code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class lowerCamelCase__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __a = """sew""" def __init__( self : Dict , UpperCamelCase : Dict=32 , UpperCamelCase : Optional[int]=768 , UpperCamelCase : Tuple=12 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=3_072 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : int="gelu" , UpperCamelCase : Any=0.1 , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : Dict=0.1 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : List[str]=0.02 , UpperCamelCase : List[str]=1e-5 , UpperCamelCase : List[str]="group" , UpperCamelCase : str="gelu" , UpperCamelCase : Dict=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCamelCase : Tuple=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCamelCase : List[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCamelCase : str=False , UpperCamelCase : Optional[int]=128 , UpperCamelCase : Any=16 , UpperCamelCase : List[str]=True , UpperCamelCase : int=0.05 , UpperCamelCase : Tuple=10 , UpperCamelCase : Optional[int]=2 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : int=10 , UpperCamelCase : Optional[Any]=0 , UpperCamelCase : List[Any]="mean" , UpperCamelCase : int=False , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Tuple=256 , UpperCamelCase : Tuple=0 , UpperCamelCase : Dict=1 , UpperCamelCase : Optional[Any]=2 , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__(**UpperCamelCase , pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase ) __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : str = feat_extract_norm __UpperCAmelCase : Dict = feat_extract_activation __UpperCAmelCase : Union[str, Any] = list(UpperCamelCase ) __UpperCAmelCase : List[str] = list(UpperCamelCase ) __UpperCAmelCase : str = list(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = conv_bias __UpperCAmelCase : Optional[int] = num_conv_pos_embeddings __UpperCAmelCase : List[Any] = num_conv_pos_embedding_groups __UpperCAmelCase : List[str] = len(self.conv_dim ) __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : int = squeeze_factor __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : int = hidden_dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : Tuple = activation_dropout __UpperCAmelCase : Tuple = feat_proj_dropout __UpperCAmelCase : List[Any] = final_dropout __UpperCAmelCase : Dict = layerdrop __UpperCAmelCase : List[str] = layer_norm_eps __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[Any] = apply_spec_augment __UpperCAmelCase : Any = mask_time_prob __UpperCAmelCase : Tuple = mask_time_length __UpperCAmelCase : Tuple = mask_time_min_masks __UpperCAmelCase : Dict = mask_feature_prob __UpperCAmelCase : Tuple = mask_feature_length __UpperCAmelCase : Tuple = mask_feature_min_masks # ctc loss __UpperCAmelCase : List[Any] = ctc_loss_reduction __UpperCAmelCase : Optional[Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : Dict = use_weighted_layer_sum __UpperCAmelCase : str = classifier_proj_size @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
351
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : list[float] , _UpperCamelCase : list[float] ) -> float: '''simple docstring''' __UpperCAmelCase : Tuple = sorted(numsa + numsa ) __UpperCAmelCase ,__UpperCAmelCase : Dict = divmod(len(_UpperCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[Any] = [float(x) for x in input('Enter the elements of first array: ').split()] UpperCAmelCase : Optional[int] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
320
0
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any]=sys.maxsize ): '''simple docstring''' __UpperCAmelCase : List[str] = '''bilinear''' __UpperCAmelCase : List[str] = max_size __UpperCAmelCase : List[Any] = short_edge_length def __call__( self : List[str] , UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : int = [] for img in imgs: __UpperCAmelCase : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __UpperCAmelCase : str = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img __UpperCAmelCase : List[Any] = size * 1.0 / min(snake_case_ , snake_case_ ) if h < w: __UpperCAmelCase : Dict = size, scale * w else: __UpperCAmelCase : Optional[Any] = scale * h, size if max(snake_case_ , snake_case_ ) > self.max_size: __UpperCAmelCase : Tuple = self.max_size * 1.0 / max(snake_case_ , snake_case_ ) __UpperCAmelCase : List[Any] = newh * scale __UpperCAmelCase : int = neww * scale __UpperCAmelCase : Dict = int(neww + 0.5 ) __UpperCAmelCase : Dict = int(newh + 0.5 ) if img.dtype == np.uinta: __UpperCAmelCase : Optional[Any] = Image.fromarray(snake_case_ ) __UpperCAmelCase : str = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) __UpperCAmelCase : Optional[Any] = np.asarray(snake_case_ ) else: __UpperCAmelCase : Tuple = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __UpperCAmelCase : Any = nn.functional.interpolate( snake_case_ , (newh, neww) , mode=self.interp_method , align_corners=snake_case_ ).squeeze(0 ) img_augs.append(snake_case_ ) return img_augs class lowerCamelCase__ : """simple docstring""" def __init__( self : int , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) __UpperCAmelCase : Union[str, Any] = cfg.INPUT.FORMAT __UpperCAmelCase : Dict = cfg.SIZE_DIVISIBILITY __UpperCAmelCase : List[Any] = cfg.PAD_VALUE __UpperCAmelCase : Dict = cfg.INPUT.MAX_SIZE_TEST __UpperCAmelCase : List[Any] = cfg.MODEL.DEVICE __UpperCAmelCase : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __UpperCAmelCase : int = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __UpperCAmelCase : Union[str, Any] = lambda UpperCamelCase : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Dict ): '''simple docstring''' __UpperCAmelCase : List[str] = tuple(max(snake_case_ ) for s in zip(*[img.shape for img in images] ) ) __UpperCAmelCase : List[Any] = [im.shape[-2:] for im in images] __UpperCAmelCase : Optional[int] = [ nn.functional.pad( snake_case_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case_ , snake_case_ ) ] return torch.stack(snake_case_ ), torch.tensor(snake_case_ ) def __call__( self : List[str] , UpperCamelCase : int , UpperCamelCase : Dict=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase : str = [images] if single_image: assert len(snake_case_ ) == 1 for i in range(len(snake_case_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case_ , images.pop(snake_case_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case_ , torch.as_tensor(img_tensorize(images.pop(snake_case_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge __UpperCAmelCase : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) __UpperCAmelCase : int = self.aug(snake_case_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __UpperCAmelCase : str = [self.normalizer(snake_case_ ) for x in images] # now pad them to do the following operations __UpperCAmelCase : List[Any] = self.pad(snake_case_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __UpperCAmelCase : str = torch.true_divide(snake_case_ , snake_case_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Tuple[int, int] ) -> Optional[int]: '''simple docstring''' assert torch.isfinite(lowerCAmelCase__ ).all(), "Box tensor contains infinite or NaN!" __UpperCAmelCase : Optional[Any] = box_size tensor[:, 0].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 1].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 2].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 3].clamp_(min=0 , max=lowerCAmelCase__ )
352
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = """hf-internal-testing/tiny-random-t5""" __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Optional[int] = tokenizer("""This is me""" , return_tensors="""pt""" ) __UpperCAmelCase : int = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __UpperCAmelCase : Tuple = model.generate(**UpperCamelCase ) __UpperCAmelCase : Tuple = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase ) __UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __UpperCAmelCase : Tuple = model_reloaded.generate(**UpperCamelCase ) self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase ) ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Any = """hf-internal-testing/tiny-random-t5""" __UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Tuple = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(UpperCamelCase ): model.save_pretrained(UpperCamelCase ) __UpperCAmelCase : Tuple = model.reverse_bettertransformer() model.save_pretrained(UpperCamelCase )
320
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase : Tuple = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( A ): """simple docstring""" __a = ["pixel_values"] def __init__( self : int , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 255 , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = True , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) __UpperCAmelCase : List[str] = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : int = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : Union[str, Any] = size __UpperCAmelCase : int = resample __UpperCAmelCase : Optional[Any] = do_center_crop __UpperCAmelCase : Any = crop_size __UpperCAmelCase : Any = do_rescale __UpperCAmelCase : List[str] = rescale_factor __UpperCAmelCase : Dict = do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCAmelCase : Optional[int] = do_convert_rgb def lowerCamelCase__ ( self : Dict , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __UpperCAmelCase : List[Any] = get_resize_output_image_size(UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : str , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : List[str] , ): '''simple docstring''' __UpperCAmelCase : Dict = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, float] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Tuple , ): '''simple docstring''' return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : int = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : List[str] , ): '''simple docstring''' __UpperCAmelCase : List[str] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Union[str, Any] = get_size_dict(UpperCamelCase , param_name="""size""" , default_to_square=UpperCamelCase ) __UpperCAmelCase : Optional[int] = resample if resample is not None else self.resample __UpperCAmelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : List[str] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : int = get_size_dict(UpperCamelCase , param_name="""crop_size""" , default_to_square=UpperCamelCase ) __UpperCAmelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std __UpperCAmelCase : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCAmelCase : Union[str, Any] = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCAmelCase : int = [convert_to_rgb(UpperCamelCase ) for image in images] # All transformations expect numpy arrays. __UpperCAmelCase : Optional[int] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: __UpperCAmelCase : int = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: __UpperCAmelCase : List[str] = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: __UpperCAmelCase : Dict = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: __UpperCAmelCase : int = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] __UpperCAmelCase : List[Any] = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] __UpperCAmelCase : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int = 1_0_0_0_0_0_0 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = set(range(3 , _UpperCamelCase , 2 ) ) primes.add(2 ) for p in range(3 , _UpperCamelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _UpperCamelCase , _UpperCamelCase ) ) ) __UpperCAmelCase : Dict = [float(_UpperCamelCase ) for n in range(limit + 1 )] for p in primes: for n in range(_UpperCamelCase , limit + 1 , _UpperCamelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase : List[str] = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowerCamelCase__ ( UpperCamelCase__ ): """simple docstring""" __a = ['''vqvae'''] def __init__( self : Any , UpperCamelCase : AutoencoderKL , UpperCamelCase : UNetaDConditionModel , UpperCamelCase : Mel , UpperCamelCase : Union[DDIMScheduler, DDPMScheduler] , ): '''simple docstring''' super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , mel=UpperCamelCase_ , vqvae=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): '''simple docstring''' return 50 if isinstance(self.scheduler , UpperCamelCase_ ) else 1_000 @torch.no_grad() def __call__( self : List[str] , UpperCamelCase : int = 1 , UpperCamelCase : str = None , UpperCamelCase : np.ndarray = None , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = None , UpperCamelCase : torch.Generator = None , UpperCamelCase : float = 0 , UpperCamelCase : float = 0 , UpperCamelCase : torch.Generator = None , UpperCamelCase : float = 0 , UpperCamelCase : torch.Tensor = None , UpperCamelCase : torch.Tensor = None , UpperCamelCase : Any=True , ): '''simple docstring''' __UpperCAmelCase : Any = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCamelCase_ ) __UpperCAmelCase : Dict = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __UpperCAmelCase : Optional[Any] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __UpperCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCamelCase_ , device=self.device , ) __UpperCAmelCase : List[Any] = noise __UpperCAmelCase : int = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.mel.audio_slice_to_image(UpperCamelCase_ ) __UpperCAmelCase : int = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) __UpperCAmelCase : List[str] = (input_image / 255) * 2 - 1 __UpperCAmelCase : Tuple = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __UpperCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(UpperCamelCase_ , 0 ) ).latent_dist.sample( generator=UpperCamelCase_ )[0] __UpperCAmelCase : Optional[Any] = self.vqvae.config.scaling_factor * input_images if start_step > 0: __UpperCAmelCase : Union[str, Any] = self.scheduler.add_noise(UpperCamelCase_ , UpperCamelCase_ , self.scheduler.timesteps[start_step - 1] ) __UpperCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __UpperCAmelCase : Optional[int] = int(mask_start_secs * pixels_per_second ) __UpperCAmelCase : str = int(mask_end_secs * pixels_per_second ) __UpperCAmelCase : Union[str, Any] = self.scheduler.add_noise(UpperCamelCase_ , UpperCamelCase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , UpperCamelCase_ ): __UpperCAmelCase : int = self.unet(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )["""sample"""] else: __UpperCAmelCase : int = self.unet(UpperCamelCase_ , UpperCamelCase_ )["""sample"""] if isinstance(self.scheduler , UpperCamelCase_ ): __UpperCAmelCase : int = self.scheduler.step( model_output=UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , eta=UpperCamelCase_ , generator=UpperCamelCase_ , )["""prev_sample"""] else: __UpperCAmelCase : str = self.scheduler.step( model_output=UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , generator=UpperCamelCase_ , )["""prev_sample"""] if mask is not None: if mask_start > 0: __UpperCAmelCase : int = mask[:, step, :, :mask_start] if mask_end > 0: __UpperCAmelCase : Union[str, Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __UpperCAmelCase : Any = 1 / self.vqvae.config.scaling_factor * images __UpperCAmelCase : Any = self.vqvae.decode(UpperCamelCase_ )["""sample"""] __UpperCAmelCase : List[Any] = (images / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase : str = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __UpperCAmelCase : List[Any] = (images * 255).round().astype("""uint8""" ) __UpperCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCamelCase_ , mode="""RGB""" ).convert("""L""" ) for _ in images) ) __UpperCAmelCase : Union[str, Any] = [self.mel.image_to_audio(UpperCamelCase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCamelCase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(UpperCamelCase_ ) ) @torch.no_grad() def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : List[Image.Image] , UpperCamelCase : int = 50 ): '''simple docstring''' assert isinstance(self.scheduler , UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) __UpperCAmelCase : Union[str, Any] = (sample / 255) * 2 - 1 __UpperCAmelCase : Dict = torch.Tensor(UpperCamelCase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __UpperCAmelCase : Union[str, Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __UpperCAmelCase : str = self.scheduler.alphas_cumprod[t] __UpperCAmelCase : str = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __UpperCAmelCase : Optional[Any] = 1 - alpha_prod_t __UpperCAmelCase : Optional[int] = self.unet(UpperCamelCase_ , UpperCamelCase_ )["""sample"""] __UpperCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output __UpperCAmelCase : List[Any] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __UpperCAmelCase : Optional[Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def lowerCamelCase__ ( UpperCamelCase : torch.Tensor , UpperCamelCase : torch.Tensor , UpperCamelCase : float ): '''simple docstring''' __UpperCAmelCase : int = acos(torch.dot(torch.flatten(UpperCamelCase_ ) , torch.flatten(UpperCamelCase_ ) ) / torch.norm(UpperCamelCase_ ) / torch.norm(UpperCamelCase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(UpperCamelCase_ ) + sin(alpha * theta ) * xa / sin(UpperCamelCase_ )
355
