCase__ ) rf.close() class UpperCamelCase ( snake_case_ ): UpperCamelCase : Optional[int] = [b'''\x28\xb5\x2F\xFD'''] @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd _a : Dict = zstd.ZstdDecompressor() with open(UpperCAmelCase__ , """rb""" ) as ifh, open(UpperCAmelCase__ , """wb""" ) as ofh: dctx.copy_stream(UpperCAmelCase__ , UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[str] = [b'''\x42\x5A\x68'''] @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: with bza.open(UpperCAmelCase__ , """rb""" ) as compressed_file: with open(UpperCAmelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCAmelCase__ , UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = [b'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) with pyazr.SevenZipFile(UpperCAmelCase__ , """r""" ) as archive: archive.extractall(UpperCAmelCase__ ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : Union[str, Any] = [b'''\x04\x22\x4D\x18'''] @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] ) -> None: if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(UpperCAmelCase__ , """rb""" ) as compressed_file: with open(UpperCAmelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCAmelCase__ , UpperCAmelCase__ ) class UpperCamelCase : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) UpperCamelCase : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _lowercase ( cls : Dict ) -> Union[str, Any]: return max( len(UpperCAmelCase__ ) for extractor in cls.extractors.values() if issubclass(UpperCAmelCase__ , UpperCAmelCase__ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _lowercase ( UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : int ) -> Union[str, Any]: try: return MagicNumberBaseExtractor.read_magic_number(UpperCAmelCase__ , magic_number_length=UpperCAmelCase__ ) except OSError: return b"" @classmethod def _lowercase ( cls : Any , UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : bool = False ) -> bool: warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=UpperCAmelCase__ , ) _a : Union[str, Any] = cls.infer_extractor_format(UpperCAmelCase__ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _lowercase ( cls : str , UpperCAmelCase__ : Union[Path, str] ) -> str: # <Added version="2.4.0"/> _a : Optional[int] = cls._get_magic_number_max_length() _a : List[Any] = cls._read_magic_number(UpperCAmelCase__ , UpperCAmelCase__ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(UpperCAmelCase__ , magic_number=UpperCAmelCase__ ): return extractor_format @classmethod def _lowercase ( cls : str , UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Union[Path, str] , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[BaseExtractor] = "deprecated" , ) -> None: os.makedirs(os.path.dirname(UpperCAmelCase__ ) , exist_ok=UpperCAmelCase__ ) # Prevent parallel extractions _a : Any = str(Path(UpperCAmelCase__ ).with_suffix(""".lock""" ) ) with FileLock(UpperCAmelCase__ ): shutil.rmtree(UpperCAmelCase__ , ignore_errors=UpperCAmelCase__ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=UpperCAmelCase__ , ) _a : Optional[int] = extractor if extractor != """deprecated""" else extractor_format else: _a : Optional[Any] = cls.extractors[extractor_format] return extractor.extract(UpperCAmelCase__ , UpperCAmelCase__ ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=UpperCAmelCase__ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(UpperCAmelCase__ ): return extractor.extract(UpperCAmelCase__ , UpperCAmelCase__ )
362
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
324
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _snake_case = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
363
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
324
0
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _snake_case = logging.get_logger(__name__) class UpperCamelCase : UpperCamelCase : Any = None @experimental def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return _map_with_joblib(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = num_proc if num_proc <= len(UpperCamelCase__ ) else len(UpperCamelCase__ ) _a : Optional[Any] = [] # We organize the splits ourselve (contiguous splits) for index in range(UpperCamelCase__ ): _a : Optional[int] = len(UpperCamelCase__ ) // num_proc _a : Any = len(UpperCamelCase__ ) % num_proc _a : Tuple = div * index + min(UpperCamelCase__ , UpperCamelCase__ ) _a : Optional[int] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(UpperCamelCase__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(UpperCamelCase__ )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(UpperCamelCase__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) _a : Any = None, None if not disable_tqdm: _a : Any = (RLock(),), tqdm.set_lock with Pool(UpperCamelCase__ , initargs=UpperCamelCase__ , initializer=UpperCamelCase__ ) as pool: _a : Optional[Any] = pool.map(UpperCamelCase__ , UpperCamelCase__ ) logger.info(F"""Finished {num_proc} processes""" ) _a : Optional[int] = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(UpperCamelCase__ )} objects""" ) return mapped def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=UpperCamelCase__ ): return joblib.Parallel()( joblib.delayed(UpperCamelCase__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : int = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _a : Optional[Any] = None
364
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] ) if ( min(UpperCamelCase__ , UpperCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a : Any = 0 count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
324
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): UpperCamelCase : int = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Dict[str, int]] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 255 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase__ : int , ) -> None: super().__init__(**UpperCAmelCase__ ) _a : Any = size if size is not None else {"""shortest_edge""": 256} _a : List[str] = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) _a : List[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _a : int = get_size_dict(UpperCAmelCase__ , param_name="""crop_size""" ) _a : Any = do_resize _a : Any = size _a : Union[str, Any] = resample _a : int = do_center_crop _a : Optional[Any] = crop_size _a : Optional[int] = do_rescale _a : List[str] = rescale_factor _a : Any = do_normalize _a : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Any , ) -> np.ndarray: _a : Optional[Any] = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _a : Union[str, Any] = get_resize_output_image_size(UpperCAmelCase__ , size=size["""shortest_edge"""] , default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Dict , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : int , ) -> np.ndarray: _a : List[Any] = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(UpperCAmelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Tuple ) -> np.ndarray: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Tuple , ) -> np.ndarray: return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[float] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase__ : Optional[Any] , ) -> int: _a : Tuple = do_resize if do_resize is not None else self.do_resize _a : Any = size if size is not None else self.size _a : int = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) _a : int = resample if resample is not None else self.resample _a : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _a : Union[str, Any] = crop_size if crop_size is not None else self.crop_size _a : Union[str, Any] = get_size_dict(UpperCAmelCase__ , param_name="""crop_size""" ) _a : Any = do_rescale if do_rescale is not None else self.do_rescale _a : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _a : Any = do_normalize if do_normalize is not None else self.do_normalize _a : Any = image_mean if image_mean is not None else self.image_mean _a : Optional[int] = image_std if image_std is not None else self.image_std _a : Dict = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _a : Dict = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: _a : Dict = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: _a : Optional[Any] = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: _a : Any = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: _a : Any = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] _a : int = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _a : Tuple = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Tuple] = None ) -> int: _a : List[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase__ ): _a : Optional[int] = target_sizes.numpy() _a : Optional[Any] = [] for idx in range(len(UpperCAmelCase__ ) ): _a : List[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=UpperCAmelCase__ ) _a : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase__ ) else: _a : List[str] = logits.argmax(dim=1 ) _a : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
