code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED UpperCAmelCase : str = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase : Dict = { 'allenai/led-base-16384': 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __UpperCAmelCase : Any = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCamelCase ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : List[Any] = [chr(_UpperCamelCase ) for n in cs] return dict(zip(_UpperCamelCase , _UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = set() __UpperCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Any = char return pairs class lowerCamelCase__ ( A ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] def __init__( self : int , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : Optional[Any]="replace" , UpperCamelCase : Tuple="<s>" , UpperCamelCase : Union[str, Any]="</s>" , UpperCamelCase : Optional[int]="</s>" , UpperCamelCase : str="<s>" , UpperCamelCase : Union[str, Any]="<unk>" , UpperCamelCase : Dict="<pad>" , UpperCamelCase : Tuple="<mask>" , UpperCamelCase : List[Any]=False , **UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else bos_token __UpperCAmelCase : Tuple = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else sep_token __UpperCAmelCase : str = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else cls_token __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else unk_token __UpperCAmelCase : Any = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : str = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( errors=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , add_prefix_space=UpperCamelCase , **UpperCamelCase , ) with open(UpperCamelCase , encoding="""utf-8""" ) as vocab_handle: __UpperCAmelCase : Dict = json.load(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Optional[Any] = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase , encoding="""utf-8""" ) as merges_handle: __UpperCAmelCase : Optional[int] = merges_handle.read().split("""\n""" )[1:-1] __UpperCAmelCase : str = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Tuple = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : str = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return len(self.encoder ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : Dict ): '''simple docstring''' if token in self.cache: return self.cache[token] __UpperCAmelCase : Any = tuple(UpperCamelCase ) __UpperCAmelCase : List[Any] = get_pairs(UpperCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Union[str, Any] = min(UpperCamelCase , key=lambda UpperCamelCase : self.bpe_ranks.get(UpperCamelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase : str = bigram __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : int = 0 while i < len(UpperCamelCase ): try: __UpperCAmelCase : int = word.index(UpperCamelCase , UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Optional[int] = j if word[i] == first and i < len(UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[str] = tuple(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = new_word if len(UpperCamelCase ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase ) __UpperCAmelCase : Any = """ """.join(UpperCamelCase ) __UpperCAmelCase : Dict = word return word def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : int = [] for token in re.findall(self.pat , UpperCamelCase ): __UpperCAmelCase : int = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase ).split(""" """ ) ) return bpe_tokens def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(UpperCamelCase , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Optional[int] ): '''simple docstring''' return self.decoder.get(UpperCamelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = """""".join(UpperCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : List[Any] = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : int = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase , ensure_ascii=UpperCamelCase ) + """\n""" ) __UpperCAmelCase : Union[str, Any] = 0 with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) __UpperCAmelCase : Union[str, Any] = token_index writer.write(""" """.join(UpperCamelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : int = [self.cls_token_id] __UpperCAmelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1, 1] + ([0] * len(UpperCamelCase )) + [1] def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : List[str] = [self.sep_token_id] __UpperCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : int , UpperCamelCase : List[str]=False , **UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : List[str] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = """ """ + text return (text, kwargs) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCamelCase : Optional[int] = None , UpperCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[bool] = None , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = super()._pad( encoded_inputs=UpperCamelCase , max_length=UpperCamelCase , padding_strategy=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , ) # Load from model defaults if return_attention_mask is None: __UpperCAmelCase : Optional[int] = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __UpperCAmelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __UpperCAmelCase : Any = len(encoded_inputs["""global_attention_mask"""] ) != len(UpperCamelCase ) if needs_to_be_padded: __UpperCAmelCase : Tuple = len(UpperCamelCase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __UpperCAmelCase : List[Any] = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": __UpperCAmelCase : List[Any] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
363
"""simple docstring""" from collections.abc import Sequence def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : Dict = 0.0 for coeff in reversed(_UpperCamelCase ): __UpperCAmelCase : Any = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
320
0
"""simple docstring""" import argparse import json import subprocess def lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : int ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : str = [] __UpperCAmelCase : Any = ( f'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) __UpperCAmelCase : List[Any] = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE ) __UpperCAmelCase : Optional[int] = output.stdout.decode("""utf-8""" ) __UpperCAmelCase : Dict = json.loads(_UpperCamelCase ) __UpperCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: __UpperCAmelCase : Tuple = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def lowerCamelCase ( _UpperCamelCase : List[str] ) -> Optional[int]: '''simple docstring''' return values.split(""",""" ) UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) UpperCAmelCase : Union[str, Any] = parser.parse_args() get_runner_status(args.target_runners, args.token)
364
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[int] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCamelCase__ : """simple docstring""" __a = PegasusConfig __a = {} __a = """gelu""" def __init__( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Dict=True , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : Union[str, Any]=5 , UpperCamelCase : Any=4 , UpperCamelCase : Tuple=37 , UpperCamelCase : Any=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=20 , UpperCamelCase : List[str]=2 , UpperCamelCase : int=1 , UpperCamelCase : Optional[Any]=0 , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Any = eos_token_id __UpperCAmelCase : Optional[int] = pad_token_id __UpperCAmelCase : List[str] = bos_token_id def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __UpperCAmelCase : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCAmelCase : Union[str, Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCAmelCase : Any = prepare_pegasus_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, inputs_dict def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 20 __UpperCAmelCase : Tuple = model_class_name(UpperCamelCase ) __UpperCAmelCase : List[Any] = model.encode(inputs_dict["""input_ids"""] ) __UpperCAmelCase ,__UpperCAmelCase : int = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __UpperCAmelCase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCAmelCase : Tuple = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Dict = model.decode(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 20 __UpperCAmelCase : int = model_class_name(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] ) __UpperCAmelCase ,__UpperCAmelCase : Dict = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCAmelCase : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Union[str, Any] = model.decode(UpperCamelCase , UpperCamelCase , decoder_attention_mask=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=None , _UpperCamelCase : Any=None , ) -> Dict: '''simple docstring''' if attention_mask is None: __UpperCAmelCase : Optional[int] = np.not_equal(_UpperCamelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __UpperCAmelCase : Dict = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __a = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __a = True __a = False __a = False __a = False def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = FlaxPegasusModelTester(self ) __UpperCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : Tuple = self._prepare_for_class(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Dict = model_class(UpperCamelCase ) @jax.jit def encode_jitted(UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any]=None , **UpperCamelCase : List[str] ): return model.encode(input_ids=UpperCamelCase , attention_mask=UpperCamelCase ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase : Tuple = encode_jitted(**UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase : Optional[int] = encode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : int = model_class(UpperCamelCase ) __UpperCAmelCase : int = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __UpperCAmelCase : Any = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ): return model.decode( decoder_input_ids=UpperCamelCase , decoder_attention_mask=UpperCamelCase , encoder_outputs=UpperCamelCase , ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase : Union[str, Any] = decode_jitted(**UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase : str = decode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCamelCase ) __UpperCAmelCase : Optional[int] = np.ones((1, 1) ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @slow def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) __UpperCAmelCase : Union[str, Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) __UpperCAmelCase : List[Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCAmelCase : List[str] = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""np""" , truncation=UpperCamelCase , max_length=512 , padding=UpperCamelCase ) __UpperCAmelCase : int = model.generate(**UpperCamelCase , num_beams=2 ).sequences __UpperCAmelCase : str = tokenizer.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) assert tgt_text == decoded
320
0
"""simple docstring""" import math import sys def lowerCamelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' if number != int(_UpperCamelCase ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 __UpperCAmelCase : Optional[Any] = [-1] * (number + 1) __UpperCAmelCase : List[str] = 0 for i in range(1 , number + 1 ): __UpperCAmelCase : Union[str, Any] = sys.maxsize __UpperCAmelCase : Union[str, Any] = int(math.sqrt(_UpperCamelCase ) ) for j in range(1 , root + 1 ): __UpperCAmelCase : Dict = 1 + answers[i - (j**2)] __UpperCAmelCase : Optional[int] = min(_UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : Optional[int] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } UpperCAmelCase : List[str] = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = EfficientNetConfig() __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""hidden_dim"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""width_coef"""] __UpperCAmelCase : str = CONFIG_MAP[model_name]["""depth_coef"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""dropout_rate"""] __UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""] __UpperCAmelCase : int = """huggingface/label-files""" __UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json""" __UpperCAmelCase : str = 1_0_0_0 __UpperCAmelCase : Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Dict = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCamelCase ( _UpperCamelCase : Any ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : List[str] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_UpperCamelCase , ) return preprocessor def lowerCamelCase ( _UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __UpperCAmelCase : str = sorted(set(_UpperCamelCase ) ) __UpperCAmelCase : Optional[int] = len(_UpperCamelCase ) __UpperCAmelCase : Any = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )} __UpperCAmelCase : Any = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __UpperCAmelCase : List[str] = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __UpperCAmelCase : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: __UpperCAmelCase : Optional[Any] = """efficientnet.""" + item[1] __UpperCAmelCase : Tuple = """classifier.weight""" __UpperCAmelCase : Optional[int] = """classifier.bias""" return key_mapping def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue __UpperCAmelCase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: __UpperCAmelCase : int = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __UpperCAmelCase : Optional[Any] = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __UpperCAmelCase : List[str] = torch.from_numpy(np.transpose(_UpperCamelCase ) ) else: __UpperCAmelCase : Tuple = torch.from_numpy(_UpperCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCamelCase ) @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = model_classes[model_name]( include_top=_UpperCamelCase , weights="""imagenet""" , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , ) __UpperCAmelCase : List[str] = original_model.trainable_variables __UpperCAmelCase : List[Any] = original_model.non_trainable_variables __UpperCAmelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __UpperCAmelCase : int = param.numpy() __UpperCAmelCase : Dict = list(tf_params.keys() ) # Load HuggingFace model __UpperCAmelCase : Optional[Any] = get_efficientnet_config(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(_UpperCamelCase ).eval() __UpperCAmelCase : Any = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __UpperCAmelCase : Tuple = rename_keys(_UpperCamelCase ) replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Initialize preprocessor and preprocess input image __UpperCAmelCase : List[Any] = convert_image_processor(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = hf_model(**_UpperCamelCase ) __UpperCAmelCase : Any = outputs.logits.detach().numpy() # Original model inference __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : str = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __UpperCAmelCase : Optional[Any] = image.img_to_array(_UpperCamelCase ) __UpperCAmelCase : Tuple = np.expand_dims(_UpperCamelCase , axis=0 ) __UpperCAmelCase : str = original_model.predict(_UpperCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCamelCase ): os.mkdir(_UpperCamelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCamelCase ) preprocessor.save_pretrained(_UpperCamelCase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) __UpperCAmelCase : List[str] = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_UpperCamelCase ) hf_model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') UpperCAmelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
320
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: UpperCAmelCase : Tuple = None UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : str = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : int = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } UpperCAmelCase : List[str] = { 'google/rembert': 256, } UpperCAmelCase : List[Any] = '▁' class lowerCamelCase__ ( A ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = RemBertTokenizer def __init__( self : Optional[int] , UpperCamelCase : str=None , UpperCamelCase : Tuple=None , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Any="[CLS]" , UpperCamelCase : Optional[Any]="[SEP]" , UpperCamelCase : Optional[int]="<unk>" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Union[str, Any]="<pad>" , UpperCamelCase : Dict="[CLS]" , UpperCamelCase : Union[str, Any]="[MASK]" , **UpperCamelCase : Tuple , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , remove_space=UpperCamelCase , keep_accents=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , **UpperCamelCase , ) __UpperCAmelCase : Tuple = do_lower_case __UpperCAmelCase : List[str] = remove_space __UpperCAmelCase : Dict = keep_accents __UpperCAmelCase : List[Any] = vocab_file __UpperCAmelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : Tuple = [self.sep_token_id] __UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] __UpperCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(UpperCamelCase ) ) return __UpperCAmelCase : int = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) return (out_vocab_file,)
366
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""keras_nlp"""] def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(self , ["""keras_nlp"""] )
320
0
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger UpperCAmelCase : Optional[Any] = get_logger(__name__) UpperCAmelCase : Tuple = R'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class lowerCamelCase__ : """simple docstring""" @add_start_docstrings(UpperCamelCase ) def __call__( self : Tuple , UpperCamelCase : jnp.ndarray , UpperCamelCase : jnp.ndarray ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCamelCase__ : """simple docstring""" @add_start_docstrings(UpperCamelCase ) def __call__( self : Any , UpperCamelCase : jnp.ndarray , UpperCamelCase : jnp.ndarray ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCamelCase__ ( A ): """simple docstring""" @add_start_docstrings(UpperCamelCase ) def __call__( self : List[Any] , UpperCamelCase : jnp.ndarray , UpperCamelCase : jnp.ndarray , UpperCamelCase : int , **UpperCamelCase : int ): '''simple docstring''' for processor in self: __UpperCAmelCase : str = inspect.signature(processor.__call__ ).parameters if len(UpperCamelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) __UpperCAmelCase : Any = processor(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ) else: __UpperCAmelCase : str = processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return scores class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase : float ): '''simple docstring''' if not isinstance(UpperCamelCase , UpperCamelCase ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) __UpperCAmelCase : Any = temperature def __call__( self : Optional[Any] , UpperCamelCase : jnp.ndarray , UpperCamelCase : jnp.ndarray , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Tuple = scores / self.temperature return scores class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : str , UpperCamelCase : float , UpperCamelCase : float = -float("""Inf""" ) , UpperCamelCase : int = 1 ): '''simple docstring''' if not isinstance(UpperCamelCase , UpperCamelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(UpperCamelCase , UpperCamelCase ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) __UpperCAmelCase : Any = top_p __UpperCAmelCase : int = filter_value __UpperCAmelCase : List[str] = min_tokens_to_keep def __call__( self : Optional[Any] , UpperCamelCase : jnp.ndarray , UpperCamelCase : jnp.ndarray , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = lax.top_k(UpperCamelCase , scores.shape[-1] ) __UpperCAmelCase : List[str] = jnp.full_like(UpperCamelCase , self.filter_value ) __UpperCAmelCase : List[Any] = jax.nn.softmax(UpperCamelCase , axis=-1 ).cumsum(axis=-1 ) __UpperCAmelCase : int = cumulative_probs < self.top_p # include the token that is higher than top_p as well __UpperCAmelCase : Dict = jnp.roll(UpperCamelCase , 1 ) score_mask |= score_mask.at[:, 0].set(UpperCamelCase ) # min tokens to keep __UpperCAmelCase : int = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCamelCase ) __UpperCAmelCase : Dict = jnp.where(UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : List[str] = jax.lax.sort_key_val(UpperCamelCase , UpperCamelCase )[-1] return next_scores class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : float = -float("""Inf""" ) , UpperCamelCase : int = 1 ): '''simple docstring''' if not isinstance(UpperCamelCase , UpperCamelCase ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) __UpperCAmelCase : Dict = max(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Tuple = filter_value def __call__( self : Tuple , UpperCamelCase : jnp.ndarray , UpperCamelCase : jnp.ndarray , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Optional[int] = scores.shape __UpperCAmelCase : Any = jnp.full(batch_size * vocab_size , self.filter_value ) __UpperCAmelCase : Union[str, Any] = min(self.top_k , scores.shape[-1] ) # Safety check __UpperCAmelCase : List[Any] = lax.top_k(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Tuple = jnp.broadcast_to((jnp.arange(UpperCamelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __UpperCAmelCase : str = topk_scores.flatten() __UpperCAmelCase : Tuple = topk_indices.flatten() + shift __UpperCAmelCase : str = next_scores_flat.at[topk_indices_flat].set(UpperCamelCase ) __UpperCAmelCase : Tuple = next_scores_flat.reshape(UpperCamelCase , UpperCamelCase ) return next_scores class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : str = bos_token_id def __call__( self : List[str] , UpperCamelCase : jnp.ndarray , UpperCamelCase : jnp.ndarray , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Tuple = jnp.full(scores.shape , -float("""inf""" ) ) __UpperCAmelCase : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) __UpperCAmelCase : Optional[int] = jnp.where(UpperCamelCase , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCamelCase ) return scores class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : List[str] = max_length __UpperCAmelCase : Optional[Any] = eos_token_id def __call__( self : Optional[int] , UpperCamelCase : jnp.ndarray , UpperCamelCase : jnp.ndarray , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Any = jnp.full(scores.shape , -float("""inf""" ) ) __UpperCAmelCase : Union[str, Any] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __UpperCAmelCase : Optional[Any] = jnp.where(UpperCamelCase , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCamelCase ) return scores class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' if not isinstance(UpperCamelCase , UpperCamelCase ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(UpperCamelCase , UpperCamelCase ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) __UpperCAmelCase : Any = min_length __UpperCAmelCase : Optional[Any] = eos_token_id def __call__( self : Any , UpperCamelCase : jnp.ndarray , UpperCamelCase : jnp.ndarray , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : int = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __UpperCAmelCase : Any = jnp.where(UpperCamelCase , scores.at[:, self.eos_token_id].set(-float("""inf""" ) ) , UpperCamelCase ) return scores class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = list(UpperCamelCase ) __UpperCAmelCase : Optional[int] = begin_index def __call__( self : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Tuple = 1 - jnp.bool_(cur_len - self.begin_index ) __UpperCAmelCase : Tuple = jnp.where(UpperCamelCase , scores.at[:, self.begin_suppress_tokens].set(-float("""inf""" ) ) , UpperCamelCase ) return scores class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : List[str] , UpperCamelCase : list ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = list(UpperCamelCase ) def __call__( self : Union[str, Any] , UpperCamelCase : jnp.ndarray , UpperCamelCase : jnp.ndarray , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : int = scores.at[..., self.suppress_tokens].set(-float("""inf""" ) ) return scores class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Any , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = dict(UpperCamelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __UpperCAmelCase : str = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __UpperCAmelCase : Optional[Any] = force_token_array.at[index].set(UpperCamelCase ) __UpperCAmelCase : Optional[int] = jnp.intaa(UpperCamelCase ) def __call__( self : Tuple , UpperCamelCase : jnp.ndarray , UpperCamelCase : jnp.ndarray , UpperCamelCase : int ): '''simple docstring''' def _force_token(UpperCamelCase : Optional[int] ): __UpperCAmelCase : Tuple = scores.shape[0] __UpperCAmelCase : Optional[int] = self.force_token_array[generation_idx] __UpperCAmelCase : Tuple = jnp.ones_like(UpperCamelCase , dtype=scores.dtype ) * -float("""inf""" ) __UpperCAmelCase : Union[str, Any] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __UpperCAmelCase : Tuple = lax.dynamic_update_slice(UpperCamelCase , UpperCamelCase , (0, current_token) ) return new_scores __UpperCAmelCase : str = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCamelCase ) , lambda: scores , ) , ) return scores class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Any , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = generate_config.eos_token_id __UpperCAmelCase : Optional[Any] = generate_config.no_timestamps_token_id __UpperCAmelCase : str = generate_config.no_timestamps_token_id + 1 __UpperCAmelCase : Dict = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCamelCase , """max_initial_timestamp_index""" ): __UpperCAmelCase : Optional[Any] = generate_config.max_initial_timestamp_index else: __UpperCAmelCase : int = model_config.vocab_size if self.max_initial_timestamp_index is None: __UpperCAmelCase : Union[str, Any] = model_config.vocab_size def __call__( self : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : List[str] = scores.at[:, self.no_timestamps_token_id].set(-float("""inf""" ) ) def handle_pairs(UpperCamelCase : int , UpperCamelCase : Union[str, Any] ): __UpperCAmelCase : Optional[Any] = jnp.where((cur_len - self.begin_index) >= 1 , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : str = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCamelCase , ) __UpperCAmelCase : Union[str, Any] = jnp.where((cur_len - self.begin_index) < 2 , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Optional[Any] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCamelCase , UpperCamelCase , ) return jnp.where( UpperCamelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("""inf""" ) ) , scores_k.at[: self.eos_token_id].set(-float("""inf""" ) ) , ) , UpperCamelCase , ) __UpperCAmelCase : List[str] = jax.vmap(UpperCamelCase )(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Optional[Any] = jnp.where(cur_len == self.begin_index , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCamelCase , ) __UpperCAmelCase : str = self.timestamp_begin + self.max_initial_timestamp_index __UpperCAmelCase : Tuple = jnp.where( UpperCamelCase , scores.at[:, last_allowed + 1 :].set(-float("""inf""" ) ) , UpperCamelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp __UpperCAmelCase : Union[str, Any] = jax.nn.log_softmax(UpperCamelCase , axis=-1 ) def handle_cumulative_probs(UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict ): __UpperCAmelCase : Dict = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __UpperCAmelCase : Optional[Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("""inf""" ) ) , UpperCamelCase , ) __UpperCAmelCase : Tuple = jax.vmap(UpperCamelCase )(UpperCamelCase , UpperCamelCase ) return scores
367
"""simple docstring""" UpperCAmelCase : Dict = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCamelCase ( _UpperCamelCase : bytes ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Any = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_UpperCamelCase ) __UpperCAmelCase : str = """""".join(bin(_UpperCamelCase )[2:].zfill(8 ) for byte in data ) __UpperCAmelCase : int = len(_UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later __UpperCAmelCase : Dict = b"""=""" * ((6 - len(_UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_UpperCamelCase ) % 6) else: __UpperCAmelCase : List[str] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_UpperCamelCase ) , 6 ) ).encode() + padding ) def lowerCamelCase ( _UpperCamelCase : str ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Tuple = ( """argument should be a bytes-like object or ASCII string, """ f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_UpperCamelCase , _UpperCamelCase ): try: __UpperCAmelCase : Optional[Any] = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) __UpperCAmelCase : str = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __UpperCAmelCase : List[str] = encoded_data[:-padding] __UpperCAmelCase : int = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __UpperCAmelCase : Optional[Any] = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) __UpperCAmelCase : List[Any] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_UpperCamelCase ) , 8 ) ] return bytes(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int = 5_0 ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"{solution() = }")
368
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase : str = logging.get_logger(__name__) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ): '''simple docstring''' warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
320
0
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , UpperCamelCase : str ): '''simple docstring''' super().__init__() __UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase ) __UpperCAmelCase : int = list(model.children() )[:-2] __UpperCAmelCase : List[Any] = nn.Sequential(*UpperCamelCase ) __UpperCAmelCase : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.pool(self.model(UpperCamelCase ) ) __UpperCAmelCase : List[Any] = torch.flatten(UpperCamelCase , start_dim=2 ) __UpperCAmelCase : Any = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )] __UpperCAmelCase : Any = os.path.dirname(UpperCamelCase ) __UpperCAmelCase : List[str] = tokenizer __UpperCAmelCase : str = labels __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) __UpperCAmelCase : int = max_seq_length __UpperCAmelCase : int = transforms def __len__( self : List[str] ): '''simple docstring''' return len(self.data ) def __getitem__( self : List[str] , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) ) __UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Any = sentence[: self.max_seq_length] __UpperCAmelCase : Tuple = torch.zeros(self.n_classes ) __UpperCAmelCase : str = 1 __UpperCAmelCase : Any = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __UpperCAmelCase : Optional[int] = self.transforms(UpperCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = [len(row["""sentence"""] ) for row in batch] __UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase ) __UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) __UpperCAmelCase : str = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ): __UpperCAmelCase : List[str] = input_row["""sentence"""] __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] ) __UpperCAmelCase : Optional[Any] = torch.stack([row["""label"""] for row in batch] ) __UpperCAmelCase : str = torch.stack([row["""image_start_token"""] for row in batch] ) __UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ) -> int: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
369
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = LEDTokenizer __a = LEDTokenizerFast __a = True def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' super().setUp() __UpperCAmelCase : Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __UpperCAmelCase : str = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase ) ) def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : str , UpperCamelCase : Any ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self : str ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCAmelCase : Union[str, Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = tokenizer(UpperCamelCase , max_length=len(UpperCamelCase ) , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCamelCase , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIn("""input_ids""" , UpperCamelCase ) self.assertIn("""attention_mask""" , UpperCamelCase ) self.assertNotIn("""labels""" , UpperCamelCase ) self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[Any] = tokenizer(text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : str = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization."""] __UpperCAmelCase : int = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Tuple = tokenizer(text_target=UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Optional[Any] = inputs["""input_ids"""] __UpperCAmelCase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = ["""Summary of the text.""", """Another summary."""] __UpperCAmelCase : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , padding=UpperCamelCase ) __UpperCAmelCase : str = [[0] * len(UpperCamelCase ) for x in encoded_output["""input_ids"""]] __UpperCAmelCase : List[Any] = tokenizer.pad(UpperCamelCase ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Any = """A, <mask> AllenNLP sentence.""" __UpperCAmelCase : Dict = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) __UpperCAmelCase : List[Any] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
320
0
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() UpperCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Any , _UpperCamelCase : str ) -> str: '''simple docstring''' __UpperCAmelCase : int = WavaVecaForSequenceClassification.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) __UpperCAmelCase : int = downstream_dict["""projector.weight"""] __UpperCAmelCase : Optional[int] = downstream_dict["""projector.bias"""] __UpperCAmelCase : Any = downstream_dict["""model.post_net.linear.weight"""] __UpperCAmelCase : List[Any] = downstream_dict["""model.post_net.linear.bias"""] return model def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : str = WavaVecaForAudioFrameClassification.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = downstream_dict["""model.linear.weight"""] __UpperCAmelCase : str = downstream_dict["""model.linear.bias"""] return model def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] ) -> int: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = WavaVecaForXVector.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) __UpperCAmelCase : Dict = downstream_dict["""connector.weight"""] __UpperCAmelCase : Any = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __UpperCAmelCase : str = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] __UpperCAmelCase : List[Any] = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] __UpperCAmelCase : Dict = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] __UpperCAmelCase : Any = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] __UpperCAmelCase : Any = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] __UpperCAmelCase : Union[str, Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] __UpperCAmelCase : Any = downstream_dict["""objective.W"""] return model @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = torch.load(_UpperCamelCase , map_location="""cpu""" ) __UpperCAmelCase : str = checkpoint["""Downstream"""] __UpperCAmelCase : str = WavaVecaConfig.from_pretrained(_UpperCamelCase ) __UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( _UpperCamelCase , return_attention_mask=_UpperCamelCase , do_normalize=_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): __UpperCAmelCase : Tuple = convert_classification(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): __UpperCAmelCase : List[Any] = convert_diarization(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif arch.endswith("""ForXVector""" ): __UpperCAmelCase : Optional[Any] = convert_xvector(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: __UpperCAmelCase : Optional[Any] = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(_UpperCamelCase ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') UpperCAmelCase : Dict = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
370
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCamelCase__ : """simple docstring""" def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : List[Any]=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : int=99 , UpperCamelCase : Any=[1, 1, 2] , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Union[str, Any]=8 , UpperCamelCase : int=37 , UpperCamelCase : Optional[Any]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : int=0.0 , UpperCamelCase : Union[str, Any]=512 , UpperCamelCase : Any=3 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : str=None , UpperCamelCase : Tuple=False , ): '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : str = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : Optional[Any] = use_input_mask __UpperCAmelCase : Tuple = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Optional[int] = block_sizes __UpperCAmelCase : Optional[Any] = num_decoder_layers __UpperCAmelCase : Union[str, Any] = d_model __UpperCAmelCase : Dict = n_head __UpperCAmelCase : Optional[Any] = d_head __UpperCAmelCase : Dict = d_inner __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout __UpperCAmelCase : List[Any] = attention_dropout __UpperCAmelCase : str = activation_dropout __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : str = 2 __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : List[Any] = num_choices __UpperCAmelCase : Any = scope __UpperCAmelCase : Dict = initializer_std # Used in the tests to check the size of the first attention layer __UpperCAmelCase : Dict = n_head # Used in the tests to check the size of the first hidden state __UpperCAmelCase : Dict = self.d_model # Used in the tests to check the number of output hidden states/attentions __UpperCAmelCase : Dict = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __UpperCAmelCase : List[Any] = self.num_hidden_layers + 2 def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[str] = None if self.use_input_mask: __UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Dict = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : str = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__ ( self : Any , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : List[Any] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : List[str] = model(UpperCamelCase ) __UpperCAmelCase : List[Any] = [input_ids, input_mask] __UpperCAmelCase : Dict = model(UpperCamelCase ) __UpperCAmelCase : Tuple = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __UpperCAmelCase : int = False __UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Optional[Any] = model(UpperCamelCase ) __UpperCAmelCase : int = [input_ids, input_mask] __UpperCAmelCase : int = model(UpperCamelCase ) __UpperCAmelCase : List[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __UpperCAmelCase : List[Any] = False __UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __UpperCAmelCase : int = False __UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : str = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , ): '''simple docstring''' __UpperCAmelCase : Tuple = TFFunnelForPreTraining(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : int = TFFunnelForMaskedLM(config=UpperCamelCase ) __UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Optional[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_labels __UpperCAmelCase : Optional[Any] = TFFunnelForSequenceClassification(config=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Tuple = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : str = TFFunnelForMultipleChoice(config=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : str = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : int = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : List[str] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : str = TFFunnelForTokenClassification(config=UpperCamelCase ) __UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : str , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Any = TFFunnelForQuestionAnswering(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Any = model(UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) , ) : Dict = config_and_inputs __UpperCAmelCase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __a = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __a = False __a = False def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = TFFunnelModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase ) @require_tf class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __a = False __a = False def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : List[str] = TFFunnelModelTester(self , base=UpperCamelCase ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase )
320
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = 0 while b > 0: if b & 1: __UpperCAmelCase : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
320
0
"""simple docstring""" import mpmath # for roots of unity import numpy as np class lowerCamelCase__ : """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase : List[str]=None , UpperCamelCase : int=None ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = list(poly_a or [0] )[:] __UpperCAmelCase : Optional[Any] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __UpperCAmelCase : int = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __UpperCAmelCase : Dict = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __UpperCAmelCase : List[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __UpperCAmelCase : Union[str, Any] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __UpperCAmelCase : Dict = self.__multiply() def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(UpperCamelCase ) <= 1: return dft[0] # __UpperCAmelCase : Dict = self.c_max_length // 2 while next_ncol > 0: __UpperCAmelCase : List[str] = [[] for i in range(UpperCamelCase )] __UpperCAmelCase : Optional[Any] = self.root**next_ncol # First half of next step __UpperCAmelCase : Dict = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __UpperCAmelCase : Union[str, Any] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __UpperCAmelCase : int = new_dft __UpperCAmelCase : Tuple = next_ncol // 2 return dft[0] def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.__dft("""A""" ) __UpperCAmelCase : Any = self.__dft("""B""" ) __UpperCAmelCase : Optional[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __UpperCAmelCase : Tuple = 2 while next_ncol <= self.c_max_length: __UpperCAmelCase : Dict = [[] for i in range(UpperCamelCase )] __UpperCAmelCase : str = self.root ** (next_ncol // 2) __UpperCAmelCase : int = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __UpperCAmelCase : List[str] = new_inverse_c next_ncol *= 2 # Unpack __UpperCAmelCase : int = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Any = """A = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) __UpperCAmelCase : List[Any] = """B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) __UpperCAmelCase : str = """A*B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""image_processor""", """tokenizer"""] __a = """AutoImageProcessor""" __a = """AutoTokenizer""" def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : str = self.image_processor def __call__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=None , **UpperCamelCase : Optional[int] ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: __UpperCAmelCase : Optional[Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: __UpperCAmelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
320
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase__ ( A ): """simple docstring""" __a = """funnel""" __a = { """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", } def __init__( self : Tuple , UpperCamelCase : Any=30_522 , UpperCamelCase : List[Any]=[4, 4, 4] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=768 , UpperCamelCase : str=12 , UpperCamelCase : Dict=64 , UpperCamelCase : Optional[Any]=3_072 , UpperCamelCase : str="gelu_new" , UpperCamelCase : Dict=0.1 , UpperCamelCase : Dict=0.1 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : List[Any]=None , UpperCamelCase : Any=1e-9 , UpperCamelCase : List[str]="mean" , UpperCamelCase : Any="relative_shift" , UpperCamelCase : Dict=True , UpperCamelCase : Dict=True , UpperCamelCase : str=True , **UpperCamelCase : str , ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Any = block_sizes __UpperCAmelCase : Optional[Any] = [1] * len(UpperCamelCase ) if block_repeats is None else block_repeats assert len(UpperCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __UpperCAmelCase : List[str] = num_decoder_layers __UpperCAmelCase : Dict = d_model __UpperCAmelCase : List[str] = n_head __UpperCAmelCase : Tuple = d_head __UpperCAmelCase : List[str] = d_inner __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : Dict = hidden_dropout __UpperCAmelCase : Tuple = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = initializer_std __UpperCAmelCase : int = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' __UpperCAmelCase : int = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' __UpperCAmelCase : Optional[Any] = attention_type __UpperCAmelCase : str = separate_cls __UpperCAmelCase : Any = truncate_seq __UpperCAmelCase : str = pool_q_only super().__init__(**UpperCamelCase ) @property def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCamelCase__ ( self : str , UpperCamelCase : Any ): '''simple docstring''' raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def lowerCamelCase__ ( self : str ): '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Any ): '''simple docstring''' raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
351
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : list[float] , _UpperCamelCase : list[float] ) -> float: '''simple docstring''' __UpperCAmelCase : Tuple = sorted(numsa + numsa ) __UpperCAmelCase ,__UpperCAmelCase : Dict = divmod(len(_UpperCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[Any] = [float(x) for x in input('Enter the elements of first array: ').split()] UpperCAmelCase : Optional[int] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
320
0
"""simple docstring""" import argparse import os import re import packaging.version UpperCAmelCase : Optional[Any] = 'examples/' UpperCAmelCase : List[Any] = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCAmelCase : List[Any] = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } UpperCAmelCase : Any = 'README.md' def lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> List[Any]: '''simple docstring''' with open(_UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : Optional[Any] = f.read() __UpperCAmelCase : str = REPLACE_PATTERNS[pattern] __UpperCAmelCase : Tuple = replace.replace("""VERSION""" , _UpperCamelCase ) __UpperCAmelCase : Optional[Any] = re_pattern.sub(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' for folder, directories, fnames in os.walk(_UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase , pattern="""examples""" ) def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[Any]=False ) -> List[str]: '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not patch: update_version_in_examples(_UpperCamelCase ) def lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """🤗 Transformers currently provides the following architectures""" __UpperCAmelCase : Union[str, Any] = """1. Want to contribute a new model?""" with open(_UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : List[Any] = f.readlines() # Find the start of the list. __UpperCAmelCase : Dict = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __UpperCAmelCase : str = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_UpperCamelCase ) def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' with open(REPLACE_FILES["""init"""] , """r""" ) as f: __UpperCAmelCase : str = f.read() __UpperCAmelCase : Tuple = REPLACE_PATTERNS["""init"""][0].search(_UpperCamelCase ).groups()[0] return packaging.version.parse(_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : int=False ) -> Any: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __UpperCAmelCase : Dict = default_version.base_version elif patch: __UpperCAmelCase : Any = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __UpperCAmelCase : Dict = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __UpperCAmelCase : Optional[Any] = input(f'''Which version are you releasing? [{default_version}]''' ) if len(_UpperCamelCase ) == 0: __UpperCAmelCase : int = default_version print(f'''Updating version to {version}.''' ) global_version_update(_UpperCamelCase , patch=_UpperCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def lowerCamelCase ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : str = get_version() __UpperCAmelCase : Dict = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __UpperCAmelCase : str = current_version.base_version # Check with the user we got that right. __UpperCAmelCase : Dict = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(_UpperCamelCase ) == 0: __UpperCAmelCase : List[Any] = dev_version print(f'''Updating version to {version}.''' ) global_version_update(_UpperCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCAmelCase : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
352
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = """hf-internal-testing/tiny-random-t5""" __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Optional[int] = tokenizer("""This is me""" , return_tensors="""pt""" ) __UpperCAmelCase : int = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __UpperCAmelCase : Tuple = model.generate(**UpperCamelCase ) __UpperCAmelCase : Tuple = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase ) __UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __UpperCAmelCase : Tuple = model_reloaded.generate(**UpperCamelCase ) self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase ) ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Any = """hf-internal-testing/tiny-random-t5""" __UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Tuple = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(UpperCamelCase ): model.save_pretrained(UpperCamelCase ) __UpperCAmelCase : Tuple = model.reverse_bettertransformer() model.save_pretrained(UpperCamelCase )
320
0
"""simple docstring""" from math import factorial UpperCAmelCase : Tuple = {str(d): factorial(d) for d in range(10)} def lowerCamelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(_UpperCamelCase ) ) def lowerCamelCase ( ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[int] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , _UpperCamelCase ) if sum_of_digit_factorial(_UpperCamelCase ) == i ) if __name__ == "__main__": print(F"{solution() = }")
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel UpperCAmelCase : Optional[Any] = HfApi() UpperCAmelCase : Tuple = {} # fmt: off UpperCAmelCase : Tuple = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) UpperCAmelCase : List[Any] = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) UpperCAmelCase : List[str] = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) UpperCAmelCase : Union[str, Any] = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) UpperCAmelCase : List[str] = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) UpperCAmelCase : List[str] = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) UpperCAmelCase : Tuple = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) UpperCAmelCase : List[str] = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) UpperCAmelCase : Dict = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) UpperCAmelCase : int = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) UpperCAmelCase : Tuple = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) UpperCAmelCase : List[Any] = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) UpperCAmelCase : Union[str, Any] = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) UpperCAmelCase : Optional[int] = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) UpperCAmelCase : Optional[Any] = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on UpperCAmelCase : Any = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": UpperCAmelCase : Any = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(F"Started running {mod.modelId}!!!") if mod.modelId.startswith('CompVis'): UpperCAmelCase : str = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: UpperCAmelCase : str = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) UpperCAmelCase : List[str] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) UpperCAmelCase : List[Any] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): UpperCAmelCase : List[Any] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1E-3 ) print(F"{mod.modelId} has passed successfully!!!")