"""simple docstring""" def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[str] = 1 while len(_UpperCamelCase ) < 1E6: constant.append(str(_UpperCamelCase ) ) i += 1 __UpperCAmelCase : List[str] = """""".join(_UpperCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = set() # Replace all the whitespace in our sentence __UpperCAmelCase : List[Any] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowerCamelCase_ ) == 2_6 def lowerCamelCase ( _UpperCamelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = [False] * 2_6 for char in input_str: if char.islower(): __UpperCAmelCase : Union[str, Any] = True elif char.isupper(): __UpperCAmelCase : str = True return all(lowerCamelCase_ ) def lowerCamelCase ( _UpperCamelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> str: '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' from timeit import timeit __UpperCAmelCase : Optional[Any] = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit("""is_pangram()""" , setup=lowerCamelCase_ ) ) print(timeit("""is_pangram_faster()""" , setup=lowerCamelCase_ ) ) print(timeit("""is_pangram_fastest()""" , setup=lowerCamelCase_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" from collections import deque def lowerCamelCase ( _UpperCamelCase : Any ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[Any] = len(UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = deque() __UpperCAmelCase : int = [False for _ in range(UpperCAmelCase_ )] __UpperCAmelCase : List[Any] = [-1 for _ in range(UpperCAmelCase_ )] __UpperCAmelCase : Tuple = index_of[:] def strong_connect(_UpperCamelCase : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any ): __UpperCAmelCase : Any = index # the number when this node is seen __UpperCAmelCase : Tuple = index # lowest rank node reachable from here index += 1 stack.append(UpperCAmelCase_ ) __UpperCAmelCase : int = True for w in g[v]: if index_of[w] == -1: __UpperCAmelCase : List[Any] = strong_connect(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCAmelCase : Dict = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __UpperCAmelCase : str = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __UpperCAmelCase : str = [] __UpperCAmelCase : str = stack.pop() __UpperCAmelCase : int = False component.append(UpperCAmelCase_ ) while w != v: __UpperCAmelCase : List[str] = stack.pop() __UpperCAmelCase : Union[str, Any] = False component.append(UpperCAmelCase_ ) components.append(UpperCAmelCase_ ) return index __UpperCAmelCase : Tuple = [] for v in range(UpperCAmelCase_ ): if index_of[v] == -1: strong_connect(UpperCAmelCase_ , 0 , UpperCAmelCase_ ) return components def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [[] for _ in range(UpperCAmelCase_ )] for u, v in edges: g[u].append(UpperCAmelCase_ ) return g if __name__ == "__main__": # Test UpperCAmelCase : Any = 7 UpperCAmelCase : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6] UpperCAmelCase : str = [1, 3, 2, 0, 1, 4, 5, 6, 5] UpperCAmelCase : Optional[int] = [(u, v) for u, v in zip(source, target)] UpperCAmelCase : str = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
357
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput UpperCAmelCase : Optional[Any] = 'scheduler_config.json' class lowerCamelCase__ ( A ): """simple docstring""" __a = 1 __a = 2 __a = 3 __a = 4 __a = 5 __a = 6 __a = 7 __a = 8 __a = 9 __a = 10 __a = 11 __a = 12 __a = 13 __a = 14 @dataclass class lowerCamelCase__ ( A ): """simple docstring""" __a = 42 class lowerCamelCase__ : """simple docstring""" __a = SCHEDULER_CONFIG_NAME __a = [] __a = True @classmethod def lowerCamelCase__ ( cls : Any , UpperCamelCase : Dict[str, Any] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = cls.load_config( pretrained_model_name_or_path=UpperCamelCase , subfolder=UpperCamelCase , return_unused_kwargs=UpperCamelCase , return_commit_hash=UpperCamelCase , **UpperCamelCase , ) return cls.from_config(UpperCamelCase , return_unused_kwargs=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, os.PathLike] , UpperCamelCase : bool = False , **UpperCamelCase : Optional[Any] ): '''simple docstring''' self.save_config(save_directory=UpperCamelCase , push_to_hub=UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return self._get_compatibles() @classmethod def lowerCamelCase__ ( cls : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __UpperCAmelCase : List[str] = importlib.import_module(__name__.split(""".""" )[0] ) __UpperCAmelCase : List[str] = [ getattr(UpperCamelCase , UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase , UpperCamelCase ) ] return compatible_classes
320
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : List[Any] = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __a = """focalnet""" def __init__( self : Tuple , UpperCamelCase : str=224 , UpperCamelCase : Dict=4 , UpperCamelCase : str=3 , UpperCamelCase : Union[str, Any]=96 , UpperCamelCase : List[str]=False , UpperCamelCase : int=[192, 384, 768, 768] , UpperCamelCase : List[str]=[2, 2, 6, 2] , UpperCamelCase : int=[2, 2, 2, 2] , UpperCamelCase : Tuple=[3, 3, 3, 3] , UpperCamelCase : List[str]="gelu" , UpperCamelCase : List[Any]=4.0 , UpperCamelCase : Optional[Any]=0.0 , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : List[Any]=False , UpperCamelCase : Any=1e-4 , UpperCamelCase : Optional[Any]=False , UpperCamelCase : int=False , UpperCamelCase : Dict=False , UpperCamelCase : str=0.02 , UpperCamelCase : int=1e-5 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Dict=None , UpperCamelCase : Dict=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__(**__snake_case ) __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : Union[str, Any] = patch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : List[str] = embed_dim __UpperCAmelCase : Union[str, Any] = use_conv_embed __UpperCAmelCase : Any = hidden_sizes __UpperCAmelCase : List[Any] = depths __UpperCAmelCase : Any = focal_levels __UpperCAmelCase : Any = focal_windows __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[Any] = mlp_ratio __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : Optional[int] = use_layerscale __UpperCAmelCase : Tuple = layerscale_value __UpperCAmelCase : Optional[Any] = use_post_layernorm __UpperCAmelCase : List[str] = use_post_layernorm_in_modulation __UpperCAmelCase : Optional[int] = normalize_modulator __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = layer_norm_eps __UpperCAmelCase : Optional[Any] = encoder_stride __UpperCAmelCase : str = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] __UpperCAmelCase : Optional[int] = get_aligned_output_features_output_indices( out_features=__snake_case , out_indices=__snake_case , stage_names=self.stage_names )
358
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase__ ( *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ): '''simple docstring''' pass def lowerCamelCase ( _UpperCamelCase : Image ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def lowerCamelCase ( _UpperCamelCase : Image ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = np.array(_UpperCamelCase ) __UpperCAmelCase : List[Any] = npimg.shape return {"hash": hashimage(_UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __a = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass @slow @require_torch def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) __UpperCAmelCase : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : int = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = """facebook/sam-vit-huge""" __UpperCAmelCase : str = pipeline("""mask-generation""" , model=UpperCamelCase ) __UpperCAmelCase : int = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : Dict = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] , )
320
0
"""simple docstring""" from collections import deque from .hash_table import HashTable class lowerCamelCase__ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : List[str] , *UpperCamelCase : Tuple , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' super().__init__(*A__ , **A__ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(A__ ) __UpperCAmelCase : Optional[int] = self.values[key] def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return ( sum(self.charge_factor - len(A__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[Any]=None ): '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(A__ ) == 0 ): return key return super()._collision_resolution(A__ , A__ )
359
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , UpperCamelCase : str ): '''simple docstring''' super().__init__() __UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase ) __UpperCAmelCase : int = list(model.children() )[:-2] __UpperCAmelCase : List[Any] = nn.Sequential(*UpperCamelCase ) __UpperCAmelCase : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.pool(self.model(UpperCamelCase ) ) __UpperCAmelCase : List[Any] = torch.flatten(UpperCamelCase , start_dim=2 ) __UpperCAmelCase : Any = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )] __UpperCAmelCase : Any = os.path.dirname(UpperCamelCase ) __UpperCAmelCase : List[str] = tokenizer __UpperCAmelCase : str = labels __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) __UpperCAmelCase : int = max_seq_length __UpperCAmelCase : int = transforms def __len__( self : List[str] ): '''simple docstring''' return len(self.data ) def __getitem__( self : List[str] , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Any = sentence[: self.max_seq_length] __UpperCAmelCase : Tuple = torch.zeros(self.n_classes ) __UpperCAmelCase : str = 1 __UpperCAmelCase : Any = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __UpperCAmelCase : Optional[int] = self.transforms(UpperCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = [len(row["""sentence"""] ) for row in batch] __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase ) __UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) __UpperCAmelCase : str = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ): __UpperCAmelCase : List[str] = input_row["""sentence"""] __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] ) __UpperCAmelCase : Optional[Any] = torch.stack([row["""label"""] for row in batch] ) __UpperCAmelCase : str = torch.stack([row["""image_start_token"""] for row in batch] ) __UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ) -> int: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
320
0
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase__ ( __a , unittest.TestCase ): """simple docstring""" __a = BlenderbotSmallTokenizer __a = False def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' super().setUp() __UpperCAmelCase : List[Any] = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] __UpperCAmelCase : int = dict(zip(a__ , range(len(a__ ) ) ) ) __UpperCAmelCase : Any = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] __UpperCAmelCase : int = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} __UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a__ ) ) def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **a__ ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = """adapt act apte""" __UpperCAmelCase : Tuple = """adapt act apte""" return input_text, output_text def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase : List[str] = """adapt act apte""" __UpperCAmelCase : int = ["""adapt""", """act""", """ap@@""", """te"""] __UpperCAmelCase : Dict = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __UpperCAmelCase : Union[str, Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __UpperCAmelCase : str = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1_384] __UpperCAmelCase : int = """I am a small frog.""" __UpperCAmelCase : List[str] = tok([src_text] , padding=a__ , truncation=a__ )["""input_ids"""] __UpperCAmelCase : Optional[int] = tok.batch_decode(a__ , skip_special_tokens=a__ , clean_up_tokenization_spaces=a__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) __UpperCAmelCase : List[str] = """I am a small frog .""" __UpperCAmelCase : List[Any] = """.""" __UpperCAmelCase : Union[str, Any] = tok(a__ )["""input_ids"""] __UpperCAmelCase : List[Any] = tok(a__ )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
360
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
320
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : List[str] = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCamelCase__ ( lowerCamelCase__ ): """simple docstring""" __a = """unispeech-sat""" def __init__( self : Any , UpperCamelCase : str=32 , UpperCamelCase : str=768 , UpperCamelCase : Union[str, Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=3_072 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : str=0.02 , UpperCamelCase : Optional[int]=1e-5 , UpperCamelCase : List[Any]="group" , UpperCamelCase : str="gelu" , UpperCamelCase : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase : Tuple=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase : List[str]=False , UpperCamelCase : Tuple=128 , UpperCamelCase : Optional[int]=16 , UpperCamelCase : Any=False , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=0.05 , UpperCamelCase : List[Any]=10 , UpperCamelCase : List[Any]=2 , UpperCamelCase : Optional[Any]=0.0 , UpperCamelCase : Optional[Any]=10 , UpperCamelCase : Dict=0 , UpperCamelCase : Optional[int]=320 , UpperCamelCase : Tuple=2 , UpperCamelCase : Any=0.1 , UpperCamelCase : Dict=100 , UpperCamelCase : Optional[int]=256 , UpperCamelCase : str=256 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : List[str]="mean" , UpperCamelCase : Tuple=False , UpperCamelCase : int=False , UpperCamelCase : Dict=256 , UpperCamelCase : List[Any]=(512, 512, 512, 512, 1_500) , UpperCamelCase : Optional[Any]=(5, 3, 3, 1, 1) , UpperCamelCase : int=(1, 2, 3, 1, 1) , UpperCamelCase : Dict=512 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[str]=1 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[int]=504 , **UpperCamelCase : int , ): '''simple docstring''' super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : Any = feat_extract_activation __UpperCAmelCase : int = list(__A ) __UpperCAmelCase : str = list(__A ) __UpperCAmelCase : Tuple = list(__A ) __UpperCAmelCase : Optional[Any] = conv_bias __UpperCAmelCase : List[Any] = num_conv_pos_embeddings __UpperCAmelCase : List[str] = num_conv_pos_embedding_groups __UpperCAmelCase : List[str] = len(self.conv_dim ) __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Optional[Any] = hidden_dropout __UpperCAmelCase : List[str] = attention_dropout __UpperCAmelCase : str = activation_dropout __UpperCAmelCase : int = feat_proj_dropout __UpperCAmelCase : Dict = final_dropout __UpperCAmelCase : Optional[Any] = layerdrop __UpperCAmelCase : str = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Dict = num_clusters __UpperCAmelCase : Union[str, Any] = do_stable_layer_norm __UpperCAmelCase : Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : List[str] = apply_spec_augment __UpperCAmelCase : Optional[int] = mask_time_prob __UpperCAmelCase : int = mask_time_length __UpperCAmelCase : Union[str, Any] = mask_time_min_masks __UpperCAmelCase : Dict = mask_feature_prob __UpperCAmelCase : List[Any] = mask_feature_length __UpperCAmelCase : List[str] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCAmelCase : List[Any] = num_codevectors_per_group __UpperCAmelCase : Tuple = num_codevector_groups __UpperCAmelCase : Tuple = contrastive_logits_temperature __UpperCAmelCase : Any = feat_quantizer_dropout __UpperCAmelCase : Optional[int] = num_negatives __UpperCAmelCase : str = codevector_dim __UpperCAmelCase : Dict = proj_codevector_dim __UpperCAmelCase : Optional[Any] = diversity_loss_weight # ctc loss __UpperCAmelCase : List[Any] = ctc_loss_reduction __UpperCAmelCase : List[str] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCAmelCase : int = list(__A ) __UpperCAmelCase : Dict = list(__A ) __UpperCAmelCase : int = list(__A ) __UpperCAmelCase : Union[str, Any] = xvector_output_dim @property def lowerCamelCase__ ( self : str ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
361
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ) __UpperCAmelCase : List[Any] = sum(_UpperCamelCase ) __UpperCAmelCase : Optional[int] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __UpperCAmelCase : Any = True for i in range(1 , s + 1 ): __UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __UpperCAmelCase : Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __UpperCAmelCase : Optional[int] = s - 2 * j break return diff
320
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""image_processor""", """tokenizer"""] __a = """BridgeTowerImageProcessor""" __a = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] ): '''simple docstring''' super().__init__(__a , __a ) def __call__( self : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : Any = None , UpperCamelCase : Union[str, Any] = True , UpperCamelCase : str = False , UpperCamelCase : str = None , UpperCamelCase : Tuple = None , UpperCamelCase : str = 0 , UpperCamelCase : Dict = None , UpperCamelCase : str = None , UpperCamelCase : Union[str, Any] = None , UpperCamelCase : Optional[Any] = False , UpperCamelCase : Any = False , UpperCamelCase : Optional[Any] = False , UpperCamelCase : List[Any] = False , UpperCamelCase : int = True , UpperCamelCase : Tuple = None , **UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) # add pixel_values + pixel_mask __UpperCAmelCase : Optional[Any] = self.image_processor( __a , return_tensors=__a , do_normalize=__a , do_center_crop=__a , **__a ) encoding.update(__a ) return encoding def lowerCamelCase__ ( self : Any , *UpperCamelCase : str , **UpperCamelCase : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a ) def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : List[str] , **UpperCamelCase : Dict ): '''simple docstring''' return self.tokenizer.decode(*__a , **__a ) @property def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
362