365
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
0
_snake_case = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _snake_case = [{'type': 'code', 'content': INSTALL_CONTENT}] _snake_case = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
366
"""simple docstring""" from __future__ import annotations import time _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]: _a : int = pos_x _a : Union[str, Any] = pos_y _a : Tuple = (pos_y, pos_x) _a : Tuple = goal_x _a : int = goal_y _a : str = parent class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]: _a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : Optional[int] = [self.start] _a : Tuple = False def _lowercase ( self : str ) -> Path | None: while self.node_queue: _a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : Dict = True return self.retrace_path(UpperCAmelCase__ ) _a : Tuple = self.get_successors(UpperCAmelCase__ ) for node in successors: self.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]: _a : Optional[Any] = [] for action in delta: _a : str = parent.pos_x + action[1] _a : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) ) return successors def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path: _a : Dict = node _a : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : Any = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False def _lowercase ( self : Any ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[int] = True return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = current_bwd_node _a : int = current_fwd_node _a : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path: _a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ ) _a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _a : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = BreadthFirstSearch(init, goal) _snake_case = bfs.search() _snake_case = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _snake_case = time.time() _snake_case = BidirectionalBreadthFirstSearch(init, goal) _snake_case = bd_bfs.search() _snake_case = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
324
0
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _snake_case = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _snake_case = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def lowerCAmelCase__ ( ): '''simple docstring''' from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=1_0_0_0_0 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=1_0_0_0_0 , globals=globals() , ) ) benchmark()
367
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCamelCase : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) UpperCamelCase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCamelCase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ): '''simple docstring''' def _dataset(UpperCamelCase__ , UpperCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCAmelCase__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _a : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: _a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: _a : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) _a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: _a : int = tokenizer.max_len # Our input block size will be the max possible for the model else: _a : Optional[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets _a : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _a : Optional[int] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _a : Any = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _a : Union[str, Any] = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: _a : str = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _a : Union[str, Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: _a : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : int = trainer.evaluate() _a : Dict = math.exp(eval_output["""eval_loss"""] ) _a : Union[str, Any] = {"""perplexity""": perplexity} _a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
324
0
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = 0 while len(UpperCamelCase__ ) > 1: _a : Optional[int] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _a : Optional[int] = files.index(min(UpperCamelCase__ ) ) temp += files[min_index] files.pop(UpperCamelCase__ ) files.append(UpperCamelCase__ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
368
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _snake_case = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _a : Optional[Any] = k.replace(UpperCamelCase__ , UpperCamelCase__ ) return k def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase__ ) _a : Optional[Any] = PegasusConfig(**UpperCamelCase__ ) _a : Tuple = PegasusForConditionalGeneration(UpperCamelCase__ ) _a : str = torch_model.model.state_dict() _a : Union[str, Any] = {} for k, v in tf_weights.items(): _a : Any = rename_state_dict_key(UpperCamelCase__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: _a : str = v.T _a : int = torch.tensor(UpperCamelCase__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected _a : Union[str, Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _a : str = mapping["""shared.weight"""] _a : Union[str, Any] = mapping["""shared.weight"""] _a : Optional[Any] = {k: torch.zeros_like(UpperCamelCase__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCamelCase__ ) _a , _a : int = torch_model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) _a : Optional[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__ ( UpperCamelCase__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _a : List[Any] = tf.train.list_variables(UpperCamelCase__ ) _a : Optional[int] = {} _a : Dict = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ): _a : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _a : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) _a : int = array return tf_weights def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # save tokenizer first _a : Dict = Path(UpperCamelCase__ ).parent.name _a : Optional[Any] = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] _a : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase__ ) # convert model _a : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ ) _a : Dict = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": _a : Tuple = task_specific_params _a : Optional[int] = convert_pegasus(UpperCamelCase__ , UpperCamelCase__ ) torch_model.save_pretrained(UpperCamelCase__ ) _a : Dict = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCamelCase__ , Path(UpperCamelCase__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() if args.save_dir is None: _snake_case = Path(args.tf_ckpt_path).parent.name _snake_case = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
324
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['ConditionalDetrFeatureExtractor'] _snake_case = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
369
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
0