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase : List[str] = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Dict ) -> List[str]: '''simple docstring''' if index == r: for j in range(_UpperCamelCase ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __UpperCAmelCase : Any = arr[i] combination_util(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : List[str] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : str = [0] * r # Print all combination using temporary array 'data[]' combination_util(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , 0 , _UpperCamelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above UpperCAmelCase : Dict = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
355
"""simple docstring""" def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[str] = 1 while len(_UpperCamelCase ) < 1E6: constant.append(str(_UpperCamelCase ) ) i += 1 __UpperCAmelCase : List[str] = """""".join(_UpperCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
320
0
"""simple docstring""" def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[str] = 1 while len(_UpperCamelCase ) < 1E6: constant.append(str(_UpperCamelCase ) ) i += 1 __UpperCAmelCase : List[str] = """""".join(_UpperCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , UpperCamelCase : Any , UpperCamelCase : Tuple=13 , UpperCamelCase : str=7 , UpperCamelCase : Tuple=True , UpperCamelCase : Tuple=True , UpperCamelCase : Tuple=True , UpperCamelCase : int=True , UpperCamelCase : Dict=99 , UpperCamelCase : Tuple=32 , UpperCamelCase : Optional[Any]=5 , UpperCamelCase : Tuple=4 , UpperCamelCase : int=37 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Optional[Any]=512 , UpperCamelCase : int=16 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=4 , ): '''simple docstring''' __UpperCAmelCase : Dict = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : int = use_attention_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : int = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : List[str] = num_choices def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_attention_mask: __UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Optional[int] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCamelCase , ) return config, input_ids, attention_mask def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() __UpperCAmelCase : Any = config_and_inputs __UpperCAmelCase : Any = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Tuple = FlaxDistilBertModelTester(self ) @slow def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCAmelCase : List[str] = model_class_name.from_pretrained("""distilbert-base-uncased""" ) __UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : List[Any] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __UpperCAmelCase : Any = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) __UpperCAmelCase : List[str] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : Tuple = model(UpperCamelCase , attention_mask=UpperCamelCase )[0] __UpperCAmelCase : int = (1, 11, 768) self.assertEqual(output.shape , UpperCamelCase ) __UpperCAmelCase : Tuple = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCamelCase , atol=1e-4 ) )
357
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput UpperCAmelCase : Optional[Any] = 'scheduler_config.json' class lowerCamelCase__ ( A ): """simple docstring""" __a = 1 __a = 2 __a = 3 __a = 4 __a = 5 __a = 6 __a = 7 __a = 8 __a = 9 __a = 10 __a = 11 __a = 12 __a = 13 __a = 14 @dataclass class lowerCamelCase__ ( A ): """simple docstring""" __a = 42 class lowerCamelCase__ : """simple docstring""" __a = SCHEDULER_CONFIG_NAME __a = [] __a = True @classmethod def lowerCamelCase__ ( cls : Any , UpperCamelCase : Dict[str, Any] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = cls.load_config( pretrained_model_name_or_path=UpperCamelCase , subfolder=UpperCamelCase , return_unused_kwargs=UpperCamelCase , return_commit_hash=UpperCamelCase , **UpperCamelCase , ) return cls.from_config(UpperCamelCase , return_unused_kwargs=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, os.PathLike] , UpperCamelCase : bool = False , **UpperCamelCase : Optional[Any] ): '''simple docstring''' self.save_config(save_directory=UpperCamelCase , push_to_hub=UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return self._get_compatibles() @classmethod def lowerCamelCase__ ( cls : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __UpperCAmelCase : List[str] = importlib.import_module(__name__.split(""".""" )[0] ) __UpperCAmelCase : List[str] = [ getattr(UpperCamelCase , UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase , UpperCamelCase ) ] return compatible_classes
320
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowerCamelCase__ : """simple docstring""" def lowerCamelCase__ ( self : str , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : str ): '''simple docstring''' return None class lowerCamelCase__ : """simple docstring""" def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' return None class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowerCamelCase__ ( self : int ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(UpperCamelCase , """tf""" , 12 , **UpperCamelCase ) @require_torch @slow def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(UpperCamelCase , """pt""" , 12 , **UpperCamelCase ) @require_torch @slow def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' from transformers import BertModel __UpperCAmelCase : str = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(UpperCamelCase ) ) vocab_file.flush() __UpperCAmelCase : Union[str, Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __UpperCAmelCase : Optional[int] = BertModel(BertConfig(vocab_size=len(UpperCamelCase ) ) ) model.save_pretrained(UpperCamelCase ) self._test_export(UpperCamelCase , """pt""" , 12 , UpperCamelCase ) @require_tf @slow def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __UpperCAmelCase : Dict = self._test_export(UpperCamelCase , """tf""" , 12 , **UpperCamelCase ) __UpperCAmelCase : int = quantize(Path(UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(UpperCamelCase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def lowerCamelCase__ ( self : Any ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __UpperCAmelCase : List[Any] = self._test_export(UpperCamelCase , """pt""" , 12 , **UpperCamelCase ) __UpperCAmelCase : Dict = quantize(UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(UpperCamelCase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any=None , **UpperCamelCase : List[str] ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: __UpperCAmelCase : int = Path(UpperCamelCase ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ) return path except Exception as e: self.fail(UpperCamelCase ) @require_torch @require_tokenizers @slow def lowerCamelCase__ ( self : Any ): '''simple docstring''' from transformers import BertModel __UpperCAmelCase : List[str] = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) __UpperCAmelCase : Tuple = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(UpperCamelCase , UpperCamelCase , """pt""" ) @require_tf @require_tokenizers @slow def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' from transformers import TFBertModel __UpperCAmelCase : Union[str, Any] = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) __UpperCAmelCase : Dict = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(UpperCamelCase , UpperCamelCase , """tf""" ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = FeatureExtractionPipeline(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : List[Any] = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] __UpperCAmelCase : str = infer_shapes(UpperCamelCase , UpperCamelCase ) # Assert all variables are present self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] , UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Any = ["""input_ids""", """attention_mask""", """token_type_ids"""] __UpperCAmelCase : Optional[int] = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} __UpperCAmelCase : Tuple = ensure_valid_input(FuncContiguousArgs() , UpperCamelCase , UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(UpperCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(UpperCamelCase ) , set(UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(UpperCamelCase , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __UpperCAmelCase : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() , UpperCamelCase , UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(UpperCamelCase ) , 1 ) self.assertEqual(len(UpperCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
358
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase__ ( *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ): '''simple docstring''' pass def lowerCamelCase ( _UpperCamelCase : Image ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def lowerCamelCase ( _UpperCamelCase : Image ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = np.array(_UpperCamelCase ) __UpperCAmelCase : List[Any] = npimg.shape return {"hash": hashimage(_UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __a = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass @slow @require_torch def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) __UpperCAmelCase : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : int = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = """facebook/sam-vit-huge""" __UpperCAmelCase : str = pipeline("""mask-generation""" , model=UpperCamelCase ) __UpperCAmelCase : int = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : Dict = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] , )
320
0
"""simple docstring""" from PIL import Image def lowerCamelCase ( _UpperCamelCase : Image , _UpperCamelCase : int ) -> Image: '''simple docstring''' __UpperCAmelCase : List[str] = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level)) def contrast(_UpperCamelCase : int ) -> int: return int(1_2_8 + factor * (c - 1_2_8) ) return img.point(_UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 UpperCAmelCase : Any = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
359
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , UpperCamelCase : str ): '''simple docstring''' super().__init__() __UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase ) __UpperCAmelCase : int = list(model.children() )[:-2] __UpperCAmelCase : List[Any] = nn.Sequential(*UpperCamelCase ) __UpperCAmelCase : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.pool(self.model(UpperCamelCase ) ) __UpperCAmelCase : List[Any] = torch.flatten(UpperCamelCase , start_dim=2 ) __UpperCAmelCase : Any = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )] __UpperCAmelCase : Any = os.path.dirname(UpperCamelCase ) __UpperCAmelCase : List[str] = tokenizer __UpperCAmelCase : str = labels __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) __UpperCAmelCase : int = max_seq_length __UpperCAmelCase : int = transforms def __len__( self : List[str] ): '''simple docstring''' return len(self.data ) def __getitem__( self : List[str] , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Any = sentence[: self.max_seq_length] __UpperCAmelCase : Tuple = torch.zeros(self.n_classes ) __UpperCAmelCase : str = 1 __UpperCAmelCase : Any = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __UpperCAmelCase : Optional[int] = self.transforms(UpperCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = [len(row["""sentence"""] ) for row in batch] __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase ) __UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) __UpperCAmelCase : str = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ): __UpperCAmelCase : List[str] = input_row["""sentence"""] __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] ) __UpperCAmelCase : Optional[Any] = torch.stack([row["""label"""] for row in batch] ) __UpperCAmelCase : str = torch.stack([row["""image_start_token"""] for row in batch] ) __UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ) -> int: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
320
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Optional[int] = """ZinengTang/tvlt-base""" __UpperCAmelCase : Optional[int] = tempfile.mkdtemp() def lowerCamelCase__ ( self : Union[str, Any] , **UpperCamelCase : int ): '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **UpperCamelCase ) def lowerCamelCase__ ( self : int , **UpperCamelCase : Any ): '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : int = self.get_feature_extractor() __UpperCAmelCase : int = TvltProcessor(image_processor=UpperCamelCase , feature_extractor=UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Optional[Any] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , UpperCamelCase ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : int = self.get_image_processor() __UpperCAmelCase : int = self.get_feature_extractor() __UpperCAmelCase : Tuple = TvltProcessor(image_processor=UpperCamelCase , feature_extractor=UpperCamelCase ) __UpperCAmelCase : Tuple = np.ones([12_000] ) __UpperCAmelCase : List[Any] = feature_extractor(UpperCamelCase , return_tensors="""np""" ) __UpperCAmelCase : Optional[Any] = processor(audio=UpperCamelCase , return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.get_image_processor() __UpperCAmelCase : Optional[int] = self.get_feature_extractor() __UpperCAmelCase : List[Any] = TvltProcessor(image_processor=UpperCamelCase , feature_extractor=UpperCamelCase ) __UpperCAmelCase : str = np.ones([3, 224, 224] ) __UpperCAmelCase : Any = image_processor(UpperCamelCase , return_tensors="""np""" ) __UpperCAmelCase : List[Any] = processor(images=UpperCamelCase , return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = self.get_image_processor() __UpperCAmelCase : Dict = self.get_feature_extractor() __UpperCAmelCase : Tuple = TvltProcessor(image_processor=UpperCamelCase , feature_extractor=UpperCamelCase ) __UpperCAmelCase : Dict = np.ones([12_000] ) __UpperCAmelCase : Union[str, Any] = np.ones([3, 224, 224] ) __UpperCAmelCase : Dict = processor(audio=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : str = self.get_image_processor() __UpperCAmelCase : str = self.get_feature_extractor() __UpperCAmelCase : Tuple = TvltProcessor(image_processor=UpperCamelCase , feature_extractor=UpperCamelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
360
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
320
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCAmelCase : Optional[int] = logging.get_logger('transformers.models.speecht5') UpperCAmelCase : Union[str, Any] = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } UpperCAmelCase : List[Any] = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } UpperCAmelCase : Optional[int] = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } UpperCAmelCase : str = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } UpperCAmelCase : str = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } UpperCAmelCase : Dict = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } UpperCAmelCase : str = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } UpperCAmelCase : Tuple = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } UpperCAmelCase : Any = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCAmelCase : str = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase : Optional[int] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCAmelCase : List[str] = [] UpperCAmelCase : Union[str, Any] = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] UpperCAmelCase : List[Any] = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] UpperCAmelCase : Dict = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] UpperCAmelCase : Dict = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] ) -> List[str]: '''simple docstring''' for attribute in key.split(""".""" ): __UpperCAmelCase : List[Any] = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: __UpperCAmelCase : Union[str, Any] = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: __UpperCAmelCase : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase : List[str] = value elif weight_type == "weight_g": __UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_v": __UpperCAmelCase : Any = value elif weight_type == "bias": __UpperCAmelCase : Dict = value elif weight_type == "running_mean": __UpperCAmelCase : int = value elif weight_type == "running_var": __UpperCAmelCase : Dict = value elif weight_type == "num_batches_tracked": __UpperCAmelCase : Optional[Any] = value else: __UpperCAmelCase : Optional[int] = value logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] ) -> Dict: '''simple docstring''' for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: __UpperCAmelCase : Optional[Any] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[Any] = [] if task == "s2t": __UpperCAmelCase : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder __UpperCAmelCase : Union[str, Any] = MAPPING_S2T __UpperCAmelCase : Optional[Any] = IGNORE_KEYS_S2T elif task == "t2s": __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Optional[int] = MAPPING_T2S __UpperCAmelCase : str = IGNORE_KEYS_T2S elif task == "s2s": __UpperCAmelCase : str = hf_model.speechta.encoder.prenet.feature_encoder __UpperCAmelCase : Dict = MAPPING_S2S __UpperCAmelCase : int = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(_UpperCamelCase , _UpperCamelCase ): logger.info(f'''{name} was ignored''' ) continue __UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __UpperCAmelCase : Optional[int] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __UpperCAmelCase : Optional[int] = key.split(""".*.""" ) if prefix in name and suffix in name: __UpperCAmelCase : List[str] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __UpperCAmelCase : str = True if "*" in mapped_key: __UpperCAmelCase : Dict = name.split(_UpperCamelCase )[0].split(""".""" )[-2] __UpperCAmelCase : int = mapped_key.replace("""*""" , _UpperCamelCase ) if "weight_g" in name: __UpperCAmelCase : Optional[Any] = """weight_g""" elif "weight_v" in name: __UpperCAmelCase : Optional[int] = """weight_v""" elif "bias" in name: __UpperCAmelCase : Optional[Any] = """bias""" elif "weight" in name: __UpperCAmelCase : Any = """weight""" elif "running_mean" in name: __UpperCAmelCase : Union[str, Any] = """running_mean""" elif "running_var" in name: __UpperCAmelCase : Tuple = """running_var""" elif "num_batches_tracked" in name: __UpperCAmelCase : Any = """num_batches_tracked""" else: __UpperCAmelCase : str = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = full_name.split("""conv_layers.""" )[-1] __UpperCAmelCase : Union[str, Any] = name.split(""".""" ) __UpperCAmelCase : Optional[Any] = int(items[0] ) __UpperCAmelCase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCAmelCase : Dict = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCAmelCase : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __UpperCAmelCase : int = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCAmelCase : str = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Any=None , _UpperCamelCase : str=None , ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: __UpperCAmelCase : str = SpeechTaConfig.from_pretrained(_UpperCamelCase ) else: __UpperCAmelCase : int = SpeechTaConfig() if task == "s2t": __UpperCAmelCase : Optional[int] = config.max_text_positions __UpperCAmelCase : str = SpeechTaForSpeechToText(_UpperCamelCase ) elif task == "t2s": __UpperCAmelCase : Optional[Any] = 1_8_7_6 __UpperCAmelCase : Optional[int] = 6_0_0 __UpperCAmelCase : List[str] = config.max_speech_positions __UpperCAmelCase : str = SpeechTaForTextToSpeech(_UpperCamelCase ) elif task == "s2s": __UpperCAmelCase : int = 1_8_7_6 __UpperCAmelCase : int = config.max_speech_positions __UpperCAmelCase : Union[str, Any] = SpeechTaForSpeechToSpeech(_UpperCamelCase ) else: raise ValueError(f'''Unknown task name: {task}''' ) if vocab_path: __UpperCAmelCase : Optional[Any] = SpeechTaTokenizer(_UpperCamelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __UpperCAmelCase : int = AddedToken("""<mask>""" , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) __UpperCAmelCase : Optional[int] = SpeechTaFeatureExtractor() __UpperCAmelCase : Tuple = SpeechTaProcessor(tokenizer=_UpperCamelCase , feature_extractor=_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) __UpperCAmelCase : Optional[int] = torch.load(_UpperCamelCase ) recursively_load_weights(fairseq_checkpoint["""model"""] , _UpperCamelCase , _UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(_UpperCamelCase ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) UpperCAmelCase : Dict = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
361
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ) __UpperCAmelCase : List[Any] = sum(_UpperCamelCase ) __UpperCAmelCase : Optional[int] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __UpperCAmelCase : Any = True for i in range(1 , s + 1 ): __UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __UpperCAmelCase : Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __UpperCAmelCase : Optional[int] = s - 2 * j break return diff
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: '''simple docstring''' return number | (1 << position) def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: '''simple docstring''' return number & ~(1 << position) def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: '''simple docstring''' return number ^ (1 << position) def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> bool: '''simple docstring''' return ((number >> position) & 1) == 1 def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""pixel_values"""] def __init__( self : Tuple , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 255 , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(**UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) __UpperCAmelCase : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : int = crop_size __UpperCAmelCase : Optional[int] = do_rescale __UpperCAmelCase : List[Any] = rescale_factor __UpperCAmelCase : Tuple = do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCAmelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCAmelCase : List[Any] = do_convert_rgb def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __UpperCAmelCase : int = get_resize_output_image_size(UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Dict , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, float] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ): '''simple docstring''' return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ): '''simple docstring''' return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : int = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Dict = size if size is not None else self.size __UpperCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase , param_name="""size""" , default_to_square=UpperCamelCase ) __UpperCAmelCase : Dict = resample if resample is not None else self.resample __UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , param_name="""crop_size""" , default_to_square=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Any = image_std if image_std is not None else self.image_std __UpperCAmelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCAmelCase : List[str] = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCAmelCase : int = [convert_to_rgb(UpperCamelCase ) for image in images] # All transformations expect numpy arrays. __UpperCAmelCase : Tuple = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: __UpperCAmelCase : Optional[int] = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: __UpperCAmelCase : int = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: __UpperCAmelCase : Dict = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: __UpperCAmelCase : Optional[Any] = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] __UpperCAmelCase : Any = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] __UpperCAmelCase : Any = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
320
0
"""simple docstring""" import re def lowerCamelCase ( _UpperCamelCase : str ) -> bool: '''simple docstring''' __UpperCAmelCase : str = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_UpperCamelCase , _UpperCamelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
363
"""simple docstring""" from collections.abc import Sequence def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : Dict = 0.0 for coeff in reversed(_UpperCamelCase ): __UpperCAmelCase : Any = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
320
0
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""image_processor""", """tokenizer"""] __a = """OwlViTImageProcessor""" __a = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : List[Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Tuple=None , **UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCamelCase , ) __UpperCAmelCase : Optional[int] = kwargs.pop("""feature_extractor""" ) __UpperCAmelCase : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Union[str, Any] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Tuple="max_length" , UpperCamelCase : str="np" , **UpperCamelCase : List[Any] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(UpperCamelCase , UpperCamelCase ) or (isinstance(UpperCamelCase , UpperCamelCase ) and not isinstance(text[0] , UpperCamelCase )): __UpperCAmelCase : Tuple = [self.tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )] elif isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(text[0] , UpperCamelCase ): __UpperCAmelCase : Optional[int] = [] # Maximum number of queries across batch __UpperCAmelCase : List[str] = max([len(UpperCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCamelCase ) != max_num_queries: __UpperCAmelCase : Optional[int] = t + [""" """] * (max_num_queries - len(UpperCamelCase )) __UpperCAmelCase : Tuple = self.tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) encodings.append(UpperCamelCase ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": __UpperCAmelCase : int = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) __UpperCAmelCase : Tuple = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCAmelCase : Any = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) __UpperCAmelCase : List[str] = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCAmelCase : List[Any] = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) __UpperCAmelCase : Tuple = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCAmelCase : Any = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) __UpperCAmelCase : int = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) __UpperCAmelCase : int = BatchEncoding() __UpperCAmelCase : Optional[int] = input_ids __UpperCAmelCase : Dict = attention_mask if query_images is not None: __UpperCAmelCase : Tuple = BatchEncoding() __UpperCAmelCase : Tuple = self.image_processor( UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ).pixel_values __UpperCAmelCase : List[str] = query_pixel_values if images is not None: __UpperCAmelCase : str = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: __UpperCAmelCase : Optional[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCAmelCase : Dict = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : str ): '''simple docstring''' return self.image_processor.post_process(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): '''simple docstring''' return self.image_processor.post_process_object_detection(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , *UpperCamelCase : Tuple , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , *UpperCamelCase : int , **UpperCamelCase : Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Any ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCamelCase , ) return self.image_processor_class @property def lowerCamelCase__ ( self : Any ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCamelCase , ) return self.image_processor
364
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[int] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCamelCase__ : """simple docstring""" __a = PegasusConfig __a = {} __a = """gelu""" def __init__( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Dict=True , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : Union[str, Any]=5 , UpperCamelCase : Any=4 , UpperCamelCase : Tuple=37 , UpperCamelCase : Any=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=20 , UpperCamelCase : List[str]=2 , UpperCamelCase : int=1 , UpperCamelCase : Optional[Any]=0 , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Any = eos_token_id __UpperCAmelCase : Optional[int] = pad_token_id __UpperCAmelCase : List[str] = bos_token_id def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __UpperCAmelCase : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCAmelCase : Union[str, Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCAmelCase : Any = prepare_pegasus_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, inputs_dict def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 20 __UpperCAmelCase : Tuple = model_class_name(UpperCamelCase ) __UpperCAmelCase : List[Any] = model.encode(inputs_dict["""input_ids"""] ) __UpperCAmelCase ,__UpperCAmelCase : int = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __UpperCAmelCase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCAmelCase : Tuple = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Dict = model.decode(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 20 __UpperCAmelCase : int = model_class_name(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] ) __UpperCAmelCase ,__UpperCAmelCase : Dict = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCAmelCase : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Union[str, Any] = model.decode(UpperCamelCase , UpperCamelCase , decoder_attention_mask=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=None , _UpperCamelCase : Any=None , ) -> Dict: '''simple docstring''' if attention_mask is None: __UpperCAmelCase : Optional[int] = np.not_equal(_UpperCamelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __UpperCAmelCase : Dict = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __a = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __a = True __a = False __a = False __a = False def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = FlaxPegasusModelTester(self ) __UpperCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : Tuple = self._prepare_for_class(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Dict = model_class(UpperCamelCase ) @jax.jit def encode_jitted(UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any]=None , **UpperCamelCase : List[str] ): return model.encode(input_ids=UpperCamelCase , attention_mask=UpperCamelCase ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase : Tuple = encode_jitted(**UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase : Optional[int] = encode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : int = model_class(UpperCamelCase ) __UpperCAmelCase : int = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __UpperCAmelCase : Any = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ): return model.decode( decoder_input_ids=UpperCamelCase , decoder_attention_mask=UpperCamelCase , encoder_outputs=UpperCamelCase , ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase : Union[str, Any] = decode_jitted(**UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase : str = decode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCamelCase ) __UpperCAmelCase : Optional[int] = np.ones((1, 1) ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @slow def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) __UpperCAmelCase : Union[str, Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) __UpperCAmelCase : List[Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCAmelCase : List[str] = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""np""" , truncation=UpperCamelCase , max_length=512 , padding=UpperCamelCase ) __UpperCAmelCase : int = model.generate(**UpperCamelCase , num_beams=2 ).sequences __UpperCAmelCase : str = tokenizer.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) assert tgt_text == decoded
320
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : str = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } UpperCAmelCase : List[str] = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = EfficientNetConfig() __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""hidden_dim"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""width_coef"""] __UpperCAmelCase : str = CONFIG_MAP[model_name]["""depth_coef"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""dropout_rate"""] __UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""] __UpperCAmelCase : int = """huggingface/label-files""" __UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json""" __UpperCAmelCase : str = 1_0_0_0 __UpperCAmelCase : Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Dict = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCamelCase ( _UpperCamelCase : Any ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : List[str] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_UpperCamelCase , ) return preprocessor def lowerCamelCase ( _UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __UpperCAmelCase : str = sorted(set(_UpperCamelCase ) ) __UpperCAmelCase : Optional[int] = len(_UpperCamelCase ) __UpperCAmelCase : Any = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )} __UpperCAmelCase : Any = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __UpperCAmelCase : List[str] = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __UpperCAmelCase : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: __UpperCAmelCase : Optional[Any] = """efficientnet.""" + item[1] __UpperCAmelCase : Tuple = """classifier.weight""" __UpperCAmelCase : Optional[int] = """classifier.bias""" return key_mapping def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue __UpperCAmelCase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: __UpperCAmelCase : int = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __UpperCAmelCase : Optional[Any] = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __UpperCAmelCase : List[str] = torch.from_numpy(np.transpose(_UpperCamelCase ) ) else: __UpperCAmelCase : Tuple = torch.from_numpy(_UpperCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCamelCase ) @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = model_classes[model_name]( include_top=_UpperCamelCase , weights="""imagenet""" , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , ) __UpperCAmelCase : List[str] = original_model.trainable_variables __UpperCAmelCase : List[Any] = original_model.non_trainable_variables __UpperCAmelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __UpperCAmelCase : int = param.numpy() __UpperCAmelCase : Dict = list(tf_params.keys() ) # Load HuggingFace model __UpperCAmelCase : Optional[Any] = get_efficientnet_config(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(_UpperCamelCase ).eval() __UpperCAmelCase : Any = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __UpperCAmelCase : Tuple = rename_keys(_UpperCamelCase ) replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Initialize preprocessor and preprocess input image __UpperCAmelCase : List[Any] = convert_image_processor(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = hf_model(**_UpperCamelCase ) __UpperCAmelCase : Any = outputs.logits.detach().numpy() # Original model inference __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : str = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __UpperCAmelCase : Optional[Any] = image.img_to_array(_UpperCamelCase ) __UpperCAmelCase : Tuple = np.expand_dims(_UpperCamelCase , axis=0 ) __UpperCAmelCase : str = original_model.predict(_UpperCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCamelCase ): os.mkdir(_UpperCamelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCamelCase ) preprocessor.save_pretrained(_UpperCamelCase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) __UpperCAmelCase : List[str] = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_UpperCamelCase ) hf_model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') UpperCAmelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
320
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase : int = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = ['MaskFormerFeatureExtractor'] UpperCAmelCase : Any = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] UpperCAmelCase : List[Any] = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
366
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""keras_nlp"""] def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(self , ["""keras_nlp"""] )
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] ) -> int: '''simple docstring''' def update_area_of_max_square(_UpperCamelCase : int , _UpperCamelCase : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __UpperCAmelCase : Optional[int] = update_area_of_max_square(_UpperCamelCase , col + 1 ) __UpperCAmelCase : int = update_area_of_max_square(row + 1 , col + 1 ) __UpperCAmelCase : Optional[Any] = update_area_of_max_square(row + 1 , _UpperCamelCase ) if mat[row][col]: __UpperCAmelCase : List[Any] = 1 + min([right, diagonal, down] ) __UpperCAmelCase : Any = max(largest_square_area[0] , _UpperCamelCase ) return sub_problem_sol else: return 0 __UpperCAmelCase : Optional[int] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] ) -> int: '''simple docstring''' def update_area_of_max_square_using_dp_array( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __UpperCAmelCase : List[str] = update_area_of_max_square_using_dp_array(_UpperCamelCase , col + 1 , _UpperCamelCase ) __UpperCAmelCase : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _UpperCamelCase ) __UpperCAmelCase : str = update_area_of_max_square_using_dp_array(row + 1 , _UpperCamelCase , _UpperCamelCase ) if mat[row][col]: __UpperCAmelCase : List[Any] = 1 + min([right, diagonal, down] ) __UpperCAmelCase : Optional[Any] = max(largest_square_area[0] , _UpperCamelCase ) __UpperCAmelCase : Tuple = sub_problem_sol return sub_problem_sol else: return 0 __UpperCAmelCase : Dict = [0] __UpperCAmelCase : Any = [[-1] * cols for _ in range(_UpperCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , _UpperCamelCase ) return largest_square_area[0] def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = [[0] * (cols + 1) for _ in range(rows + 1 )] __UpperCAmelCase : Any = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __UpperCAmelCase : Union[str, Any] = dp_array[row][col + 1] __UpperCAmelCase : Optional[int] = dp_array[row + 1][col + 1] __UpperCAmelCase : Optional[Any] = dp_array[row + 1][col] if mat[row][col] == 1: __UpperCAmelCase : Optional[int] = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : Optional[Any] = max(dp_array[row][col] , _UpperCamelCase ) else: __UpperCAmelCase : int = 0 return largest_square_area def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] ) -> int: '''simple docstring''' __UpperCAmelCase : int = [0] * (cols + 1) __UpperCAmelCase : Tuple = [0] * (cols + 1) __UpperCAmelCase : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __UpperCAmelCase : int = current_row[col + 1] __UpperCAmelCase : List[Any] = next_row[col + 1] __UpperCAmelCase : str = next_row[col] if mat[row][col] == 1: __UpperCAmelCase : Any = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = max(current_row[col] , _UpperCamelCase ) else: __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Any = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
367