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""pixel_values"""] def __init__( self : Tuple , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 255 , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(**UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) __UpperCAmelCase : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : int = crop_size __UpperCAmelCase : Optional[int] = do_rescale __UpperCAmelCase : List[Any] = rescale_factor __UpperCAmelCase : Tuple = do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCAmelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCAmelCase : List[Any] = do_convert_rgb def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __UpperCAmelCase : int = get_resize_output_image_size(UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Dict , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, float] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ): '''simple docstring''' return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ): '''simple docstring''' return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : int = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Dict = size if size is not None else self.size __UpperCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase , param_name="""size""" , default_to_square=UpperCamelCase ) __UpperCAmelCase : Dict = resample if resample is not None else self.resample __UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , param_name="""crop_size""" , default_to_square=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Any = image_std if image_std is not None else self.image_std __UpperCAmelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCAmelCase : List[str] = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCAmelCase : int = [convert_to_rgb(UpperCamelCase ) for image in images] # All transformations expect numpy arrays. __UpperCAmelCase : Tuple = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: __UpperCAmelCase : Optional[int] = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: __UpperCAmelCase : int = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: __UpperCAmelCase : Dict = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: __UpperCAmelCase : Optional[Any] = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] __UpperCAmelCase : Any = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] __UpperCAmelCase : Any = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
320
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Any = 1 __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : Any = (32, 32) __UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase__ ) return image @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowerCamelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Any = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(UpperCamelCase__ ) @property def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' def extract(*UpperCamelCase : Tuple , **UpperCamelCase : Optional[Any] ): class lowerCamelCase__ : """simple docstring""" def __init__( self : List[str] ): '''simple docstring''' __UpperCAmelCase : int = torch.ones([0] ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : Any ): '''simple docstring''' self.pixel_values.to(UpperCamelCase__ ) return self return Out() return extract def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Optional[Any] = self.dummy_cond_unet __UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) __UpperCAmelCase : List[Any] = self.dummy_vae __UpperCAmelCase : str = self.dummy_text_encoder __UpperCAmelCase : List[Any] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __UpperCAmelCase : Optional[Any] = 77 __UpperCAmelCase : Dict = self.dummy_image.to(UpperCamelCase__ ) __UpperCAmelCase : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __UpperCAmelCase : Optional[Any] = AltDiffusionImgaImgPipeline( unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=self.dummy_extractor , ) __UpperCAmelCase : Dict = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase__ ) __UpperCAmelCase : str = alt_pipe.to(UpperCamelCase__ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __UpperCAmelCase : str = """A painting of a squirrel eating a burger""" __UpperCAmelCase : Tuple = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) __UpperCAmelCase : str = alt_pipe( [prompt] , generator=UpperCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=UpperCamelCase__ , ) __UpperCAmelCase : List[str] = output.images __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) __UpperCAmelCase : Tuple = alt_pipe( [prompt] , generator=UpperCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=UpperCamelCase__ , return_dict=UpperCamelCase__ , )[0] __UpperCAmelCase : str = image[0, -3:, -3:, -1] __UpperCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : str = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.dummy_cond_unet __UpperCAmelCase : Any = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) __UpperCAmelCase : List[Any] = self.dummy_vae __UpperCAmelCase : Optional[Any] = self.dummy_text_encoder __UpperCAmelCase : str = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __UpperCAmelCase : Any = 77 __UpperCAmelCase : str = self.dummy_image.to(UpperCamelCase__ ) # put models in fp16 __UpperCAmelCase : Tuple = unet.half() __UpperCAmelCase : List[Any] = vae.half() __UpperCAmelCase : Any = bert.half() # make sure here that pndm scheduler skips prk __UpperCAmelCase : Optional[Any] = AltDiffusionImgaImgPipeline( unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=self.dummy_extractor , ) __UpperCAmelCase : Any = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase__ ) __UpperCAmelCase : Any = alt_pipe.to(UpperCamelCase__ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __UpperCAmelCase : List[Any] = """A painting of a squirrel eating a burger""" __UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) __UpperCAmelCase : str = alt_pipe( [prompt] , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="""np""" , image=UpperCamelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 __UpperCAmelCase : Tuple = init_image.resize((760, 504) ) __UpperCAmelCase : List[str] = """BAAI/AltDiffusion""" __UpperCAmelCase : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( UpperCamelCase__ , safety_checker=UpperCamelCase__ , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() __UpperCAmelCase : Any = """A fantasy landscape, trending on artstation""" __UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase__ , output_type="""np""" , ) __UpperCAmelCase : Dict = output.images[0] __UpperCAmelCase : Optional[int] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) __UpperCAmelCase : Union[str, Any] = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __UpperCAmelCase : int = init_image.resize((768, 512) ) __UpperCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) __UpperCAmelCase : List[str] = """BAAI/AltDiffusion""" __UpperCAmelCase : Union[str, Any] = AltDiffusionImgaImgPipeline.from_pretrained( UpperCamelCase__ , safety_checker=UpperCamelCase__ , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() __UpperCAmelCase : str = """A fantasy landscape, trending on artstation""" __UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) __UpperCAmelCase : Tuple = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase__ , output_type="""np""" , ) __UpperCAmelCase : Any = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
363
"""simple docstring""" from collections.abc import Sequence def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : Dict = 0.0 for coeff in reversed(_UpperCamelCase ): __UpperCAmelCase : Any = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
320
0
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCamelCase__ : """simple docstring""" def __init__( self : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Tuple=16 , UpperCamelCase : int=3 , UpperCamelCase : Dict=True , UpperCamelCase : Tuple=True , UpperCamelCase : List[str]=32 , UpperCamelCase : str=4 , UpperCamelCase : Any=[0, 1, 2, 3] , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : Optional[Any]=37 , UpperCamelCase : Tuple="gelu" , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=3 , UpperCamelCase : Tuple=[1, 384, 24, 24] , UpperCamelCase : Optional[int]=True , UpperCamelCase : Tuple=None , ): '''simple docstring''' __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : Tuple = patch_size __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : int = is_training __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : List[str] = backbone_out_indices __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : List[Any] = num_labels __UpperCAmelCase : Any = backbone_featmap_shape __UpperCAmelCase : Union[str, Any] = scope __UpperCAmelCase : Optional[int] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __UpperCAmelCase : List[str] = (image_size // patch_size) ** 2 __UpperCAmelCase : Tuple = num_patches + 1 def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[int] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_A , backbone_featmap_shape=self.backbone_featmap_shape , ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Dict , UpperCamelCase : Any , UpperCamelCase : Dict ): '''simple docstring''' __UpperCAmelCase : Any = DPTModel(config=_A ) model.to(_A ) model.eval() __UpperCAmelCase : Union[str, Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : int , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Optional[Any] = DPTForDepthEstimation(_A ) model.to(_A ) model.eval() __UpperCAmelCase : str = model(_A ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def lowerCamelCase__ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = self.num_labels __UpperCAmelCase : Union[str, Any] = DPTForSemanticSegmentation(_A ) model.to(_A ) model.eval() __UpperCAmelCase : Optional[int] = model(_A , labels=_A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Any = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __a = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __a = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __a = False __a = False __a = False def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = DPTModelTester(self ) __UpperCAmelCase : int = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(_A ) __UpperCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _A ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_A ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_A ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = True if model_class in get_values(_A ): continue __UpperCAmelCase : Any = model_class(_A ) model.to(_A ) model.train() __UpperCAmelCase : Tuple = self._prepare_for_class(_A , _A , return_labels=_A ) __UpperCAmelCase : str = model(**_A ).loss loss.backward() def lowerCamelCase__ ( self : str ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __UpperCAmelCase ,__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : int = True if model_class in get_values(_A ) or not model_class.supports_gradient_checkpointing: continue __UpperCAmelCase : Any = model_class(_A ) model.to(_A ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : Optional[int] = self._prepare_for_class(_A , _A , return_labels=_A ) __UpperCAmelCase : str = model(**_A ).loss loss.backward() def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[str] = _config_zero_init(_A ) for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(config=_A ) # Skip the check for the backbone __UpperCAmelCase : Union[str, Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __UpperCAmelCase : Union[str, Any] = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' pass @slow def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __UpperCAmelCase : List[str] = DPTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = """add""" with self.assertRaises(_A ): __UpperCAmelCase : List[Any] = DPTForDepthEstimation(_A ) def lowerCamelCase ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) __UpperCAmelCase : Dict = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(_A ) __UpperCAmelCase : Any = prepare_img() __UpperCAmelCase : Dict = image_processor(images=_A , return_tensors="""pt""" ).to(_A ) # forward pass with torch.no_grad(): __UpperCAmelCase : List[str] = model(**_A ) __UpperCAmelCase : Union[str, Any] = outputs.predicted_depth # verify the predicted depth __UpperCAmelCase : Any = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _A ) __UpperCAmelCase : Any = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(_A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _A , atol=1e-4 ) )
364
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[int] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCamelCase__ : """simple docstring""" __a = PegasusConfig __a = {} __a = """gelu""" def __init__( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Dict=True , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : Union[str, Any]=5 , UpperCamelCase : Any=4 , UpperCamelCase : Tuple=37 , UpperCamelCase : Any=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=20 , UpperCamelCase : List[str]=2 , UpperCamelCase : int=1 , UpperCamelCase : Optional[Any]=0 , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Any = eos_token_id __UpperCAmelCase : Optional[int] = pad_token_id __UpperCAmelCase : List[str] = bos_token_id def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __UpperCAmelCase : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCAmelCase : Union[str, Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCAmelCase : Any = prepare_pegasus_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, inputs_dict def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 20 __UpperCAmelCase : Tuple = model_class_name(UpperCamelCase ) __UpperCAmelCase : List[Any] = model.encode(inputs_dict["""input_ids"""] ) __UpperCAmelCase ,__UpperCAmelCase : int = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __UpperCAmelCase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCAmelCase : Tuple = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Dict = model.decode(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 20 __UpperCAmelCase : int = model_class_name(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] ) __UpperCAmelCase ,__UpperCAmelCase : Dict = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCAmelCase : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Union[str, Any] = model.decode(UpperCamelCase , UpperCamelCase , decoder_attention_mask=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=None , _UpperCamelCase : Any=None , ) -> Dict: '''simple docstring''' if attention_mask is None: __UpperCAmelCase : Optional[int] = np.not_equal(_UpperCamelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __UpperCAmelCase : Dict = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __a = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __a = True __a = False __a = False __a = False def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = FlaxPegasusModelTester(self ) __UpperCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : Tuple = self._prepare_for_class(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Dict = model_class(UpperCamelCase ) @jax.jit def encode_jitted(UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any]=None , **UpperCamelCase : List[str] ): return model.encode(input_ids=UpperCamelCase , attention_mask=UpperCamelCase ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase : Tuple = encode_jitted(**UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase : Optional[int] = encode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : int = model_class(UpperCamelCase ) __UpperCAmelCase : int = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __UpperCAmelCase : Any = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ): return model.decode( decoder_input_ids=UpperCamelCase , decoder_attention_mask=UpperCamelCase , encoder_outputs=UpperCamelCase , ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase : Union[str, Any] = decode_jitted(**UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase : str = decode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCamelCase ) __UpperCAmelCase : Optional[int] = np.ones((1, 1) ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @slow def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) __UpperCAmelCase : Union[str, Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) __UpperCAmelCase : List[Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCAmelCase : List[str] = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""np""" , truncation=UpperCamelCase , max_length=512 , padding=UpperCamelCase ) __UpperCAmelCase : int = model.generate(**UpperCamelCase , num_beams=2 ).sequences __UpperCAmelCase : str = tokenizer.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) assert tgt_text == decoded
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : str ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[str] = len(snake_case__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __UpperCAmelCase : str = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(snake_case__ ): return None __UpperCAmelCase : Tuple = sorted_collection[point] if current_item == item: return point else: if point < left: __UpperCAmelCase : Any = left __UpperCAmelCase : Optional[int] = point elif point > right: __UpperCAmelCase : str = right __UpperCAmelCase : Tuple = point else: if item < current_item: __UpperCAmelCase : Union[str, Any] = point - 1 else: __UpperCAmelCase : List[str] = point + 1 return None def lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(snake_case__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) elif point > right: return interpolation_search_by_recursion(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( snake_case__ , snake_case__ , snake_case__ , point - 1 ) else: return interpolation_search_by_recursion( snake_case__ , snake_case__ , point + 1 , snake_case__ ) def lowerCamelCase ( _UpperCamelCase : str ) -> int: '''simple docstring''' if collection != sorted(snake_case__ ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys UpperCAmelCase : str = 0 if debug == 1: UpperCAmelCase : Tuple = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') UpperCAmelCase : List[Any] = 67 UpperCAmelCase : Optional[Any] = interpolation_search(collection, target) if result is not None: print(F"{target} found at positions: {result}") else: print('Not found')