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _snake_case = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Tuple = list(s_dict.keys() ) for key in keys: _a : Dict = key for k, v in WHISPER_MAPPING.items(): if k in key: _a : Union[str, Any] = new_key.replace(UpperCamelCase__ , UpperCamelCase__ ) print(F"""{key} -> {new_key}""" ) _a : Dict = s_dict.pop(UpperCamelCase__ ) return s_dict def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : str = emb.weight.shape _a : Optional[int] = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) _a : int = emb.weight.data return lin_layer def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) _a : str = os.path.basename(UpperCamelCase__ ) _a : List[Any] = url.split("""/""" )[-2] _a : int = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ) and not os.path.isfile(UpperCamelCase__ ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(UpperCamelCase__ ): _a : Optional[Any] = open(UpperCamelCase__ , """rb""" ).read() if hashlib.shaaaa(UpperCamelCase__ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(UpperCamelCase__ ) as source, open(UpperCamelCase__ , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=8_0 , unit="""iB""" , unit_scale=UpperCamelCase__ , unit_divisor=1_0_2_4 ) as loop: while True: _a : List[str] = source.read(8_1_9_2 ) if not buffer: break output.write(UpperCamelCase__ ) loop.update(len(UpperCamelCase__ ) ) _a : List[str] = open(UpperCamelCase__ , """rb""" ).read() if hashlib.shaaaa(UpperCamelCase__ ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if ".pt" not in checkpoint_path: _a : Dict = _download(_MODELS[checkpoint_path] ) else: _a : Union[str, Any] = torch.load(UpperCamelCase__ , map_location="""cpu""" ) _a : Dict = original_checkpoint["""dims"""] _a : List[str] = original_checkpoint["""model_state_dict"""] _a : Any = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(UpperCamelCase__ ) rename_keys(UpperCamelCase__ ) _a : Optional[Any] = True _a : int = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] _a : List[Any] = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=UpperCamelCase__ , decoder_ffn_dim=UpperCamelCase__ , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) _a : List[Any] = WhisperForConditionalGeneration(UpperCamelCase__ ) _a : List[Any] = model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0 and not set(UpperCamelCase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F""" but all the following weights are missing {missing}""" ) if tie_embeds: _a : Union[str, Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _a : Union[str, Any] = proj_out_weights model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
370
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : List[nn.Module] = field(default_factory=snake_case_ ) UpperCamelCase : list = field(default_factory=snake_case_ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tensor , UpperCAmelCase__ : Tensor ) -> Any: _a : int = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : Tensor ) -> Tuple: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self : Optional[int] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : UpperCamelCase : nn.Module UpperCamelCase : nn.Module UpperCamelCase : int = 0 UpperCamelCase : List = field(default_factory=snake_case_ ) UpperCamelCase : List = field(default_factory=snake_case_ ) def __call__( self : Optional[Any] , UpperCAmelCase__ : Tensor ) -> Tuple: _a : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase__ ).parametrized _a : List[Any] = Tracker(self.src )(UpperCAmelCase__ ).parametrized _a : Tuple = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) ) _a : Union[str, Any] = list(filter(lambda UpperCAmelCase__ : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while""" f""" destination module has {len(UpperCAmelCase__ )}.""" ) for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): _a : List[str] = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() _a : str = ResNetForImageClassification(UpperCamelCase__ ).eval() _a : List[str] = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) _a : List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." _a : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one _a : Optional[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , ) print(F"""Pushed {checkpoint_name}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' _a : Any = """imagenet-1k-id2label.json""" _a : Optional[int] = 1_0_0_0 _a : Any = (1, num_labels) _a : Union[str, Any] = """huggingface/label-files""" _a : Tuple = num_labels _a : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) _a : Optional[Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _a : Any = idalabel _a : Tuple = {v: k for k, v in idalabel.items()} _a : List[str] = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) _a : Union[str, Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
324
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase ( snake_case_ , snake_case_ ): UpperCamelCase : Any = '''swin''' UpperCamelCase : Optional[Any] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Union[str, Any] , UpperCAmelCase__ : Optional[int]=224 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : Optional[Any]=96 , UpperCAmelCase__ : str=[2, 2, 6, 2] , UpperCAmelCase__ : Optional[Any]=[3, 6, 12, 24] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : List[Any]=4.0 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Dict=0.0 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : str=0.0_2 , UpperCAmelCase__ : Dict=1E-5 , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : int=None , **UpperCAmelCase__ : str , ) -> int: super().__init__(**UpperCAmelCase__ ) _a : Optional[int] = image_size _a : Tuple = patch_size _a : List[str] = num_channels _a : str = embed_dim _a : List[Any] = depths _a : List[Any] = len(UpperCAmelCase__ ) _a : List[str] = num_heads _a : List[Any] = window_size _a : str = mlp_ratio _a : List[Any] = qkv_bias _a : Tuple = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : List[str] = drop_path_rate _a : str = hidden_act _a : List[str] = use_absolute_embeddings _a : List[Any] = layer_norm_eps _a : Tuple = initializer_range _a : str = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a : str = int(embed_dim * 2 ** (len(UpperCAmelCase__ ) - 1) ) _a : Optional[int] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase__ ) + 1 )] _a : Dict = get_aligned_output_features_output_indices( out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names ) class UpperCamelCase ( snake_case_ ): UpperCamelCase : int = version.parse('''1.11''' ) @property def _lowercase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase ( self : Optional[Any] ) -> float: return 1E-4
371
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
324
0
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _SCREAMING_SNAKE_CASE : Optional[Any] = [p / w for p, w in zip(__lowerCamelCase, __lowerCamelCase )] # Creating a copy of the list and sorting profit/weight in ascending order _SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(__lowerCamelCase ) # declaring useful variables _SCREAMING_SNAKE_CASE : Optional[int] = len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = 0 _SCREAMING_SNAKE_CASE : Tuple = 0 _SCREAMING_SNAKE_CASE : List[str] = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _SCREAMING_SNAKE_CASE : Any = sorted_profit_by_weight[length - i - 1] _SCREAMING_SNAKE_CASE : Dict = profit_by_weight.index(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) UpperCamelCase__ =[int(x) for x in input('Input profits separated by spaces: ').split()] UpperCamelCase__ =[int(x) for x in input('Input weights separated by spaces: ').split()] UpperCamelCase__ =int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
325