"""simple docstring""" UpperCAmelCase : Dict = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCamelCase ( _UpperCamelCase : bytes ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Any = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_UpperCamelCase ) __UpperCAmelCase : str = """""".join(bin(_UpperCamelCase )[2:].zfill(8 ) for byte in data ) __UpperCAmelCase : int = len(_UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later __UpperCAmelCase : Dict = b"""=""" * ((6 - len(_UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_UpperCamelCase ) % 6) else: __UpperCAmelCase : List[str] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_UpperCamelCase ) , 6 ) ).encode() + padding ) def lowerCamelCase ( _UpperCamelCase : str ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Tuple = ( """argument should be a bytes-like object or ASCII string, """ f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_UpperCamelCase , _UpperCamelCase ): try: __UpperCAmelCase : Optional[Any] = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) __UpperCAmelCase : str = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __UpperCAmelCase : List[str] = encoded_data[:-padding] __UpperCAmelCase : int = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __UpperCAmelCase : Optional[Any] = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) __UpperCAmelCase : List[Any] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_UpperCamelCase ) , 8 ) ] return bytes(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ) __UpperCAmelCase : List[Any] = sum(_UpperCamelCase ) __UpperCAmelCase : Optional[int] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __UpperCAmelCase : Any = True for i in range(1 , s + 1 ): __UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __UpperCAmelCase : Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __UpperCAmelCase : Optional[int] = s - 2 * j break return diff
368
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase : str = logging.get_logger(__name__) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ): '''simple docstring''' warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
320
0
"""simple docstring""" UpperCAmelCase : Dict = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip UpperCAmelCase : List[str] = concatenate_datasets UpperCAmelCase : Optional[Any] = DownloadConfig UpperCAmelCase : Tuple = DownloadManager UpperCAmelCase : List[str] = DownloadMode UpperCAmelCase : Dict = DownloadConfig UpperCAmelCase : Tuple = DownloadMode UpperCAmelCase : List[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
369
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = LEDTokenizer __a = LEDTokenizerFast __a = True def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' super().setUp() __UpperCAmelCase : Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __UpperCAmelCase : str = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase ) ) def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : str , UpperCamelCase : Any ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self : str ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCAmelCase : Union[str, Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = tokenizer(UpperCamelCase , max_length=len(UpperCamelCase ) , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCamelCase , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIn("""input_ids""" , UpperCamelCase ) self.assertIn("""attention_mask""" , UpperCamelCase ) self.assertNotIn("""labels""" , UpperCamelCase ) self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[Any] = tokenizer(text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : str = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization."""] __UpperCAmelCase : int = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Tuple = tokenizer(text_target=UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Optional[Any] = inputs["""input_ids"""] __UpperCAmelCase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = ["""Summary of the text.""", """Another summary."""] __UpperCAmelCase : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , padding=UpperCamelCase ) __UpperCAmelCase : str = [[0] * len(UpperCamelCase ) for x in encoded_output["""input_ids"""]] __UpperCAmelCase : List[Any] = tokenizer.pad(UpperCamelCase ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Any = """A, <mask> AllenNLP sentence.""" __UpperCAmelCase : Dict = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) __UpperCAmelCase : List[Any] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
320
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = StableDiffusionXLImgaImgPipeline __a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __a = PipelineTesterMixin.required_optional_params - {"""latents"""} __a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __a = IMAGE_TO_IMAGE_IMAGE_PARAMS __a = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __UpperCAmelCase : Optional[Any] = EulerDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) __UpperCAmelCase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=32 , ) __UpperCAmelCase : str = CLIPTextModel(UpperCamelCase ) __UpperCAmelCase : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCamelCase ) __UpperCAmelCase : List[str] = CLIPTextModelWithProjection(UpperCamelCase ) __UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : Any=0 ): '''simple docstring''' __UpperCAmelCase : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) __UpperCAmelCase : int = image / 2 + 0.5 if str(UpperCamelCase ).startswith("""mps""" ): __UpperCAmelCase : Union[str, Any] = torch.manual_seed(UpperCamelCase ) else: __UpperCAmelCase : Union[str, Any] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) __UpperCAmelCase : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.75, } return inputs def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Optional[Any] = StableDiffusionXLImgaImgPipeline(**UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) __UpperCAmelCase : List[str] = self.get_dummy_inputs(UpperCamelCase ) __UpperCAmelCase : int = sd_pipe(**UpperCamelCase ).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : str = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' pass def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.get_dummy_components() __UpperCAmelCase : Optional[int] = StableDiffusionXLImgaImgPipeline(**UpperCamelCase ) __UpperCAmelCase : str = sd_pipe.to(UpperCamelCase ) __UpperCAmelCase : List[str] = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) # forward without prompt embeds __UpperCAmelCase : List[str] = self.get_dummy_inputs(UpperCamelCase ) __UpperCAmelCase : Dict = 3 * ["""this is a negative prompt"""] __UpperCAmelCase : Optional[Any] = negative_prompt __UpperCAmelCase : str = 3 * [inputs["""prompt"""]] __UpperCAmelCase : Tuple = sd_pipe(**UpperCamelCase ) __UpperCAmelCase : List[str] = output.images[0, -3:, -3:, -1] # forward with prompt embeds __UpperCAmelCase : List[str] = self.get_dummy_inputs(UpperCamelCase ) __UpperCAmelCase : Optional[int] = 3 * ["""this is a negative prompt"""] __UpperCAmelCase : int = 3 * [inputs.pop("""prompt""" )] ( __UpperCAmelCase ) : List[str] = sd_pipe.encode_prompt(UpperCamelCase , negative_prompt=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = sd_pipe( **UpperCamelCase , prompt_embeds=UpperCamelCase , negative_prompt_embeds=UpperCamelCase , pooled_prompt_embeds=UpperCamelCase , negative_pooled_prompt_embeds=UpperCamelCase , ) __UpperCAmelCase : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Tuple="cpu" , UpperCamelCase : Union[str, Any]=torch.floataa , UpperCamelCase : Union[str, Any]=0 ): '''simple docstring''' __UpperCAmelCase : str = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) __UpperCAmelCase : str = np.random.RandomState(UpperCamelCase ).standard_normal((1, 4, 64, 64) ) __UpperCAmelCase : List[str] = torch.from_numpy(UpperCamelCase ).to(device=UpperCamelCase , dtype=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __UpperCAmelCase : int = self.get_inputs(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = pipe(**UpperCamelCase ).images __UpperCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : Optional[int] = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
370
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCamelCase__ : """simple docstring""" def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : List[Any]=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : int=99 , UpperCamelCase : Any=[1, 1, 2] , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Union[str, Any]=8 , UpperCamelCase : int=37 , UpperCamelCase : Optional[Any]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : int=0.0 , UpperCamelCase : Union[str, Any]=512 , UpperCamelCase : Any=3 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : str=None , UpperCamelCase : Tuple=False , ): '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : str = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : Optional[Any] = use_input_mask __UpperCAmelCase : Tuple = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Optional[int] = block_sizes __UpperCAmelCase : Optional[Any] = num_decoder_layers __UpperCAmelCase : Union[str, Any] = d_model __UpperCAmelCase : Dict = n_head __UpperCAmelCase : Optional[Any] = d_head __UpperCAmelCase : Dict = d_inner __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout __UpperCAmelCase : List[Any] = attention_dropout __UpperCAmelCase : str = activation_dropout __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : str = 2 __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : List[Any] = num_choices __UpperCAmelCase : Any = scope __UpperCAmelCase : Dict = initializer_std # Used in the tests to check the size of the first attention layer __UpperCAmelCase : Dict = n_head # Used in the tests to check the size of the first hidden state __UpperCAmelCase : Dict = self.d_model # Used in the tests to check the number of output hidden states/attentions __UpperCAmelCase : Dict = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __UpperCAmelCase : List[Any] = self.num_hidden_layers + 2 def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[str] = None if self.use_input_mask: __UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Dict = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : str = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__ ( self : Any , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : List[Any] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : List[str] = model(UpperCamelCase ) __UpperCAmelCase : List[Any] = [input_ids, input_mask] __UpperCAmelCase : Dict = model(UpperCamelCase ) __UpperCAmelCase : Tuple = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __UpperCAmelCase : int = False __UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Optional[Any] = model(UpperCamelCase ) __UpperCAmelCase : int = [input_ids, input_mask] __UpperCAmelCase : int = model(UpperCamelCase ) __UpperCAmelCase : List[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __UpperCAmelCase : List[Any] = False __UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __UpperCAmelCase : int = False __UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : str = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , ): '''simple docstring''' __UpperCAmelCase : Tuple = TFFunnelForPreTraining(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : int = TFFunnelForMaskedLM(config=UpperCamelCase ) __UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Optional[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_labels __UpperCAmelCase : Optional[Any] = TFFunnelForSequenceClassification(config=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Tuple = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : str = TFFunnelForMultipleChoice(config=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : str = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : int = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : List[str] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : str = TFFunnelForTokenClassification(config=UpperCamelCase ) __UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : str , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Any = TFFunnelForQuestionAnswering(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Any = model(UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) , ) : Dict = config_and_inputs __UpperCAmelCase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __a = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __a = False __a = False def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = TFFunnelModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase ) @require_tf class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __a = False __a = False def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : List[str] = TFFunnelModelTester(self , base=UpperCamelCase ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase )
320
0
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict ) -> Any: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = tmp_path / """cache""" __UpperCAmelCase : str = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase : Union[str, Any] = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Any = tmp_path / """cache""" __UpperCAmelCase : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __UpperCAmelCase : List[str] = features.copy() if features else default_expected_features __UpperCAmelCase : List[str] = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase : Optional[int] = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> Any: '''simple docstring''' __UpperCAmelCase : Tuple = tmp_path / """cache""" __UpperCAmelCase : Any = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} __UpperCAmelCase : List[Any] = features.copy() if features else default_expected_features __UpperCAmelCase : Tuple = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase : Tuple = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : List[Any] ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} __UpperCAmelCase : str = features.copy() __UpperCAmelCase : str = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase : Union[str, Any] = tmp_path / """cache""" __UpperCAmelCase : Tuple = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = tmp_path / """cache""" __UpperCAmelCase : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __UpperCAmelCase : Optional[int] = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase , split=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] ) -> Tuple: '''simple docstring''' if issubclass(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : int = jsonl_path elif issubclass(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : str = [jsonl_path] __UpperCAmelCase : Any = tmp_path / """cache""" __UpperCAmelCase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __UpperCAmelCase : List[Any] = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase , _UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str=("train",) ) -> List[Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) for split in splits: __UpperCAmelCase : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = tmp_path / """cache""" __UpperCAmelCase : str = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase : int = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase ).read() _check_json_datasetdict(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path / """cache""" __UpperCAmelCase : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __UpperCAmelCase : Optional[Any] = features.copy() if features else default_expected_features __UpperCAmelCase : str = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase : List[str] = JsonDatasetReader({"""train""": jsonl_path} , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_datasetdict(_UpperCamelCase , _UpperCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int ) -> Optional[int]: '''simple docstring''' if split: __UpperCAmelCase : Dict = {split: jsonl_path} else: __UpperCAmelCase : Dict = """train""" __UpperCAmelCase : str = {"""train""": jsonl_path, """test""": jsonl_path} __UpperCAmelCase : Optional[int] = tmp_path / """cache""" __UpperCAmelCase : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __UpperCAmelCase : Tuple = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase ).read() _check_json_datasetdict(_UpperCamelCase , _UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase ( _UpperCamelCase : Tuple ) -> int: '''simple docstring''' return json.load(_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : Tuple ) -> int: '''simple docstring''' return [json.loads(_UpperCamelCase ) for line in buffer] class lowerCamelCase__ : """simple docstring""" @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Any ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase ).write() buffer.seek(0 ) __UpperCAmelCase : Optional[Any] = load_json_function(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) assert isinstance(exported_content[0] , UpperCamelCase ) assert len(UpperCamelCase ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Any ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase , orient=UpperCamelCase ).write() buffer.seek(0 ) __UpperCAmelCase : int = load_json(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase : Optional[Any] = load_json_function(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) assert isinstance(exported_content[0] , UpperCamelCase ) assert len(UpperCamelCase ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Dict ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase , orient=UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase : int = load_json(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase ) == 10 def lowerCamelCase__ ( self : str , UpperCamelCase : List[Any] ): '''simple docstring''' with pytest.raises(UpperCamelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / f'''test.json.{extension}''' __UpperCAmelCase : Union[str, Any] = str(shared_datadir / f'''test_file.json.{extension}''' ) JsonDatasetWriter(UpperCamelCase , UpperCamelCase , compression=UpperCamelCase ).write() with fsspec.open(UpperCamelCase , """rb""" , compression="""infer""" ) as f: __UpperCAmelCase : Tuple = f.read() with fsspec.open(UpperCamelCase , """rb""" , compression="""infer""" ) as f: __UpperCAmelCase : List[Any] = f.read() assert exported_content == original_content
371
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = 0 while b > 0: if b & 1: __UpperCAmelCase : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
320
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=2 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> int: '''simple docstring''' lowercase_ : int = parent lowercase_ : Union[str, Any] = 13 lowercase_ : Union[str, Any] = 7 lowercase_ : Any = True lowercase_ : Any = True lowercase_ : List[Any] = True lowercase_ : Optional[Any] = True lowercase_ : Tuple = 99 lowercase_ : Tuple = 384 lowercase_ : List[Any] = 2 lowercase_ : Dict = 4 lowercase_ : Tuple = 37 lowercase_ : List[Any] = 'gelu' lowercase_ : List[Any] = 0.1 lowercase_ : int = 0.1 lowercase_ : List[str] = 512 lowercase_ : Optional[int] = 16 lowercase_ : str = 2 lowercase_ : Dict = 0.02 lowercase_ : Optional[Any] = 3 lowercase_ : Optional[Any] = 4 lowercase_ : int = 128 lowercase_ : List[str] = 2 lowercase_ : Any = 9 lowercase_ : List[str] = 1 lowercase_ : str = None def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : List[Any] = None if self.use_input_mask: lowercase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Dict = None if self.use_token_type_ids: lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase_ : Optional[Any] = None lowercase_ : Optional[Any] = None lowercase_ : int = None if self.use_labels: lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase_ : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase_ : List[str] = ConvBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,return_dict=__UpperCamelCase ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = TFConvBertModel(config=__UpperCamelCase ) lowercase_ : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase_ : Tuple = [input_ids, input_mask] lowercase_ : Any = model(__UpperCamelCase ) lowercase_ : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Tuple = TFConvBertForMaskedLM(config=__UpperCamelCase ) lowercase_ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowercase_ : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Any = self.num_labels lowercase_ : List[Any] = TFConvBertForSequenceClassification(config=__UpperCamelCase ) lowercase_ : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowercase_ : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : str = self.num_choices lowercase_ : Dict = TFConvBertForMultipleChoice(config=__UpperCamelCase ) lowercase_ : Optional[Any] = tf.tile(tf.expand_dims(__UpperCamelCase ,1 ) ,(1, self.num_choices, 1) ) lowercase_ : List[Any] = tf.tile(tf.expand_dims(__UpperCamelCase ,1 ) ,(1, self.num_choices, 1) ) lowercase_ : Dict = tf.tile(tf.expand_dims(__UpperCamelCase ,1 ) ,(1, self.num_choices, 1) ) lowercase_ : List[str] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowercase_ : Optional[int] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = self.num_labels lowercase_ : Any = TFConvBertForTokenClassification(config=__UpperCamelCase ) lowercase_ : Optional[int] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowercase_ : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Dict = TFConvBertForQuestionAnswering(config=__UpperCamelCase ) lowercase_ : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowercase_ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[Any] = config_and_inputs lowercase_ : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = TFConvBertModelTester(self ) lowercase_ : Any = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : List[Any] = True lowercase_ : Optional[Any] = True if hasattr(__UpperCamelCase ,'use_cache' ): lowercase_ : str = True lowercase_ : str = getattr(self.model_tester ,'encoder_seq_length' ,self.model_tester.seq_length ) lowercase_ : Union[str, Any] = getattr(self.model_tester ,'key_length' ,__UpperCamelCase ) for model_class in self.all_model_classes: lowercase_ : Any = self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : str = model_class(__UpperCamelCase ) lowercase_ : Dict = len(model(__UpperCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ,saved_model=__UpperCamelCase ) lowercase_ : Optional[int] = os.path.join(__UpperCamelCase ,'saved_model' ,'1' ) lowercase_ : Optional[Any] = tf.keras.models.load_model(__UpperCamelCase ) lowercase_ : Dict = model(__UpperCamelCase ) if self.is_encoder_decoder: lowercase_ : Optional[Any] = outputs['encoder_hidden_states'] lowercase_ : List[str] = outputs['encoder_attentions'] else: lowercase_ : int = outputs['hidden_states'] lowercase_ : List[str] = outputs['attentions'] self.assertEqual(len(__UpperCamelCase ) ,__UpperCamelCase ) lowercase_ : Dict = getattr( self.model_tester ,'expected_num_hidden_layers' ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__UpperCamelCase ) ,__UpperCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) ,[self.model_tester.seq_length, self.model_tester.hidden_size] ,) self.assertEqual(len(__UpperCamelCase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] ,) @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ , lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Optional[int] = True lowercase_ : str = getattr(self.model_tester ,'decoder_seq_length' ,self.model_tester.seq_length ) lowercase_ : Union[str, Any] = getattr(self.model_tester ,'encoder_seq_length' ,self.model_tester.seq_length ) lowercase_ : str = getattr(self.model_tester ,'key_length' ,__UpperCamelCase ) lowercase_ : Optional[Any] = getattr(self.model_tester ,'key_length' ,__UpperCamelCase ) def check_decoder_attentions_output(__UpperCamelCase ): lowercase_ : str = len(__UpperCamelCase ) self.assertEqual(out_len % 2 ,0 ) lowercase_ : List[Any] = outputs.decoder_attentions self.assertEqual(len(__UpperCamelCase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] ,) def check_encoder_attentions_output(__UpperCamelCase ): lowercase_ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__UpperCamelCase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] ,) for model_class in self.all_model_classes: lowercase_ : Union[str, Any] = True lowercase_ : Any = False lowercase_ : Optional[int] = model_class(__UpperCamelCase ) lowercase_ : List[str] = model(self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) ) lowercase_ : Tuple = len(__UpperCamelCase ) self.assertEqual(config.output_hidden_states ,__UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) if self.is_encoder_decoder: lowercase_ : Optional[Any] = model_class(__UpperCamelCase ) lowercase_ : Any = model(self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) ) self.assertEqual(config.output_hidden_states ,__UpperCamelCase ) check_decoder_attentions_output(__UpperCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase_ : Tuple = True lowercase_ : Optional[Any] = model_class(__UpperCamelCase ) lowercase_ : Dict = model(self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) ) self.assertEqual(config.output_hidden_states ,__UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) # Check attention is always last and order is fine lowercase_ : Optional[Any] = True lowercase_ : str = True lowercase_ : List[Any] = model_class(__UpperCamelCase ) lowercase_ : str = model(self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) ,len(__UpperCamelCase ) ) self.assertEqual(model.config.output_hidden_states ,__UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) @require_tf class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) lowercase_ : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase_ : Dict = model(__UpperCamelCase )[0] lowercase_ : Optional[Any] = [1, 6, 768] self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : Tuple = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 )
321
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = bp_numa lowercase_ : Dict = bp_numa lowercase_ : Tuple = bp_numa lowercase_ : List[Any] = conva_get[:2] lowercase_ : int = conva_get[2] lowercase_ : Dict = size_pa lowercase_ : int = rate_w lowercase_ : Union[str, Any] = rate_t lowercase_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(__UpperCamelCase ,'wb' ) as f: pickle.dump(__UpperCamelCase ,__UpperCamelCase ) print(f'''Model saved: {save_path}''' ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' with open(__UpperCamelCase ,'rb' ) as f: lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301 lowercase_ : str = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' ) lowercase_ : Optional[Any] = model_dic.get('num_bp1' ) lowercase_ : str = model_dic.get('num_bp2' ) lowercase_ : Optional[Any] = model_dic.get('num_bp3' ) lowercase_ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase_ : Optional[int] = model_dic.get('rate_thre' ) # create model instance lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # modify model parameter lowercase_ : Optional[Any] = model_dic.get('w_conv1' ) lowercase_ : Tuple = model_dic.get('wkj' ) lowercase_ : Union[str, Any] = model_dic.get('vji' ) lowercase_ : Optional[Any] = model_dic.get('thre_conv1' ) lowercase_ : Dict = model_dic.get('thre_bp2' ) lowercase_ : Optional[int] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return round(__UpperCamelCase ,3 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Dict = convs[0] lowercase_ : Any = convs[1] lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus lowercase_ : Tuple = [] for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): lowercase_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase_ : Dict = [] lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): lowercase_ : Tuple = [] for i_focus in range(len(__UpperCamelCase ) ): lowercase_ : Optional[int] = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase ,__UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion lowercase_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) lowercase_ : str = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = len(featuremaps[0] ) lowercase_ : str = int(size_map / size_pooling ) lowercase_ : Optional[int] = [] for i_map in range(len(__UpperCamelCase ) ): lowercase_ : int = featuremaps[i_map] lowercase_ : List[str] = [] for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Tuple = [] for i in range(len(__UpperCamelCase ) ): lowercase_ : Optional[Any] = np.shape(data[i] ) lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] ) lowercase_ : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) lowercase_ : int = np.asarray(__UpperCamelCase ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = np.asarray(__UpperCamelCase ) lowercase_ : Any = np.shape(__UpperCamelCase ) lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = [] lowercase_ : List[Any] = 0 for i_map in range(__UpperCamelCase ): lowercase_ : List[str] = np.ones((size_map, size_map) ) for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = pd_pool[ i_pool ] lowercase_ : Any = i_pool + 1 lowercase_ : Optional[int] = np.multiply( __UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]: '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) ) print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) ) lowercase_ : int = 0 lowercase_ : Tuple = [] lowercase_ : Tuple = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowercase_ : List[str] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase_ : int = np.asmatrix(datas_train[p] ) lowercase_ : Any = np.asarray(datas_teach[p] ) lowercase_ , lowercase_ : Tuple = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : Optional[int] = np.shape(__UpperCamelCase ) lowercase_ : Optional[int] = self._expand(__UpperCamelCase ) lowercase_ : int = data_bp_input lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa lowercase_ : Dict = self.sig(__UpperCamelCase ) lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa lowercase_ : int = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase_ : str = np.multiply( (data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Optional[int] = np.multiply( np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji ) lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase_ : Dict = pd_conva_pooled.T.getA().tolist() lowercase_ : List[Any] = self._calculate_gradient_from_pool( __UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase_ : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase_ : int = rp + 1 lowercase_ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase ,'+-' ) plt.plot(__UpperCamelCase ,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(__UpperCamelCase ,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): lowercase_ : List[Any] = np.asmatrix(datas_test[p] ) lowercase_ , lowercase_ : Optional[Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : List[str] = self._expand(__UpperCamelCase ) lowercase_ : Any = data_bp_input lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa lowercase_ : str = self.sig(__UpperCamelCase ) lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa lowercase_ : Optional[int] = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ) lowercase_ , lowercase_ : Union[str, Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
321
1
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowercase__( __SCREAMING_SNAKE_CASE : BertModel , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') lowercase_ : int = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): os.makedirs(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = model.state_dict() def to_tf_var_name(__SCREAMING_SNAKE_CASE : str ): for patt, repl in iter(__SCREAMING_SNAKE_CASE ): lowercase_ : List[Any] = name.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return F'''bert/{name}''' def create_tf_var(__SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : tf.Session ): lowercase_ : Union[str, Any] = tf.dtypes.as_dtype(tensor.dtype ) lowercase_ : Optional[int] = tf.get_variable(dtype=__SCREAMING_SNAKE_CASE , shape=tensor.shape , name=__SCREAMING_SNAKE_CASE , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__SCREAMING_SNAKE_CASE ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase_ : Tuple = to_tf_var_name(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase_ : Optional[int] = torch_tensor.T lowercase_ : str = create_tf_var(tensor=__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE , session=__SCREAMING_SNAKE_CASE ) tf.keras.backend.set_value(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = session.run(__SCREAMING_SNAKE_CASE ) print(F'''Successfully created {tf_name}: {np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}''' ) lowercase_ : Optional[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , model_name.replace('-' , '_' ) + '.ckpt' ) ) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any]=None ): lowercase_ : Tuple = argparse.ArgumentParser() parser.add_argument('--model_name' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='Directory in which to save tensorflow model' ) lowercase_ : Optional[int] = parser.parse_args(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__SCREAMING_SNAKE_CASE , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
321
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): lowercase_ : Dict = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = 'patrickvonplaten/t5-tiny-random' lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] ) lowercase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__UpperCamelCase ): self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'current' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
321
1
"""simple docstring""" import os def lowercase__( __SCREAMING_SNAKE_CASE : str = "matrix.txt" ): with open(os.path.join(os.path.dirname(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) ) as in_file: lowercase_ : Optional[Any] = in_file.read() lowercase_ : Dict = [[int(__SCREAMING_SNAKE_CASE ) for cell in row.split(',' )] for row in data.strip().splitlines()] lowercase_ : List[Any] = [[0 for cell in row] for row in grid] lowercase_ : Dict = len(grid[0] ) lowercase_ : Optional[int] = [[0 for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )] lowercase_ : List[str] = grid[0][0] for i in range(1 , __SCREAMING_SNAKE_CASE ): lowercase_ : List[Any] = grid[0][i] + dp[0][i - 1] for i in range(1 , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[int] = grid[i][0] + dp[i - 1][0] for i in range(1 , __SCREAMING_SNAKE_CASE ): for j in range(1 , __SCREAMING_SNAKE_CASE ): lowercase_ : List[Any] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"{solution() = }")
321
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['input_values', 'padding_mask'] def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any: '''simple docstring''' super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[str] = chunk_length_s lowercase_ : Tuple = overlap @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs lowercase_ : Optional[int] = True lowercase_ : Optional[int] = bool( isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ): lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa ) elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowercase_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) lowercase_ : Optional[int] = None lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio ) lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) ) lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio ) lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) ) lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length lowercase_ : Union[str, Any] = 'max_length' else: lowercase_ : int = input_values # normal padding on batch if padded_inputs is None: lowercase_ : int = self.pad( __UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,) if padding: lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' ) lowercase_ : Dict = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: lowercase_ : Optional[int] = example[..., None] input_values.append(example.T ) lowercase_ : str = input_values if return_tensors is not None: lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
321
1
"""simple docstring""" import unittest import numpy as np def lowercase__( __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray | None = None , ): lowercase_ : Tuple = np.shape(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = np.shape(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = np.shape(__SCREAMING_SNAKE_CASE ) if shape_a[0] != shape_b[0]: lowercase_ : Tuple = ( 'Expected the same number of rows for A and B. ' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(__SCREAMING_SNAKE_CASE ) if shape_b[1] != shape_c[1]: lowercase_ : int = ( 'Expected the same number of columns for B and C. ' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = pseudo_inv if a_inv is None: try: lowercase_ : Optional[int] = np.linalg.inv(__SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> None: '''simple docstring''' lowercase_ : int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : List[Any] = np.array([[2, 1], [6, 3]] ) lowercase_ : Union[str, Any] = schur_complement(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Union[str, Any] = np.block([[a, b], [b.T, c]] ) lowercase_ : Any = np.linalg.det(__UpperCamelCase ) lowercase_ : Any = np.linalg.det(__UpperCamelCase ) lowercase_ : Any = np.linalg.det(__UpperCamelCase ) self.assertAlmostEqual(__UpperCamelCase ,det_a * det_s ) def _UpperCAmelCase ( self ) -> None: '''simple docstring''' lowercase_ : Union[str, Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : Tuple = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__UpperCamelCase ): schur_complement(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> None: '''simple docstring''' lowercase_ : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : Tuple = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__UpperCamelCase ): schur_complement(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
321
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
321
1
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
321
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ): require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
321
1
"""simple docstring""" import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): def __init__( self ,**__UpperCamelCase ) -> int: '''simple docstring''' requires_backends(self ,['bs4'] ) super().__init__(**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Union[str, Any] = [] lowercase_ : int = [] lowercase_ : List[Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowercase_ : Optional[int] = parent.find_all(child.name ,recursive=__UpperCamelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__UpperCamelCase ) else next(i for i, s in enumerate(__UpperCamelCase ,1 ) if s is child ) ) lowercase_ : Any = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' lowercase_ : List[str] = BeautifulSoup(__UpperCamelCase ,'html.parser' ) lowercase_ : List[Any] = [] lowercase_ : List[str] = [] lowercase_ : Optional[Any] = [] for element in html_code.descendants: if type(__UpperCamelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue lowercase_ : Dict = html.unescape(__UpperCamelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(__UpperCamelCase ) lowercase_ , lowercase_ : str = self.xpath_soup(__UpperCamelCase ) stringaxtag_seq.append(__UpperCamelCase ) stringaxsubs_seq.append(__UpperCamelCase ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError('Number of doc strings and xtags does not correspond' ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError('Number of doc strings and xsubs does not correspond' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = '' for tagname, subs in zip(__UpperCamelCase ,__UpperCamelCase ): xpath += f'''/{tagname}''' if subs != 0: xpath += f'''[{subs}]''' return xpath def __call__( self ,__UpperCamelCase ) -> BatchFeature: '''simple docstring''' lowercase_ : Optional[int] = False # Check that strings has a valid type if isinstance(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Optional[Any] = True elif isinstance(__UpperCamelCase ,(list, tuple) ): if len(__UpperCamelCase ) == 0 or isinstance(html_strings[0] ,__UpperCamelCase ): lowercase_ : Tuple = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' f'''but is of type {type(__UpperCamelCase )}.''' ) lowercase_ : Optional[Any] = bool(isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(html_strings[0] ,__UpperCamelCase )) ) if not is_batched: lowercase_ : Any = [html_strings] # Get nodes + xpaths lowercase_ : int = [] lowercase_ : Tuple = [] for html_string in html_strings: lowercase_ , lowercase_ , lowercase_ : Optional[int] = self.get_three_from_single(__UpperCamelCase ) nodes.append(__UpperCamelCase ) lowercase_ : Optional[int] = [] for node, tag_list, sub_list in zip(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Tuple = self.construct_xpath(__UpperCamelCase ,__UpperCamelCase ) xpath_strings.append(__UpperCamelCase ) xpaths.append(__UpperCamelCase ) # return as Dict lowercase_ : Dict = {'nodes': nodes, 'xpaths': xpaths} lowercase_ : int = BatchFeature(data=__UpperCamelCase ,tensor_type=__UpperCamelCase ) return encoded_inputs