365
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } UpperCAmelCase : List[str] = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = EfficientNetConfig() __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""hidden_dim"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""width_coef"""] __UpperCAmelCase : str = CONFIG_MAP[model_name]["""depth_coef"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""dropout_rate"""] __UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""] __UpperCAmelCase : int = """huggingface/label-files""" __UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json""" __UpperCAmelCase : str = 1_0_0_0 __UpperCAmelCase : Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Dict = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCamelCase ( _UpperCamelCase : Any ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : List[str] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_UpperCamelCase , ) return preprocessor def lowerCamelCase ( _UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __UpperCAmelCase : str = sorted(set(_UpperCamelCase ) ) __UpperCAmelCase : Optional[int] = len(_UpperCamelCase ) __UpperCAmelCase : Any = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )} __UpperCAmelCase : Any = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __UpperCAmelCase : List[str] = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __UpperCAmelCase : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: __UpperCAmelCase : Optional[Any] = """efficientnet.""" + item[1] __UpperCAmelCase : Tuple = """classifier.weight""" __UpperCAmelCase : Optional[int] = """classifier.bias""" return key_mapping def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue __UpperCAmelCase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: __UpperCAmelCase : int = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __UpperCAmelCase : Optional[Any] = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __UpperCAmelCase : List[str] = torch.from_numpy(np.transpose(_UpperCamelCase ) ) else: __UpperCAmelCase : Tuple = torch.from_numpy(_UpperCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCamelCase ) @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = model_classes[model_name]( include_top=_UpperCamelCase , weights="""imagenet""" , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , ) __UpperCAmelCase : List[str] = original_model.trainable_variables __UpperCAmelCase : List[Any] = original_model.non_trainable_variables __UpperCAmelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __UpperCAmelCase : int = param.numpy() __UpperCAmelCase : Dict = list(tf_params.keys() ) # Load HuggingFace model __UpperCAmelCase : Optional[Any] = get_efficientnet_config(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(_UpperCamelCase ).eval() __UpperCAmelCase : Any = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __UpperCAmelCase : Tuple = rename_keys(_UpperCamelCase ) replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Initialize preprocessor and preprocess input image __UpperCAmelCase : List[Any] = convert_image_processor(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = hf_model(**_UpperCamelCase ) __UpperCAmelCase : Any = outputs.logits.detach().numpy() # Original model inference __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : str = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __UpperCAmelCase : Optional[Any] = image.img_to_array(_UpperCamelCase ) __UpperCAmelCase : Tuple = np.expand_dims(_UpperCamelCase , axis=0 ) __UpperCAmelCase : str = original_model.predict(_UpperCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCamelCase ): os.mkdir(_UpperCamelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCamelCase ) preprocessor.save_pretrained(_UpperCamelCase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) __UpperCAmelCase : List[str] = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_UpperCamelCase ) hf_model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') UpperCAmelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : float ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("""Length must be a positive.""" ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def lowerCamelCase ( _UpperCamelCase : float ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("""Length must be a positive.""" ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""keras_nlp"""] def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(self , ["""keras_nlp"""] )
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __UpperCAmelCase : Optional[Any] = str(bin(_UpperCamelCase ) )[2:] # remove the leading "0b" __UpperCAmelCase : Optional[Any] = str(bin(_UpperCamelCase ) )[2:] # remove the leading "0b" __UpperCAmelCase : Union[str, Any] = max(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCamelCase ) , b_binary.zfill(_UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" UpperCAmelCase : Dict = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCamelCase ( _UpperCamelCase : bytes ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Any = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_UpperCamelCase ) __UpperCAmelCase : str = """""".join(bin(_UpperCamelCase )[2:].zfill(8 ) for byte in data ) __UpperCAmelCase : int = len(_UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later __UpperCAmelCase : Dict = b"""=""" * ((6 - len(_UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_UpperCamelCase ) % 6) else: __UpperCAmelCase : List[str] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_UpperCamelCase ) , 6 ) ).encode() + padding ) def lowerCamelCase ( _UpperCamelCase : str ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Tuple = ( """argument should be a bytes-like object or ASCII string, """ f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_UpperCamelCase , _UpperCamelCase ): try: __UpperCAmelCase : Optional[Any] = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) __UpperCAmelCase : str = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __UpperCAmelCase : List[str] = encoded_data[:-padding] __UpperCAmelCase : int = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __UpperCAmelCase : Optional[Any] = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) __UpperCAmelCase : List[Any] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_UpperCamelCase ) , 8 ) ] return bytes(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int = 1_0_0_0 ) -> int: '''simple docstring''' __UpperCAmelCase : int = 3 __UpperCAmelCase : Optional[int] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"{solution() = }")
368
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase : str = logging.get_logger(__name__) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ): '''simple docstring''' warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
320
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCAmelCase : List[str] = pd.read_csv('sample_data.csv', header=None) UpperCAmelCase : str = df.shape[:1][0] # If you're using some other dataset input the target column UpperCAmelCase : str = df.iloc[:, 1:2] UpperCAmelCase : Any = actual_data.values.reshape(len_data, 1) UpperCAmelCase : Any = MinMaxScaler().fit_transform(actual_data) UpperCAmelCase : Optional[int] = 10 UpperCAmelCase : List[Any] = 5 UpperCAmelCase : Any = 20 UpperCAmelCase : int = len_data - periods * look_back UpperCAmelCase : List[Any] = actual_data[:division] UpperCAmelCase : Tuple = actual_data[division - look_back :] UpperCAmelCase , UpperCAmelCase : List[str] = [], [] UpperCAmelCase , UpperCAmelCase : int = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCAmelCase : List[Any] = np.array(train_x) UpperCAmelCase : Optional[int] = np.array(test_x) UpperCAmelCase : Optional[int] = np.array([list(i.ravel()) for i in train_y]) UpperCAmelCase : List[Any] = np.array([list(i.ravel()) for i in test_y]) UpperCAmelCase : Optional[int] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') UpperCAmelCase : int = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCAmelCase : Optional[int] = model.predict(x_test)
369
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = LEDTokenizer __a = LEDTokenizerFast __a = True def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' super().setUp() __UpperCAmelCase : Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __UpperCAmelCase : str = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase ) ) def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : str , UpperCamelCase : Any ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self : str ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCAmelCase : Union[str, Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = tokenizer(UpperCamelCase , max_length=len(UpperCamelCase ) , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCamelCase , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIn("""input_ids""" , UpperCamelCase ) self.assertIn("""attention_mask""" , UpperCamelCase ) self.assertNotIn("""labels""" , UpperCamelCase ) self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[Any] = tokenizer(text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : str = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization."""] __UpperCAmelCase : int = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Tuple = tokenizer(text_target=UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Optional[Any] = inputs["""input_ids"""] __UpperCAmelCase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = ["""Summary of the text.""", """Another summary."""] __UpperCAmelCase : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , padding=UpperCamelCase ) __UpperCAmelCase : str = [[0] * len(UpperCamelCase ) for x in encoded_output["""input_ids"""]] __UpperCAmelCase : List[Any] = tokenizer.pad(UpperCamelCase ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Any = """A, <mask> AllenNLP sentence.""" __UpperCAmelCase : Dict = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) __UpperCAmelCase : List[Any] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
320
0
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple ) -> str: '''simple docstring''' assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = tmp_path / "cache" __UpperCAmelCase : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase : Optional[Any] = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[Any] = tmp_path / "cache" __UpperCAmelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __UpperCAmelCase : List[Any] = features.copy() if features else default_expected_features __UpperCAmelCase : Tuple = ( Features({feature: Value(__SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase : str = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = tmp_path / "cache" __UpperCAmelCase : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __UpperCAmelCase : Tuple = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Any , _UpperCamelCase : str ) -> Any: '''simple docstring''' if issubclass(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __UpperCAmelCase : Optional[Any] = parquet_path elif issubclass(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __UpperCAmelCase : Dict = [parquet_path] __UpperCAmelCase : List[Any] = tmp_path / "cache" __UpperCAmelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __UpperCAmelCase : Any = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Any=("train",) ) -> int: '''simple docstring''' assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for split in splits: __UpperCAmelCase : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : Any ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = tmp_path / "cache" __UpperCAmelCase : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase : Tuple = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Any ) -> Any: '''simple docstring''' __UpperCAmelCase : str = tmp_path / "cache" __UpperCAmelCase : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __UpperCAmelCase : Dict = features.copy() if features else default_expected_features __UpperCAmelCase : Dict = ( Features({feature: Value(__SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase : List[Any] = ParquetDatasetReader({"""train""": parquet_path} , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) -> str: '''simple docstring''' if split: __UpperCAmelCase : Optional[int] = {split: parquet_path} else: __UpperCAmelCase : Dict = "train" __UpperCAmelCase : int = {"train": parquet_path, "test": parquet_path} __UpperCAmelCase : Any = tmp_path / "cache" __UpperCAmelCase : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __UpperCAmelCase : Optional[Any] = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = ParquetDatasetWriter(__SCREAMING_SNAKE_CASE , tmp_path / """foo.parquet""" ) assert writer.write() > 0 __UpperCAmelCase : Union[str, Any] = pq.ParquetFile(tmp_path / """foo.parquet""" ) __UpperCAmelCase : Optional[Any] = pf.read() assert dataset.data.table == output_table def lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = str(shared_datadir / """test_image_rgb.jpg""" ) __UpperCAmelCase : str = {"image": [image_path]} __UpperCAmelCase : List[Any] = Features({"""image""": Image()} ) __UpperCAmelCase : Any = Dataset.from_dict(__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Dict = ParquetDatasetWriter(__SCREAMING_SNAKE_CASE , tmp_path / """foo.parquet""" ) assert writer.write() > 0 __UpperCAmelCase : Tuple = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features __UpperCAmelCase : Union[str, Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=__SCREAMING_SNAKE_CASE ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' assert get_writer_batch_size(__SCREAMING_SNAKE_CASE ) == expected
370
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCamelCase__ : """simple docstring""" def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : List[Any]=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : int=99 , UpperCamelCase : Any=[1, 1, 2] , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Union[str, Any]=8 , UpperCamelCase : int=37 , UpperCamelCase : Optional[Any]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : int=0.0 , UpperCamelCase : Union[str, Any]=512 , UpperCamelCase : Any=3 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : str=None , UpperCamelCase : Tuple=False , ): '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : str = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : Optional[Any] = use_input_mask __UpperCAmelCase : Tuple = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Optional[int] = block_sizes __UpperCAmelCase : Optional[Any] = num_decoder_layers __UpperCAmelCase : Union[str, Any] = d_model __UpperCAmelCase : Dict = n_head __UpperCAmelCase : Optional[Any] = d_head __UpperCAmelCase : Dict = d_inner __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout __UpperCAmelCase : List[Any] = attention_dropout __UpperCAmelCase : str = activation_dropout __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : str = 2 __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : List[Any] = num_choices __UpperCAmelCase : Any = scope __UpperCAmelCase : Dict = initializer_std # Used in the tests to check the size of the first attention layer __UpperCAmelCase : Dict = n_head # Used in the tests to check the size of the first hidden state __UpperCAmelCase : Dict = self.d_model # Used in the tests to check the number of output hidden states/attentions __UpperCAmelCase : Dict = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __UpperCAmelCase : List[Any] = self.num_hidden_layers + 2 def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[str] = None if self.use_input_mask: __UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Dict = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : str = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__ ( self : Any , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : List[Any] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : List[str] = model(UpperCamelCase ) __UpperCAmelCase : List[Any] = [input_ids, input_mask] __UpperCAmelCase : Dict = model(UpperCamelCase ) __UpperCAmelCase : Tuple = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __UpperCAmelCase : int = False __UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Optional[Any] = model(UpperCamelCase ) __UpperCAmelCase : int = [input_ids, input_mask] __UpperCAmelCase : int = model(UpperCamelCase ) __UpperCAmelCase : List[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __UpperCAmelCase : List[Any] = False __UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __UpperCAmelCase : int = False __UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : str = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , ): '''simple docstring''' __UpperCAmelCase : Tuple = TFFunnelForPreTraining(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : int = TFFunnelForMaskedLM(config=UpperCamelCase ) __UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Optional[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_labels __UpperCAmelCase : Optional[Any] = TFFunnelForSequenceClassification(config=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Tuple = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : str = TFFunnelForMultipleChoice(config=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : str = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : int = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : List[str] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : str = TFFunnelForTokenClassification(config=UpperCamelCase ) __UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : str , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Any = TFFunnelForQuestionAnswering(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Any = model(UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) , ) : Dict = config_and_inputs __UpperCAmelCase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __a = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __a = False __a = False def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = TFFunnelModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase ) @require_tf class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __a = False __a = False def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : List[str] = TFFunnelModelTester(self , base=UpperCamelCase ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase )