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 _SCREAMING_SNAKE_CASE : Optional[int] = 1 for i in range(1, n + 1 ): # to compute current row from previous row. _SCREAMING_SNAKE_CASE : Union[str, Any] = min(__lowerCamelCase, __lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self , __lowerCamelCase ) -> Tuple: super().__init__() _SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(__lowerCamelCase , __lowerCamelCase , self.nets ) ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = controlnet( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) # merge samples if i == 0: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = down_samples, mid_sample else: _SCREAMING_SNAKE_CASE : Dict = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCamelCase , __lowerCamelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = None , ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = 0 _SCREAMING_SNAKE_CASE : int = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCamelCase , is_main_process=__lowerCamelCase , save_function=__lowerCamelCase , safe_serialization=__lowerCamelCase , variant=__lowerCamelCase , ) idx += 1 _SCREAMING_SNAKE_CASE : Optional[Any] = model_path_to_save + F"""_{idx}""" @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : Tuple = 0 _SCREAMING_SNAKE_CASE : Optional[int] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _SCREAMING_SNAKE_CASE : Optional[int] = pretrained_model_path while os.path.isdir(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = ControlNetModel.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) controlnets.append(__lowerCamelCase ) idx += 1 _SCREAMING_SNAKE_CASE : Tuple = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(__lowerCamelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(__lowerCamelCase ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(__lowerCamelCase )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(__lowerCamelCase )
325
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCamelCase__ =logging.getLogger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ) -> Optional[Any]: super().__init__( __lowerCamelCase , question_encoder_tokenizer=__lowerCamelCase , generator_tokenizer=__lowerCamelCase , index=__lowerCamelCase , init_retrieval=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = None def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually _SCREAMING_SNAKE_CASE : List[str] = self._infer_socket_ifname() # avoid clash with the NCCL port _SCREAMING_SNAKE_CASE : List[Any] = str(distributed_port + 1 ) _SCREAMING_SNAKE_CASE : int = dist.new_group(ranks=__lowerCamelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCamelCase_ ( self ) -> Optional[Any]: return dist.get_rank(group=self.process_group ) == 0 def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=torch.floataa ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = torch.empty(__lowerCamelCase , dtype=__lowerCamelCase ) dist.scatter(__lowerCamelCase , src=0 , scatter_list=__lowerCamelCase , group=self.process_group ) return target_tensor def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _SCREAMING_SNAKE_CASE : Any = next((addr for addr in addrs if addr.startswith("e" )) , __lowerCamelCase ) return ifname def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self._main_retrieve(__lowerCamelCase , __lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCamelCase ) # distributed training _SCREAMING_SNAKE_CASE : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic _SCREAMING_SNAKE_CASE : Any = None if self._is_main(): _SCREAMING_SNAKE_CASE : Optional[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCamelCase )] dist.gather(torch.tensor(__lowerCamelCase ) , dst=0 , gather_list=__lowerCamelCase , group=self.process_group ) # scatter logic _SCREAMING_SNAKE_CASE : Optional[int] = question_hidden_states.shape[0] _SCREAMING_SNAKE_CASE : Optional[Any] = [] _SCREAMING_SNAKE_CASE : Optional[int] = [] if self._is_main(): assert len(__lowerCamelCase ) == world_size _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self._main_retrieve(torch.cat(__lowerCamelCase ).numpy() , __lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = torch.tensor(__lowerCamelCase ), torch.tensor(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self._scattered(__lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) _SCREAMING_SNAKE_CASE : Optional[Any] = self._scattered(__lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCamelCase )
325
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCamelCase__ =logging.getLogger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ) -> Optional[Any]: super().__init__( __lowerCamelCase , question_encoder_tokenizer=__lowerCamelCase , generator_tokenizer=__lowerCamelCase , index=__lowerCamelCase , init_retrieval=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = None def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually _SCREAMING_SNAKE_CASE : List[str] = self._infer_socket_ifname() # avoid clash with the NCCL port _SCREAMING_SNAKE_CASE : List[Any] = str(distributed_port + 1 ) _SCREAMING_SNAKE_CASE : int = dist.new_group(ranks=__lowerCamelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCamelCase_ ( self ) -> Optional[Any]: return dist.get_rank(group=self.process_group ) == 0 def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=torch.floataa ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = torch.empty(__lowerCamelCase , dtype=__lowerCamelCase ) dist.scatter(__lowerCamelCase , src=0 , scatter_list=__lowerCamelCase , group=self.process_group ) return target_tensor def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _SCREAMING_SNAKE_CASE : Any = next((addr for addr in addrs if addr.startswith("e" )) , __lowerCamelCase ) return ifname def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self._main_retrieve(__lowerCamelCase , __lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCamelCase ) # distributed training _SCREAMING_SNAKE_CASE : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic _SCREAMING_SNAKE_CASE : Any = None if self._is_main(): _SCREAMING_SNAKE_CASE : Optional[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCamelCase )] dist.gather(torch.tensor(__lowerCamelCase ) , dst=0 , gather_list=__lowerCamelCase , group=self.process_group ) # scatter logic _SCREAMING_SNAKE_CASE : Optional[int] = question_hidden_states.shape[0] _SCREAMING_SNAKE_CASE : Optional[Any] = [] _SCREAMING_SNAKE_CASE : Optional[int] = [] if self._is_main(): assert len(__lowerCamelCase ) == world_size _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self._main_retrieve(torch.cat(__lowerCamelCase ).numpy() , __lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = torch.tensor(__lowerCamelCase ), torch.tensor(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self._scattered(__lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) _SCREAMING_SNAKE_CASE : Optional[Any] = self._scattered(__lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCamelCase )
325
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'timesformer' def __init__( self , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=8 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-6 , __lowerCamelCase=True , __lowerCamelCase="divided_space_time" , __lowerCamelCase=0 , **__lowerCamelCase , ) -> List[str]: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = image_size _SCREAMING_SNAKE_CASE : str = patch_size _SCREAMING_SNAKE_CASE : str = num_channels _SCREAMING_SNAKE_CASE : str = num_frames _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : Any = num_hidden_layers _SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Optional[int] = hidden_act _SCREAMING_SNAKE_CASE : int = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps _SCREAMING_SNAKE_CASE : List[str] = qkv_bias _SCREAMING_SNAKE_CASE : Tuple = attention_type _SCREAMING_SNAKE_CASE : Union[str, Any] = drop_path_rate
325
1