321
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ): lowercase_ : int = 'backbone.' if is_semantic else '' lowercase_ : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ): for i in range(config.num_hidden_layers ): lowercase_ : Any = 'backbone.' if is_semantic else '' # queries, keys and values lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) lowercase_ : List[str] = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = q_bias lowercase_ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Any = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) lowercase_ : Tuple = gamma_a lowercase_ : List[Any] = gamma_a def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = val def lowercase__( ): lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ): lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowercase_ : Any = 10_24 lowercase_ : List[str] = 40_96 lowercase_ : Tuple = 24 lowercase_ : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: lowercase_ : Optional[Any] = 16 lowercase_ : Any = 'huggingface/label-files' lowercase_ : int = 'rvlcdip-id2label.json' lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : str = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) # load HuggingFace model lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image lowercase_ : List[Any] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE ) lowercase_ : str = prepare_img() lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) lowercase_ : int = encoding['pixel_values'] lowercase_ : Any = model(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = outputs.logits # verify logits lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected" Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: if has_lm_head: lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) model.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
321
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase=7 ,__UpperCamelCase=3 ,__UpperCamelCase=30 ,__UpperCamelCase=400 ,__UpperCamelCase=True ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase=[0.5, 0.5, 0.5] ,__UpperCamelCase=[0.5, 0.5, 0.5] ,__UpperCamelCase=True ,__UpperCamelCase=1 / 255 ,__UpperCamelCase=True ,) -> List[str]: '''simple docstring''' lowercase_ : str = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} lowercase_ : Dict = parent lowercase_ : str = batch_size lowercase_ : Dict = num_channels lowercase_ : str = min_resolution lowercase_ : Optional[Any] = max_resolution lowercase_ : Any = do_resize lowercase_ : Optional[int] = size lowercase_ : Union[str, Any] = do_normalize lowercase_ : Any = image_mean lowercase_ : List[Any] = image_std lowercase_ : Tuple = do_rescale lowercase_ : Optional[int] = rescale_factor lowercase_ : List[Any] = do_pad def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=False ) -> List[Any]: '''simple docstring''' if not batched: lowercase_ : Optional[Any] = image_inputs[0] if isinstance(__UpperCamelCase ,Image.Image ): lowercase_ , lowercase_ : Optional[Any] = image.size else: lowercase_ , lowercase_ : Optional[int] = image.shape[1], image.shape[2] if w < h: lowercase_ : Tuple = int(self.size['shortest_edge'] * h / w ) lowercase_ : Tuple = self.size['shortest_edge'] elif w > h: lowercase_ : int = self.size['shortest_edge'] lowercase_ : Any = int(self.size['shortest_edge'] * w / h ) else: lowercase_ : str = self.size['shortest_edge'] lowercase_ : Union[str, Any] = self.size['shortest_edge'] else: lowercase_ : int = [] for image in image_inputs: lowercase_ , lowercase_ : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase_ : Union[str, Any] = max(__UpperCamelCase ,key=lambda __UpperCamelCase : item[0] )[0] lowercase_ : Any = max(__UpperCamelCase ,key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( lowercase_ , unittest.TestCase ): lowercase = ConditionalDetrImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[str] = ConditionalDetrImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase ,'image_mean' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'image_std' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'do_normalize' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'do_resize' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'size' ) ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad ,__UpperCamelCase ) lowercase_ : Any = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,max_size=84 ,pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size ,{'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' pass def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase ,Image.Image ) # Test not batched input lowercase_ : str = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values lowercase_ , lowercase_ : Union[str, Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowercase_ , lowercase_ : Optional[Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase ,batched=__UpperCamelCase ) lowercase_ : Dict = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase ,numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase ,np.ndarray ) # Test not batched input lowercase_ : List[str] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values lowercase_ , lowercase_ : Dict = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowercase_ : Any = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values lowercase_ , lowercase_ : str = self.image_processor_tester.get_expected_values(__UpperCamelCase ,batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase ,torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase ,torch.Tensor ) # Test not batched input lowercase_ : List[str] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values lowercase_ , lowercase_ : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowercase_ : List[str] = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values lowercase_ , lowercase_ : List[Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase ,batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' ,'r' ) as f: lowercase_ : Optional[int] = json.loads(f.read() ) lowercase_ : str = {'image_id': 3_9769, 'annotations': target} # encode them lowercase_ : Any = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) lowercase_ : Dict = image_processing(images=__UpperCamelCase ,annotations=__UpperCamelCase ,return_tensors='pt' ) # verify pixel values lowercase_ : Optional[int] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,__UpperCamelCase ) lowercase_ : Dict = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,__UpperCamelCase ,atol=1e-4 ) ) # verify area lowercase_ : int = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,__UpperCamelCase ) ) # verify boxes lowercase_ : str = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,__UpperCamelCase ) lowercase_ : Tuple = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,__UpperCamelCase ,atol=1e-3 ) ) # verify image_id lowercase_ : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,__UpperCamelCase ) ) # verify is_crowd lowercase_ : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,__UpperCamelCase ) ) # verify class_labels lowercase_ : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,__UpperCamelCase ) ) # verify orig_size lowercase_ : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,__UpperCamelCase ) ) # verify size lowercase_ : Dict = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,__UpperCamelCase ) ) @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' ,'r' ) as f: lowercase_ : Dict = json.loads(f.read() ) lowercase_ : Optional[Any] = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} lowercase_ : Dict = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowercase_ : Optional[int] = ConditionalDetrImageProcessor(format='coco_panoptic' ) lowercase_ : Optional[Any] = image_processing(images=__UpperCamelCase ,annotations=__UpperCamelCase ,masks_path=__UpperCamelCase ,return_tensors='pt' ) # verify pixel values lowercase_ : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,__UpperCamelCase ) lowercase_ : str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,__UpperCamelCase ,atol=1e-4 ) ) # verify area lowercase_ : List[Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,__UpperCamelCase ) ) # verify boxes lowercase_ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,__UpperCamelCase ) lowercase_ : Optional[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,__UpperCamelCase ,atol=1e-3 ) ) # verify image_id lowercase_ : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,__UpperCamelCase ) ) # verify is_crowd lowercase_ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,__UpperCamelCase ) ) # verify class_labels lowercase_ : str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,__UpperCamelCase ) ) # verify masks lowercase_ : List[str] = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() ,__UpperCamelCase ) # verify orig_size lowercase_ : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,__UpperCamelCase ) ) # verify size lowercase_ : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,__UpperCamelCase ) )
321
"""simple docstring""" __SCREAMING_SNAKE_CASE ={ "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } __SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()} def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase__( __SCREAMING_SNAKE_CASE : str ): if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) lowercase_ : Dict = '' for word in coded.split(): while len(__SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase_ : Any = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
321
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class UpperCamelCase ( lowercase_ ): lowercase = ['image_processor', 'feature_extractor'] lowercase = 'TvltImageProcessor' lowercase = 'TvltFeatureExtractor' def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' super().__init__(image_processor=__UpperCamelCase ,feature_extractor=__UpperCamelCase ) lowercase_ : int = image_processor lowercase_ : str = feature_extractor def __call__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=False ,__UpperCamelCase=False ,*__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.' ) lowercase_ : Dict = None if images is not None: lowercase_ : int = self.image_processor(__UpperCamelCase ,mask_pixel=__UpperCamelCase ,*__UpperCamelCase ,**__UpperCamelCase ) if images_mixed is not None: lowercase_ : str = self.image_processor(__UpperCamelCase ,is_mixed=__UpperCamelCase ,*__UpperCamelCase ,**__UpperCamelCase ) if audio is not None: lowercase_ : Optional[Any] = self.feature_extractor( __UpperCamelCase ,*__UpperCamelCase ,sampling_rate=__UpperCamelCase ,mask_audio=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : Union[str, Any] = {} if audio is not None: output_dict.update(__UpperCamelCase ) if images is not None: output_dict.update(__UpperCamelCase ) if images_mixed_dict is not None: output_dict.update(__UpperCamelCase ) return output_dict @property def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : str = self.image_processor.model_input_names lowercase_ : str = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
321
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations_with_dp_array( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase_ : str = sum( count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE ) for item in array ) lowercase_ : Tuple = answer return answer lowercase_ : Optional[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = [0] * (target + 1) lowercase_ : Dict = 1 for i in range(1 , target + 1 ): for j in range(__SCREAMING_SNAKE_CASE ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE =3 __SCREAMING_SNAKE_CASE =5 __SCREAMING_SNAKE_CASE =[1, 2, 5] print(combination_sum_iv(n, array, target))
321
1
"""simple docstring""" import random def lowercase__( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ , lowercase_ , lowercase_ : List[Any] = [], [], [] for element in data: if element < pivot: less.append(__SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(__SCREAMING_SNAKE_CASE ) else: equal.append(__SCREAMING_SNAKE_CASE ) return less, equal, greater def lowercase__( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ): # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0: return None lowercase_ : Any = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )] lowercase_ : List[Any] = 0 lowercase_ , lowercase_ , lowercase_ : int = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = len(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = len(__SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
321
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : int = set_counts lowercase_ : List[Any] = max(__UpperCamelCase ) lowercase_ : Union[str, Any] = len(__UpperCamelCase ) lowercase_ : Dict = [1] * num_sets lowercase_ : Optional[int] = list(range(__UpperCamelCase ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase ) lowercase_ : int = self.get_parent(__UpperCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : Tuple = 0 lowercase_ : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : str = 0 lowercase_ : Tuple = src_parent lowercase_ : int = self.set_counts[src_parent] lowercase_ : str = max(self.max_set ,__UpperCamelCase ) return True def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
321
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( lowercase_ ): lowercase = 'van' def __init__( self ,__UpperCamelCase=224 ,__UpperCamelCase=3 ,__UpperCamelCase=[7, 3, 3, 3] ,__UpperCamelCase=[4, 2, 2, 2] ,__UpperCamelCase=[64, 128, 320, 512] ,__UpperCamelCase=[3, 3, 12, 3] ,__UpperCamelCase=[8, 8, 4, 4] ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-6 ,__UpperCamelCase=1e-2 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,**__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' super().__init__(**__UpperCamelCase ) lowercase_ : List[str] = image_size lowercase_ : Any = num_channels lowercase_ : Dict = patch_sizes lowercase_ : Optional[int] = strides lowercase_ : Any = hidden_sizes lowercase_ : List[str] = depths lowercase_ : Any = mlp_ratios lowercase_ : List[str] = hidden_act lowercase_ : Tuple = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : int = layer_scale_init_value lowercase_ : List[Any] = drop_path_rate lowercase_ : Any = dropout_rate
321
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __SCREAMING_SNAKE_CASE ={ "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128} class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BlenderbotTokenizer def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__( __UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) ) lowercase_ : Any = add_prefix_space lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase ) lowercase_ : int = add_prefix_space lowercase_ : Any = 'post_processor' lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) if tokenizer_component_instance: lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ : str = tuple(state['sep'] ) if "cls" in state: lowercase_ : Union[str, Any] = tuple(state['cls'] ) lowercase_ : str = False if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Dict = add_prefix_space lowercase_ : int = True if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets: lowercase_ : Optional[Any] = trim_offsets lowercase_ : Tuple = True if changes_to_apply: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) ) lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _UpperCAmelCase ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value lowercase_ : str = value def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : int = [self.sep_token_id] lowercase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any: '''simple docstring''' return token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]: '''simple docstring''' lowercase_ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) lowercase_ : Dict = ' '.join(__UpperCamelCase ) lowercase_ : str = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: lowercase_ : List[str] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
321
1
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __SCREAMING_SNAKE_CASE =logging.getLogger(__name__) @dataclass class UpperCamelCase ( lowercase_ ): lowercase = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) lowercase = field(default=lowercase_ , metadata={'help': 'Whether to SortishSamler or not.'} ) lowercase = field( default=lowercase_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowercase = field(default=lowercase_ , metadata={'help': 'whether to use adafactor'} ) lowercase = field( default=lowercase_ , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) lowercase = field( default=lowercase_ , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) lowercase = field(default=lowercase_ , metadata={'help': 'Dropout probability. Goes into model.config.'} ) lowercase = field( default=lowercase_ , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) lowercase = field( default='linear' , metadata={'help': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
321
"""simple docstring""" import os import sys import unittest __SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py") __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py") class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'} lowercase_ : Union[str, Any] = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : Any = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } lowercase_ : Any = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Tuple = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } lowercase_ : Optional[Any] = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
321
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['input_values', 'padding_mask'] def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any: '''simple docstring''' super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[str] = chunk_length_s lowercase_ : Tuple = overlap @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs lowercase_ : Optional[int] = True lowercase_ : Optional[int] = bool( isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ): lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa ) elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowercase_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) lowercase_ : Optional[int] = None lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio ) lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) ) lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio ) lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) ) lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length lowercase_ : Union[str, Any] = 'max_length' else: lowercase_ : int = input_values # normal padding on batch if padded_inputs is None: lowercase_ : int = self.pad( __UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,) if padding: lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' ) lowercase_ : Dict = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: lowercase_ : Optional[int] = example[..., None] input_values.append(example.T ) lowercase_ : str = input_values if return_tensors is not None: lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
321
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ): with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX ) try: print(*__SCREAMING_SNAKE_CASE ) finally: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) __SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank) __SCREAMING_SNAKE_CASE =socket.gethostname() __SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __SCREAMING_SNAKE_CASE =dist.get_rank() __SCREAMING_SNAKE_CASE =dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
321
1
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]: '''simple docstring''' lowercase_ : Any = parent lowercase_ : str = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Dict = is_training lowercase_ : Tuple = use_input_mask lowercase_ : Optional[Any] = use_token_type_ids lowercase_ : List[str] = use_labels lowercase_ : Any = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : Tuple = max_position_embeddings lowercase_ : Optional[int] = type_vocab_size lowercase_ : Optional[int] = type_sequence_label_size lowercase_ : Dict = initializer_range lowercase_ : int = num_labels lowercase_ : Any = num_choices lowercase_ : int = scope def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Dict = None if self.use_input_mask: lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Tuple = None lowercase_ : Tuple = None lowercase_ : Tuple = None if self.use_labels: lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) lowercase_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Union[str, Any] = model(__UpperCamelCase ) lowercase_ : int = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.num_labels lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Any = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[int] = config_and_inputs lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = False lowercase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowercase = () lowercase = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = EsmModelTester(self ) lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : Optional[Any] = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowercase_ : List[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : List[Any] = torch.empty(2 ,4 ,30 ) lowercase_ : List[str] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch class UpperCamelCase ( lowercase_ ): @slow def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : List[str] = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = 33 lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : List[str] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase_ : Dict = model(__UpperCamelCase )[0] # compare the actual values for a slice. lowercase_ : Any = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : List[Any] = name lowercase_ : int = val def __str__( self ) -> Tuple: '''simple docstring''' return f'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return self.val < other.val class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = {} lowercase_ : Tuple = {} lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase ) def __getitem__( self ,__UpperCamelCase ) -> int: '''simple docstring''' return self.get_value(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' return (idx - 1) // 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return idx * 2 + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return idx * 2 + 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' return self.heap_dict[key] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1 lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase ) for idx, i in enumerate(__UpperCamelCase ): lowercase_ : Any = idx lowercase_ : str = i.val for i in range(__UpperCamelCase ,-1 ,-1 ): self.sift_down(__UpperCamelCase ,__UpperCamelCase ) return array def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' while True: lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741 lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase ) lowercase_ : List[str] = idx if l < len(__UpperCamelCase ) and array[l] < array[idx]: lowercase_ : List[str] = l if r < len(__UpperCamelCase ) and array[r] < array[smallest]: lowercase_ : Dict = r if smallest != idx: lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx] ( ( lowercase_ ) , ( lowercase_ ) , ) : str = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowercase_ : Any = smallest else: break def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowercase_ : int = p lowercase_ : str = self.get_parent_idx(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return self.heap[0] def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowercase_ : Tuple = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 ,self.heap ) return x def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' self.heap.append(__UpperCamelCase ) lowercase_ : Tuple = len(self.heap ) - 1 lowercase_ : Optional[int] = node.val self.sift_up(len(self.heap ) - 1 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return len(self.heap ) == 0 def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowercase_ : Any = new_value lowercase_ : List[str] = new_value self.sift_up(self.idx_of_element[node] ) __SCREAMING_SNAKE_CASE =Node("R", -1) __SCREAMING_SNAKE_CASE =Node("B", 6) __SCREAMING_SNAKE_CASE =Node("A", 3) __SCREAMING_SNAKE_CASE =Node("X", 1) __SCREAMING_SNAKE_CASE =Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
321
1
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ , lowercase_ : Optional[Any] = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' ,from_pt=__UpperCamelCase ,dtype=jnp.bfloataa ) lowercase_ , lowercase_ : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,controlnet=__UpperCamelCase ,from_pt=__UpperCamelCase ,dtype=jnp.bfloataa ) lowercase_ : Union[str, Any] = controlnet_params lowercase_ : Tuple = 'bird' lowercase_ : Optional[int] = jax.device_count() lowercase_ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase_ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowercase_ : List[Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase_ : Tuple = jax.random.PRNGKey(0 ) lowercase_ : List[Any] = jax.random.split(__UpperCamelCase ,jax.device_count() ) lowercase_ : int = replicate(__UpperCamelCase ) lowercase_ : str = shard(__UpperCamelCase ) lowercase_ : List[Any] = shard(__UpperCamelCase ) lowercase_ : List[str] = pipe( prompt_ids=__UpperCamelCase ,image=__UpperCamelCase ,params=__UpperCamelCase ,prng_seed=__UpperCamelCase ,num_inference_steps=50 ,jit=__UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowercase_ : Optional[int] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase_ : Tuple = images[0, 253:256, 253:256, -1] lowercase_ : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase_ : Tuple = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ , lowercase_ : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' ,from_pt=__UpperCamelCase ,dtype=jnp.bfloataa ) lowercase_ , lowercase_ : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,controlnet=__UpperCamelCase ,from_pt=__UpperCamelCase ,dtype=jnp.bfloataa ) lowercase_ : Any = controlnet_params lowercase_ : Dict = 'Chef in the kitchen' lowercase_ : Optional[Any] = jax.device_count() lowercase_ : Dict = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase_ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowercase_ : List[str] = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase_ : Any = jax.random.PRNGKey(0 ) lowercase_ : str = jax.random.split(__UpperCamelCase ,jax.device_count() ) lowercase_ : Optional[int] = replicate(__UpperCamelCase ) lowercase_ : Union[str, Any] = shard(__UpperCamelCase ) lowercase_ : Tuple = shard(__UpperCamelCase ) lowercase_ : Union[str, Any] = pipe( prompt_ids=__UpperCamelCase ,image=__UpperCamelCase ,params=__UpperCamelCase ,prng_seed=__UpperCamelCase ,num_inference_steps=50 ,jit=__UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowercase_ : Optional[int] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase_ : str = images[0, 253:256, 253:256, -1] lowercase_ : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase_ : Tuple = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
321
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = tempfile.mkdtemp() # fmt: off lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) ) lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowercase_ : Tuple = {'unk_token': '<unk>'} lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCamelCase ) ) lowercase_ : Any = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = self.get_tokenizer() lowercase_ : List[Any] = self.get_rust_tokenizer() lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase ) lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 ) lowercase_ : Any = CLIPSegProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[str] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = self.prepare_image_inputs() lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' ) lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[Any] = self.get_tokenizer() lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Dict = 'lower newer' lowercase_ : Any = processor(text=__UpperCamelCase ) lowercase_ : int = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.get_image_processor() lowercase_ : str = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = 'lower newer' lowercase_ : str = self.prepare_image_inputs() lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = self.prepare_image_inputs() lowercase_ : Optional[Any] = self.prepare_image_inputs() lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase ) lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
321
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class UpperCamelCase ( lowercase_ ): lowercase = 'falcon' lowercase = ['past_key_values'] def __init__( self ,__UpperCamelCase=6_5024 ,__UpperCamelCase=4544 ,__UpperCamelCase=32 ,__UpperCamelCase=71 ,__UpperCamelCase=1e-5 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,__UpperCamelCase=None ,__UpperCamelCase=False ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=11 ,__UpperCamelCase=11 ,**__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = vocab_size # Backward compatibility with n_embed kwarg lowercase_ : Union[str, Any] = kwargs.pop('n_embed' ,__UpperCamelCase ) lowercase_ : Optional[Any] = hidden_size if n_embed is None else n_embed lowercase_ : Tuple = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : str = layer_norm_epsilon lowercase_ : Any = initializer_range lowercase_ : List[str] = use_cache lowercase_ : Any = hidden_dropout lowercase_ : Optional[Any] = attention_dropout lowercase_ : Any = bos_token_id lowercase_ : Optional[Any] = eos_token_id lowercase_ : Optional[Any] = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase_ : str = alibi lowercase_ : Tuple = new_decoder_architecture lowercase_ : Dict = multi_query # Ignored when new_decoder_architecture is True lowercase_ : Optional[int] = parallel_attn lowercase_ : Union[str, Any] = bias super().__init__(bos_token_id=__UpperCamelCase ,eos_token_id=__UpperCamelCase ,**__UpperCamelCase ) @property def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return not self.alibi
321
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
321
1
"""simple docstring""" import math class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Tuple = 0.0 lowercase_ : Optional[Any] = 0.0 for i in range(len(__UpperCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) ,2 ) da += math.pow((sample[i] - weights[1][i]) ,2 ) return 0 if da > da else 1 return 0 def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> list[list[int | float]]: '''simple docstring''' for i in range(len(__UpperCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowercase__( ): # Training Examples ( m, n ) lowercase_ : List[Any] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) lowercase_ : str = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training lowercase_ : str = SelfOrganizingMap() lowercase_ : Optional[int] = 3 lowercase_ : int = 0.5 for _ in range(__SCREAMING_SNAKE_CASE ): for j in range(len(__SCREAMING_SNAKE_CASE ) ): # training sample lowercase_ : str = training_samples[j] # Compute the winning vector lowercase_ : Tuple = self_organizing_map.get_winner(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Update the winning vector lowercase_ : Optional[int] = self_organizing_map.update(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # classify test sample lowercase_ : List[Any] = [0, 0, 0, 1] lowercase_ : Optional[int] = self_organizing_map.get_winner(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
321
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]: '''simple docstring''' lowercase_ : Dict = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : Any = use_input_mask lowercase_ : Optional[Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Optional[Any] = initializer_range lowercase_ : Union[str, Any] = use_labels lowercase_ : Union[str, Any] = scope def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : List[str] = None if self.use_input_mask: lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Any = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : str = self.prepare_config_and_inputs() lowercase_ : int = True lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = True lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Union[str, Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,) lowercase_ : Dict = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int: '''simple docstring''' lowercase_ : List[str] = True lowercase_ : Union[str, Any] = True lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() # first forward pass lowercase_ : str = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,) lowercase_ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase_ : int = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] lowercase_ : List[Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] # select random slice lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoderTester(self ) lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[int] = 'bert' self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Tuple = model(__UpperCamelCase )[0] lowercase_ : Dict = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : str = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Dict = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __SCREAMING_SNAKE_CASE ={ "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __SCREAMING_SNAKE_CASE ={ "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BartTokenizer def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> int: '''simple docstring''' super().__init__( __UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : str = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) ) lowercase_ : Optional[Any] = add_prefix_space lowercase_ : str = pre_tok_class(**__UpperCamelCase ) lowercase_ : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ : int = 'post_processor' lowercase_ : Any = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) if tokenizer_component_instance: lowercase_ : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ : str = tuple(state['sep'] ) if "cls" in state: lowercase_ : List[str] = tuple(state['cls'] ) lowercase_ : Optional[Any] = False if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : List[str] = add_prefix_space lowercase_ : List[Any] = True if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets: lowercase_ : List[str] = trim_offsets lowercase_ : List[str] = True if changes_to_apply: lowercase_ : str = getattr(__UpperCamelCase ,state.pop('type' ) ) lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) @property def _UpperCAmelCase ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Tuple = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value lowercase_ : List[Any] = value def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : int = kwargs.get('is_split_into_words' ,__UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ : Optional[Any] = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : Tuple = [self.sep_token_id] lowercase_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
321
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return None class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' return None class UpperCamelCase ( unittest.TestCase ): lowercase = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' from transformers import BertModel lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__UpperCamelCase ) ) vocab_file.flush() lowercase_ : List[str] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase ) @require_tf @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) lowercase_ : int = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) lowercase_ : Tuple = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' from transformers import BertModel lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' ) @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' from transformers import TFBertModel lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) ,1 ) self.assertEqual(len(__UpperCamelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
321
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class UpperCamelCase ( lowercase_ ): lowercase = 'luke' def __init__( self ,__UpperCamelCase=5_0267 ,__UpperCamelCase=50_0000 ,__UpperCamelCase=768 ,__UpperCamelCase=256 ,__UpperCamelCase=12 ,__UpperCamelCase=12 ,__UpperCamelCase=3072 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-12 ,__UpperCamelCase=True ,__UpperCamelCase=None ,__UpperCamelCase=1 ,__UpperCamelCase=0 ,__UpperCamelCase=2 ,**__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase ,bos_token_id=__UpperCamelCase ,eos_token_id=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : Optional[int] = vocab_size lowercase_ : Dict = entity_vocab_size lowercase_ : int = hidden_size lowercase_ : Tuple = entity_emb_size lowercase_ : str = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : Dict = hidden_act lowercase_ : Dict = intermediate_size lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : List[Any] = max_position_embeddings lowercase_ : Dict = type_vocab_size lowercase_ : List[str] = initializer_range lowercase_ : int = layer_norm_eps lowercase_ : Tuple = use_entity_aware_attention lowercase_ : List[str] = classifier_dropout
321
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 ) lowercase_ : str = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 ) lowercase_ : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 ) lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
321
1
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowercase__( __SCREAMING_SNAKE_CASE : Any ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowercase__( __SCREAMING_SNAKE_CASE : str ): # word like '180' or '身高' or '神' for char in word: lowercase_ : List[str] = ord(__SCREAMING_SNAKE_CASE ) if not _is_chinese_char(__SCREAMING_SNAKE_CASE ): return 0 return 1 def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : Dict = set() for token in tokens: lowercase_ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) > 1 and is_chinese(__SCREAMING_SNAKE_CASE ) if chinese_word: word_set.add(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = list(__SCREAMING_SNAKE_CASE ) return word_list def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : set() ): if not chinese_word_set: return bert_tokens lowercase_ : Optional[Any] = max([len(__SCREAMING_SNAKE_CASE ) for w in chinese_word_set] ) lowercase_ : List[Any] = bert_tokens lowercase_ , lowercase_ : Tuple = 0, len(__SCREAMING_SNAKE_CASE ) while start < end: lowercase_ : int = True if is_chinese(bert_word[start] ): lowercase_ : Optional[int] = min(end - start , __SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE , 1 , -1 ): lowercase_ : Optional[int] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase_ : Union[str, Any] = '##' + bert_word[j] lowercase_ : Tuple = start + i lowercase_ : str = False break if single_word: start += 1 return bert_word def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : LTP , __SCREAMING_SNAKE_CASE : BertTokenizer ): lowercase_ : List[str] = [] for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , 1_00 ): lowercase_ : str = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=['cws'] ).cws lowercase_ : Optional[int] = [get_chinese_word(__SCREAMING_SNAKE_CASE ) for r in res] ltp_res.extend(__SCREAMING_SNAKE_CASE ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = [] for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , 1_00 ): lowercase_ : int = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=5_12 ) bert_res.extend(res['input_ids'] ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = [] for input_ids, chinese_word in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : int = [] for id in input_ids: lowercase_ : str = bert_tokenizer._convert_id_to_token(__SCREAMING_SNAKE_CASE ) input_tokens.append(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = add_sub_symbol(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__SCREAMING_SNAKE_CASE ): if token[:2] == "##": lowercase_ : Union[str, Any] = token[2:] # save chinese tokens' pos if len(__SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(__SCREAMING_SNAKE_CASE ) ): ref_id.append(__SCREAMING_SNAKE_CASE ) ref_ids.append(__SCREAMING_SNAKE_CASE ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) return ref_ids def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: lowercase_ : int = f.readlines() lowercase_ : Dict = [line.strip() for line in data if len(__SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase_ : int = LTP(args.ltp ) # faster in GPU device lowercase_ : Optional[Any] = BertTokenizer.from_pretrained(args.bert ) lowercase_ : List[Any] = prepare_ref(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: lowercase_ : Dict = [json.dumps(__SCREAMING_SNAKE_CASE ) + '\n' for ref in ref_ids] f.writelines(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __SCREAMING_SNAKE_CASE =parser.parse_args() main(args)