320
0
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : Any , UpperCamelCase : WhisperForConditionalGeneration , UpperCamelCase : WhisperProcessor , UpperCamelCase : AutoencoderKL , UpperCamelCase : CLIPTextModel , UpperCamelCase : CLIPTokenizer , UpperCamelCase : UNetaDConditionModel , UpperCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCamelCase : StableDiffusionSafetyChecker , UpperCamelCase : CLIPImageProcessor , ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__snake_case , speech_processor=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , feature_extractor=__snake_case , ) def lowerCamelCase__ ( self : str , UpperCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": __UpperCAmelCase : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' self.enable_attention_slicing(__snake_case ) @torch.no_grad() def __call__( self : int , UpperCamelCase : Any , UpperCamelCase : List[str]=16_000 , UpperCamelCase : int = 512 , UpperCamelCase : int = 512 , UpperCamelCase : int = 50 , UpperCamelCase : float = 7.5 , UpperCamelCase : Optional[Union[str, List[str]]] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[torch.Generator] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , **UpperCamelCase : List[str] , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.speech_processor.feature_extractor( __snake_case , return_tensors="""pt""" , sampling_rate=__snake_case ).input_features.to(self.device ) __UpperCAmelCase : str = self.speech_model.generate(__snake_case , max_length=480_000 ) __UpperCAmelCase : Union[str, Any] = self.speech_processor.tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case , normalize=__snake_case )[ 0 ] if isinstance(__snake_case , __snake_case ): __UpperCAmelCase : List[str] = 1 elif isinstance(__snake_case , __snake_case ): __UpperCAmelCase : Dict = len(__snake_case ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__snake_case )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__snake_case , __snake_case ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__snake_case )}.''' ) # get prompt text embeddings __UpperCAmelCase : List[Any] = self.tokenizer( __snake_case , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __UpperCAmelCase : Optional[int] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __UpperCAmelCase : int = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __UpperCAmelCase : Any = text_input_ids[:, : self.tokenizer.model_max_length] __UpperCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = text_embeddings.shape __UpperCAmelCase : Tuple = text_embeddings.repeat(1 , __snake_case , 1 ) __UpperCAmelCase : Optional[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , __snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __UpperCAmelCase : int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __UpperCAmelCase : Dict = 42 if negative_prompt is None: __UpperCAmelCase : List[Any] = [""""""] * batch_size elif type(__snake_case ) is not type(__snake_case ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__snake_case )} !=''' f''' {type(__snake_case )}.''' ) elif isinstance(__snake_case , __snake_case ): __UpperCAmelCase : List[Any] = [negative_prompt] elif batch_size != len(__snake_case ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__snake_case )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __UpperCAmelCase : List[str] = negative_prompt __UpperCAmelCase : Dict = text_input_ids.shape[-1] __UpperCAmelCase : str = self.tokenizer( __snake_case , padding="""max_length""" , max_length=__snake_case , truncation=__snake_case , return_tensors="""pt""" , ) __UpperCAmelCase : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase : List[Any] = uncond_embeddings.shape[1] __UpperCAmelCase : List[Any] = uncond_embeddings.repeat(1 , __snake_case , 1 ) __UpperCAmelCase : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , __snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCAmelCase : Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __UpperCAmelCase : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __UpperCAmelCase : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __UpperCAmelCase : int = torch.randn(__snake_case , generator=__snake_case , device="""cpu""" , dtype=__snake_case ).to( self.device ) else: __UpperCAmelCase : int = torch.randn(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __UpperCAmelCase : int = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __UpperCAmelCase : List[str] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __UpperCAmelCase : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __UpperCAmelCase : Dict = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __UpperCAmelCase : List[Any] = {} if accepts_eta: __UpperCAmelCase : List[str] = eta for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCAmelCase : Any = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual __UpperCAmelCase : Tuple = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample # perform guidance if do_classifier_free_guidance: __UpperCAmelCase ,__UpperCAmelCase : int = noise_pred.chunk(2 ) __UpperCAmelCase : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : int = self.scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__snake_case , __snake_case , __snake_case ) __UpperCAmelCase : Any = 1 / 0.18215 * latents __UpperCAmelCase : Optional[Any] = self.vae.decode(__snake_case ).sample __UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCAmelCase : Union[str, Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__snake_case , nsfw_content_detected=__snake_case )
371
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = 0 while b > 0: if b & 1: __UpperCAmelCase : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
320
0
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float ) -> tuple: '''simple docstring''' if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""image_processor""", """tokenizer"""] __a = """AutoImageProcessor""" __a = """AutoTokenizer""" def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : str = self.image_processor def __call__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=None , **UpperCamelCase : Optional[int] ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: __UpperCAmelCase : Optional[Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: __UpperCAmelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
320
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = XGLMTokenizer __a = XGLMTokenizerFast __a = True __a = True def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : List[str] = XGLMTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Dict = """<pad>""" __UpperCAmelCase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase ) , 1_008 ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = XGLMTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) __UpperCAmelCase : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __UpperCAmelCase : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCamelCase__ ( self : Any ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase , f.name ) __UpperCAmelCase : str = XGLMTokenizer(f.name , keep_accents=UpperCamelCase ) __UpperCAmelCase : Any = pickle.dumps(UpperCamelCase ) pickle.loads(UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' if not self.test_rust_tokenizer: return __UpperCAmelCase : Dict = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() __UpperCAmelCase : List[Any] = """I was born in 92000, and this is falsé.""" __UpperCAmelCase : str = tokenizer.tokenize(UpperCamelCase ) __UpperCAmelCase : List[str] = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = self.get_rust_tokenizer() __UpperCAmelCase : List[Any] = tokenizer.encode(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @slow def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = """Hello World!""" __UpperCAmelCase : Optional[Any] = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase , self.big_tokenizer.encode(UpperCamelCase ) ) @slow def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : int = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off __UpperCAmelCase : Optional[Any] = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase , self.big_tokenizer.encode(UpperCamelCase ) ) @slow def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase , )
351
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : list[float] , _UpperCamelCase : list[float] ) -> float: '''simple docstring''' __UpperCAmelCase : Tuple = sorted(numsa + numsa ) __UpperCAmelCase ,__UpperCAmelCase : Dict = divmod(len(_UpperCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[Any] = [float(x) for x in input('Enter the elements of first array: ').split()] UpperCAmelCase : Optional[int] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
320
0
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase : Optional[Any] = {'UserAgent': UserAgent().random} def lowerCamelCase ( _UpperCamelCase : Optional[Any] ) -> dict: '''simple docstring''' __UpperCAmelCase : Optional[int] = script.contents[0] __UpperCAmelCase : Tuple = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCamelCase__ : """simple docstring""" def __init__( self : str , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : List[str] = f'''https://www.instagram.com/{username}/''' __UpperCAmelCase : Optional[Any] = self.get_json() def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[str] = requests.get(self.url , headers=UpperCamelCase ).text __UpperCAmelCase : Tuple = BeautifulSoup(UpperCamelCase , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : str ): '''simple docstring''' return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : int ): '''simple docstring''' return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return self.user_data["username"] @property def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return self.user_data["full_name"] @property def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return self.user_data["biography"] @property def lowerCamelCase__ ( self : int ): '''simple docstring''' return self.user_data["business_email"] @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return self.user_data["external_url"] @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def lowerCamelCase__ ( self : int ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def lowerCamelCase__ ( self : int ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return self.user_data["is_verified"] @property def lowerCamelCase__ ( self : int ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase ( _UpperCamelCase : str = "github" ) -> None: '''simple docstring''' import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions __UpperCAmelCase : Optional[Any] = InstagramUser(_UpperCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _UpperCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[Any] = InstagramUser('github') print(instagram_user) print(F"{instagram_user.number_of_posts = }") print(F"{instagram_user.number_of_followers = }") print(F"{instagram_user.number_of_followings = }") print(F"{instagram_user.email = }") print(F"{instagram_user.website = }") print(F"{instagram_user.profile_picture_url = }") print(F"{instagram_user.is_verified = }") print(F"{instagram_user.is_private = }")
352
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = """hf-internal-testing/tiny-random-t5""" __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Optional[int] = tokenizer("""This is me""" , return_tensors="""pt""" ) __UpperCAmelCase : int = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __UpperCAmelCase : Tuple = model.generate(**UpperCamelCase ) __UpperCAmelCase : Tuple = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase ) __UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __UpperCAmelCase : Tuple = model_reloaded.generate(**UpperCamelCase ) self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase ) ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Any = """hf-internal-testing/tiny-random-t5""" __UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Tuple = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(UpperCamelCase ): model.save_pretrained(UpperCamelCase ) __UpperCAmelCase : Tuple = model.reverse_bettertransformer() model.save_pretrained(UpperCamelCase )
320
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: UpperCAmelCase : Tuple = None try: import msvcrt except ImportError: UpperCAmelCase : List[Any] = None try: import fcntl except ImportError: UpperCAmelCase : str = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: UpperCAmelCase : Optional[int] = OSError # Data # ------------------------------------------------ UpperCAmelCase : int = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] UpperCAmelCase : Union[str, Any] = '3.0.12' UpperCAmelCase : Optional[int] = None def lowerCamelCase ( ) -> Tuple: '''simple docstring''' global _logger __UpperCAmelCase : int = _logger or logging.getLogger(__name__ ) return _logger class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Any , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = lock_file return None def __str__( self : Any ): '''simple docstring''' __UpperCAmelCase : Tuple = f'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class lowerCamelCase__ : """simple docstring""" def __init__( self : List[Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Any = lock return None def __enter__( self : Any ): '''simple docstring''' return self.lock def __exit__( self : Dict , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Tuple ): '''simple docstring''' self.lock.release() return None class lowerCamelCase__ : """simple docstring""" def __init__( self : Tuple , UpperCamelCase : List[str] , UpperCamelCase : List[Any]=-1 , UpperCamelCase : Tuple=None ): '''simple docstring''' __UpperCAmelCase : Dict = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __UpperCAmelCase : Optional[Any] = self.hash_filename_if_too_long(UpperCamelCase , UpperCamelCase ) # The path to the lock file. __UpperCAmelCase : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __UpperCAmelCase : int = None # The default timeout value. __UpperCAmelCase : Tuple = timeout # We use this lock primarily for the lock counter. __UpperCAmelCase : List[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __UpperCAmelCase : Any = 0 return None @property def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return self._lock_file @property def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return self._timeout @timeout.setter def lowerCamelCase__ ( self : str , UpperCamelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = float(UpperCamelCase ) return None def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' raise NotImplementedError() def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' raise NotImplementedError() @property def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self._lock_file_fd is not None def lowerCamelCase__ ( self : Dict , UpperCamelCase : Dict=None , UpperCamelCase : int=0.05 ): '''simple docstring''' if timeout is None: __UpperCAmelCase : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __UpperCAmelCase : List[str] = id(self ) __UpperCAmelCase : Dict = self._lock_file __UpperCAmelCase : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(UpperCamelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __UpperCAmelCase : Any = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Optional[Any]=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __UpperCAmelCase : Optional[int] = id(self ) __UpperCAmelCase : List[Any] = self._lock_file logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() __UpperCAmelCase : Optional[Any] = 0 logger().debug(f'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self : List[str] ): '''simple docstring''' self.acquire() return self def __exit__( self : int , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Tuple ): '''simple docstring''' self.release() return None def __del__( self : Tuple ): '''simple docstring''' self.release(force=UpperCamelCase ) return None def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : int = os.path.basename(UpperCamelCase ) if len(UpperCamelCase ) > max_length and max_length > 0: __UpperCAmelCase : Dict = os.path.dirname(UpperCamelCase ) __UpperCAmelCase : List[str] = str(hash(UpperCamelCase ) ) __UpperCAmelCase : Optional[Any] = filename[: max_length - len(UpperCamelCase ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(UpperCamelCase , UpperCamelCase ) else: return path class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : str , UpperCamelCase : Tuple , UpperCamelCase : List[str]=-1 , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(UpperCamelCase , timeout=UpperCamelCase , max_filename_length=UpperCamelCase ) __UpperCAmelCase : str = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __UpperCAmelCase : int = os.open(self._lock_file , UpperCamelCase ) except OSError: pass else: try: msvcrt.locking(UpperCamelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(UpperCamelCase ) else: __UpperCAmelCase : int = fd return None def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self._lock_file_fd __UpperCAmelCase : List[str] = None msvcrt.locking(UpperCamelCase , msvcrt.LK_UNLCK , 1 ) os.close(UpperCamelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : str=-1 , UpperCamelCase : Dict=None ): '''simple docstring''' __UpperCAmelCase : Any = os.statvfs(os.path.dirname(UpperCamelCase ) ).f_namemax super().