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCamelCase__ (__lowerCamelCase ): if isinstance(__lowerCamelCase, collections.abc.Iterable ): return x return (x, x) @require_tf class lowerCAmelCase__: '''simple docstring''' def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Any: pass def UpperCamelCase_ ( self ) -> Optional[int]: pass def UpperCamelCase_ ( self ) -> int: pass def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , **__lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : int = VisionTextDualEncoderConfig.from_vision_text_configs(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = TFVisionTextDualEncoderModel(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , **__lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , **__lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = {"vision_model": vision_model, "text_model": text_model} _SCREAMING_SNAKE_CASE : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , **__lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = TFVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = after_output[0].numpy() _SCREAMING_SNAKE_CASE : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCamelCase , 1E-5 ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , **__lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = model( input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , output_attentions=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _SCREAMING_SNAKE_CASE : Any = to_atuple(vision_model.config.image_size ) _SCREAMING_SNAKE_CASE : Tuple = to_atuple(vision_model.config.patch_size ) _SCREAMING_SNAKE_CASE : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _SCREAMING_SNAKE_CASE : List[str] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _SCREAMING_SNAKE_CASE : List[Any] = output.text_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Any = np.abs((a - b) ).max() self.assertLessEqual(__lowerCamelCase , __lowerCamelCase , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__lowerCamelCase ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__lowerCamelCase ) @slow def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = self.get_pretrained_model_and_inputs() _SCREAMING_SNAKE_CASE : Tuple = model_a(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = TFVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = model_a(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = after_outputs[0].numpy() _SCREAMING_SNAKE_CASE : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCamelCase , 1E-5 ) @require_tf class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) _SCREAMING_SNAKE_CASE : List[Any] = 1_3 _SCREAMING_SNAKE_CASE : int = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _SCREAMING_SNAKE_CASE : str = random_attention_mask([batch_size, 4] ) _SCREAMING_SNAKE_CASE : List[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Union[str, Any] = TFViTModel(__lowerCamelCase , name="vision_model" ) _SCREAMING_SNAKE_CASE : str = TFBertModel(__lowerCamelCase , name="text_model" ) return vision_model, text_model def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Optional[int] = TFViTModelTester(self ) _SCREAMING_SNAKE_CASE : Union[str, Any] = TFBertModelTester(self ) _SCREAMING_SNAKE_CASE : int = vit_model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE : Tuple = bert_model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = vision_config_and_inputs ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Dict: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. _SCREAMING_SNAKE_CASE : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) _SCREAMING_SNAKE_CASE : Any = 1_3 _SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _SCREAMING_SNAKE_CASE : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([batch_size, 4] ) _SCREAMING_SNAKE_CASE : Optional[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , **__lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = model( input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , output_attentions=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = output.vision_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _SCREAMING_SNAKE_CASE : Optional[int] = to_atuple(vision_model.config.image_size ) _SCREAMING_SNAKE_CASE : Any = to_atuple(vision_model.config.patch_size ) _SCREAMING_SNAKE_CASE : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _SCREAMING_SNAKE_CASE : Union[str, Any] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _SCREAMING_SNAKE_CASE : List[str] = output.text_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : List[Any] = TFDeiTModel(__lowerCamelCase , name="vision_model" ) _SCREAMING_SNAKE_CASE : Any = TFRobertaModel(__lowerCamelCase , name="text_model" ) return vision_model, text_model def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = TFDeiTModelTester(self ) _SCREAMING_SNAKE_CASE : List[Any] = TFRobertaModelTester(self ) _SCREAMING_SNAKE_CASE : List[Any] = vit_model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE : int = bert_model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = vision_config_and_inputs ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : Union[str, Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) _SCREAMING_SNAKE_CASE : List[str] = 1_3 _SCREAMING_SNAKE_CASE : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _SCREAMING_SNAKE_CASE : Any = random_attention_mask([batch_size, 4] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Any = TFCLIPVisionModel(__lowerCamelCase , name="vision_model" ) _SCREAMING_SNAKE_CASE : Optional[Any] = TFBertModel(__lowerCamelCase , name="text_model" ) return vision_model, text_model def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Any = TFCLIPVisionModelTester(self ) _SCREAMING_SNAKE_CASE : int = TFBertModelTester(self ) _SCREAMING_SNAKE_CASE : Dict = clip_model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE : Any = bert_model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = vision_config_and_inputs ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : List[str] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Tuple = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) _SCREAMING_SNAKE_CASE : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _SCREAMING_SNAKE_CASE : Any = processor( text=["una foto di un gatto", "una foto di un cane"] , images=__lowerCamelCase , padding=__lowerCamelCase , return_tensors="np" ) _SCREAMING_SNAKE_CASE : List[str] = model(**__lowerCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __lowerCamelCase , atol=1E-3 ) )
325
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={'vocab_file': 'spiece.model'} UpperCamelCase__ ={ 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } UpperCamelCase__ ={ 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCamelCase__ ='▁' class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<unk>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<pad>" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _SCREAMING_SNAKE_CASE : List[Any] = ( AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token ) _SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Dict = do_lower_case _SCREAMING_SNAKE_CASE : List[Any] = remove_space _SCREAMING_SNAKE_CASE : str = keep_accents _SCREAMING_SNAKE_CASE : Optional[int] = vocab_file _SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> Optional[Any]: return len(self.sp_model ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.__dict__.copy() _SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE : Optional[int] = {} _SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: if self.remove_space: _SCREAMING_SNAKE_CASE : List[str] = " ".join(inputs.strip().split() ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = inputs _SCREAMING_SNAKE_CASE : str = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _SCREAMING_SNAKE_CASE : str = unicodedata.normalize("NFKD" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: _SCREAMING_SNAKE_CASE : Dict = outputs.lower() return outputs def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : int = self.preprocess_text(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _SCREAMING_SNAKE_CASE : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _SCREAMING_SNAKE_CASE : Union[str, Any] = cur_pieces[1:] else: _SCREAMING_SNAKE_CASE : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]: return self.sp_model.PieceToId(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> str: return self.sp_model.IdToPiece(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : List[str] = "" _SCREAMING_SNAKE_CASE : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] _SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: _SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