321
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[Any] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : Tuple = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) print(F'''Loading model based on config from {config_path}...''' ) lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowercase_ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention lowercase_ : BertSelfAttention = layer.attention.self lowercase_ : str = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape ) lowercase_ : int = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape ) lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape ) lowercase_ : List[Any] = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output lowercase_ : BertSelfOutput = layer.attention.output lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape ) lowercase_ : Any = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape ) lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' ) lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' ) # Intermediate lowercase_ : BertIntermediate = layer.intermediate lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' ) lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' ) # Output lowercase_ : BertOutput = layer.output lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' ) lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' ) lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' ) lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' ) # Embeddings lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' ) lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' ) lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' ) lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head lowercase_ : int = model.cls.predictions.transform lowercase_ : str = get_masked_lm_array('dense/kernel' ) lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' ) lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' ) lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' ) lowercase_ : List[str] = get_masked_lm_array('embedding_table' ) # Pooling lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(__SCREAMING_SNAKE_CASE ) # Integration test - should load without any errors ;) lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
321
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,) -> Dict: '''simple docstring''' lowercase_ : Optional[Any] = parent lowercase_ : str = 13 lowercase_ : Tuple = 7 lowercase_ : List[str] = True lowercase_ : Union[str, Any] = True lowercase_ : List[str] = True lowercase_ : Dict = 99 lowercase_ : int = 32 lowercase_ : int = 2 lowercase_ : Tuple = 4 lowercase_ : str = 37 lowercase_ : Tuple = 'gelu' lowercase_ : List[str] = 0.1 lowercase_ : Optional[Any] = 0.1 lowercase_ : int = 512 lowercase_ : Tuple = 16 lowercase_ : Dict = 2 lowercase_ : List[Any] = 0.02 lowercase_ : List[Any] = 3 lowercase_ : str = 4 lowercase_ : List[Any] = None def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Dict = None if self.use_input_mask: lowercase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Optional[Any] = None lowercase_ : str = None lowercase_ : Dict = None if self.use_labels: lowercase_ : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase_ : str = ids_tensor([self.batch_size] ,self.num_choices ) lowercase_ : Dict = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> str: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : int = self.prepare_config_and_inputs() lowercase_ : Tuple = True lowercase_ : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Tuple = TFEsmModel(config=__UpperCamelCase ) lowercase_ : int = {'input_ids': input_ids, 'attention_mask': input_mask} lowercase_ : int = model(__UpperCamelCase ) lowercase_ : Tuple = [input_ids, input_mask] lowercase_ : Optional[Any] = model(__UpperCamelCase ) lowercase_ : List[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Optional[int]: '''simple docstring''' lowercase_ : int = True lowercase_ : List[Any] = TFEsmModel(config=__UpperCamelCase ) lowercase_ : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowercase_ : str = model(__UpperCamelCase ) lowercase_ : str = [input_ids, input_mask] lowercase_ : List[Any] = model(__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ) # Also check the case where encoder outputs are not passed lowercase_ : Optional[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Union[str, Any] = TFEsmForMaskedLM(config=__UpperCamelCase ) lowercase_ : Tuple = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : str = self.num_labels lowercase_ : Optional[Any] = TFEsmForTokenClassification(config=__UpperCamelCase ) lowercase_ : str = {'input_ids': input_ids, 'attention_mask': input_mask} lowercase_ : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : List[Any] = config_and_inputs lowercase_ : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowercase = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Any = TFEsmModelTester(self ) lowercase_ : Union[str, Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = TFEsmModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @unittest.skip('Protein models do not support embedding resizing.' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('Protein models do not support embedding resizing.' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[str] = model_class(__UpperCamelCase ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowercase_ : Optional[Any] = model.get_bias() assert isinstance(__UpperCamelCase ,__UpperCamelCase ) for k, v in name.items(): assert isinstance(__UpperCamelCase ,tf.Variable ) else: lowercase_ : Any = model.get_output_embeddings() assert x is None lowercase_ : List[Any] = model.get_bias() assert name is None @require_tf class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Tuple = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowercase_ : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase_ : Dict = model(__UpperCamelCase )[0] lowercase_ : Optional[Any] = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,__UpperCamelCase ) # compare the actual values for a slice. lowercase_ : Tuple = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowercase_ : Any = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase_ : Dict = model(__UpperCamelCase )[0] # compare the actual values for a slice. lowercase_ : Optional[int] = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
321
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore __SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered") def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ): lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
321
1
"""simple docstring""" import datasets __SCREAMING_SNAKE_CASE ="\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" __SCREAMING_SNAKE_CASE ="\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" __SCREAMING_SNAKE_CASE ="\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='numpy' ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return {"accuracy": simple_accuracy(__UpperCamelCase ,__UpperCamelCase )}
321
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
321
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=3 ,__UpperCamelCase=32 ,__UpperCamelCase=3 ,__UpperCamelCase=10 ,__UpperCamelCase=[10, 20, 30, 40] ,__UpperCamelCase=[1, 1, 2, 1] ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase="relu" ,__UpperCamelCase=3 ,__UpperCamelCase=None ,) -> Optional[Any]: '''simple docstring''' lowercase_ : List[str] = parent lowercase_ : List[Any] = batch_size lowercase_ : Optional[Any] = image_size lowercase_ : str = num_channels lowercase_ : List[Any] = embeddings_size lowercase_ : Any = hidden_sizes lowercase_ : Tuple = depths lowercase_ : int = is_training lowercase_ : List[Any] = use_labels lowercase_ : str = hidden_act lowercase_ : str = num_labels lowercase_ : Dict = scope lowercase_ : List[str] = len(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Any = None if self.use_labels: lowercase_ : str = ids_tensor([self.batch_size] ,self.num_labels ) lowercase_ : List[Any] = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Optional[Any] = RegNetModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : int = model(__UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : int = self.num_labels lowercase_ : Dict = RegNetForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Optional[int] = model(__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : List[Any] = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : List[Any] = config_and_inputs lowercase_ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () lowercase = ( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Any = RegNetModelTester(self ) lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,has_text_modality=__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' pass def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[int] = model_class(__UpperCamelCase ) lowercase_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Optional[int] = [*signature.parameters.keys()] lowercase_ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[int] = model_class(config=__UpperCamelCase ) for name, module in model.named_modules(): if isinstance(__UpperCamelCase ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' ,) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' def check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): lowercase_ : Any = model(**self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) ) lowercase_ : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ : int = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) ,expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 2, self.model_tester.image_size // 2] ,) lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Optional[Any] = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase_ : Optional[Any] = layer_type lowercase_ : Optional[Any] = True check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Any = True check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Optional[Any] = RegNetModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowercase__( ): lowercase_ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCamelCase ) lowercase_ : Optional[Any] = self.default_image_processor lowercase_ : str = prepare_img() lowercase_ : Dict = image_processor(images=__UpperCamelCase ,return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): lowercase_ : Tuple = model(**__UpperCamelCase ) # verify the logits lowercase_ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,__UpperCamelCase ) lowercase_ : int = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]: '''simple docstring''' lowercase_ : Any = parent lowercase_ : str = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Dict = is_training lowercase_ : Tuple = use_input_mask lowercase_ : Optional[Any] = use_token_type_ids lowercase_ : List[str] = use_labels lowercase_ : Any = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : Tuple = max_position_embeddings lowercase_ : Optional[int] = type_vocab_size lowercase_ : Optional[int] = type_sequence_label_size lowercase_ : Dict = initializer_range lowercase_ : int = num_labels lowercase_ : Any = num_choices lowercase_ : int = scope def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Dict = None if self.use_input_mask: lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Tuple = None lowercase_ : Tuple = None lowercase_ : Tuple = None if self.use_labels: lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) lowercase_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Union[str, Any] = model(__UpperCamelCase ) lowercase_ : int = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.num_labels lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Any = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[int] = config_and_inputs lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = False lowercase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowercase = () lowercase = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = EsmModelTester(self ) lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : Optional[Any] = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowercase_ : List[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : List[Any] = torch.empty(2 ,4 ,30 ) lowercase_ : List[str] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch class UpperCamelCase ( lowercase_ ): @slow def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : List[str] = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = 33 lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : List[str] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase_ : Dict = model(__UpperCamelCase )[0] # compare the actual values for a slice. lowercase_ : Any = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
1
"""simple docstring""" from PIL import Image def lowercase__( __SCREAMING_SNAKE_CASE : Image , __SCREAMING_SNAKE_CASE : float ): def brightness(__SCREAMING_SNAKE_CASE : int ) -> float: return 1_28 + level + (c - 1_28) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 __SCREAMING_SNAKE_CASE =change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
321
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = bp_numa lowercase_ : Dict = bp_numa lowercase_ : Tuple = bp_numa lowercase_ : List[Any] = conva_get[:2] lowercase_ : int = conva_get[2] lowercase_ : Dict = size_pa lowercase_ : int = rate_w lowercase_ : Union[str, Any] = rate_t lowercase_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(__UpperCamelCase ,'wb' ) as f: pickle.dump(__UpperCamelCase ,__UpperCamelCase ) print(f'''Model saved: {save_path}''' ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' with open(__UpperCamelCase ,'rb' ) as f: lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301 lowercase_ : str = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' ) lowercase_ : Optional[Any] = model_dic.get('num_bp1' ) lowercase_ : str = model_dic.get('num_bp2' ) lowercase_ : Optional[Any] = model_dic.get('num_bp3' ) lowercase_ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase_ : Optional[int] = model_dic.get('rate_thre' ) # create model instance lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # modify model parameter lowercase_ : Optional[Any] = model_dic.get('w_conv1' ) lowercase_ : Tuple = model_dic.get('wkj' ) lowercase_ : Union[str, Any] = model_dic.get('vji' ) lowercase_ : Optional[Any] = model_dic.get('thre_conv1' ) lowercase_ : Dict = model_dic.get('thre_bp2' ) lowercase_ : Optional[int] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return round(__UpperCamelCase ,3 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Dict = convs[0] lowercase_ : Any = convs[1] lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus lowercase_ : Tuple = [] for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): lowercase_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase_ : Dict = [] lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): lowercase_ : Tuple = [] for i_focus in range(len(__UpperCamelCase ) ): lowercase_ : Optional[int] = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase ,__UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion lowercase_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) lowercase_ : str = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = len(featuremaps[0] ) lowercase_ : str = int(size_map / size_pooling ) lowercase_ : Optional[int] = [] for i_map in range(len(__UpperCamelCase ) ): lowercase_ : int = featuremaps[i_map] lowercase_ : List[str] = [] for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Tuple = [] for i in range(len(__UpperCamelCase ) ): lowercase_ : Optional[Any] = np.shape(data[i] ) lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] ) lowercase_ : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) lowercase_ : int = np.asarray(__UpperCamelCase ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = np.asarray(__UpperCamelCase ) lowercase_ : Any = np.shape(__UpperCamelCase ) lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = [] lowercase_ : List[Any] = 0 for i_map in range(__UpperCamelCase ): lowercase_ : List[str] = np.ones((size_map, size_map) ) for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = pd_pool[ i_pool ] lowercase_ : Any = i_pool + 1 lowercase_ : Optional[int] = np.multiply( __UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]: '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) ) print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) ) lowercase_ : int = 0 lowercase_ : Tuple = [] lowercase_ : Tuple = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowercase_ : List[str] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase_ : int = np.asmatrix(datas_train[p] ) lowercase_ : Any = np.asarray(datas_teach[p] ) lowercase_ , lowercase_ : Tuple = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : Optional[int] = np.shape(__UpperCamelCase ) lowercase_ : Optional[int] = self._expand(__UpperCamelCase ) lowercase_ : int = data_bp_input lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa lowercase_ : Dict = self.sig(__UpperCamelCase ) lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa lowercase_ : int = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase_ : str = np.multiply( (data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Optional[int] = np.multiply( np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji ) lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase_ : Dict = pd_conva_pooled.T.getA().tolist() lowercase_ : List[Any] = self._calculate_gradient_from_pool( __UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase_ : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase_ : int = rp + 1 lowercase_ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase ,'+-' ) plt.plot(__UpperCamelCase ,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(__UpperCamelCase ,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): lowercase_ : List[Any] = np.asmatrix(datas_test[p] ) lowercase_ , lowercase_ : Optional[Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : List[str] = self._expand(__UpperCamelCase ) lowercase_ : Any = data_bp_input lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa lowercase_ : str = self.sig(__UpperCamelCase ) lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa lowercase_ : Optional[int] = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ) lowercase_ , lowercase_ : Union[str, Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
321
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int ): lowercase_ : int = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowercase__( __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = 0 while number > 0: lowercase_ : List[str] = number % 10 sum_of_digits += last_digit lowercase_ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowercase__( __SCREAMING_SNAKE_CASE : int = 1_00 ): lowercase_ : Tuple = factorial(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = split_and_add(__SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
321
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): lowercase_ : Dict = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = 'patrickvonplaten/t5-tiny-random' lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] ) lowercase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__UpperCamelCase ): self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'current' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
321
1
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str ): # Initialise PyTorch model lowercase_ : Dict = RemBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print('Building PyTorch model from configuration: {}'.format(str(__SCREAMING_SNAKE_CASE ) ) ) lowercase_ : Optional[Any] = RemBertModel(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print('Save PyTorch model to {}'.format(__SCREAMING_SNAKE_CASE ) ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
321
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['input_values', 'padding_mask'] def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any: '''simple docstring''' super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[str] = chunk_length_s lowercase_ : Tuple = overlap @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs lowercase_ : Optional[int] = True lowercase_ : Optional[int] = bool( isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ): lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa ) elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowercase_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) lowercase_ : Optional[int] = None lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio ) lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) ) lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio ) lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) ) lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length lowercase_ : Union[str, Any] = 'max_length' else: lowercase_ : int = input_values # normal padding on batch if padded_inputs is None: lowercase_ : int = self.pad( __UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,) if padding: lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' ) lowercase_ : Dict = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: lowercase_ : Optional[int] = example[..., None] input_values.append(example.T ) lowercase_ : str = input_values if return_tensors is not None: lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
321
1
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int=() , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Any="no" , __SCREAMING_SNAKE_CASE : Union[str, Any]="29500" ): lowercase_ : Tuple = False lowercase_ : Tuple = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): lowercase_ : Dict = True elif "IPython" in sys.modules: lowercase_ : Dict = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: lowercase_ : Union[str, Any] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , __SCREAMING_SNAKE_CASE ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: lowercase_ : Optional[Any] = 8 lowercase_ : List[Any] = PrepareForLaunch(__SCREAMING_SNAKE_CASE , distributed_type='TPU' ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , nprocs=__SCREAMING_SNAKE_CASE , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*__SCREAMING_SNAKE_CASE ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__SCREAMING_SNAKE_CASE , master_addr='127.0.01' , master_port=__SCREAMING_SNAKE_CASE , mixed_precision=__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = PrepareForLaunch(__SCREAMING_SNAKE_CASE , distributed_type='MULTI_GPU' ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , nprocs=__SCREAMING_SNAKE_CASE , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowercase_ : Optional[Any] = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any=() , __SCREAMING_SNAKE_CASE : Dict=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__SCREAMING_SNAKE_CASE , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): lowercase_ : List[Any] = PrepareForLaunch(__SCREAMING_SNAKE_CASE , debug=__SCREAMING_SNAKE_CASE ) start_processes(__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , nprocs=__SCREAMING_SNAKE_CASE , start_method='fork' )
321
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
321
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : list[float] ): if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) lowercase_ : Union[str, Any] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__SCREAMING_SNAKE_CASE ) ) return round(__SCREAMING_SNAKE_CASE , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
321
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ): require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
321
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class UpperCamelCase ( lowercase_ ): lowercase = 'instructblip_vision_model' def __init__( self ,__UpperCamelCase=1408 ,__UpperCamelCase=6144 ,__UpperCamelCase=39 ,__UpperCamelCase=16 ,__UpperCamelCase=224 ,__UpperCamelCase=14 ,__UpperCamelCase="gelu" ,__UpperCamelCase=1e-6 ,__UpperCamelCase=0.0 ,__UpperCamelCase=1e-10 ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Dict: '''simple docstring''' super().__init__(**__UpperCamelCase ) lowercase_ : Union[str, Any] = hidden_size lowercase_ : Optional[Any] = intermediate_size lowercase_ : Optional[Any] = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : int = patch_size lowercase_ : List[Any] = image_size lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = attention_dropout lowercase_ : Dict = layer_norm_eps lowercase_ : List[str] = hidden_act lowercase_ : Optional[int] = qkv_bias @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ,**__UpperCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__UpperCamelCase ) lowercase_ , lowercase_ : str = cls.get_config_dict(__UpperCamelCase ,**__UpperCamelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": lowercase_ : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase ,**__UpperCamelCase ) class UpperCamelCase ( lowercase_ ): lowercase = 'instructblip_qformer' def __init__( self ,__UpperCamelCase=3_0522 ,__UpperCamelCase=768 ,__UpperCamelCase=12 ,__UpperCamelCase=12 ,__UpperCamelCase=3072 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-12 ,__UpperCamelCase=0 ,__UpperCamelCase="absolute" ,__UpperCamelCase=2 ,__UpperCamelCase=1408 ,**__UpperCamelCase ,) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : str = vocab_size lowercase_ : int = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Optional[Any] = num_attention_heads lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = intermediate_size lowercase_ : Union[str, Any] = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : Optional[Any] = max_position_embeddings lowercase_ : List[Any] = initializer_range lowercase_ : Any = layer_norm_eps lowercase_ : Tuple = position_embedding_type lowercase_ : Optional[Any] = cross_attention_frequency lowercase_ : Union[str, Any] = encoder_hidden_size @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ,**__UpperCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__UpperCamelCase ) lowercase_ , lowercase_ : List[str] = cls.get_config_dict(__UpperCamelCase ,**__UpperCamelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": lowercase_ : Union[str, Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase ,**__UpperCamelCase ) class UpperCamelCase ( lowercase_ ): lowercase = 'instructblip' lowercase = True def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=32 ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' super().__init__(**__UpperCamelCase ) if vision_config is None: lowercase_ : Optional[Any] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: lowercase_ : List[str] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: lowercase_ : Union[str, Any] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) lowercase_ : Union[str, Any] = InstructBlipVisionConfig(**__UpperCamelCase ) lowercase_ : Any = InstructBlipQFormerConfig(**__UpperCamelCase ) lowercase_ : Dict = text_config['model_type'] if 'model_type' in text_config else 'opt' lowercase_ : Any = CONFIG_MAPPING[text_model_type](**__UpperCamelCase ) lowercase_ : List[Any] = self.text_config.tie_word_embeddings lowercase_ : Optional[int] = self.text_config.is_encoder_decoder lowercase_ : Tuple = num_query_tokens lowercase_ : Any = self.vision_config.hidden_size lowercase_ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase_ : List[Any] = 1.0 lowercase_ : List[Any] = 0.02 @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> List[str]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**__UpperCamelCase ,) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowercase_ : Union[str, Any] = self.vision_config.to_dict() lowercase_ : Tuple = self.qformer_config.to_dict() lowercase_ : str = self.text_config.to_dict() lowercase_ : List[Any] = self.__class__.model_type return output
321
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ): lowercase_ : int = 'backbone.' if is_semantic else '' lowercase_ : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ): for i in range(config.num_hidden_layers ): lowercase_ : Any = 'backbone.' if is_semantic else '' # queries, keys and values lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) lowercase_ : List[str] = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = q_bias lowercase_ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Any = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) lowercase_ : Tuple = gamma_a lowercase_ : List[Any] = gamma_a def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = val def lowercase__( ): lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ): lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowercase_ : Any = 10_24 lowercase_ : List[str] = 40_96 lowercase_ : Tuple = 24 lowercase_ : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: lowercase_ : Optional[Any] = 16 lowercase_ : Any = 'huggingface/label-files' lowercase_ : int = 'rvlcdip-id2label.json' lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : str = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) # load HuggingFace model lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image lowercase_ : List[Any] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE ) lowercase_ : str = prepare_img() lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) lowercase_ : int = encoding['pixel_values'] lowercase_ : Any = model(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = outputs.logits # verify logits lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected" Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: if has_lm_head: lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) model.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
321
1
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __SCREAMING_SNAKE_CASE =importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __SCREAMING_SNAKE_CASE =[ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__( __SCREAMING_SNAKE_CASE : str ): if "://" in dataset_path: lowercase_ : List[Any] = dataset_path.split('://' )[1] return dataset_path def lowercase__( __SCREAMING_SNAKE_CASE : fsspec.AbstractFileSystem ): if fs is not None and fs.protocol != "file": return True else: return False def lowercase__( __SCREAMING_SNAKE_CASE : fsspec.AbstractFileSystem , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): lowercase_ : Optional[int] = not is_remote_filesystem(__SCREAMING_SNAKE_CASE ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__SCREAMING_SNAKE_CASE ) , fs._strip_protocol(__SCREAMING_SNAKE_CASE ) ) else: fs.mv(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , recursive=__SCREAMING_SNAKE_CASE ) def lowercase__( ): if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowercase_ : str = None lowercase_ : Dict = None lowercase_ : Optional[Any] = threading.Lock()
321
"""simple docstring""" __SCREAMING_SNAKE_CASE ={ "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } __SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()} def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase__( __SCREAMING_SNAKE_CASE : str ): if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) lowercase_ : Dict = '' for word in coded.split(): while len(__SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase_ : Any = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
321
1
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): # picklable for multiprocessing return x.sum() def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ): # picklable for multiprocessing return i + 1 @dataclass class UpperCamelCase : lowercase = 42 lowercase = 42 class UpperCamelCase ( lowercase_ ): def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Dict = {} lowercase_ : List[Any] = [] lowercase_ : List[Any] = 1 lowercase_ : Union[str, Any] = [1, 2] lowercase_ : int = {'a': 1, 'b': 2} lowercase_ : int = {'a': [1, 2], 'b': [3, 4]} lowercase_ : Dict = {'a': {'1': 1}, 'b': 2} lowercase_ : List[str] = {'a': 1, 'b': 2, 'c': 3, 'd': 4} lowercase_ : Union[str, Any] = {} lowercase_ : Tuple = [] lowercase_ : List[str] = 2 lowercase_ : Optional[int] = [2, 3] lowercase_ : int = {'a': 2, 'b': 3} lowercase_ : Any = {'a': [2, 3], 'b': [4, 5]} lowercase_ : Any = {'a': {'1': 2}, 'b': 3} lowercase_ : Tuple = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ) lowercase_ : Any = 2 self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) ,__UpperCamelCase ) lowercase_ : str = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )} lowercase_ : Dict = {'a': 2, 'b': 0, 'c': 2} lowercase_ : Tuple = { 'a': np.eye(2 ).astype(__UpperCamelCase ), 'b': np.zeros(3 ).astype(__UpperCamelCase ), 'c': np.ones(2 ).astype(__UpperCamelCase ), } self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ,map_numpy=__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__UpperCamelCase ,__UpperCamelCase ,map_numpy=__UpperCamelCase ).items()} ,{k: v.tolist() for k, v in expected_map_nested_sna_int.items()} ,) self.assertEqual(map_nested(__UpperCamelCase ,__UpperCamelCase ,map_numpy=__UpperCamelCase ,num_proc=__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__UpperCamelCase ,__UpperCamelCase ,map_numpy=__UpperCamelCase ,num_proc=__UpperCamelCase ).items()} ,{k: v.tolist() for k, v in expected_map_nested_sna_int.items()} ,) with self.assertRaises(__UpperCamelCase ): # can't pickle a local lambda map_nested(lambda __UpperCamelCase : x + 1 ,__UpperCamelCase ,num_proc=__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : List[Any] = {'a': 1, 'b': 2} lowercase_ : int = {'a': 3, 'b': 4} lowercase_ : Any = {'a': 5, 'b': 6} lowercase_ : int = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' class UpperCamelCase : lowercase = 'bar' lowercase_ : int = Foo() self.assertEqual(foo.my_attr ,'bar' ) with temporary_assignment(__UpperCamelCase ,'my_attr' ,'BAR' ): self.assertEqual(foo.my_attr ,'BAR' ) self.assertEqual(foo.my_attr ,'bar' ) @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ): with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool: lowercase_ : Any = {F'''{i}''': i for i in range(__SCREAMING_SNAKE_CASE )} lowercase_ : str = map_nested(lambda __SCREAMING_SNAKE_CASE : x + 10 , __SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class UpperCamelCase ( lowercase_ ): @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers lowercase_ : Union[str, Any] = layers.Dense(2 ) def gen_random_output(): lowercase_ : Optional[Any] = tf.random.uniform((1, 3) ) return model(__UpperCamelCase ).numpy() with temp_seed(42 ,set_tensorflow=__UpperCamelCase ): lowercase_ : int = gen_random_output() with temp_seed(42 ,set_tensorflow=__UpperCamelCase ): lowercase_ : Union[str, Any] = gen_random_output() lowercase_ : Any = gen_random_output() np.testing.assert_equal(__UpperCamelCase ,__UpperCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() ,0 ) @require_torch def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' import torch def gen_random_output(): lowercase_ : List[Any] = torch.nn.Linear(3 ,2 ) lowercase_ : Any = torch.rand(1 ,3 ) return model(__UpperCamelCase ).detach().numpy() with temp_seed(42 ,set_pytorch=__UpperCamelCase ): lowercase_ : str = gen_random_output() with temp_seed(42 ,set_pytorch=__UpperCamelCase ): lowercase_ : Dict = gen_random_output() lowercase_ : Optional[int] = gen_random_output() np.testing.assert_equal(__UpperCamelCase ,__UpperCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() ,0 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' def gen_random_output(): return np.random.rand(1 ,3 ) with temp_seed(42 ): lowercase_ : List[Any] = gen_random_output() with temp_seed(42 ): lowercase_ : List[Any] = gen_random_output() lowercase_ : int = gen_random_output() np.testing.assert_equal(__UpperCamelCase ,__UpperCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() ,0 ) @pytest.mark.parametrize('input_data' , [{}] ) def lowercase__( __SCREAMING_SNAKE_CASE : int ): lowercase_ : str = NestedDataStructure(__SCREAMING_SNAKE_CASE ).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' , [ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] , ) def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : str = NestedDataStructure(__SCREAMING_SNAKE_CASE ).flatten() assert output == expected_output def lowercase__( ): lowercase_ : List[str] = A(x=1 , y='foobar' ) lowercase_ : int = {'x': 1, 'y': 'foobar'} assert asdict(__SCREAMING_SNAKE_CASE ) == expected_output lowercase_ : Optional[int] = {'a': {'b': A(x=10 , y='foo' )}, 'c': [A(x=20 , y='bar' )]} lowercase_ : int = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]} assert asdict(__SCREAMING_SNAKE_CASE ) == expected_output with pytest.raises(__SCREAMING_SNAKE_CASE ): asdict([1, A(x=10 , y='foo' )] ) def lowercase__( __SCREAMING_SNAKE_CASE : str ): return text.split() def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowercase__( ): with Pool(2 ) as pool: lowercase_ : List[Any] = list(iflatmap_unordered(__SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(__SCREAMING_SNAKE_CASE ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: lowercase_ : Optional[Any] = list(iflatmap_unordered(__SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(__SCREAMING_SNAKE_CASE ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: lowercase_ : List[str] = [] for yield_time, content in iflatmap_unordered( __SCREAMING_SNAKE_CASE , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__SCREAMING_SNAKE_CASE ) assert out.count('a' ) == 2 assert out.count('b' ) == 2 assert len(__SCREAMING_SNAKE_CASE ) == 4
321
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations_with_dp_array( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase_ : str = sum( count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE ) for item in array ) lowercase_ : Tuple = answer return answer lowercase_ : Optional[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = [0] * (target + 1) lowercase_ : Dict = 1 for i in range(1 , target + 1 ): for j in range(__SCREAMING_SNAKE_CASE ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE =3 __SCREAMING_SNAKE_CASE =5 __SCREAMING_SNAKE_CASE =[1, 2, 5] print(combination_sum_iv(n, array, target))
321
1
"""simple docstring""" from math import ceil def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple ): lowercase_ : List[Any] = list(range(0 , __SCREAMING_SNAKE_CASE ) ) lowercase_ : List[Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowercase_ : Optional[int] = [] for i in device_map_blocks: if device_map_blocks.count(__SCREAMING_SNAKE_CASE ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__SCREAMING_SNAKE_CASE ) # Missing blocks lowercase_ : List[Any] = [i for i in blocks if i not in device_map_blocks] lowercase_ : Optional[int] = [i for i in device_map_blocks if i not in blocks] if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(__SCREAMING_SNAKE_CASE ) ) def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase_ : Optional[Any] = list(range(__SCREAMING_SNAKE_CASE ) ) lowercase_ : List[str] = int(ceil(n_layers / len(__SCREAMING_SNAKE_CASE ) ) ) lowercase_ : Optional[Any] = [layers[i : i + n_blocks] for i in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] return dict(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
321
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : int = set_counts lowercase_ : List[Any] = max(__UpperCamelCase ) lowercase_ : Union[str, Any] = len(__UpperCamelCase ) lowercase_ : Dict = [1] * num_sets lowercase_ : Optional[int] = list(range(__UpperCamelCase ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase ) lowercase_ : int = self.get_parent(__UpperCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : Tuple = 0 lowercase_ : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : str = 0 lowercase_ : Tuple = src_parent lowercase_ : int = self.set_counts[src_parent] lowercase_ : str = max(self.max_set ,__UpperCamelCase ) return True def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