__init__(UpperCamelCase , timeout=UpperCamelCase , max_filename_length=UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : str = os.O_RDWR | os.O_CREAT | os.O_TRUNC __UpperCAmelCase : Tuple = os.open(self._lock_file , UpperCamelCase ) try: fcntl.flock(UpperCamelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(UpperCamelCase ) else: __UpperCAmelCase : int = fd return None def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Dict = self._lock_file_fd __UpperCAmelCase : Union[str, Any] = None fcntl.flock(UpperCamelCase , fcntl.LOCK_UN ) os.close(UpperCamelCase ) return None class lowerCamelCase__ ( A ): """simple docstring""" def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Any = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __UpperCAmelCase : List[Any] = os.open(self._lock_file , UpperCamelCase ) except OSError: pass else: __UpperCAmelCase : str = fd return None def lowerCamelCase__ ( self : Dict ): '''simple docstring''' os.close(self._lock_file_fd ) __UpperCAmelCase : str = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None UpperCAmelCase : Optional[Any] = None if msvcrt: UpperCAmelCase : Optional[int] = WindowsFileLock elif fcntl: UpperCAmelCase : Optional[Any] = UnixFileLock else: UpperCAmelCase : int = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : int = { 'shi-labs/dinat-mini-in1k-224': 'https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json', # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCamelCase__ ( A , A ): """simple docstring""" __a = """dinat""" __a = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , UpperCamelCase : Optional[Any]=4 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : str=64 , UpperCamelCase : List[Any]=[3, 4, 6, 5] , UpperCamelCase : Tuple=[2, 4, 8, 16] , UpperCamelCase : Optional[int]=7 , UpperCamelCase : Union[str, Any]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCamelCase : Dict=3.0 , UpperCamelCase : List[Any]=True , UpperCamelCase : int=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : str=0.1 , UpperCamelCase : str="gelu" , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : str=1e-5 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Tuple , ): '''simple docstring''' super().__init__(**UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = patch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = embed_dim __UpperCAmelCase : Optional[Any] = depths __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = num_heads __UpperCAmelCase : str = kernel_size __UpperCAmelCase : Optional[Any] = dilations __UpperCAmelCase : str = mlp_ratio __UpperCAmelCase : Dict = qkv_bias __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : List[str] = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Tuple = layer_norm_eps __UpperCAmelCase : Tuple = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase : Any = int(embed_dim * 2 ** (len(UpperCamelCase ) - 1) ) __UpperCAmelCase : Union[str, Any] = layer_scale_init_value __UpperCAmelCase : Union[str, Any] = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(UpperCamelCase ) + 1 )] __UpperCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=UpperCamelCase , out_indices=UpperCamelCase , stage_names=self.stage_names )
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase : List[str] = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Any = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCamelCase__ ( A ): """simple docstring""" __a = """deformable_detr""" __a = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : str , UpperCamelCase : int=True , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=300 , UpperCamelCase : List[Any]=1_024 , UpperCamelCase : Tuple=6 , UpperCamelCase : Optional[Any]=1_024 , UpperCamelCase : str=8 , UpperCamelCase : Tuple=6 , UpperCamelCase : Optional[Any]=1_024 , UpperCamelCase : int=8 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : Any=True , UpperCamelCase : int="relu" , UpperCamelCase : Tuple=256 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Any=0.02 , UpperCamelCase : Any=1.0 , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Dict=False , UpperCamelCase : Tuple="sine" , UpperCamelCase : Union[str, Any]="resnet50" , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[int]=False , UpperCamelCase : int=4 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : int=4 , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Union[str, Any]=300 , UpperCamelCase : Dict=False , UpperCamelCase : int=1 , UpperCamelCase : Optional[Any]=5 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Dict=1 , UpperCamelCase : Any=1 , UpperCamelCase : Optional[int]=5 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : str=0.25 , UpperCamelCase : int=False , **UpperCamelCase : int , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : List[str] = backbone_config.get("""model_type""" ) __UpperCAmelCase : Tuple = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : str = config_class.from_dict(UpperCamelCase ) __UpperCAmelCase : int = use_timm_backbone __UpperCAmelCase : Dict = backbone_config __UpperCAmelCase : Union[str, Any] = num_channels __UpperCAmelCase : int = num_queries __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : Tuple = d_model __UpperCAmelCase : Any = encoder_ffn_dim __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : List[str] = encoder_attention_heads __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : Optional[int] = decoder_layers __UpperCAmelCase : Union[str, Any] = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : str = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Optional[Any] = init_std __UpperCAmelCase : Any = init_xavier_std __UpperCAmelCase : Optional[Any] = encoder_layerdrop __UpperCAmelCase : Tuple = auxiliary_loss __UpperCAmelCase : Union[str, Any] = position_embedding_type __UpperCAmelCase : List[Any] = backbone __UpperCAmelCase : int = use_pretrained_backbone __UpperCAmelCase : str = dilation # deformable attributes __UpperCAmelCase : Dict = num_feature_levels __UpperCAmelCase : int = encoder_n_points __UpperCAmelCase : Any = decoder_n_points __UpperCAmelCase : Dict = two_stage __UpperCAmelCase : Optional[Any] = two_stage_num_proposals __UpperCAmelCase : Optional[Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __UpperCAmelCase : Any = class_cost __UpperCAmelCase : str = bbox_cost __UpperCAmelCase : str = giou_cost # Loss coefficients __UpperCAmelCase : str = mask_loss_coefficient __UpperCAmelCase : Optional[int] = dice_loss_coefficient __UpperCAmelCase : List[Any] = bbox_loss_coefficient __UpperCAmelCase : Dict = giou_loss_coefficient __UpperCAmelCase : str = eos_coefficient __UpperCAmelCase : Optional[Any] = focal_alpha __UpperCAmelCase : Optional[Any] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return self.encoder_attention_heads @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return self.d_model def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __UpperCAmelCase : List[str] = self.backbone_config.to_dict() __UpperCAmelCase : Optional[int] = self.__class__.model_type return output
355
"""simple docstring""" def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[str] = 1 while len(_UpperCamelCase ) < 1E6: constant.append(str(_UpperCamelCase ) ) i += 1 __UpperCAmelCase : List[str] = """""".join(_UpperCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
320
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = MgpstrTokenizer __a = False __a = {} __a = False def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' super().setUp() # fmt: off __UpperCAmelCase : List[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __UpperCAmelCase : Optional[Any] = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase ) + """\n""" ) def lowerCamelCase__ ( self : Dict , **UpperCamelCase : Any ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Any = """tester""" __UpperCAmelCase : Dict = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def lowerCamelCase__ ( self : int ): '''simple docstring''' pass def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_tokenizers(do_lower_case=UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Any = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __UpperCAmelCase : Optional[Any] = tokenizer.encode([special_token] , add_special_tokens=UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 1 ) __UpperCAmelCase : List[str] = tokenizer.decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) self.assertTrue(special_token not in decoded ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[Any] = self.get_input_output_texts(UpperCamelCase ) __UpperCAmelCase : str = tokenizer.tokenize(UpperCamelCase ) __UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(UpperCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertNotEqual(len(UpperCamelCase ) , 0 ) __UpperCAmelCase : str = tokenizer.decode(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual(text_a.replace(""" """ , """""" ) , UpperCamelCase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' pass
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : str , UpperCamelCase : List[Any] , UpperCamelCase : Tuple=100 , UpperCamelCase : List[Any]=13 , UpperCamelCase : List[str]=30 , UpperCamelCase : List[str]=2 , UpperCamelCase : Dict=3 , UpperCamelCase : List[str]=True , UpperCamelCase : Tuple=True , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[Any]=4 , UpperCamelCase : Optional[int]=37 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : int=10 , UpperCamelCase : List[str]=0.02 , UpperCamelCase : List[str]=3 , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Dict = image_size __UpperCAmelCase : Tuple = patch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Any = is_training __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCAmelCase : Any = (image_size // patch_size) ** 2 __UpperCAmelCase : Tuple = num_patches + 1 def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[Any] = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) return config, pixel_values, labels def lowerCamelCase__ ( self : Any , UpperCamelCase : Dict , UpperCamelCase : str , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : List[Any] = FlaxBeitModel(config=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : int = FlaxBeitForMaskedImageModeling(config=UpperCamelCase ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : int , UpperCamelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Dict = self.type_sequence_label_size __UpperCAmelCase : str = FlaxBeitForImageClassification(config=UpperCamelCase ) __UpperCAmelCase : Optional[int] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Optional[int] = FlaxBeitForImageClassification(UpperCamelCase ) __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : int = model(UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() ( __UpperCAmelCase ) : List[str] = config_and_inputs __UpperCAmelCase : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[str] = FlaxBeitModelTester(self ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(UpperCamelCase ) __UpperCAmelCase : Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : Dict = self._prepare_for_class(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model_class(UpperCamelCase ) @jax.jit def model_jitted(UpperCamelCase : Optional[Any] , **UpperCamelCase : Tuple ): return model(pixel_values=UpperCamelCase , **UpperCamelCase ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase : str = model_jitted(**UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase : Any = model_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def lowerCamelCase__ ( self : Any ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCAmelCase : Tuple = model_class_name.from_pretrained("""microsoft/beit-base-patch16-224""" ) __UpperCAmelCase : Dict = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(UpperCamelCase ) def lowerCamelCase ( ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @require_flax class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FlaxBeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ) __UpperCAmelCase : Optional[int] = self.default_image_processor __UpperCAmelCase : Tuple = prepare_img() __UpperCAmelCase : str = image_processor(images=UpperCamelCase , return_tensors="""np""" ).pixel_values # prepare bool_masked_pos __UpperCAmelCase : Union[str, Any] = np.ones((1, 196) , dtype=UpperCamelCase ) # forward pass __UpperCAmelCase : Tuple = model(pixel_values=UpperCamelCase , bool_masked_pos=UpperCamelCase ) __UpperCAmelCase : Dict = outputs.logits # verify the logits __UpperCAmelCase : Any = (1, 196, 8_192) self.assertEqual(logits.shape , UpperCamelCase ) __UpperCAmelCase : Any = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , UpperCamelCase , atol=1e-2 ) ) @slow def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Any = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ) __UpperCAmelCase : int = self.default_image_processor __UpperCAmelCase : Dict = prepare_img() __UpperCAmelCase : List[Any] = image_processor(images=UpperCamelCase , return_tensors="""np""" ) # forward pass __UpperCAmelCase : Any = model(**UpperCamelCase ) __UpperCAmelCase : Tuple = outputs.logits # verify the logits __UpperCAmelCase : Optional[int] = (1, 1_000) self.assertEqual(logits.shape , UpperCamelCase ) __UpperCAmelCase : str = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] , UpperCamelCase , atol=1e-4 ) ) __UpperCAmelCase : int = 281 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase ) @slow def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : str = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ) __UpperCAmelCase : Dict = self.default_image_processor __UpperCAmelCase : Dict = prepare_img() __UpperCAmelCase : List[Any] = image_processor(images=UpperCamelCase , return_tensors="""np""" ) # forward pass __UpperCAmelCase : str = model(**UpperCamelCase ) __UpperCAmelCase : Optional[int] = outputs.logits # verify the logits __UpperCAmelCase : List[Any] = (1, 21_841) self.assertEqual(logits.shape , UpperCamelCase ) __UpperCAmelCase : Tuple = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] , UpperCamelCase , atol=1e-4 ) ) __UpperCAmelCase : str = 2_396 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase )
357
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput UpperCAmelCase : Optional[Any] = 'scheduler_config.json' class lowerCamelCase__ ( A ): """simple docstring""" __a = 1 __a = 2 __a = 3 __a = 4 __a = 5 __a = 6 __a = 7 __a = 8 __a = 9 __a = 10 __a = 11 __a = 12 __a = 13 __a = 14 @dataclass class lowerCamelCase__ ( A ): """simple docstring""" __a = 42 class lowerCamelCase__ : """simple docstring""" __a = SCHEDULER_CONFIG_NAME __a = [] __a = True @classmethod def lowerCamelCase__ ( cls : Any , UpperCamelCase : Dict[str, Any] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = cls.load_config( pretrained_model_name_or_path=UpperCamelCase , subfolder=UpperCamelCase , return_unused_kwargs=UpperCamelCase , return_commit_hash=UpperCamelCase , **UpperCamelCase , ) return cls.from_config(UpperCamelCase , return_unused_kwargs=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, os.PathLike] , UpperCamelCase : bool = False , **UpperCamelCase : Optional[Any] ): '''simple docstring''' self.save_config(save_directory=UpperCamelCase , push_to_hub=UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return self._get_compatibles() @classmethod def lowerCamelCase__ ( cls : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __UpperCAmelCase : List[str] = importlib.import_module(__name__.split(""".""" )[0] ) __UpperCAmelCase : List[str] = [ getattr(UpperCamelCase , UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase , UpperCamelCase ) ] return compatible_classes
320
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=UpperCamelCase , ) assert hasattr(self , """env""" ) def lowerCamelCase__ ( self : int , UpperCamelCase : Dict ): '''simple docstring''' __UpperCAmelCase : int = { """enabled""": True, """processes_per_host""": 8, } __UpperCAmelCase : Union[str, Any] = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } __UpperCAmelCase : Optional[int] = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} __UpperCAmelCase : Optional[Any] = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=UpperCamelCase , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=UpperCamelCase , py_version="""py36""" , ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : Dict ): '''simple docstring''' TrainingJobAnalytics(UpperCamelCase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : str = self.create_estimator(UpperCamelCase ) # run training estimator.fit() # result dataframe __UpperCAmelCase : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __UpperCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) __UpperCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __UpperCAmelCase : Optional[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , UpperCamelCase )
358
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase__ ( *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ): '''simple docstring''' pass def lowerCamelCase ( _UpperCamelCase : Image ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def lowerCamelCase ( _UpperCamelCase : Image ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = np.array(_UpperCamelCase ) __UpperCAmelCase : List[Any] = npimg.shape return {"hash": hashimage(_UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __a = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass @slow @require_torch def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) __UpperCAmelCase : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : int = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = """facebook/sam-vit-huge""" __UpperCAmelCase : str = pipeline("""mask-generation""" , model=UpperCamelCase ) __UpperCAmelCase : int = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : Dict = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] , )