325
1
from __future__ import annotations def lowerCamelCase__ (__lowerCamelCase = 4 ): _SCREAMING_SNAKE_CASE : List[str] = abs(__lowerCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__lowerCamelCase )] for y in range(__lowerCamelCase )] def lowerCamelCase__ (__lowerCamelCase ): return reverse_row(transpose(__lowerCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def lowerCamelCase__ (__lowerCamelCase ): return reverse_row(reverse_column(__lowerCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCamelCase__ (__lowerCamelCase ): return reverse_column(transpose(__lowerCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = [list(__lowerCamelCase ) for x in zip(*__lowerCamelCase )] return matrix def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = matrix[::-1] return matrix def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = [x[::-1] for x in matrix] return matrix def lowerCamelCase__ (__lowerCamelCase ): for i in matrix: print(*__lowerCamelCase ) if __name__ == "__main__": UpperCamelCase__ =make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) UpperCamelCase__ =make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) UpperCamelCase__ =make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
325
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase__ =logging.get_logger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self , *__lowerCamelCase , **__lowerCamelCase ) -> None: warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
325
1
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = GPTaTokenizer __snake_case = GPTaTokenizerFast __snake_case = True __snake_case = {'add_prefix_space': True} __snake_case = False def UpperCamelCase_ ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _SCREAMING_SNAKE_CASE : Union[str, Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _SCREAMING_SNAKE_CASE : List[str] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _SCREAMING_SNAKE_CASE : str = {"unk_token": "<unk>"} _SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _SCREAMING_SNAKE_CASE : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCamelCase ) ) def UpperCamelCase_ ( self , **__lowerCamelCase ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def UpperCamelCase_ ( self , **__lowerCamelCase ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : int = "lower newer" _SCREAMING_SNAKE_CASE : str = "lower newer" return input_text, output_text def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : str = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _SCREAMING_SNAKE_CASE : Union[str, Any] = "lower newer" _SCREAMING_SNAKE_CASE : Any = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tokens + [tokenizer.unk_token] _SCREAMING_SNAKE_CASE : Union[str, Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> Union[str, Any]: if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() _SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = "lower newer" # Testing tokenization _SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing conversion to ids without special tokens _SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing conversion to ids with special tokens _SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = tokenizer.encode(__lowerCamelCase , add_prefix_space=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing the unknown token _SCREAMING_SNAKE_CASE : Tuple = tokens + [rust_tokenizer.unk_token] _SCREAMING_SNAKE_CASE : str = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def UpperCamelCase_ ( self , __lowerCamelCase=1_5 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # Simple input _SCREAMING_SNAKE_CASE : Tuple = "This is a simple input" _SCREAMING_SNAKE_CASE : Dict = ["This is a simple input 1", "This is a simple input 2"] _SCREAMING_SNAKE_CASE : Optional[int] = ("This is a simple input", "This is a pair") _SCREAMING_SNAKE_CASE : int = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[Any] = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input _SCREAMING_SNAKE_CASE : str = "This is a simple input" _SCREAMING_SNAKE_CASE : int = ["This is a simple input looooooooong", "This is a simple input"] _SCREAMING_SNAKE_CASE : Tuple = ("This is a simple input", "This is a pair") _SCREAMING_SNAKE_CASE : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.pad_token_id _SCREAMING_SNAKE_CASE : List[str] = tokenizer(__lowerCamelCase , padding="max_length" , max_length=3_0 , return_tensors="np" ) _SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors="np" ) _SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(*__lowerCamelCase , padding="max_length" , max_length=6_0 , return_tensors="np" ) _SCREAMING_SNAKE_CASE : Any = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : List[Any] = "$$$" _SCREAMING_SNAKE_CASE : Optional[int] = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowerCamelCase , add_bos_token=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = "This is a simple input" _SCREAMING_SNAKE_CASE : List[Any] = ["This is a simple input 1", "This is a simple input 2"] _SCREAMING_SNAKE_CASE : List[str] = tokenizer.bos_token_id _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = tokenizer(__lowerCamelCase ) self.assertEqual(out_s.input_ids[0] , __lowerCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _SCREAMING_SNAKE_CASE : int = tokenizer.decode(out_s.input_ids ) _SCREAMING_SNAKE_CASE : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __lowerCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def UpperCamelCase_ ( self ) -> str: pass def UpperCamelCase_ ( self ) -> List[Any]: # TODO: change to self.get_tokenizers() when the fast version is implemented _SCREAMING_SNAKE_CASE : List[str] = [self.get_tokenizer(do_lower_case=__lowerCamelCase , add_bos_token=__lowerCamelCase )] for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _SCREAMING_SNAKE_CASE : int = "Encode this." _SCREAMING_SNAKE_CASE : List[Any] = "This one too please." _SCREAMING_SNAKE_CASE : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) encoded_sequence += tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = tokenizer.encode_plus( __lowerCamelCase , __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Tuple = encoded_sequence_dict["input_ids"] _SCREAMING_SNAKE_CASE : Optional[Any] = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : List[Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__lowerCamelCase ) ] _SCREAMING_SNAKE_CASE : Dict = [x for x in filtered_sequence if x is not None] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) @require_tokenizers class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Tuple: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = "A photo of a cat" _SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode( __lowerCamelCase , ) self.assertEqual(__lowerCamelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained("test_opt" ) _SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained("./test_opt" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode( __lowerCamelCase , ) self.assertEqual(__lowerCamelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = "A photo of a cat" _SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode( __lowerCamelCase , ) # Same as above self.assertEqual(__lowerCamelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = "bos" _SCREAMING_SNAKE_CASE : Dict = tokenizer.get_vocab()["bos"] _SCREAMING_SNAKE_CASE : Optional[int] = "A photo of a cat" _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode( __lowerCamelCase , ) # We changed the bos token self.assertEqual(__lowerCamelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained("./tok" ) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) _SCREAMING_SNAKE_CASE : Any = tokenizer.encode( __lowerCamelCase , ) self.assertEqual(__lowerCamelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