321
1
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : int | float | str , __SCREAMING_SNAKE_CASE : int | float | str ): if nth_term == "": return [""] lowercase_ : List[str] = int(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = int(__SCREAMING_SNAKE_CASE ) lowercase_ : list[str] = [] for temp in range(int(__SCREAMING_SNAKE_CASE ) ): series.append(F'''1 / {pow(temp + 1 , int(__SCREAMING_SNAKE_CASE ) )}''' if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE =int(input("Enter the last number (nth term) of the P-Series")) __SCREAMING_SNAKE_CASE =int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
321
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __SCREAMING_SNAKE_CASE ={ "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128} class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BlenderbotTokenizer def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__( __UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) ) lowercase_ : Any = add_prefix_space lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase ) lowercase_ : int = add_prefix_space lowercase_ : Any = 'post_processor' lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) if tokenizer_component_instance: lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ : str = tuple(state['sep'] ) if "cls" in state: lowercase_ : Union[str, Any] = tuple(state['cls'] ) lowercase_ : str = False if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Dict = add_prefix_space lowercase_ : int = True if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets: lowercase_ : Optional[Any] = trim_offsets lowercase_ : Tuple = True if changes_to_apply: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) ) lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _UpperCAmelCase ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value lowercase_ : str = value def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : int = [self.sep_token_id] lowercase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any: '''simple docstring''' return token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]: '''simple docstring''' lowercase_ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) lowercase_ : Dict = ' '.join(__UpperCamelCase ) lowercase_ : str = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: lowercase_ : List[str] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
321
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={"vocab_file": "spiece.model"} __SCREAMING_SNAKE_CASE ={ "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } __SCREAMING_SNAKE_CASE ={ "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) __SCREAMING_SNAKE_CASE =0 __SCREAMING_SNAKE_CASE =1 __SCREAMING_SNAKE_CASE =2 __SCREAMING_SNAKE_CASE =3 __SCREAMING_SNAKE_CASE =4 class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = 'left' def __init__( self ,__UpperCamelCase ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<sep>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<cls>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=["<eop>", "<eod>"] ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> None: '''simple docstring''' lowercase_ : List[str] = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else mask_token lowercase_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCamelCase ,remove_space=__UpperCamelCase ,keep_accents=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,additional_special_tokens=__UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCamelCase ,) lowercase_ : List[Any] = 3 lowercase_ : Optional[int] = do_lower_case lowercase_ : Optional[int] = remove_space lowercase_ : Any = keep_accents lowercase_ : Optional[Any] = vocab_file lowercase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) @property def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return len(self.sp_model ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : List[str] = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: '''simple docstring''' lowercase_ : Optional[Any] = self.__dict__.copy() lowercase_ : Optional[Any] = None return state def __setstate__( self ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Tuple = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): lowercase_ : Any = {} lowercase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' if self.remove_space: lowercase_ : Dict = ' '.join(inputs.strip().split() ) else: lowercase_ : int = inputs lowercase_ : Optional[Any] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: lowercase_ : List[str] = unicodedata.normalize('NFKD' ,__UpperCamelCase ) lowercase_ : Any = ''.join([c for c in outputs if not unicodedata.combining(__UpperCamelCase )] ) if self.do_lower_case: lowercase_ : Tuple = outputs.lower() return outputs def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Tuple = self.preprocess_text(__UpperCamelCase ) lowercase_ : Dict = self.sp_model.encode(__UpperCamelCase ,out_type=__UpperCamelCase ) lowercase_ : List[str] = [] for piece in pieces: if len(__UpperCamelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): lowercase_ : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCamelCase ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase_ : Dict = cur_pieces[1:] else: lowercase_ : List[str] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCamelCase ) else: new_pieces.append(__UpperCamelCase ) return new_pieces def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return self.sp_model.PieceToId(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str: '''simple docstring''' return self.sp_model.IdToPiece(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = ''.join(__UpperCamelCase ).replace(__UpperCamelCase ,' ' ).strip() return out_string def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = True ,**__UpperCamelCase ,) -> str: '''simple docstring''' lowercase_ : List[Any] = kwargs.pop('use_source_tokenizer' ,__UpperCamelCase ) lowercase_ : str = self.convert_ids_to_tokens(__UpperCamelCase ,skip_special_tokens=__UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowercase_ : Tuple = [] lowercase_ : Tuple = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCamelCase ) ) lowercase_ : List[str] = [] sub_texts.append(__UpperCamelCase ) else: current_sub_text.append(__UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowercase_ : int = ''.join(__UpperCamelCase ) lowercase_ : Dict = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowercase_ : Optional[int] = self.clean_up_tokenization(__UpperCamelCase ) return clean_text else: return text def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : str = [self.sep_token_id] lowercase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase ,token_ids_a=__UpperCamelCase ,already_has_special_tokens=__UpperCamelCase ) if token_ids_a is not None: return ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1, 1] return ([0] * len(__UpperCamelCase )) + [1, 1] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : Any = [self.sep_token_id] lowercase_ : Optional[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Tuple = os.path.join( __UpperCamelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase ,'wb' ) as fi: lowercase_ : Tuple = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
321
"""simple docstring""" import os import sys import unittest __SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py") __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py") class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'} lowercase_ : Union[str, Any] = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : Any = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } lowercase_ : Any = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Tuple = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } lowercase_ : Optional[Any] = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
321
1
"""simple docstring""" import argparse import struct import unittest class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : Tuple = data # Initialize hash values lowercase_ : Optional[int] = [ 0X6_A_0_9_E_6_6_7, 0XB_B_6_7_A_E_8_5, 0X3_C_6_E_F_3_7_2, 0XA_5_4_F_F_5_3_A, 0X5_1_0_E_5_2_7_F, 0X9_B_0_5_6_8_8_C, 0X1_F_8_3_D_9_A_B, 0X5_B_E_0_C_D_1_9, ] # Initialize round constants lowercase_ : List[Any] = [ 0X4_2_8_A_2_F_9_8, 0X7_1_3_7_4_4_9_1, 0XB_5_C_0_F_B_C_F, 0XE_9_B_5_D_B_A_5, 0X3_9_5_6_C_2_5_B, 0X5_9_F_1_1_1_F_1, 0X9_2_3_F_8_2_A_4, 0XA_B_1_C_5_E_D_5, 0XD_8_0_7_A_A_9_8, 0X1_2_8_3_5_B_0_1, 0X2_4_3_1_8_5_B_E, 0X5_5_0_C_7_D_C_3, 0X7_2_B_E_5_D_7_4, 0X8_0_D_E_B_1_F_E, 0X9_B_D_C_0_6_A_7, 0XC_1_9_B_F_1_7_4, 0XE_4_9_B_6_9_C_1, 0XE_F_B_E_4_7_8_6, 0X0_F_C_1_9_D_C_6, 0X2_4_0_C_A_1_C_C, 0X2_D_E_9_2_C_6_F, 0X4_A_7_4_8_4_A_A, 0X5_C_B_0_A_9_D_C, 0X7_6_F_9_8_8_D_A, 0X9_8_3_E_5_1_5_2, 0XA_8_3_1_C_6_6_D, 0XB_0_0_3_2_7_C_8, 0XB_F_5_9_7_F_C_7, 0XC_6_E_0_0_B_F_3, 0XD_5_A_7_9_1_4_7, 0X0_6_C_A_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_B_7_0_A_8_5, 0X2_E_1_B_2_1_3_8, 0X4_D_2_C_6_D_F_C, 0X5_3_3_8_0_D_1_3, 0X6_5_0_A_7_3_5_4, 0X7_6_6_A_0_A_B_B, 0X8_1_C_2_C_9_2_E, 0X9_2_7_2_2_C_8_5, 0XA_2_B_F_E_8_A_1, 0XA_8_1_A_6_6_4_B, 0XC_2_4_B_8_B_7_0, 0XC_7_6_C_5_1_A_3, 0XD_1_9_2_E_8_1_9, 0XD_6_9_9_0_6_2_4, 0XF_4_0_E_3_5_8_5, 0X1_0_6_A_A_0_7_0, 0X1_9_A_4_C_1_1_6, 0X1_E_3_7_6_C_0_8, 0X2_7_4_8_7_7_4_C, 0X3_4_B_0_B_C_B_5, 0X3_9_1_C_0_C_B_3, 0X4_E_D_8_A_A_4_A, 0X5_B_9_C_C_A_4_F, 0X6_8_2_E_6_F_F_3, 0X7_4_8_F_8_2_E_E, 0X7_8_A_5_6_3_6_F, 0X8_4_C_8_7_8_1_4, 0X8_C_C_7_0_2_0_8, 0X9_0_B_E_F_F_F_A, 0XA_4_5_0_6_C_E_B, 0XB_E_F_9_A_3_F_7, 0XC_6_7_1_7_8_F_2, ] lowercase_ : List[str] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _UpperCAmelCase ( __UpperCamelCase ) -> bytes: '''simple docstring''' lowercase_ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(__UpperCamelCase ) + 8) % 64)) lowercase_ : Optional[Any] = struct.pack('>Q' ,(len(__UpperCamelCase ) * 8) ) return data + padding + big_endian_integer def _UpperCAmelCase ( self ) -> None: '''simple docstring''' lowercase_ : Tuple = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowercase_ : Dict = list(struct.unpack('>16L' ,__UpperCamelCase ) ) # add 48 0-ed integers words += [0] * 48 lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowercase_ : Tuple = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowercase_ : List[str] = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowercase_ : Dict = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression lowercase_ : Tuple = self.ror(__UpperCamelCase ,6 ) ^ self.ror(__UpperCamelCase ,11 ) ^ self.ror(__UpperCamelCase ,25 ) lowercase_ : int = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g) lowercase_ : str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 lowercase_ : Any = self.ror(__UpperCamelCase ,2 ) ^ self.ror(__UpperCamelCase ,13 ) ^ self.ror(__UpperCamelCase ,22 ) lowercase_ : Optional[int] = (a & b) ^ (a & c) ^ (b & c) lowercase_ : Any = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) lowercase_ : Dict = [a, b, c, d, e, f, g, h] # Modify final values lowercase_ : List[str] = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] lowercase_ : Optional[int] = ''.join([hex(__UpperCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> None: '''simple docstring''' import hashlib lowercase_ : str = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(__UpperCamelCase ).hash ,hashlib.shaaaa(__UpperCamelCase ).hexdigest() ) def lowercase__( ): import doctest doctest.testmod() lowercase_ : Tuple = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) lowercase_ : Union[str, Any] = parser.parse_args() lowercase_ : List[Any] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase_ : Union[str, Any] = f.read() else: lowercase_ : Optional[Any] = bytes(__SCREAMING_SNAKE_CASE , 'utf-8' ) print(SHAaaa(__SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
321
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ): with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX ) try: print(*__SCREAMING_SNAKE_CASE ) finally: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) __SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank) __SCREAMING_SNAKE_CASE =socket.gethostname() __SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __SCREAMING_SNAKE_CASE =dist.get_rank() __SCREAMING_SNAKE_CASE =dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
321
1
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __SCREAMING_SNAKE_CASE =parse(importlib.metadata.version("torch")) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Version] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) lowercase_ : Union[str, Any] = STR_OPERATION_TO_FUNC[operation] if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[int] = parse(importlib.metadata.version(__SCREAMING_SNAKE_CASE ) ) return operation(__SCREAMING_SNAKE_CASE , parse(__SCREAMING_SNAKE_CASE ) ) def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): return compare_versions(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
321
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : List[Any] = name lowercase_ : int = val def __str__( self ) -> Tuple: '''simple docstring''' return f'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return self.val < other.val class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = {} lowercase_ : Tuple = {} lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase ) def __getitem__( self ,__UpperCamelCase ) -> int: '''simple docstring''' return self.get_value(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' return (idx - 1) // 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return idx * 2 + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return idx * 2 + 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' return self.heap_dict[key] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1 lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase ) for idx, i in enumerate(__UpperCamelCase ): lowercase_ : Any = idx lowercase_ : str = i.val for i in range(__UpperCamelCase ,-1 ,-1 ): self.sift_down(__UpperCamelCase ,__UpperCamelCase ) return array def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' while True: lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741 lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase ) lowercase_ : List[str] = idx if l < len(__UpperCamelCase ) and array[l] < array[idx]: lowercase_ : List[str] = l if r < len(__UpperCamelCase ) and array[r] < array[smallest]: lowercase_ : Dict = r if smallest != idx: lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx] ( ( lowercase_ ) , ( lowercase_ ) , ) : str = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowercase_ : Any = smallest else: break def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowercase_ : int = p lowercase_ : str = self.get_parent_idx(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return self.heap[0] def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowercase_ : Tuple = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 ,self.heap ) return x def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' self.heap.append(__UpperCamelCase ) lowercase_ : Tuple = len(self.heap ) - 1 lowercase_ : Optional[int] = node.val self.sift_up(len(self.heap ) - 1 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return len(self.heap ) == 0 def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowercase_ : Any = new_value lowercase_ : List[str] = new_value self.sift_up(self.idx_of_element[node] ) __SCREAMING_SNAKE_CASE =Node("R", -1) __SCREAMING_SNAKE_CASE =Node("B", 6) __SCREAMING_SNAKE_CASE =Node("A", 3) __SCREAMING_SNAKE_CASE =Node("X", 1) __SCREAMING_SNAKE_CASE =Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
321
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __SCREAMING_SNAKE_CASE ={"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCamelCase ( unittest.TestCase ): lowercase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowercase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowercase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : int = ZeroShotClassificationPipeline( model=__UpperCamelCase ,tokenizer=__UpperCamelCase ,candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Optional[int] = classifier('Who are you voting for in 2020?' ,candidate_labels='politics' ) self.assertEqual(__UpperCamelCase ,{'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} ) # No kwarg lowercase_ : str = classifier('Who are you voting for in 2020?' ,['politics'] ) self.assertEqual(__UpperCamelCase ,{'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} ) lowercase_ : int = classifier('Who are you voting for in 2020?' ,candidate_labels=['politics'] ) self.assertEqual(__UpperCamelCase ,{'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} ) lowercase_ : str = classifier('Who are you voting for in 2020?' ,candidate_labels='politics, public health' ) self.assertEqual( __UpperCamelCase ,{'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) ,1.0 ) lowercase_ : Any = classifier('Who are you voting for in 2020?' ,candidate_labels=['politics', 'public health'] ) self.assertEqual( __UpperCamelCase ,{'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) ,1.0 ) lowercase_ : Dict = classifier( 'Who are you voting for in 2020?' ,candidate_labels='politics' ,hypothesis_template='This text is about {}' ) self.assertEqual(__UpperCamelCase ,{'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 lowercase_ : Dict = classifier(['I am happy'] ,['positive', 'negative'] ) self.assertEqual( __UpperCamelCase ,[ {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(1 ) ] ,) lowercase_ : Optional[Any] = classifier(['I am happy', 'I am sad'] ,['positive', 'negative'] ) self.assertEqual( __UpperCamelCase ,[ {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(2 ) ] ,) with self.assertRaises(__UpperCamelCase ): classifier('' ,candidate_labels='politics' ) with self.assertRaises(__UpperCamelCase ): classifier(__UpperCamelCase ,candidate_labels='politics' ) with self.assertRaises(__UpperCamelCase ): classifier('Who are you voting for in 2020?' ,candidate_labels='' ) with self.assertRaises(__UpperCamelCase ): classifier('Who are you voting for in 2020?' ,candidate_labels=__UpperCamelCase ) with self.assertRaises(__UpperCamelCase ): classifier( 'Who are you voting for in 2020?' ,candidate_labels='politics' ,hypothesis_template='Not formatting template' ,) with self.assertRaises(__UpperCamelCase ): classifier( 'Who are you voting for in 2020?' ,candidate_labels='politics' ,hypothesis_template=__UpperCamelCase ,) self.run_entailment_id(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Union[str, Any] = zero_shot_classifier.model.config lowercase_ : List[str] = config.labelaid lowercase_ : Optional[int] = zero_shot_classifier.entailment_id lowercase_ : List[str] = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id ,-1 ) lowercase_ : Tuple = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) lowercase_ : List[str] = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) lowercase_ : Union[str, Any] = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id ,2 ) lowercase_ : Any = original_labelaid self.assertEqual(__UpperCamelCase ,zero_shot_classifier.entailment_id ) @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Dict = pipeline( 'zero-shot-classification' ,model='sshleifer/tiny-distilbert-base-cased-distilled-squad' ,framework='pt' ,) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 ,candidate_labels=['politics', 'public health', 'science'] ) @require_torch def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = pipeline( 'zero-shot-classification' ,model='sshleifer/tiny-distilbert-base-cased-distilled-squad' ,framework='pt' ,) lowercase_ : Dict = zero_shot_classifier( 'Who are you voting for in 2020?' ,candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__UpperCamelCase ) ,{ 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } ,) @require_tf def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[str] = pipeline( 'zero-shot-classification' ,model='sshleifer/tiny-distilbert-base-cased-distilled-squad' ,framework='tf' ,) lowercase_ : int = zero_shot_classifier( 'Who are you voting for in 2020?' ,candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__UpperCamelCase ) ,{ 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } ,) @slow @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = pipeline('zero-shot-classification' ,model='roberta-large-mnli' ,framework='pt' ) lowercase_ : Optional[int] = zero_shot_classifier( 'Who are you voting for in 2020?' ,candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__UpperCamelCase ) ,{ 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } ,) lowercase_ : str = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' ,candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] ,multi_label=__UpperCamelCase ,) self.assertEqual( nested_simplify(__UpperCamelCase ) ,{ 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } ,) @slow @require_tf def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = pipeline('zero-shot-classification' ,model='roberta-large-mnli' ,framework='tf' ) lowercase_ : List[Any] = zero_shot_classifier( 'Who are you voting for in 2020?' ,candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__UpperCamelCase ) ,{ 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } ,) lowercase_ : Optional[int] = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' ,candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] ,multi_label=__UpperCamelCase ,) self.assertEqual( nested_simplify(__UpperCamelCase ) ,{ 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } ,)
321
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = tempfile.mkdtemp() # fmt: off lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) ) lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowercase_ : Tuple = {'unk_token': '<unk>'} lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCamelCase ) ) lowercase_ : Any = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = self.get_tokenizer() lowercase_ : List[Any] = self.get_rust_tokenizer() lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase ) lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 ) lowercase_ : Any = CLIPSegProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[str] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = self.prepare_image_inputs() lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' ) lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[Any] = self.get_tokenizer() lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Dict = 'lower newer' lowercase_ : Any = processor(text=__UpperCamelCase ) lowercase_ : int = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.get_image_processor() lowercase_ : str = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = 'lower newer' lowercase_ : str = self.prepare_image_inputs() lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = self.prepare_image_inputs() lowercase_ : Optional[Any] = self.prepare_image_inputs() lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase ) lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
321
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={"vocab_file": "vocab.txt"} __SCREAMING_SNAKE_CASE ={ "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } __SCREAMING_SNAKE_CASE ={ "YituTech/conv-bert-base": 512, "YituTech/conv-bert-medium-small": 512, "YituTech/conv-bert-small": 512, } __SCREAMING_SNAKE_CASE ={ "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ConvBertTokenizer def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase="[UNK]" ,__UpperCamelCase="[SEP]" ,__UpperCamelCase="[PAD]" ,__UpperCamelCase="[CLS]" ,__UpperCamelCase="[MASK]" ,__UpperCamelCase=True ,__UpperCamelCase=None ,**__UpperCamelCase ,) -> str: '''simple docstring''' super().__init__( __UpperCamelCase ,tokenizer_file=__UpperCamelCase ,do_lower_case=__UpperCamelCase ,unk_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,tokenize_chinese_chars=__UpperCamelCase ,strip_accents=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,__UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' ,__UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,__UpperCamelCase ) != tokenize_chinese_chars ): lowercase_ : str = getattr(__UpperCamelCase ,normalizer_state.pop('type' ) ) lowercase_ : Union[str, Any] = do_lower_case lowercase_ : List[str] = strip_accents lowercase_ : List[str] = tokenize_chinese_chars lowercase_ : str = normalizer_class(**__UpperCamelCase ) lowercase_ : List[str] = do_lower_case def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : List[str] = [self.sep_token_id] lowercase_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase ) return tuple(__UpperCamelCase )
321
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
321
1
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] ): # Construct model if openai_config_file == "": lowercase_ : Any = OpenAIGPTConfig() else: lowercase_ : str = OpenAIGPTConfig.from_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = OpenAIGPTModel(__SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_openai_gpt(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model lowercase_ : Dict = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowercase_ : Optional[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
321
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]: '''simple docstring''' lowercase_ : Dict = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : Any = use_input_mask lowercase_ : Optional[Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Optional[Any] = initializer_range lowercase_ : Union[str, Any] = use_labels lowercase_ : Union[str, Any] = scope def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : List[str] = None if self.use_input_mask: lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Any = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : str = self.prepare_config_and_inputs() lowercase_ : int = True lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = True lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Union[str, Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,) lowercase_ : Dict = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int: '''simple docstring''' lowercase_ : List[str] = True lowercase_ : Union[str, Any] = True lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() # first forward pass lowercase_ : str = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,) lowercase_ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase_ : int = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] lowercase_ : List[Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] # select random slice lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoderTester(self ) lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[int] = 'bert' self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Tuple = model(__UpperCamelCase )[0] lowercase_ : Dict = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : str = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Dict = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
1
"""simple docstring""" import math import random def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : bool = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __SCREAMING_SNAKE_CASE =0.02 def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): lowercase_ : int = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(__SCREAMING_SNAKE_CASE ): # Forward propagation lowercase_ : Union[str, Any] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? lowercase_ : List[str] = (expected / 1_00) - layer_a # Error delta lowercase_ : Optional[int] = layer_1_error * sigmoid_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE =int(input("Expected value: ")) __SCREAMING_SNAKE_CASE =int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
321
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return None class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' return None class UpperCamelCase ( unittest.TestCase ): lowercase = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' from transformers import BertModel lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__UpperCamelCase ) ) vocab_file.flush() lowercase_ : List[str] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase ) @require_tf @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) lowercase_ : int = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) lowercase_ : Tuple = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' from transformers import BertModel lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' ) @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' from transformers import TFBertModel lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) ,1 ) self.assertEqual(len(__UpperCamelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
321
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class UpperCamelCase ( lowercase_ ): lowercase = 'xglm' lowercase = ['past_key_values'] lowercase = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self ,__UpperCamelCase=25_6008 ,__UpperCamelCase=2048 ,__UpperCamelCase=1024 ,__UpperCamelCase=4096 ,__UpperCamelCase=24 ,__UpperCamelCase=16 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=2 ,__UpperCamelCase=1 ,__UpperCamelCase=0 ,__UpperCamelCase=2 ,**__UpperCamelCase ,) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = vocab_size lowercase_ : Optional[Any] = max_position_embeddings lowercase_ : Tuple = d_model lowercase_ : int = ffn_dim lowercase_ : Tuple = num_layers lowercase_ : Optional[int] = attention_heads lowercase_ : Dict = activation_function lowercase_ : Any = dropout lowercase_ : Dict = attention_dropout lowercase_ : Union[str, Any] = activation_dropout lowercase_ : Dict = layerdrop lowercase_ : Dict = init_std lowercase_ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ : Dict = use_cache super().__init__( pad_token_id=__UpperCamelCase ,bos_token_id=__UpperCamelCase ,eos_token_id=__UpperCamelCase ,decoder_start_token_id=__UpperCamelCase ,**__UpperCamelCase ,)
321
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 ) lowercase_ : str = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 ) lowercase_ : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 ) lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
321
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __SCREAMING_SNAKE_CASE ={ "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class UpperCamelCase ( lowercase_ ): lowercase = 'albert' def __init__( self ,__UpperCamelCase=3_0000 ,__UpperCamelCase=128 ,__UpperCamelCase=4096 ,__UpperCamelCase=12 ,__UpperCamelCase=1 ,__UpperCamelCase=64 ,__UpperCamelCase=1_6384 ,__UpperCamelCase=1 ,__UpperCamelCase="gelu_new" ,__UpperCamelCase=0 ,__UpperCamelCase=0 ,__UpperCamelCase=512 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-12 ,__UpperCamelCase=0.1 ,__UpperCamelCase="absolute" ,__UpperCamelCase=0 ,__UpperCamelCase=2 ,__UpperCamelCase=3 ,**__UpperCamelCase ,) -> Any: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase ,bos_token_id=__UpperCamelCase ,eos_token_id=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[str] = vocab_size lowercase_ : List[Any] = embedding_size lowercase_ : Dict = hidden_size lowercase_ : int = num_hidden_layers lowercase_ : List[str] = num_hidden_groups lowercase_ : Optional[int] = num_attention_heads lowercase_ : int = inner_group_num lowercase_ : Union[str, Any] = hidden_act lowercase_ : int = intermediate_size lowercase_ : int = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Union[str, Any] = max_position_embeddings lowercase_ : int = type_vocab_size lowercase_ : List[Any] = initializer_range lowercase_ : Optional[int] = layer_norm_eps lowercase_ : Tuple = classifier_dropout_prob lowercase_ : Optional[int] = position_embedding_type class UpperCamelCase ( lowercase_ ): @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowercase_ : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase_ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
321
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[Any] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : Tuple = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) print(F'''Loading model based on config from {config_path}...''' ) lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowercase_ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention lowercase_ : BertSelfAttention = layer.attention.self lowercase_ : str = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape ) lowercase_ : int = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape ) lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape ) lowercase_ : List[Any] = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output lowercase_ : BertSelfOutput = layer.attention.output lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape ) lowercase_ : Any = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape ) lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' ) lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' ) # Intermediate lowercase_ : BertIntermediate = layer.intermediate lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' ) lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' ) # Output lowercase_ : BertOutput = layer.output lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' ) lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' ) lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' ) lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' ) # Embeddings lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' ) lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' ) lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' ) lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head lowercase_ : int = model.cls.predictions.transform lowercase_ : str = get_masked_lm_array('dense/kernel' ) lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' ) lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' ) lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' ) lowercase_ : List[str] = get_masked_lm_array('embedding_table' ) # Pooling lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(__SCREAMING_SNAKE_CASE ) # Integration test - should load without any errors ;) lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
321
1
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __SCREAMING_SNAKE_CASE =Lock() def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__SCREAMING_SNAKE_CASE ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowercase_ : Union[str, Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowercase_ : Dict = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__SCREAMING_SNAKE_CASE ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowercase_ : Optional[Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowercase_ : Optional[Any] = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # after all swaps are performed, send the values back to main result_pipe[1].send(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : Optional[int] = [] lowercase_ : List[Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowercase_ : Union[str, Any] = Pipe() lowercase_ : int = Pipe() process_array_.append( Process( target=__SCREAMING_SNAKE_CASE , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowercase_ : Any = temp_rs lowercase_ : Union[str, Any] = temp_rr for i in range(1 , len(__SCREAMING_SNAKE_CASE ) - 1 ): lowercase_ : Dict = Pipe() lowercase_ : Tuple = Pipe() process_array_.append( Process( target=__SCREAMING_SNAKE_CASE , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowercase_ : str = temp_rs lowercase_ : int = temp_rr process_array_.append( Process( target=__SCREAMING_SNAKE_CASE , args=( len(__SCREAMING_SNAKE_CASE ) - 1, arr[len(__SCREAMING_SNAKE_CASE ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__SCREAMING_SNAKE_CASE ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__SCREAMING_SNAKE_CASE ) ): lowercase_ : Any = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase__( ): lowercase_ : Optional[int] = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = odd_even_transposition(__SCREAMING_SNAKE_CASE ) print('Sorted List\n' ) print(*__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
321
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore __SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered") def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ): lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
321
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE ={ "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
321
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
321
1
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase ( lowercase_ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self ,__UpperCamelCase=True ,__UpperCamelCase=None ,__UpperCamelCase=3 ,__UpperCamelCase=100 ,__UpperCamelCase=6 ,__UpperCamelCase=2048 ,__UpperCamelCase=8 ,__UpperCamelCase=6 ,__UpperCamelCase=2048 ,__UpperCamelCase=8 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,__UpperCamelCase=True ,__UpperCamelCase="relu" ,__UpperCamelCase=256 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1.0 ,__UpperCamelCase=False ,__UpperCamelCase="sine" ,__UpperCamelCase="resnet50" ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=1 ,__UpperCamelCase=5 ,__UpperCamelCase=2 ,__UpperCamelCase=1 ,__UpperCamelCase=1 ,__UpperCamelCase=5 ,__UpperCamelCase=2 ,__UpperCamelCase=0.1 ,**__UpperCamelCase ,) -> List[Any]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase_ : Dict = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Optional[Any] = backbone_config.get('model_type' ) lowercase_ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] lowercase_ : Optional[int] = config_class.from_dict(__UpperCamelCase ) # set timm attributes to None lowercase_ , lowercase_ , lowercase_ : Any = None, None, None lowercase_ : Dict = use_timm_backbone lowercase_ : Dict = backbone_config lowercase_ : List[Any] = num_channels lowercase_ : Any = num_queries lowercase_ : Tuple = d_model lowercase_ : str = encoder_ffn_dim lowercase_ : Optional[int] = encoder_layers lowercase_ : int = encoder_attention_heads lowercase_ : List[str] = decoder_ffn_dim lowercase_ : Dict = decoder_layers lowercase_ : str = decoder_attention_heads lowercase_ : List[Any] = dropout lowercase_ : int = attention_dropout lowercase_ : List[Any] = activation_dropout lowercase_ : Dict = activation_function lowercase_ : Union[str, Any] = init_std lowercase_ : Optional[int] = init_xavier_std lowercase_ : str = encoder_layerdrop lowercase_ : str = decoder_layerdrop lowercase_ : int = encoder_layers lowercase_ : str = auxiliary_loss lowercase_ : Optional[int] = position_embedding_type lowercase_ : int = backbone lowercase_ : Dict = use_pretrained_backbone lowercase_ : Any = dilation # Hungarian matcher lowercase_ : Optional[int] = class_cost lowercase_ : str = bbox_cost lowercase_ : str = giou_cost # Loss coefficients lowercase_ : List[Any] = mask_loss_coefficient lowercase_ : Dict = dice_loss_coefficient lowercase_ : Optional[int] = bbox_loss_coefficient lowercase_ : Any = giou_loss_coefficient lowercase_ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=__UpperCamelCase ,**__UpperCamelCase ) @property def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return self.d_model @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' return cls(backbone_config=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict[str, any]: '''simple docstring''' lowercase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowercase_ : Union[str, Any] = self.backbone_config.to_dict() lowercase_ : List[str] = self.__class__.model_type return output class UpperCamelCase ( lowercase_ ): lowercase = version.parse('1.11' ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def _UpperCAmelCase ( self ) -> float: '''simple docstring''' return 1e-5 @property def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return 12
321