320
0
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging UpperCAmelCase : str = logging.get_logger(__name__) def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = nn.functional.normalize(_UpperCamelCase ) __UpperCAmelCase : str = nn.functional.normalize(_UpperCamelCase ) return torch.mm(_UpperCamelCase , normalized_text_embeds.t() ) class lowerCamelCase__ ( A ): """simple docstring""" __a = CLIPConfig __a = ["""CLIPEncoderLayer"""] def __init__( self : Dict , UpperCamelCase : CLIPConfig ): '''simple docstring''' super().__init__(UpperCamelCase ) __UpperCAmelCase : Optional[int] = CLIPVisionModel(config.vision_config ) __UpperCAmelCase : List[Any] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=UpperCamelCase ) __UpperCAmelCase : List[Any] = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=UpperCamelCase ) __UpperCAmelCase : str = nn.Parameter(torch.ones(17 ) , requires_grad=UpperCamelCase ) __UpperCAmelCase : Tuple = nn.Parameter(torch.ones(3 ) , requires_grad=UpperCamelCase ) @torch.no_grad() def lowerCamelCase__ ( self : str , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : str = self.vision_model(UpperCamelCase )[1] # pooled_output __UpperCAmelCase : Optional[int] = self.visual_projection(UpperCamelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : Dict = cosine_distance(UpperCamelCase , self.special_care_embeds ).cpu().float().numpy() __UpperCAmelCase : str = cosine_distance(UpperCamelCase , self.concept_embeds ).cpu().float().numpy() __UpperCAmelCase : str = [] __UpperCAmelCase : str = image_embeds.shape[0] for i in range(UpperCamelCase ): __UpperCAmelCase : Union[str, Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __UpperCAmelCase : Dict = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __UpperCAmelCase : List[Any] = special_cos_dist[i][concept_idx] __UpperCAmelCase : int = self.special_care_embeds_weights[concept_idx].item() __UpperCAmelCase : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) __UpperCAmelCase : Optional[int] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): __UpperCAmelCase : str = cos_dist[i][concept_idx] __UpperCAmelCase : Optional[Any] = self.concept_embeds_weights[concept_idx].item() __UpperCAmelCase : Any = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(UpperCamelCase ) result.append(UpperCamelCase ) __UpperCAmelCase : str = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowerCamelCase__ ( self : List[str] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : torch.FloatTensor ): '''simple docstring''' __UpperCAmelCase : Dict = self.vision_model(UpperCamelCase )[1] # pooled_output __UpperCAmelCase : int = self.visual_projection(UpperCamelCase ) __UpperCAmelCase : int = cosine_distance(UpperCamelCase , self.special_care_embeds ) __UpperCAmelCase : Any = cosine_distance(UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __UpperCAmelCase : Tuple = 0.0 __UpperCAmelCase : Any = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __UpperCAmelCase : List[Any] = torch.any(special_scores > 0 , dim=1 ) __UpperCAmelCase : List[Any] = special_care * 0.01 __UpperCAmelCase : Dict = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __UpperCAmelCase : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __UpperCAmelCase : List[Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
359
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , UpperCamelCase : str ): '''simple docstring''' super().__init__() __UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase ) __UpperCAmelCase : int = list(model.children() )[:-2] __UpperCAmelCase : List[Any] = nn.Sequential(*UpperCamelCase ) __UpperCAmelCase : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.pool(self.model(UpperCamelCase ) ) __UpperCAmelCase : List[Any] = torch.flatten(UpperCamelCase , start_dim=2 ) __UpperCAmelCase : Any = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )] __UpperCAmelCase : Any = os.path.dirname(UpperCamelCase ) __UpperCAmelCase : List[str] = tokenizer __UpperCAmelCase : str = labels __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) __UpperCAmelCase : int = max_seq_length __UpperCAmelCase : int = transforms def __len__( self : List[str] ): '''simple docstring''' return len(self.data ) def __getitem__( self : List[str] , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Any = sentence[: self.max_seq_length] __UpperCAmelCase : Tuple = torch.zeros(self.n_classes ) __UpperCAmelCase : str = 1 __UpperCAmelCase : Any = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __UpperCAmelCase : Optional[int] = self.transforms(UpperCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = [len(row["""sentence"""] ) for row in batch] __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase ) __UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) __UpperCAmelCase : str = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ): __UpperCAmelCase : List[str] = input_row["""sentence"""] __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] ) __UpperCAmelCase : Optional[Any] = torch.stack([row["""label"""] for row in batch] ) __UpperCAmelCase : str = torch.stack([row["""image_start_token"""] for row in batch] ) __UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ) -> int: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
320
0
"""simple docstring""" class lowerCamelCase__ : # Public class to implement a graph """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' __UpperCAmelCase : List[str] = row __UpperCAmelCase : List[str] = col __UpperCAmelCase : List[Any] = graph def lowerCamelCase__ ( self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' __UpperCAmelCase : int = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __UpperCAmelCase : Optional[Any] = [-1, 0, 1, -1, 1, -1, 0, 1] __UpperCAmelCase : int = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): # And finally, count all islands. '''simple docstring''' __UpperCAmelCase : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] __UpperCAmelCase : Optional[Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase ) count += 1 return count
360
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
320
0
"""simple docstring""" UpperCAmelCase : List[str] = 256 # Modulus to hash a string UpperCAmelCase : Optional[int] = 100_0003 def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> bool: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ) __UpperCAmelCase : str = len(_UpperCamelCase ) if p_len > t_len: return False __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : int = 1 # Calculating the hash of pattern and substring of text for i in range(_UpperCamelCase ): __UpperCAmelCase : Union[str, Any] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : Optional[int] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : str = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowerCamelCase ( ) -> None: '''simple docstring''' __UpperCAmelCase : int = """abc1abc12""" __UpperCAmelCase : Any = """alskfjaldsabc1abc1abc12k23adsfabcabc""" __UpperCAmelCase : Union[str, Any] = """alskfjaldsk23adsfabcabc""" assert rabin_karp(_UpperCamelCase , _UpperCamelCase ) and not rabin_karp(_UpperCamelCase , _UpperCamelCase ) # Test 2) __UpperCAmelCase : Optional[Any] = """ABABX""" __UpperCAmelCase : Union[str, Any] = """ABABZABABYABABX""" assert rabin_karp(_UpperCamelCase , _UpperCamelCase ) # Test 3) __UpperCAmelCase : int = """AAAB""" __UpperCAmelCase : Any = """ABAAAAAB""" assert rabin_karp(_UpperCamelCase , _UpperCamelCase ) # Test 4) __UpperCAmelCase : Tuple = """abcdabcy""" __UpperCAmelCase : Optional[Any] = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(_UpperCamelCase , _UpperCamelCase ) # Test 5) __UpperCAmelCase : Any = """Lü""" __UpperCAmelCase : Optional[int] = """Lüsai""" assert rabin_karp(_UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : Any = """Lue""" assert not rabin_karp(_UpperCamelCase , _UpperCamelCase ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
361
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ) __UpperCAmelCase : List[Any] = sum(_UpperCamelCase ) __UpperCAmelCase : Optional[int] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __UpperCAmelCase : Any = True for i in range(1 , s + 1 ): __UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __UpperCAmelCase : Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __UpperCAmelCase : Optional[int] = s - 2 * j break return diff
320
0
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } UpperCAmelCase : List[str] = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = EfficientNetConfig() __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""hidden_dim"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""width_coef"""] __UpperCAmelCase : str = CONFIG_MAP[model_name]["""depth_coef"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""dropout_rate"""] __UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""] __UpperCAmelCase : int = """huggingface/label-files""" __UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json""" __UpperCAmelCase : str = 1_0_0_0 __UpperCAmelCase : Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Dict = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCamelCase ( _UpperCamelCase : Any ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : List[str] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_UpperCamelCase , ) return preprocessor def lowerCamelCase ( _UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __UpperCAmelCase : str = sorted(set(_UpperCamelCase ) ) __UpperCAmelCase : Optional[int] = len(_UpperCamelCase ) __UpperCAmelCase : Any = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )} __UpperCAmelCase : Any = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __UpperCAmelCase : List[str] = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __UpperCAmelCase : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: __UpperCAmelCase : Optional[Any] = """efficientnet.""" + item[1] __UpperCAmelCase : Tuple = """classifier.weight""" __UpperCAmelCase : Optional[int] = """classifier.bias""" return key_mapping def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue __UpperCAmelCase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: __UpperCAmelCase : int = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __UpperCAmelCase : Optional[Any] = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __UpperCAmelCase : List[str] = torch.from_numpy(np.transpose(_UpperCamelCase ) ) else: __UpperCAmelCase : Tuple = torch.from_numpy(_UpperCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCamelCase ) @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = model_classes[model_name]( include_top=_UpperCamelCase , weights="""imagenet""" , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , ) __UpperCAmelCase : List[str] = original_model.trainable_variables __UpperCAmelCase : List[Any] = original_model.non_trainable_variables __UpperCAmelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __UpperCAmelCase : int = param.numpy() __UpperCAmelCase : Dict = list(tf_params.keys() ) # Load HuggingFace model __UpperCAmelCase : Optional[Any] = get_efficientnet_config(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(_UpperCamelCase ).eval() __UpperCAmelCase : Any = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __UpperCAmelCase : Tuple = rename_keys(_UpperCamelCase ) replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Initialize preprocessor and preprocess input image __UpperCAmelCase : List[Any] = convert_image_processor(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = hf_model(**_UpperCamelCase ) __UpperCAmelCase : Any = outputs.logits.detach().numpy() # Original model inference __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : str = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __UpperCAmelCase : Optional[Any] = image.img_to_array(_UpperCamelCase ) __UpperCAmelCase : Tuple = np.expand_dims(_UpperCamelCase , axis=0 ) __UpperCAmelCase : str = original_model.predict(_UpperCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCamelCase ): os.mkdir(_UpperCamelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCamelCase ) preprocessor.save_pretrained(_UpperCamelCase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) __UpperCAmelCase : List[str] = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_UpperCamelCase ) hf_model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') UpperCAmelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
362
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""pixel_values"""] def __init__( self : Tuple , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 255 , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(**UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) __UpperCAmelCase : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : int = crop_size __UpperCAmelCase : Optional[int] = do_rescale __UpperCAmelCase : List[Any] = rescale_factor __UpperCAmelCase : Tuple = do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCAmelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCAmelCase : List[Any] = do_convert_rgb def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __UpperCAmelCase : int = get_resize_output_image_size(UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Dict , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, float] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ): '''simple docstring''' return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ): '''simple docstring''' return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : int = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Dict = size if size is not None else self.size __UpperCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase , param_name="""size""" , default_to_square=UpperCamelCase ) __UpperCAmelCase : Dict = resample if resample is not None else self.resample __UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , param_name="""crop_size""" , default_to_square=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Any = image_std if image_std is not None else self.image_std __UpperCAmelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCAmelCase : List[str] = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCAmelCase : int = [convert_to_rgb(UpperCamelCase ) for image in images] # All transformations expect numpy arrays. __UpperCAmelCase : Tuple = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: __UpperCAmelCase : Optional[int] = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: __UpperCAmelCase : int = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: __UpperCAmelCase : Dict = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: __UpperCAmelCase : Optional[Any] = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] __UpperCAmelCase : Any = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] __UpperCAmelCase : Any = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
320
0
"""simple docstring""" import re def lowerCamelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' if len(re.findall("""[ATCG]""" , _UpperCamelCase ) ) != len(_UpperCamelCase ): raise ValueError("""Invalid Strand""" ) return dna.translate(dna.maketrans("""ATCG""" , """TAGC""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" from collections.abc import Sequence def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : Dict = 0.0 for coeff in reversed(_UpperCamelCase ): __UpperCAmelCase : Any = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
320
0
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : str = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = AlbertTokenizer __a = AlbertTokenizerFast __a = True __a = True __a = True def lowerCamelCase__ ( self : str ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : List[str] = AlbertTokenizer(UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Dict = """this is a test""" __UpperCAmelCase : Dict = """this is a test""" return input_text, output_text def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Any = """<pad>""" __UpperCAmelCase : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(UpperCamelCase ) , 30_000 ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' if not self.test_rust_tokenizer: return __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_rust_tokenizer() __UpperCAmelCase : int = """I was born in 92000, and this is falsé.""" __UpperCAmelCase : int = tokenizer.tokenize(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : str = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) __UpperCAmelCase : Optional[int] = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() __UpperCAmelCase : Tuple = tokenizer.encode(UpperCamelCase ) __UpperCAmelCase : List[Any] = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Dict = AlbertTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) __UpperCAmelCase : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [48, 25, 21, 1_289] ) __UpperCAmelCase : str = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) __UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual(UpperCamelCase , [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) __UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual( UpperCamelCase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = AlbertTokenizer(UpperCamelCase ) __UpperCAmelCase : Tuple = tokenizer.encode("""sequence builders""" ) __UpperCAmelCase : Any = tokenizer.encode("""multi-sequence build""" ) __UpperCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) __UpperCAmelCase : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[str] = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
364