325
import numpy as np import datasets UpperCamelCase__ ='\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' UpperCamelCase__ ='\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' UpperCamelCase__ ='\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> int: # convert to numpy arrays _SCREAMING_SNAKE_CASE : Dict = np.array(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction _SCREAMING_SNAKE_CASE : Any = X - np.mean(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.cov(reference_distribution.T ) try: _SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: _SCREAMING_SNAKE_CASE : List[str] = np.linalg.pinv(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
325
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCamelCase__ (__lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(__lowerCamelCase, __lowerCamelCase ) -> bool: _SCREAMING_SNAKE_CASE : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _SCREAMING_SNAKE_CASE : Tuple = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(__lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. _SCREAMING_SNAKE_CASE : Union[str, Any] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 0.0, __lowerCamelCase = 1.0, ): return mean( function_to_integrate(uniform(__lowerCamelCase, __lowerCamelCase ) ) for _ in range(__lowerCamelCase ) ) * (max_value - min_value) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase = 0.0, __lowerCamelCase = 1.0 ): def identity_function(__lowerCamelCase ) -> float: return x _SCREAMING_SNAKE_CASE : str = area_under_curve_estimator( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def lowerCamelCase__ (__lowerCamelCase ): def function_to_integrate(__lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) _SCREAMING_SNAKE_CASE : Tuple = area_under_curve_estimator( __lowerCamelCase, __lowerCamelCase, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
325
from __future__ import annotations import math def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__lowerCamelCase ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) return min( minimax(depth + 1, node_index * 2, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), minimax(depth + 1, node_index * 2 + 1, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ), ) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 34423] _SCREAMING_SNAKE_CASE : Tuple = math.log(len(__lowerCamelCase ), 2 ) print("Optimal value : ", end="" ) print(minimax(0, 0, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
325
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ='▁' UpperCamelCase__ ={'vocab_file': 'sentencepiece.bpe.model'} UpperCamelCase__ ={ 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } UpperCamelCase__ ={ 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off UpperCamelCase__ =['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = ['input_ids', 'attention_mask'] __snake_case = [] __snake_case = [] def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase = None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it _SCREAMING_SNAKE_CASE : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token _SCREAMING_SNAKE_CASE : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenizer_file=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _SCREAMING_SNAKE_CASE : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _SCREAMING_SNAKE_CASE : Tuple = 1 _SCREAMING_SNAKE_CASE : List[str] = len(self.sp_model ) _SCREAMING_SNAKE_CASE : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__lowerCamelCase ) } _SCREAMING_SNAKE_CASE : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} _SCREAMING_SNAKE_CASE : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _SCREAMING_SNAKE_CASE : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _SCREAMING_SNAKE_CASE : Optional[Any] = src_lang if src_lang is not None else "en_XX" _SCREAMING_SNAKE_CASE : int = self.lang_code_to_id[self._src_lang] _SCREAMING_SNAKE_CASE : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.__dict__.copy() _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE : Dict = {} _SCREAMING_SNAKE_CASE : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCamelCase_ ( self ) -> Optional[Any]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCamelCase_ ( self ) -> str: return self._src_lang @src_lang.setter def UpperCamelCase_ ( self , __lowerCamelCase ) -> None: _SCREAMING_SNAKE_CASE : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = [1] * len(self.prefix_tokens ) _SCREAMING_SNAKE_CASE : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCamelCase )) + ([0] * len(__lowerCamelCase )) + suffix_ones def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : List[Any] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) -> Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) _SCREAMING_SNAKE_CASE : Any = src_lang _SCREAMING_SNAKE_CASE : List[Any] = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = tgt_lang_id return inputs def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Any = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _SCREAMING_SNAKE_CASE : Dict = self.sp_model.PieceToId(__lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Dict = "".join(__lowerCamelCase ).replace(__lowerCamelCase , " " ).strip() return out_string def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: _SCREAMING_SNAKE_CASE : Any = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = "en_XX" , __lowerCamelCase = None , __lowerCamelCase = "ro_RO" , **__lowerCamelCase , ) -> BatchEncoding: _SCREAMING_SNAKE_CASE : Optional[int] = src_lang _SCREAMING_SNAKE_CASE : Any = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self ) -> Any: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> None: _SCREAMING_SNAKE_CASE : Any = self.lang_code_to_id[src_lang] _SCREAMING_SNAKE_CASE : Optional[Any] = [] _SCREAMING_SNAKE_CASE : Any = [self.eos_token_id, self.cur_lang_code] def UpperCamelCase_ ( self , __lowerCamelCase ) -> None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.lang_code_to_id[lang] _SCREAMING_SNAKE_CASE : Optional[int] = [] _SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code]
325
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase__ ='src/diffusers' UpperCamelCase__ ='.' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase__ =importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase__ =spec.loader.load_module() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$", __lowerCamelCase ) is not None def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = object_name.split("." ) _SCREAMING_SNAKE_CASE : List[Any] = 0 # First let's find the module where our object lives. _SCREAMING_SNAKE_CASE : Any = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase, f"""{module}.py""" ) ): i += 1 if i < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase, parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCamelCase, f"""{module}.py""" ), "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() # Now let's find the class / func in the code! _SCREAMING_SNAKE_CASE : Union[str, Any] = "" _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""", lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _SCREAMING_SNAKE_CASE : Optional[int] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index], __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : Optional[int] = lines[start_index:line_index] return "".join(__lowerCamelCase ) UpperCamelCase__ =re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') UpperCamelCase__ =re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') UpperCamelCase__ =re.compile(R'<FILL\s+[^>]*>') def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = code.split("\n" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"^(\s*)\S", lines[idx] ).groups()[0] return "" def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: _SCREAMING_SNAKE_CASE : Union[str, Any] = f"""class Bla:\n{code}""" _SCREAMING_SNAKE_CASE : Any = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119, preview=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = black.format_str(__lowerCamelCase, mode=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = style_docstrings_in_code(__lowerCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = search.groups() _SCREAMING_SNAKE_CASE : Any = find_code_in_diffusers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = get_indent(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 _SCREAMING_SNAKE_CASE : int = theoretical_indent _SCREAMING_SNAKE_CASE : str = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _SCREAMING_SNAKE_CASE : Any = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break _SCREAMING_SNAKE_CASE : Union[str, Any] = lines[line_index] _SCREAMING_SNAKE_CASE : str = _should_continue(__lowerCamelCase, __lowerCamelCase ) and re.search(f"""^{indent}# End copy""", __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : List[Any] = lines[start_index:line_index] _SCREAMING_SNAKE_CASE : Optional[Any] = "".