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]: '''simple docstring''' lowercase_ : Any = parent lowercase_ : str = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Dict = is_training lowercase_ : Tuple = use_input_mask lowercase_ : Optional[Any] = use_token_type_ids lowercase_ : List[str] = use_labels lowercase_ : Any = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : Tuple = max_position_embeddings lowercase_ : Optional[int] = type_vocab_size lowercase_ : Optional[int] = type_sequence_label_size lowercase_ : Dict = initializer_range lowercase_ : int = num_labels lowercase_ : Any = num_choices lowercase_ : int = scope def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Dict = None if self.use_input_mask: lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Tuple = None lowercase_ : Tuple = None lowercase_ : Tuple = None if self.use_labels: lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) lowercase_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Union[str, Any] = model(__UpperCamelCase ) lowercase_ : int = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.num_labels lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Any = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[int] = config_and_inputs lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = False lowercase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowercase = () lowercase = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = EsmModelTester(self ) lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : Optional[Any] = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowercase_ : List[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : List[Any] = torch.empty(2 ,4 ,30 ) lowercase_ : List[str] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch class UpperCamelCase ( lowercase_ ): @slow def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : List[str] = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = 33 lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : List[str] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase_ : Dict = model(__UpperCamelCase )[0] # compare the actual values for a slice. lowercase_ : Any = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
1
"""simple docstring""" # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : Tuple = multiprocessing.Manager() lowercase_ : str = manager.list() lowercase_ : List[str] = multiprocessing.Process(target=__SCREAMING_SNAKE_CASE , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil lowercase_ : List[Any] = shutil.rmtree lowercase_ : Optional[Any] = os.rmdir lowercase_ : Tuple = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: lowercase_ : Union[str, Any] = {} with swallow_io(): with time_limit(__SCREAMING_SNAKE_CASE ): exec(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. lowercase_ : List[str] = rmtree lowercase_ : List[str] = rmdir lowercase_ : Dict = chdir @contextlib.contextmanager def lowercase__( __SCREAMING_SNAKE_CASE : Any ): def signal_handler(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , __SCREAMING_SNAKE_CASE ) signal.signal(signal.SIGALRM , __SCREAMING_SNAKE_CASE ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def lowercase__( ): lowercase_ : Tuple = WriteOnlyStringIO() with contextlib.redirect_stdout(__SCREAMING_SNAKE_CASE ): with contextlib.redirect_stderr(__SCREAMING_SNAKE_CASE ): with redirect_stdin(__SCREAMING_SNAKE_CASE ): yield @contextlib.contextmanager def lowercase__( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__SCREAMING_SNAKE_CASE ): yield dirname class UpperCamelCase ( lowercase_ ): pass class UpperCamelCase ( io.StringIO ): def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' raise OSError def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: '''simple docstring''' raise OSError def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' raise OSError def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return False class UpperCamelCase ( contextlib._RedirectStream ): # type: ignore lowercase = 'stdin' @contextlib.contextmanager def lowercase__( __SCREAMING_SNAKE_CASE : Dict ): if root == ".": yield return lowercase_ : Any = os.getcwd() os.chdir(__SCREAMING_SNAKE_CASE ) try: yield except BaseException as exc: raise exc finally: os.chdir(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins lowercase_ : List[Any] = None lowercase_ : str = None import os lowercase_ : Any = '1' lowercase_ : Optional[int] = None lowercase_ : Dict = None lowercase_ : Union[str, Any] = None lowercase_ : List[Any] = None lowercase_ : Optional[int] = None lowercase_ : Union[str, Any] = None lowercase_ : Union[str, Any] = None lowercase_ : Optional[Any] = None lowercase_ : List[Any] = None lowercase_ : List[Any] = None lowercase_ : Union[str, Any] = None lowercase_ : Tuple = None lowercase_ : List[Any] = None lowercase_ : int = None lowercase_ : Optional[Any] = None lowercase_ : Any = None lowercase_ : List[Any] = None lowercase_ : List[str] = None lowercase_ : int = None lowercase_ : Tuple = None lowercase_ : Optional[int] = None lowercase_ : List[str] = None lowercase_ : Any = None lowercase_ : Dict = None lowercase_ : Optional[int] = None lowercase_ : Union[str, Any] = None lowercase_ : Optional[int] = None import shutil lowercase_ : Optional[int] = None lowercase_ : int = None lowercase_ : Optional[int] = None import subprocess lowercase_ : Optional[int] = None # type: ignore lowercase_ : Dict = None import sys lowercase_ : List[Any] = None lowercase_ : Tuple = None lowercase_ : Union[str, Any] = None lowercase_ : Optional[int] = None lowercase_ : List[Any] = None
321
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = bp_numa lowercase_ : Dict = bp_numa lowercase_ : Tuple = bp_numa lowercase_ : List[Any] = conva_get[:2] lowercase_ : int = conva_get[2] lowercase_ : Dict = size_pa lowercase_ : int = rate_w lowercase_ : Union[str, Any] = rate_t lowercase_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(__UpperCamelCase ,'wb' ) as f: pickle.dump(__UpperCamelCase ,__UpperCamelCase ) print(f'''Model saved: {save_path}''' ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' with open(__UpperCamelCase ,'rb' ) as f: lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301 lowercase_ : str = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' ) lowercase_ : Optional[Any] = model_dic.get('num_bp1' ) lowercase_ : str = model_dic.get('num_bp2' ) lowercase_ : Optional[Any] = model_dic.get('num_bp3' ) lowercase_ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase_ : Optional[int] = model_dic.get('rate_thre' ) # create model instance lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # modify model parameter lowercase_ : Optional[Any] = model_dic.get('w_conv1' ) lowercase_ : Tuple = model_dic.get('wkj' ) lowercase_ : Union[str, Any] = model_dic.get('vji' ) lowercase_ : Optional[Any] = model_dic.get('thre_conv1' ) lowercase_ : Dict = model_dic.get('thre_bp2' ) lowercase_ : Optional[int] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return round(__UpperCamelCase ,3 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Dict = convs[0] lowercase_ : Any = convs[1] lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus lowercase_ : Tuple = [] for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): lowercase_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase_ : Dict = [] lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): lowercase_ : Tuple = [] for i_focus in range(len(__UpperCamelCase ) ): lowercase_ : Optional[int] = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase ,__UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion lowercase_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) lowercase_ : str = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = len(featuremaps[0] ) lowercase_ : str = int(size_map / size_pooling ) lowercase_ : Optional[int] = [] for i_map in range(len(__UpperCamelCase ) ): lowercase_ : int = featuremaps[i_map] lowercase_ : List[str] = [] for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Tuple = [] for i in range(len(__UpperCamelCase ) ): lowercase_ : Optional[Any] = np.shape(data[i] ) lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] ) lowercase_ : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) lowercase_ : int = np.asarray(__UpperCamelCase ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = np.asarray(__UpperCamelCase ) lowercase_ : Any = np.shape(__UpperCamelCase ) lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = [] lowercase_ : List[Any] = 0 for i_map in range(__UpperCamelCase ): lowercase_ : List[str] = np.ones((size_map, size_map) ) for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = pd_pool[ i_pool ] lowercase_ : Any = i_pool + 1 lowercase_ : Optional[int] = np.multiply( __UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]: '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) ) print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) ) lowercase_ : int = 0 lowercase_ : Tuple = [] lowercase_ : Tuple = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowercase_ : List[str] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase_ : int = np.asmatrix(datas_train[p] ) lowercase_ : Any = np.asarray(datas_teach[p] ) lowercase_ , lowercase_ : Tuple = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : Optional[int] = np.shape(__UpperCamelCase ) lowercase_ : Optional[int] = self._expand(__UpperCamelCase ) lowercase_ : int = data_bp_input lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa lowercase_ : Dict = self.sig(__UpperCamelCase ) lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa lowercase_ : int = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase_ : str = np.multiply( (data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Optional[int] = np.multiply( np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji ) lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase_ : Dict = pd_conva_pooled.T.getA().tolist() lowercase_ : List[Any] = self._calculate_gradient_from_pool( __UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase_ : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase_ : int = rp + 1 lowercase_ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase ,'+-' ) plt.plot(__UpperCamelCase ,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(__UpperCamelCase ,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): lowercase_ : List[Any] = np.asmatrix(datas_test[p] ) lowercase_ , lowercase_ : Optional[Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : List[str] = self._expand(__UpperCamelCase ) lowercase_ : Any = data_bp_input lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa lowercase_ : str = self.sig(__UpperCamelCase ) lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa lowercase_ : Optional[int] = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ) lowercase_ , lowercase_ : Union[str, Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
321
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase ( lowercase_ ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowercase_ : Dict = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__UpperCamelCase ,scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = None ,__UpperCamelCase = 0.0 ,__UpperCamelCase = 50 ,__UpperCamelCase = None ,__UpperCamelCase = "pil" ,__UpperCamelCase = True ,) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(self.unet.config.sample_size ,__UpperCamelCase ): lowercase_ : int = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowercase_ : Optional[Any] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__UpperCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(__UpperCamelCase ,generator=__UpperCamelCase ,device=self.device ,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : int = self.unet(__UpperCamelCase ,__UpperCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase_ : Tuple = self.scheduler.step( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,eta=__UpperCamelCase ,use_clipped_model_output=__UpperCamelCase ,generator=__UpperCamelCase ).prev_sample lowercase_ : str = (image / 2 + 0.5).clamp(0 ,1 ) lowercase_ : Optional[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase_ : List[Any] = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
321
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): lowercase_ : Dict = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = 'patrickvonplaten/t5-tiny-random' lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] ) lowercase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__UpperCamelCase ): self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'current' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
321
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int ): lowercase_ : Union[str, Any] = abs(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = 0 while n > 0: res += n % 10 n //= 10 return res def lowercase__( __SCREAMING_SNAKE_CASE : int ): lowercase_ : Optional[Any] = abs(__SCREAMING_SNAKE_CASE ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def lowercase__( __SCREAMING_SNAKE_CASE : int ): return sum(int(__SCREAMING_SNAKE_CASE ) for c in str(abs(__SCREAMING_SNAKE_CASE ) ) ) def lowercase__( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__SCREAMING_SNAKE_CASE : Callable , __SCREAMING_SNAKE_CASE : int ) -> None: lowercase_ : int = F'''{func.__name__}({value})''' lowercase_ : Any = timeit(F'''__main__.{call}''' , setup='import __main__' ) print(F'''{call:56} = {func(__SCREAMING_SNAKE_CASE )} -- {timing:.4f} seconds''' ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
321
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['input_values', 'padding_mask'] def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any: '''simple docstring''' super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[str] = chunk_length_s lowercase_ : Tuple = overlap @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs lowercase_ : Optional[int] = True lowercase_ : Optional[int] = bool( isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ): lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa ) elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowercase_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) lowercase_ : Optional[int] = None lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio ) lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) ) lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio ) lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) ) lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length lowercase_ : Union[str, Any] = 'max_length' else: lowercase_ : int = input_values # normal padding on batch if padded_inputs is None: lowercase_ : int = self.pad( __UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,) if padding: lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' ) lowercase_ : Dict = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: lowercase_ : Optional[int] = example[..., None] input_values.append(example.T ) lowercase_ : str = input_values if return_tensors is not None: lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
321
1
"""simple docstring""" import os def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : Optional[int] = len(grid[0] ) lowercase_ : int = len(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = 0 lowercase_ : Optional[Any] = 0 lowercase_ : int = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(__SCREAMING_SNAKE_CASE ): for j in range(n_rows - 3 ): lowercase_ : Dict = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowercase_ : int = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowercase_ : Optional[int] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowercase_ : List[Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowercase_ : Any = max( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if max_product > largest: lowercase_ : Optional[int] = max_product return largest def lowercase__( ): lowercase_ : int = [] with open(os.path.dirname(__SCREAMING_SNAKE_CASE ) + '/grid.txt' ) as file: for line in file: grid.append(line.strip('\n' ).split(' ' ) ) lowercase_ : Union[str, Any] = [[int(__SCREAMING_SNAKE_CASE ) for i in grid[j]] for j in range(len(__SCREAMING_SNAKE_CASE ) )] return largest_product(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution())
321
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
321
1
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE =OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) __SCREAMING_SNAKE_CASE =_LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowercase__( __SCREAMING_SNAKE_CASE : str ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: lowercase_ : Dict = model_type_to_module_name(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = importlib.import_module(F'''.{module_name}''' , 'transformers.models' ) try: return getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__SCREAMING_SNAKE_CASE , '__name__' , __SCREAMING_SNAKE_CASE ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowercase_ : Tuple = importlib.import_module('transformers' ) if hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return None def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , __SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[Dict[str, str]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[bool, str]] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Tuple , ): lowercase_ : List[str] = get_file_from_repo( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE , resume_download=__SCREAMING_SNAKE_CASE , proxies=__SCREAMING_SNAKE_CASE , use_auth_token=__SCREAMING_SNAKE_CASE , revision=__SCREAMING_SNAKE_CASE , local_files_only=__SCREAMING_SNAKE_CASE , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(__SCREAMING_SNAKE_CASE , encoding='utf-8' ) as reader: return json.load(__SCREAMING_SNAKE_CASE ) class UpperCamelCase : def __init__( self ) -> Optional[Any]: '''simple docstring''' raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(__UpperCamelCase ) def _UpperCAmelCase ( cls ,__UpperCamelCase ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = kwargs.pop('config' ,__UpperCamelCase ) lowercase_ : Optional[Any] = kwargs.pop('trust_remote_code' ,__UpperCamelCase ) lowercase_ : List[Any] = True lowercase_ , lowercase_ : str = ImageProcessingMixin.get_image_processor_dict(__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : Union[str, Any] = config_dict.get('image_processor_type' ,__UpperCamelCase ) lowercase_ : int = None if "AutoImageProcessor" in config_dict.get('auto_map' ,{} ): lowercase_ : List[Any] = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: lowercase_ : Dict = config_dict.pop('feature_extractor_type' ,__UpperCamelCase ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) lowercase_ : Optional[int] = feature_extractor_class.replace('FeatureExtractor' ,'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' ,{} ): lowercase_ : List[str] = config_dict['auto_map']['AutoFeatureExtractor'] lowercase_ : Dict = feature_extractor_auto_map.replace('FeatureExtractor' ,'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase ,**__UpperCamelCase ) # It could be in `config.image_processor_type`` lowercase_ : List[Any] = getattr(__UpperCamelCase ,'image_processor_type' ,__UpperCamelCase ) if hasattr(__UpperCamelCase ,'auto_map' ) and "AutoImageProcessor" in config.auto_map: lowercase_ : Optional[Any] = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: lowercase_ : str = image_processor_class_from_name(__UpperCamelCase ) lowercase_ : Optional[int] = image_processor_auto_map is not None lowercase_ : str = image_processor_class is not None or type(__UpperCamelCase ) in IMAGE_PROCESSOR_MAPPING lowercase_ : int = resolve_trust_remote_code( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) if has_remote_code and trust_remote_code: lowercase_ : List[Any] = get_class_from_dynamic_module( __UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[str] = kwargs.pop('code_revision' ,__UpperCamelCase ) if os.path.isdir(__UpperCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__UpperCamelCase ,**__UpperCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(__UpperCamelCase ,**__UpperCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__UpperCamelCase ) in IMAGE_PROCESSOR_MAPPING: lowercase_ : Dict = IMAGE_PROCESSOR_MAPPING[type(__UpperCamelCase )] return image_processor_class.from_dict(__UpperCamelCase ,**__UpperCamelCase ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def _UpperCAmelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(__UpperCamelCase ,__UpperCamelCase )
321
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ): require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
321
1
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
321
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ): lowercase_ : int = 'backbone.' if is_semantic else '' lowercase_ : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ): for i in range(config.num_hidden_layers ): lowercase_ : Any = 'backbone.' if is_semantic else '' # queries, keys and values lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) lowercase_ : List[str] = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = q_bias lowercase_ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Any = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) lowercase_ : Tuple = gamma_a lowercase_ : List[Any] = gamma_a def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = val def lowercase__( ): lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ): lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowercase_ : Any = 10_24 lowercase_ : List[str] = 40_96 lowercase_ : Tuple = 24 lowercase_ : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: lowercase_ : Optional[Any] = 16 lowercase_ : Any = 'huggingface/label-files' lowercase_ : int = 'rvlcdip-id2label.json' lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : str = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) # load HuggingFace model lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image lowercase_ : List[Any] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE ) lowercase_ : str = prepare_img() lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) lowercase_ : int = encoding['pixel_values'] lowercase_ : Any = model(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = outputs.logits # verify logits lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected" Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: if has_lm_head: lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) model.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
321
1
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative in a semiconductor' ) elif hole_conc < 0: raise ValueError('Hole concentration cannot be negative in a semiconductor' ) elif intrinsic_conc < 0: raise ValueError( 'Intrinsic concentration cannot be negative in a semiconductor' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
321
"""simple docstring""" __SCREAMING_SNAKE_CASE ={ "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } __SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()} def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase__( __SCREAMING_SNAKE_CASE : str ): if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) lowercase_ : Dict = '' for word in coded.split(): while len(__SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase_ : Any = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
321
1
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): return getitem, k def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] ): return setitem, k, v def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ): return delitem, k def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , *__SCREAMING_SNAKE_CASE : List[str] ): try: return fun(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ), None except Exception as e: return None, e __SCREAMING_SNAKE_CASE =( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __SCREAMING_SNAKE_CASE =[ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __SCREAMING_SNAKE_CASE =[ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __SCREAMING_SNAKE_CASE =[ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __SCREAMING_SNAKE_CASE =[ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __SCREAMING_SNAKE_CASE =[ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase_ : Optional[int] = HashMap(initial_block_size=4 ) lowercase_ : Optional[int] = {} for _, (fun, *args) in enumerate(__SCREAMING_SNAKE_CASE ): lowercase_ , lowercase_ : List[str] = _run_operation(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Tuple = _run_operation(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) assert my_res == py_res assert str(__SCREAMING_SNAKE_CASE ) == str(__SCREAMING_SNAKE_CASE ) assert set(__SCREAMING_SNAKE_CASE ) == set(__SCREAMING_SNAKE_CASE ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) assert set(my.items() ) == set(py.items() ) def lowercase__( ): def is_public(__SCREAMING_SNAKE_CASE : str ) -> bool: return not name.startswith('_' ) lowercase_ : Union[str, Any] = {name for name in dir({} ) if is_public(__SCREAMING_SNAKE_CASE )} lowercase_ : int = {name for name in dir(HashMap() ) if is_public(__SCREAMING_SNAKE_CASE )} assert dict_public_names > hash_public_names
321
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations(__SCREAMING_SNAKE_CASE : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): def count_of_possible_combinations_with_dp_array( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase_ : str = sum( count_of_possible_combinations_with_dp_array(target - item , __SCREAMING_SNAKE_CASE ) for item in array ) lowercase_ : Tuple = answer return answer lowercase_ : Optional[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = [0] * (target + 1) lowercase_ : Dict = 1 for i in range(1 , target + 1 ): for j in range(__SCREAMING_SNAKE_CASE ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE =3 __SCREAMING_SNAKE_CASE =5 __SCREAMING_SNAKE_CASE =[1, 2, 5] print(combination_sum_iv(n, array, target))
321
1
"""simple docstring""" import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowercase__( __SCREAMING_SNAKE_CASE : bytes , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Optional[Any] = F'''{sampling_rate}''' lowercase_ : int = '1' lowercase_ : Dict = 'f32le' lowercase_ : Any = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowercase_ : Optional[int] = ffmpeg_process.communicate(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowercase_ : str = output_stream[0] lowercase_ : Union[str, Any] = np.frombuffer(__SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : str = "f32le" , ): lowercase_ : int = F'''{sampling_rate}''' lowercase_ : Optional[int] = '1' if format_for_conversion == "s16le": lowercase_ : List[str] = 2 elif format_for_conversion == "f32le": lowercase_ : Optional[Any] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowercase_ : Optional[Any] = platform.system() if system == "Linux": lowercase_ : Optional[Any] = 'alsa' lowercase_ : List[Any] = 'default' elif system == "Darwin": lowercase_ : List[str] = 'avfoundation' lowercase_ : Dict = ':0' elif system == "Windows": lowercase_ : Tuple = 'dshow' lowercase_ : List[Any] = 'default' lowercase_ : Optional[int] = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowercase_ : Union[str, Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowercase_ : Union[str, Any] = _ffmpeg_stream(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in iterator: yield item def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[Union[Tuple[float, float], float]] = None , __SCREAMING_SNAKE_CASE : str = "f32le" , ): if stream_chunk_s is not None: lowercase_ : List[str] = stream_chunk_s else: lowercase_ : Optional[Any] = chunk_length_s lowercase_ : Tuple = ffmpeg_microphone(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , format_for_conversion=__SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": lowercase_ : Any = np.intaa lowercase_ : Union[str, Any] = 2 elif format_for_conversion == "f32le": lowercase_ : Optional[Any] = np.floataa lowercase_ : List[Any] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowercase_ : Optional[int] = chunk_length_s / 6 lowercase_ : str = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): lowercase_ : Optional[Any] = [stride_length_s, stride_length_s] lowercase_ : List[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowercase_ : Optional[int] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowercase_ : int = datetime.datetime.now() lowercase_ : Tuple = datetime.timedelta(seconds=__SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=__SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale lowercase_ : Dict = np.frombuffer(item['raw'] , dtype=__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowercase_ : Tuple = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple[int, int] , __SCREAMING_SNAKE_CASE : bool = False ): lowercase_ : Optional[int] = b'' lowercase_ , lowercase_ : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowercase_ : Any = 0 for raw in iterator: acc += raw if stream and len(__SCREAMING_SNAKE_CASE ) < chunk_len: lowercase_ : Any = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator lowercase_ : List[Any] = (_stride_left, stride_right) lowercase_ : str = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowercase_ : Any = False yield item lowercase_ : Tuple = stride_left lowercase_ : int = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__SCREAMING_SNAKE_CASE ) > stride_left: lowercase_ : Tuple = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowercase_ : Any = False yield item def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = 2**24 # 16Mo try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=__SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: lowercase_ : Optional[Any] = ffmpeg_process.stdout.read(__SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
321
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : int = set_counts lowercase_ : List[Any] = max(__UpperCamelCase ) lowercase_ : Union[str, Any] = len(__UpperCamelCase ) lowercase_ : Dict = [1] * num_sets lowercase_ : Optional[int] = list(range(__UpperCamelCase ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' lowercase_ : Optional[int] = self.get_parent(__UpperCamelCase ) lowercase_ : int = self.get_parent(__UpperCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : Tuple = 0 lowercase_ : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : str = 0 lowercase_ : Tuple = src_parent lowercase_ : int = self.set_counts[src_parent] lowercase_ : str = max(self.max_set ,__UpperCamelCase ) return True def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowercase_ : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
321
1
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path lowercase_ : int = quote(__SCREAMING_SNAKE_CASE ) return hfh.hf_hub_url(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' , revision=__SCREAMING_SNAKE_CASE )
321
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __SCREAMING_SNAKE_CASE ={ "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __SCREAMING_SNAKE_CASE ={"facebook/blenderbot-3B": 128} class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BlenderbotTokenizer def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="replace" ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=False ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__( __UpperCamelCase ,__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,errors=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,add_prefix_space=__UpperCamelCase ,trim_offsets=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,pre_tok_state.pop('type' ) ) lowercase_ : Any = add_prefix_space lowercase_ : Tuple = pre_tok_class(**__UpperCamelCase ) lowercase_ : int = add_prefix_space lowercase_ : Any = 'post_processor' lowercase_ : Optional[Any] = getattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) if tokenizer_component_instance: lowercase_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ : str = tuple(state['sep'] ) if "cls" in state: lowercase_ : Union[str, Any] = tuple(state['cls'] ) lowercase_ : str = False if state.get('add_prefix_space' ,__UpperCamelCase ) != add_prefix_space: lowercase_ : Dict = add_prefix_space lowercase_ : int = True if state.get('trim_offsets' ,__UpperCamelCase ) != trim_offsets: lowercase_ : Optional[Any] = trim_offsets lowercase_ : Tuple = True if changes_to_apply: lowercase_ : Union[str, Any] = getattr(__UpperCamelCase ,state.pop('type' ) ) lowercase_ : Union[str, Any] = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer ,__UpperCamelCase ,__UpperCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _UpperCAmelCase ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Any = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value lowercase_ : str = value def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : Optional[int] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ : List[str] = kwargs.get('is_split_into_words' ,__UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ : Any = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : int = [self.sep_token_id] lowercase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Any: '''simple docstring''' return token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]: '''simple docstring''' lowercase_ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) lowercase_ : Dict = ' '.join(__UpperCamelCase ) lowercase_ : str = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: lowercase_ : List[str] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
321
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 ) lowercase_ : str = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 ) lowercase_ : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 ) lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
321
"""simple docstring""" import os import sys import unittest __SCREAMING_SNAKE_CASE =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "bert", "test_modeling_bert.py") __SCREAMING_SNAKE_CASE =os.path.join("tests", "models", "blip", "test_modeling_blip.py") class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Tuple = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : Optional[int] = get_test_to_tester_mapping(__UpperCamelCase ) lowercase_ : List[str] = {'BertModelTest': 'BertModelTester'} lowercase_ : Union[str, Any] = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[Any] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : List[str] = get_model_to_test_mapping(__UpperCamelCase ) lowercase_ : Any = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } lowercase_ : Any = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Dict = get_model_to_tester_mapping(__UpperCamelCase ) lowercase_ : Tuple = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } lowercase_ : Optional[Any] = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) ,__UpperCamelCase )
321
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = tempfile.mkdtemp() # fmt: off lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) ) lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowercase_ : Tuple = {'unk_token': '<unk>'} lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCamelCase ) ) lowercase_ : Any = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = self.get_tokenizer() lowercase_ : List[Any] = self.get_rust_tokenizer() lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase ) lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 ) lowercase_ : Any = CLIPSegProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[str] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = self.prepare_image_inputs() lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' ) lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[Any] = self.get_tokenizer() lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Dict = 'lower newer' lowercase_ : Any = processor(text=__UpperCamelCase ) lowercase_ : int = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.get_image_processor() lowercase_ : str = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = 'lower newer' lowercase_ : str = self.prepare_image_inputs() lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = self.prepare_image_inputs() lowercase_ : Optional[Any] = self.prepare_image_inputs() lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase ) lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
321
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ): with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX ) try: print(*__SCREAMING_SNAKE_CASE ) finally: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) __SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank) __SCREAMING_SNAKE_CASE =socket.gethostname() __SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __SCREAMING_SNAKE_CASE =dist.get_rank() __SCREAMING_SNAKE_CASE =dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
321
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : int ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" lowercase_ : int = False if num < 0: lowercase_ : List[Any] = True lowercase_ : List[str] = -num lowercase_ : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__SCREAMING_SNAKE_CASE ) for e in binary ) return "0b" + "".join(str(__SCREAMING_SNAKE_CASE ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
321
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : List[Any] = name lowercase_ : int = val def __str__( self ) -> Tuple: '''simple docstring''' return f'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return self.val < other.val class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = {} lowercase_ : Tuple = {} lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase ) def __getitem__( self ,__UpperCamelCase ) -> int: '''simple docstring''' return self.get_value(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' return (idx - 1) // 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return idx * 2 + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return idx * 2 + 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' return self.heap_dict[key] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1 lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase ) for idx, i in enumerate(__UpperCamelCase ): lowercase_ : Any = idx lowercase_ : str = i.val for i in range(__UpperCamelCase ,-1 ,-1 ): self.sift_down(__UpperCamelCase ,__UpperCamelCase ) return array def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' while True: lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741 lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase ) lowercase_ : List[str] = idx if l < len(__UpperCamelCase ) and array[l] < array[idx]: lowercase_ : List[str] = l if r < len(__UpperCamelCase ) and array[r] < array[smallest]: lowercase_ : Dict = r if smallest != idx: lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx] ( ( lowercase_ ) , ( lowercase_ ) , ) : str = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowercase_ : Any = smallest else: break def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowercase_ : int = p lowercase_ : str = self.get_parent_idx(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return self.heap[0] def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowercase_ : Tuple = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 ,self.heap ) return x def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' self.heap.append(__UpperCamelCase ) lowercase_ : Tuple = len(self.heap ) - 1 lowercase_ : Optional[int] = node.val self.sift_up(len(self.heap ) - 1 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return len(self.heap ) == 0 def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowercase_ : Any = new_value lowercase_ : List[str] = new_value self.sift_up(self.idx_of_element[node] ) __SCREAMING_SNAKE_CASE =Node("R", -1) __SCREAMING_SNAKE_CASE =Node("B", 6) __SCREAMING_SNAKE_CASE =Node("A", 3) __SCREAMING_SNAKE_CASE =Node("X", 1) __SCREAMING_SNAKE_CASE =Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
321
1
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): lowercase_ : Dict = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = 'patrickvonplaten/t5-tiny-random' lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] ) lowercase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__UpperCamelCase ): self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'current' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
321