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies _SCREAMING_SNAKE_CASE : Dict = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__lowerCamelCase ) is None] _SCREAMING_SNAKE_CASE : str = "\n".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : str = replace_pattern.replace("with", "" ).split("," ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = pattern.groups() _SCREAMING_SNAKE_CASE : Tuple = re.sub(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if option.strip() == "all-casing": _SCREAMING_SNAKE_CASE : List[Any] = re.sub(obja.lower(), obja.lower(), __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = re.sub(obja.upper(), obja.upper(), __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _SCREAMING_SNAKE_CASE : int = blackify(lines[start_index - 1] + theoretical_code ) _SCREAMING_SNAKE_CASE : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _SCREAMING_SNAKE_CASE : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] _SCREAMING_SNAKE_CASE : int = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__lowerCamelCase, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCamelCase__ (__lowerCamelCase = False ): _SCREAMING_SNAKE_CASE : int = glob.glob(os.path.join(__lowerCamelCase, "**/*.py" ), recursive=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for filename in all_files: _SCREAMING_SNAKE_CASE : int = is_copy_consistent(__lowerCamelCase, __lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : Dict = "\n".join(__lowerCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase__ =parser.parse_args() check_copies(args.fix_and_overwrite)
325
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'audio-spectrogram-transformer' def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-12 , __lowerCamelCase=1_6 , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=1_0 , __lowerCamelCase=1_0_2_4 , __lowerCamelCase=1_2_8 , **__lowerCamelCase , ) -> Union[str, Any]: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size _SCREAMING_SNAKE_CASE : Any = num_hidden_layers _SCREAMING_SNAKE_CASE : Tuple = num_attention_heads _SCREAMING_SNAKE_CASE : List[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act _SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Optional[int] = initializer_range _SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps _SCREAMING_SNAKE_CASE : str = patch_size _SCREAMING_SNAKE_CASE : Optional[Any] = qkv_bias _SCREAMING_SNAKE_CASE : List[str] = frequency_stride _SCREAMING_SNAKE_CASE : List[str] = time_stride _SCREAMING_SNAKE_CASE : str = max_length _SCREAMING_SNAKE_CASE : Union[str, Any] = num_mel_bins
325
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ) -> Any: _SCREAMING_SNAKE_CASE : str = parent _SCREAMING_SNAKE_CASE : List[Any] = 1_3 _SCREAMING_SNAKE_CASE : List[str] = 7 _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : int = True _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : int = 9_9 _SCREAMING_SNAKE_CASE : str = 3_8_4 _SCREAMING_SNAKE_CASE : List[Any] = 2 _SCREAMING_SNAKE_CASE : Dict = 4 _SCREAMING_SNAKE_CASE : Dict = 3_7 _SCREAMING_SNAKE_CASE : Union[str, Any] = "gelu" _SCREAMING_SNAKE_CASE : str = 0.1 _SCREAMING_SNAKE_CASE : str = 0.1 _SCREAMING_SNAKE_CASE : List[Any] = 5_1_2 _SCREAMING_SNAKE_CASE : Tuple = 1_6 _SCREAMING_SNAKE_CASE : Dict = 2 _SCREAMING_SNAKE_CASE : Any = 0.02 _SCREAMING_SNAKE_CASE : Any = 3 _SCREAMING_SNAKE_CASE : List[str] = 4 _SCREAMING_SNAKE_CASE : List[Any] = 1_2_8 _SCREAMING_SNAKE_CASE : Optional[int] = 2 _SCREAMING_SNAKE_CASE : int = 9 _SCREAMING_SNAKE_CASE : List[str] = 1 _SCREAMING_SNAKE_CASE : List[Any] = None def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : List[str] = None if self.use_input_mask: _SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : Dict = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE : List[Any] = None _SCREAMING_SNAKE_CASE : Union[str, Any] = None _SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : Any = TFConvBertModel(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _SCREAMING_SNAKE_CASE : str = [input_ids, input_mask] _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = TFConvBertForMaskedLM(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = self.num_labels _SCREAMING_SNAKE_CASE : str = TFConvBertForSequenceClassification(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : Optional[int] = self.num_choices _SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForMultipleChoice(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE : List[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = self.num_labels _SCREAMING_SNAKE_CASE : Tuple = TFConvBertForTokenClassification(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Optional[int] = TFConvBertForQuestionAnswering(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : List[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __snake_case = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : int = TFConvBertModelTester(self ) _SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def UpperCamelCase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Any = True if hasattr(__lowerCamelCase , "use_cache" ): _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = len(model(__lowerCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase , saved_model=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = os.path.join(__lowerCamelCase , "saved_model" , "1" ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.keras.models.load_model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase ) if self.is_encoder_decoder: _SCREAMING_SNAKE_CASE : List[Any] = outputs["encoder_hidden_states"] _SCREAMING_SNAKE_CASE : Union[str, Any] = outputs["encoder_attentions"] else: _SCREAMING_SNAKE_CASE : List[str] = outputs["hidden_states"] _SCREAMING_SNAKE_CASE : Dict = outputs["attentions"] self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Any = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.model_tester , "key_length" , __lowerCamelCase ) def check_decoder_attentions_output(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = len(__lowerCamelCase ) self.assertEqual(out_len % 2 , 0 ) _SCREAMING_SNAKE_CASE : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Any = len(__lowerCamelCase ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) if self.is_encoder_decoder: _SCREAMING_SNAKE_CASE : Tuple = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_decoder_attentions_output(__lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : List[Any] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) # Check attention is always last and order is fine _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Optional[int] = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) _SCREAMING_SNAKE_CASE : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE : str = model(__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : int = [1, 6, 7_6_8] self.assertEqual(output.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 )
325
1