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = tempfile.mkdtemp() # fmt: off lowercase_ : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase_ : int = dict(zip(__UpperCamelCase ,range(len(__UpperCamelCase ) ) ) ) lowercase_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowercase_ : Tuple = {'unk_token': '<unk>'} lowercase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCamelCase ) ) lowercase_ : Any = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowercase_ : List[str] = os.path.join(self.tmpdirname ,__UpperCamelCase ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,**__UpperCamelCase ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__UpperCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = self.get_tokenizer() lowercase_ : List[Any] = self.get_rust_tokenizer() lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase_ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=__UpperCamelCase ) lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,__UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer ,__UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,__UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) lowercase_ : Any = self.get_image_processor(do_normalize=__UpperCamelCase ,padding_value=1.0 ) lowercase_ : Any = CLIPSegProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=__UpperCamelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[str] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = self.prepare_image_inputs() lowercase_ : str = image_processor(__UpperCamelCase ,return_tensors='np' ) lowercase_ : Union[str, Any] = processor(images=__UpperCamelCase ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = self.get_image_processor() lowercase_ : List[Any] = self.get_tokenizer() lowercase_ : List[Any] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Dict = 'lower newer' lowercase_ : Any = processor(text=__UpperCamelCase ) lowercase_ : int = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.get_image_processor() lowercase_ : str = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : List[Any] = 'lower newer' lowercase_ : str = self.prepare_image_inputs() lowercase_ : Optional[int] = processor(text=__UpperCamelCase ,images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Tuple = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : List[str] = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = self.prepare_image_inputs() lowercase_ : Optional[Any] = self.prepare_image_inputs() lowercase_ : int = processor(images=__UpperCamelCase ,visual_prompt=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : int = CLIPSegProcessor(tokenizer=__UpperCamelCase ,image_processor=__UpperCamelCase ) lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ : List[str] = processor.batch_decode(__UpperCamelCase ) lowercase_ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
321
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : list[int] ): lowercase_ : Optional[int] = len(__SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE ): for j in range(i + 1 , __SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: lowercase_ , lowercase_ : List[str] = numbers[j], numbers[i] return numbers if __name__ == "__main__": __SCREAMING_SNAKE_CASE =input("Enter numbers separated by a comma:\n").strip() __SCREAMING_SNAKE_CASE =[int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
321
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
321
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = StableDiffusionXLImgaImgPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowercase = PipelineTesterMixin.required_optional_params - {'latents'} lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,attention_head_dim=(2, 4) ,use_linear_projection=__UpperCamelCase ,addition_embed_type='text_time' ,addition_time_embed_dim=8 ,transformer_layers_per_block=(1, 2) ,projection_class_embeddings_input_dim=80 ,cross_attention_dim=64 ,) lowercase_ : int = EulerDiscreteScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,steps_offset=1 ,beta_schedule='scaled_linear' ,timestep_spacing='leading' ,) torch.manual_seed(0 ) lowercase_ : int = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) lowercase_ : List[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act='gelu' ,projection_dim=32 ,) lowercase_ : Tuple = CLIPTextModel(__UpperCamelCase ) lowercase_ : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ,local_files_only=__UpperCamelCase ) lowercase_ : Union[str, Any] = CLIPTextModelWithProjection(__UpperCamelCase ) lowercase_ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ,local_files_only=__UpperCamelCase ) lowercase_ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=0 ) -> str: '''simple docstring''' lowercase_ : Any = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) lowercase_ : int = image / 2 + 0.5 if str(__UpperCamelCase ).startswith('mps' ): lowercase_ : Any = torch.manual_seed(__UpperCamelCase ) else: lowercase_ : int = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) lowercase_ : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase_ : int = self.get_dummy_components() lowercase_ : str = StableDiffusionXLImgaImgPipeline(**__UpperCamelCase ) lowercase_ : Any = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : List[Any] = self.get_dummy_inputs(__UpperCamelCase ) lowercase_ : Any = sd_pipe(**__UpperCamelCase ).images lowercase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ : List[str] = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' pass def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Union[str, Any] = self.get_dummy_components() lowercase_ : Optional[Any] = StableDiffusionXLImgaImgPipeline(**__UpperCamelCase ) lowercase_ : Dict = sd_pipe.to(__UpperCamelCase ) lowercase_ : Tuple = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) # forward without prompt embeds lowercase_ : List[str] = self.get_dummy_inputs(__UpperCamelCase ) lowercase_ : str = 3 * ['this is a negative prompt'] lowercase_ : Any = negative_prompt lowercase_ : Any = 3 * [inputs['prompt']] lowercase_ : Optional[Any] = sd_pipe(**__UpperCamelCase ) lowercase_ : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowercase_ : Dict = self.get_dummy_inputs(__UpperCamelCase ) lowercase_ : int = 3 * ['this is a negative prompt'] lowercase_ : List[str] = 3 * [inputs.pop('prompt' )] ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[int] = sd_pipe.encode_prompt(__UpperCamelCase ,negative_prompt=__UpperCamelCase ) lowercase_ : Tuple = sd_pipe( **__UpperCamelCase ,prompt_embeds=__UpperCamelCase ,negative_prompt_embeds=__UpperCamelCase ,pooled_prompt_embeds=__UpperCamelCase ,negative_pooled_prompt_embeds=__UpperCamelCase ,) lowercase_ : int = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase="cpu" ,__UpperCamelCase=torch.floataa ,__UpperCamelCase=0 ) -> Optional[Any]: '''simple docstring''' lowercase_ : Any = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) lowercase_ : Union[str, Any] = np.random.RandomState(__UpperCamelCase ).standard_normal((1, 4, 64, 64) ) lowercase_ : Optional[Any] = torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase ,dtype=__UpperCamelCase ) lowercase_ : Optional[Any] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Union[str, Any] = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : Tuple = self.get_inputs(__UpperCamelCase ) lowercase_ : Optional[int] = pipe(**__UpperCamelCase ).images lowercase_ : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase_ : int = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
321
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]: '''simple docstring''' lowercase_ : Dict = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : Any = use_input_mask lowercase_ : Optional[Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Optional[Any] = initializer_range lowercase_ : Union[str, Any] = use_labels lowercase_ : Union[str, Any] = scope def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : List[str] = None if self.use_input_mask: lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Any = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : str = self.prepare_config_and_inputs() lowercase_ : int = True lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = True lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Union[str, Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,) lowercase_ : Dict = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int: '''simple docstring''' lowercase_ : List[str] = True lowercase_ : Union[str, Any] = True lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() # first forward pass lowercase_ : str = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,) lowercase_ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase_ : int = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] lowercase_ : List[Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] # select random slice lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoderTester(self ) lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[int] = 'bert' self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Tuple = model(__UpperCamelCase )[0] lowercase_ : Dict = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : str = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Dict = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
1
"""simple docstring""" from math import factorial def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) lowercase_ : Optional[Any] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowercase_ : List[str] = float(factorial(__SCREAMING_SNAKE_CASE ) ) coefficient /= factorial(__SCREAMING_SNAKE_CASE ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
321
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return None class UpperCamelCase : def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' return None class UpperCamelCase ( unittest.TestCase ): lowercase = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' from transformers import BertModel lowercase_ : Union[str, Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(__UpperCamelCase ) ) vocab_file.flush() lowercase_ : List[str] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase_ : Optional[Any] = BertModel(BertConfig(vocab_size=len(__UpperCamelCase ) ) ) model.save_pretrained(__UpperCamelCase ) self._test_export(__UpperCamelCase ,'pt' ,12 ,__UpperCamelCase ) @require_tf @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Optional[int] = self._test_export(__UpperCamelCase ,'tf' ,12 ,**__UpperCamelCase ) lowercase_ : int = quantize(Path(__UpperCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ : Tuple = self._test_export(__UpperCamelCase ,'pt' ,12 ,**__UpperCamelCase ) lowercase_ : Tuple = quantize(__UpperCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCamelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowercase_ : Dict = Path(__UpperCamelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) return path except Exception as e: self.fail(__UpperCamelCase ) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' from transformers import BertModel lowercase_ : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'pt' ) @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' from transformers import TFBertModel lowercase_ : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) lowercase_ : Any = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(__UpperCamelCase ,__UpperCamelCase ,'tf' ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Tuple = FeatureExtractionPipeline(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = infer_shapes(__UpperCamelCase ,__UpperCamelCase ) # Assert all variables are present self.assertEqual(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,__UpperCamelCase ) self.assertSequenceEqual(variable_names[3:] ,__UpperCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = ['input_ids', 'attention_mask', 'token_type_ids'] lowercase_ : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} lowercase_ , lowercase_ : int = ensure_valid_input(FuncContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCamelCase ) ,3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCamelCase ) ,set(__UpperCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCamelCase ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase_ , lowercase_ : Optional[int] = ensure_valid_input(FuncNonContiguousArgs() ,__UpperCamelCase ,__UpperCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCamelCase ) ,1 ) self.assertEqual(len(__UpperCamelCase ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
321
1
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[Any] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : Tuple = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) print(F'''Loading model based on config from {config_path}...''' ) lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowercase_ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention lowercase_ : BertSelfAttention = layer.attention.self lowercase_ : str = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape ) lowercase_ : int = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape ) lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape ) lowercase_ : List[Any] = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output lowercase_ : BertSelfOutput = layer.attention.output lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape ) lowercase_ : Any = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape ) lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' ) lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' ) # Intermediate lowercase_ : BertIntermediate = layer.intermediate lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' ) lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' ) # Output lowercase_ : BertOutput = layer.output lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' ) lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' ) lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' ) lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' ) # Embeddings lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' ) lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' ) lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' ) lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head lowercase_ : int = model.cls.predictions.transform lowercase_ : str = get_masked_lm_array('dense/kernel' ) lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' ) lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' ) lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' ) lowercase_ : List[str] = get_masked_lm_array('embedding_table' ) # Pooling lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(__SCREAMING_SNAKE_CASE ) # Integration test - should load without any errors ;) lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
321
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 ) lowercase_ : str = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 ) lowercase_ : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 ) lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
321
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE ={ "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
321
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[Any] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : Tuple = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) print(F'''Loading model based on config from {config_path}...''' ) lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowercase_ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention lowercase_ : BertSelfAttention = layer.attention.self lowercase_ : str = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape ) lowercase_ : int = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape ) lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape ) lowercase_ : List[Any] = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output lowercase_ : BertSelfOutput = layer.attention.output lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape ) lowercase_ : Any = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape ) lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' ) lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' ) # Intermediate lowercase_ : BertIntermediate = layer.intermediate lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' ) lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' ) # Output lowercase_ : BertOutput = layer.output lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' ) lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' ) lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' ) lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' ) # Embeddings lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' ) lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' ) lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' ) lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head lowercase_ : int = model.cls.predictions.transform lowercase_ : str = get_masked_lm_array('dense/kernel' ) lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' ) lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' ) lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' ) lowercase_ : List[str] = get_masked_lm_array('embedding_table' ) # Pooling lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(__SCREAMING_SNAKE_CASE ) # Integration test - should load without any errors ;) lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
321
1
"""simple docstring""" import math from collections.abc import Callable def lowercase__( __SCREAMING_SNAKE_CASE : Callable[[float], float] , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): lowercase_ : float = xa lowercase_ : float = xa while True: if x_n == x_na or function(__SCREAMING_SNAKE_CASE ) == function(__SCREAMING_SNAKE_CASE ): raise ZeroDivisionError('float division by zero, could not find root' ) lowercase_ : float = x_na - ( function(__SCREAMING_SNAKE_CASE ) / ((function(__SCREAMING_SNAKE_CASE ) - function(__SCREAMING_SNAKE_CASE )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na lowercase_ : Union[str, Any] = x_na lowercase_ : str = x_na def lowercase__( __SCREAMING_SNAKE_CASE : float ): return math.pow(__SCREAMING_SNAKE_CASE , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
321
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore __SCREAMING_SNAKE_CASE =namedtuple("covid_data", "cases deaths recovered") def lowercase__( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus/" ): lowercase_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__SCREAMING_SNAKE_CASE ).content ).xpath(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE ="Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
321
1
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__SCREAMING_SNAKE_CASE ) ) def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): # Base Case if index == len(__SCREAMING_SNAKE_CASE ): return True # Recursive Step for i in range(__SCREAMING_SNAKE_CASE ): if valid_coloring(graph[index] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Color current vertex lowercase_ : Any = i # Validate coloring if util_color(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , index + 1 ): return True # Backtrack lowercase_ : Dict = -1 return False def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Optional[Any] = [-1] * len(__SCREAMING_SNAKE_CASE ) if util_color(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 0 ): return colored_vertices return []
321
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
321
1
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple ): lowercase_ : str = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=__SCREAMING_SNAKE_CASE ) lowercase_ : str = checkpoints.load_tax_checkpoint(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": lowercase_ : List[Any] = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase_ : Optional[Any] = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ : Any = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): lowercase_ : Dict = F'''layers_{str(__SCREAMING_SNAKE_CASE )}''' # Self-Attention lowercase_ : int = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] lowercase_ : List[str] = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] lowercase_ : Tuple = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] lowercase_ : Union[str, Any] = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ : Union[str, Any] = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization lowercase_ : int = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: lowercase_ : List[str] = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] lowercase_ : Union[str, Any] = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: lowercase_ : Optional[int] = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] lowercase_ : Optional[int] = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization lowercase_ : List[Any] = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning lowercase_ : Optional[Any] = flax_model.params['encoder']['block'][str(__SCREAMING_SNAKE_CASE )]['layer'] lowercase_ : Any = tax_attention_key lowercase_ : str = tax_attention_out lowercase_ : Tuple = tax_attention_query lowercase_ : str = tax_attention_value lowercase_ : Optional[int] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ : List[Any] = tax_global_layer_norm if split_mlp_wi: lowercase_ : Any = tax_mlp_wi_a lowercase_ : int = tax_mlp_wi_a else: lowercase_ : Dict = tax_mlp_wi lowercase_ : Dict = tax_mlp_wo lowercase_ : int = tax_mlp_layer_norm lowercase_ : List[Any] = flax_model_encoder_layer_block # Only for layer 0: lowercase_ : List[str] = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T lowercase_ : List[str] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ : Optional[Any] = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T lowercase_ : Optional[int] = tax_encoder_global_rel_embedding # Assigning lowercase_ : str = tax_model['target']['encoder']['encoder_norm']['scale'] lowercase_ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowercase_ : Optional[int] = F'''layers_{str(__SCREAMING_SNAKE_CASE )}''' # Self-Attention lowercase_ : str = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] lowercase_ : Tuple = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] lowercase_ : str = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] lowercase_ : str = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization lowercase_ : int = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention lowercase_ : int = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] lowercase_ : Any = tax_enc_dec_attention_module['key']['kernel'] lowercase_ : List[str] = tax_enc_dec_attention_module['out']['kernel'] lowercase_ : Optional[int] = tax_enc_dec_attention_module['query']['kernel'] lowercase_ : Any = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization lowercase_ : str = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: lowercase_ : Union[str, Any] = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] lowercase_ : Union[str, Any] = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: lowercase_ : Any = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] lowercase_ : Dict = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization lowercase_ : str = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning lowercase_ : int = flax_model.params['decoder']['block'][str(__SCREAMING_SNAKE_CASE )]['layer'] lowercase_ : Dict = tax_attention_key lowercase_ : Optional[int] = tax_attention_out lowercase_ : Union[str, Any] = tax_attention_query lowercase_ : Tuple = tax_attention_value lowercase_ : Optional[Any] = tax_pre_attention_layer_norm lowercase_ : Dict = tax_enc_dec_attention_key lowercase_ : List[str] = tax_enc_dec_attention_out lowercase_ : List[str] = tax_enc_dec_attention_query lowercase_ : Optional[Any] = tax_enc_dec_attention_value lowercase_ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase_ : List[Any] = tax_mlp_wi_a lowercase_ : str = tax_mlp_wi_a else: lowercase_ : List[Any] = tax_mlp_wi lowercase_ : Dict = tax_mlp_wo lowercase_ : Optional[int] = txa_mlp_layer_norm lowercase_ : Tuple = flax_model_decoder_layer_block # Decoder Normalization lowercase_ : Optional[int] = tax_model['target']['decoder']['decoder_norm']['scale'] lowercase_ : Union[str, Any] = txa_decoder_norm # Only for layer 0: lowercase_ : int = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T lowercase_ : Dict = tax_decoder_rel_embedding # Token Embeddings lowercase_ : List[Any] = tax_model['target']['token_embedder']['embedding'] lowercase_ : str = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase_ : List[str] = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(__SCREAMING_SNAKE_CASE ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
321
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=33 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> List[Any]: '''simple docstring''' lowercase_ : Any = parent lowercase_ : str = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Dict = is_training lowercase_ : Tuple = use_input_mask lowercase_ : Optional[Any] = use_token_type_ids lowercase_ : List[str] = use_labels lowercase_ : Any = vocab_size lowercase_ : List[str] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : Tuple = max_position_embeddings lowercase_ : Optional[int] = type_vocab_size lowercase_ : Optional[int] = type_sequence_label_size lowercase_ : Dict = initializer_range lowercase_ : int = num_labels lowercase_ : Any = num_choices lowercase_ : int = scope def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Dict = None if self.use_input_mask: lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Tuple = None lowercase_ : Tuple = None lowercase_ : Tuple = None if self.use_labels: lowercase_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) lowercase_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : List[Any] = EsmModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Tuple = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Union[str, Any] = model(__UpperCamelCase ) lowercase_ : int = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = EsmForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : str = self.num_labels lowercase_ : int = EsmForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Any = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[int] = config_and_inputs lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = False lowercase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowercase = () lowercase = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = EsmModelTester(self ) lowercase_ : List[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : Optional[Any] = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = EsmModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : str = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowercase_ : List[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowercase_ : Tuple = create_position_ids_from_input_ids(__UpperCamelCase ,model.padding_idx ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()[0] lowercase_ : List[Any] = EsmEmbeddings(config=__UpperCamelCase ) lowercase_ : List[Any] = torch.empty(2 ,4 ,30 ) lowercase_ : List[str] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowercase_ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowercase_ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__UpperCamelCase ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__UpperCamelCase ,__UpperCamelCase ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip('Esm does not support embedding resizing' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch class UpperCamelCase ( lowercase_ ): @slow def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : Any = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : List[str] = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = 33 lowercase_ : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : List[str] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): lowercase_ : int = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() lowercase_ : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase_ : Dict = model(__UpperCamelCase )[0] # compare the actual values for a slice. lowercase_ : Any = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) # TODO: upload to AWS __SCREAMING_SNAKE_CASE ={ "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class UpperCamelCase ( lowercase_ ): lowercase = 'retribert' def __init__( self ,__UpperCamelCase=3_0522 ,__UpperCamelCase=768 ,__UpperCamelCase=8 ,__UpperCamelCase=12 ,__UpperCamelCase=3072 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-12 ,__UpperCamelCase=True ,__UpperCamelCase=128 ,__UpperCamelCase=0 ,**__UpperCamelCase ,) -> Dict: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : Optional[int] = vocab_size lowercase_ : Optional[int] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : Optional[Any] = hidden_act lowercase_ : str = intermediate_size lowercase_ : Any = hidden_dropout_prob lowercase_ : Optional[int] = attention_probs_dropout_prob lowercase_ : Union[str, Any] = max_position_embeddings lowercase_ : Union[str, Any] = type_vocab_size lowercase_ : Optional[Any] = initializer_range lowercase_ : Optional[Any] = layer_norm_eps lowercase_ : Any = share_encoders lowercase_ : int = projection_dim
321
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = bp_numa lowercase_ : Dict = bp_numa lowercase_ : Tuple = bp_numa lowercase_ : List[Any] = conva_get[:2] lowercase_ : int = conva_get[2] lowercase_ : Dict = size_pa lowercase_ : int = rate_w lowercase_ : Union[str, Any] = rate_t lowercase_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(__UpperCamelCase ,'wb' ) as f: pickle.dump(__UpperCamelCase ,__UpperCamelCase ) print(f'''Model saved: {save_path}''' ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' with open(__UpperCamelCase ,'rb' ) as f: lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301 lowercase_ : str = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' ) lowercase_ : Optional[Any] = model_dic.get('num_bp1' ) lowercase_ : str = model_dic.get('num_bp2' ) lowercase_ : Optional[Any] = model_dic.get('num_bp3' ) lowercase_ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase_ : Optional[int] = model_dic.get('rate_thre' ) # create model instance lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # modify model parameter lowercase_ : Optional[Any] = model_dic.get('w_conv1' ) lowercase_ : Tuple = model_dic.get('wkj' ) lowercase_ : Union[str, Any] = model_dic.get('vji' ) lowercase_ : Optional[Any] = model_dic.get('thre_conv1' ) lowercase_ : Dict = model_dic.get('thre_bp2' ) lowercase_ : Optional[int] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return round(__UpperCamelCase ,3 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Dict = convs[0] lowercase_ : Any = convs[1] lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus lowercase_ : Tuple = [] for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): lowercase_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase_ : Dict = [] lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): lowercase_ : Tuple = [] for i_focus in range(len(__UpperCamelCase ) ): lowercase_ : Optional[int] = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase ,__UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion lowercase_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) lowercase_ : str = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = len(featuremaps[0] ) lowercase_ : str = int(size_map / size_pooling ) lowercase_ : Optional[int] = [] for i_map in range(len(__UpperCamelCase ) ): lowercase_ : int = featuremaps[i_map] lowercase_ : List[str] = [] for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Tuple = [] for i in range(len(__UpperCamelCase ) ): lowercase_ : Optional[Any] = np.shape(data[i] ) lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] ) lowercase_ : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) lowercase_ : int = np.asarray(__UpperCamelCase ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = np.asarray(__UpperCamelCase ) lowercase_ : Any = np.shape(__UpperCamelCase ) lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = [] lowercase_ : List[Any] = 0 for i_map in range(__UpperCamelCase ): lowercase_ : List[str] = np.ones((size_map, size_map) ) for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = pd_pool[ i_pool ] lowercase_ : Any = i_pool + 1 lowercase_ : Optional[int] = np.multiply( __UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]: '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) ) print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) ) lowercase_ : int = 0 lowercase_ : Tuple = [] lowercase_ : Tuple = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowercase_ : List[str] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase_ : int = np.asmatrix(datas_train[p] ) lowercase_ : Any = np.asarray(datas_teach[p] ) lowercase_ , lowercase_ : Tuple = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : Optional[int] = np.shape(__UpperCamelCase ) lowercase_ : Optional[int] = self._expand(__UpperCamelCase ) lowercase_ : int = data_bp_input lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa lowercase_ : Dict = self.sig(__UpperCamelCase ) lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa lowercase_ : int = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase_ : str = np.multiply( (data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Optional[int] = np.multiply( np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji ) lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase_ : Dict = pd_conva_pooled.T.getA().tolist() lowercase_ : List[Any] = self._calculate_gradient_from_pool( __UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase_ : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase_ : int = rp + 1 lowercase_ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase ,'+-' ) plt.plot(__UpperCamelCase ,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(__UpperCamelCase ,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): lowercase_ : List[Any] = np.asmatrix(datas_test[p] ) lowercase_ , lowercase_ : Optional[Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : List[str] = self._expand(__UpperCamelCase ) lowercase_ : Any = data_bp_input lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa lowercase_ : str = self.sig(__UpperCamelCase ) lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa lowercase_ : Optional[int] = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ) lowercase_ , lowercase_ : Union[str, Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
321
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase__( ): lowercase_ : List[Any] = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=__SCREAMING_SNAKE_CASE , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=__SCREAMING_SNAKE_CASE , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=__SCREAMING_SNAKE_CASE ) return parser.parse_args() def lowercase__( ): lowercase_ : str = parse_args() # Import training_script as a module. lowercase_ : Union[str, Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase_ : List[str] = script_fpath.stem lowercase_ : Dict = importlib.import_module(__SCREAMING_SNAKE_CASE ) # Patch sys.argv lowercase_ : Tuple = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
321
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): lowercase_ : Dict = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = 'patrickvonplaten/t5-tiny-random' lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] ) lowercase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__UpperCamelCase ): self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'current' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
321
1
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase__( __SCREAMING_SNAKE_CASE : int ): lowercase_ : Dict = filter(lambda __SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) lowercase_ : Optional[int] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __SCREAMING_SNAKE_CASE =logging.getLogger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple ): if metric == "rouge2": lowercase_ : Union[str, Any] = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": lowercase_ : List[str] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": lowercase_ : Dict = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) lowercase_ : Dict = ModelCheckpoint( dirpath=__SCREAMING_SNAKE_CASE , filename=__SCREAMING_SNAKE_CASE , monitor=F'''val_{metric}''' , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] ): return EarlyStopping( monitor=F'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=__SCREAMING_SNAKE_CASE , verbose=__SCREAMING_SNAKE_CASE , ) class UpperCamelCase ( pl.Callback ): def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Dict = {f'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__UpperCamelCase ) @rank_zero_only def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=True ) -> None: '''simple docstring''' logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) lowercase_ : str = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results lowercase_ : Optional[int] = Path(pl_module.hparams.output_dir ) if type_path == "test": lowercase_ : List[Any] = od / 'test_results.txt' lowercase_ : int = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowercase_ : int = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' lowercase_ : Any = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=__UpperCamelCase ) generations_file.parent.mkdir(exist_ok=__UpperCamelCase ) with open(__UpperCamelCase ,'a+' ) as writer: for key in sorted(__UpperCamelCase ): if key in ["log", "progress_bar", "preds"]: continue lowercase_ : Tuple = metrics[key] if isinstance(__UpperCamelCase ,torch.Tensor ): lowercase_ : Union[str, Any] = val.item() lowercase_ : Tuple = f'''{key}: {val:.6f}\n''' writer.write(__UpperCamelCase ) if not save_generations: return if "preds" in metrics: lowercase_ : Any = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(__UpperCamelCase ) @rank_zero_only def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' try: lowercase_ : Any = pl_module.model.model.num_parameters() except AttributeError: lowercase_ : str = pl_module.model.num_parameters() lowercase_ : List[Any] = count_trainable_parameters(__UpperCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6} ) @rank_zero_only def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' save_json(pl_module.metrics ,pl_module.metrics_save_path ) return self._write_logs(__UpperCamelCase ,__UpperCamelCase ,'test' ) @rank_zero_only def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' save_json(pl_module.metrics ,pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
321
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['input_values', 'padding_mask'] def __init__( self ,__UpperCamelCase = 1 ,__UpperCamelCase = 2_4000 ,__UpperCamelCase = 0.0 ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Any: '''simple docstring''' super().__init__(feature_size=__UpperCamelCase ,sampling_rate=__UpperCamelCase ,padding_value=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[str] = chunk_length_s lowercase_ : Tuple = overlap @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = False ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs lowercase_ : Optional[int] = True lowercase_ : Optional[int] = bool( isinstance(__UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : int = [np.asarray(__UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase ,np.ndarray ): lowercase_ : Any = np.asarray(__UpperCamelCase ,dtype=np.floataa ) elif isinstance(__UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowercase_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : Dict = [np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) lowercase_ : Optional[int] = None lowercase_ : List[Any] = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowercase_ : List[Any] = min(array.shape[0] for array in raw_audio ) lowercase_ : int = int(np.floor(max_length / self.chunk_stride ) ) lowercase_ : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowercase_ : List[Any] = max(array.shape[0] for array in raw_audio ) lowercase_ : Tuple = int(np.ceil(max_length / self.chunk_stride ) ) lowercase_ : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length lowercase_ : Union[str, Any] = 'max_length' else: lowercase_ : int = input_values # normal padding on batch if padded_inputs is None: lowercase_ : int = self.pad( __UpperCamelCase ,max_length=__UpperCamelCase ,truncation=__UpperCamelCase ,padding=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,) if padding: lowercase_ : Optional[int] = padded_inputs.pop('attention_mask' ) lowercase_ : Dict = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: lowercase_ : Optional[int] = example[..., None] input_values.append(example.T ) lowercase_ : str = input_values if return_tensors is not None: lowercase_ : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
321
1