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[int] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCamelCase__ : """simple docstring""" __a = PegasusConfig __a = {} __a = """gelu""" def __init__( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Dict=True , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : Union[str, Any]=5 , UpperCamelCase : Any=4 , UpperCamelCase : Tuple=37 , UpperCamelCase : Any=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=20 , UpperCamelCase : List[str]=2 , UpperCamelCase : int=1 , UpperCamelCase : Optional[Any]=0 , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Any = eos_token_id __UpperCAmelCase : Optional[int] = pad_token_id __UpperCAmelCase : List[str] = bos_token_id def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __UpperCAmelCase : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCAmelCase : Union[str, Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCAmelCase : Any = prepare_pegasus_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, inputs_dict def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 20 __UpperCAmelCase : Tuple = model_class_name(UpperCamelCase ) __UpperCAmelCase : List[Any] = model.encode(inputs_dict["""input_ids"""] ) __UpperCAmelCase ,__UpperCAmelCase : int = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __UpperCAmelCase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCAmelCase : Tuple = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Dict = model.decode(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 20 __UpperCAmelCase : int = model_class_name(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] ) __UpperCAmelCase ,__UpperCAmelCase : Dict = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCAmelCase : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Union[str, Any] = model.decode(UpperCamelCase , UpperCamelCase , decoder_attention_mask=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=None , _UpperCamelCase : Any=None , ) -> Dict: '''simple docstring''' if attention_mask is None: __UpperCAmelCase : Optional[int] = np.not_equal(_UpperCamelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __UpperCAmelCase : Dict = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __a = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __a = True __a = False __a = False __a = False def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = FlaxPegasusModelTester(self ) __UpperCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : Tuple = self._prepare_for_class(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Dict = model_class(UpperCamelCase ) @jax.jit def encode_jitted(UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any]=None , **UpperCamelCase : List[str] ): return model.encode(input_ids=UpperCamelCase , attention_mask=UpperCamelCase ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase : Tuple = encode_jitted(**UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase : Optional[int] = encode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : int = model_class(UpperCamelCase ) __UpperCAmelCase : int = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __UpperCAmelCase : Any = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ): return model.decode( decoder_input_ids=UpperCamelCase , decoder_attention_mask=UpperCamelCase , encoder_outputs=UpperCamelCase , ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase : Union[str, Any] = decode_jitted(**UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase : str = decode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCamelCase ) __UpperCAmelCase : Optional[int] = np.ones((1, 1) ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @slow def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) __UpperCAmelCase : Union[str, Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) __UpperCAmelCase : List[Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCAmelCase : List[str] = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""np""" , truncation=UpperCamelCase , max_length=512 , padding=UpperCamelCase ) __UpperCAmelCase : int = model.generate(**UpperCamelCase , num_beams=2 ).sequences __UpperCAmelCase : str = tokenizer.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) assert tgt_text == decoded
320
0
"""simple docstring""" from __future__ import annotations class lowerCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase : Optional[int]=None ): '''simple docstring''' __UpperCAmelCase : Any = data __UpperCAmelCase : Optional[Any] = None def __repr__( self : List[str] ): '''simple docstring''' __UpperCAmelCase : int = [] __UpperCAmelCase : Tuple = self while temp: string_rep.append(f'''{temp.data}''' ) __UpperCAmelCase : Union[str, Any] = temp.next return "->".join(UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : list ) -> Tuple: '''simple docstring''' if not elements_list: raise Exception("""The Elements List is empty""" ) __UpperCAmelCase : List[Any] = Node(elements_list[0] ) for i in range(1 , len(_UpperCamelCase ) ): __UpperCAmelCase : List[str] = Node(elements_list[i] ) __UpperCAmelCase : List[Any] = current.next return head def lowerCamelCase ( _UpperCamelCase : Node ) -> None: '''simple docstring''' if head_node is not None and isinstance(_UpperCamelCase , _UpperCamelCase ): print_reverse(head_node.next ) print(head_node.data ) def lowerCamelCase ( ) -> Optional[int]: '''simple docstring''' from doctest import testmod testmod() __UpperCAmelCase : int = make_linked_list([1_4, 5_2, 1_4, 1_2, 4_3] ) print("""Linked List:""" ) print(_UpperCamelCase ) print("""Elements in Reverse:""" ) print_reverse(_UpperCamelCase ) if __name__ == "__main__": main()
365
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } UpperCAmelCase : List[str] = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = EfficientNetConfig() __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""hidden_dim"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""width_coef"""] __UpperCAmelCase : str = CONFIG_MAP[model_name]["""depth_coef"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""dropout_rate"""] __UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""] __UpperCAmelCase : int = """huggingface/label-files""" __UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json""" __UpperCAmelCase : str = 1_0_0_0 __UpperCAmelCase : Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Dict = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCamelCase ( _UpperCamelCase : Any ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : List[str] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_UpperCamelCase , ) return preprocessor def lowerCamelCase ( _UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __UpperCAmelCase : str = sorted(set(_UpperCamelCase ) ) __UpperCAmelCase : Optional[int] = len(_UpperCamelCase ) __UpperCAmelCase : Any = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )} __UpperCAmelCase : Any = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __UpperCAmelCase : List[str] = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __UpperCAmelCase : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: __UpperCAmelCase : Optional[Any] = """efficientnet.""" + item[1] __UpperCAmelCase : Tuple = """classifier.weight""" __UpperCAmelCase : Optional[int] = """classifier.bias""" return key_mapping def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue __UpperCAmelCase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: __UpperCAmelCase : int = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __UpperCAmelCase : Optional[Any] = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __UpperCAmelCase : List[str] = torch.from_numpy(np.transpose(_UpperCamelCase ) ) else: __UpperCAmelCase : Tuple = torch.from_numpy(_UpperCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCamelCase ) @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = model_classes[model_name]( include_top=_UpperCamelCase , weights="""imagenet""" , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , ) __UpperCAmelCase : List[str] = original_model.trainable_variables __UpperCAmelCase : List[Any] = original_model.non_trainable_variables __UpperCAmelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __UpperCAmelCase : int = param.numpy() __UpperCAmelCase : Dict = list(tf_params.keys() ) # Load HuggingFace model __UpperCAmelCase : Optional[Any] = get_efficientnet_config(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(_UpperCamelCase ).eval() __UpperCAmelCase : Any = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __UpperCAmelCase : Tuple = rename_keys(_UpperCamelCase ) replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Initialize preprocessor and preprocess input image __UpperCAmelCase : List[Any] = convert_image_processor(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = hf_model(**_UpperCamelCase ) __UpperCAmelCase : Any = outputs.logits.detach().numpy() # Original model inference __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : str = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __UpperCAmelCase : Optional[Any] = image.img_to_array(_UpperCamelCase ) __UpperCAmelCase : Tuple = np.expand_dims(_UpperCamelCase , axis=0 ) __UpperCAmelCase : str = original_model.predict(_UpperCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCamelCase ): os.mkdir(_UpperCamelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCamelCase ) preprocessor.save_pretrained(_UpperCamelCase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) __UpperCAmelCase : List[str] = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_UpperCamelCase ) hf_model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') UpperCAmelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
320
0
"""simple docstring""" import argparse UpperCAmelCase : Optional[int] = 'docs/source/_static/js/custom.js' def lowerCamelCase ( _UpperCamelCase : str ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCamelCase , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : Optional[Any] = f.readlines() __UpperCAmelCase : str = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 __UpperCAmelCase : int = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(_UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') UpperCAmelCase : Tuple = parser.parse_args() update_custom_js(args.version)
366
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""keras_nlp"""] def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(self , ["""keras_nlp"""] )
320
0
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput UpperCAmelCase : Optional[Any] = 'scheduler_config.json' class lowerCamelCase__ ( A ): """simple docstring""" __a = 1 __a = 2 __a = 3 __a = 4 __a = 5 __a = 6 __a = 7 __a = 8 __a = 9 __a = 10 __a = 11 __a = 12 __a = 13 __a = 14 @dataclass class lowerCamelCase__ ( A ): """simple docstring""" __a = 42 class lowerCamelCase__ : """simple docstring""" __a = SCHEDULER_CONFIG_NAME __a = [] __a = True @classmethod def lowerCamelCase__ ( cls : Any , UpperCamelCase : Dict[str, Any] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : List[Any] = cls.load_config( pretrained_model_name_or_path=UpperCamelCase , subfolder=UpperCamelCase , return_unused_kwargs=UpperCamelCase , return_commit_hash=UpperCamelCase , **UpperCamelCase , ) return cls.from_config(UpperCamelCase , return_unused_kwargs=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, os.PathLike] , UpperCamelCase : bool = False , **UpperCamelCase : Optional[Any] ): '''simple docstring''' self.save_config(save_directory=UpperCamelCase , push_to_hub=UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return self._get_compatibles() @classmethod def lowerCamelCase__ ( cls : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __UpperCAmelCase : List[str] = importlib.import_module(__name__.split(""".""" )[0] ) __UpperCAmelCase : List[str] = [ getattr(UpperCamelCase , UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase , UpperCamelCase ) ] return compatible_classes
367
"""simple docstring""" UpperCAmelCase : Dict = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCamelCase ( _UpperCamelCase : bytes ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Any = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_UpperCamelCase ) __UpperCAmelCase : str = """""".join(bin(_UpperCamelCase )[2:].zfill(8 ) for byte in data ) __UpperCAmelCase : int = len(_UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later __UpperCAmelCase : Dict = b"""=""" * ((6 - len(_UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_UpperCamelCase ) % 6) else: __UpperCAmelCase : List[str] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_UpperCamelCase ) , 6 ) ).encode() + padding ) def lowerCamelCase ( _UpperCamelCase : str ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Tuple = ( """argument should be a bytes-like object or ASCII string, """ f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_UpperCamelCase , _UpperCamelCase ): try: __UpperCAmelCase : Optional[Any] = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) __UpperCAmelCase : str = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __UpperCAmelCase : List[str] = encoded_data[:-padding] __UpperCAmelCase : int = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __UpperCAmelCase : Optional[Any] = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) __UpperCAmelCase : List[Any] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_UpperCamelCase ) , 8 ) ] return bytes(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
320
0
"""simple docstring""" UpperCAmelCase : List[Any] = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) UpperCAmelCase : Optional[int] = frozenset(['prompt', 'negative_prompt']) UpperCAmelCase : Tuple = frozenset([]) UpperCAmelCase : Tuple = frozenset(['image']) UpperCAmelCase : Union[str, Any] = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) UpperCAmelCase : Optional[Any] = frozenset(['image']) UpperCAmelCase : Optional[Any] = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) UpperCAmelCase : Dict = frozenset(['prompt', 'image', 'negative_prompt']) UpperCAmelCase : int = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) UpperCAmelCase : Optional[int] = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) UpperCAmelCase : List[str] = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) UpperCAmelCase : str = frozenset(['image', 'mask_image']) UpperCAmelCase : Union[str, Any] = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) UpperCAmelCase : Dict = frozenset(['example_image', 'image', 'mask_image']) UpperCAmelCase : Any = frozenset(['class_labels']) UpperCAmelCase : List[str] = frozenset(['class_labels']) UpperCAmelCase : Optional[Any] = frozenset(['batch_size']) UpperCAmelCase : List[Any] = frozenset([]) UpperCAmelCase : str = frozenset(['batch_size']) UpperCAmelCase : List[str] = frozenset([]) UpperCAmelCase : Optional[Any] = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) UpperCAmelCase : Tuple = frozenset(['prompt', 'negative_prompt']) UpperCAmelCase : Any = frozenset(['input_tokens']) UpperCAmelCase : Optional[Any] = frozenset(['input_tokens'])
368
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase : str = logging.get_logger(__name__) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ): '''simple docstring''' warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
320
0
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance UpperCAmelCase : int = 6378137.0 UpperCAmelCase : Tuple = 6356752.314245 UpperCAmelCase : List[str] = 637_8137 def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : str = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __UpperCAmelCase : int = atan((1 - flattening) * tan(radians(_UpperCamelCase ) ) ) __UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(_UpperCamelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __UpperCAmelCase : List[str] = haversine_distance(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __UpperCAmelCase : List[Any] = (b_lata + b_lata) / 2 __UpperCAmelCase : Optional[int] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __UpperCAmelCase : Any = (sin(_UpperCamelCase ) ** 2) * (cos(_UpperCamelCase ) ** 2) __UpperCAmelCase : List[str] = cos(sigma / 2 ) ** 2 __UpperCAmelCase : Optional[int] = (sigma - sin(_UpperCamelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __UpperCAmelCase : List[str] = (cos(_UpperCamelCase ) ** 2) * (sin(_UpperCamelCase ) ** 2) __UpperCAmelCase : List[Any] = sin(sigma / 2 ) ** 2 __UpperCAmelCase : int = (sigma + sin(_UpperCamelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = LEDTokenizer __a = LEDTokenizerFast __a = True def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' super().setUp() __UpperCAmelCase : Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __UpperCAmelCase : str = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase ) ) def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : str , UpperCamelCase : Any ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self : str ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCAmelCase : Union[str, Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = tokenizer(UpperCamelCase , max_length=len(UpperCamelCase ) , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCamelCase , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIn("""input_ids""" , UpperCamelCase ) self.assertIn("""attention_mask""" , UpperCamelCase ) self.assertNotIn("""labels""" , UpperCamelCase ) self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[Any] = tokenizer(text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : str = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization."""] __UpperCAmelCase : int = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Tuple = tokenizer(text_target=UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Optional[Any] = inputs["""input_ids"""] __UpperCAmelCase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = ["""Summary of the text.""", """Another summary."""] __UpperCAmelCase : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , padding=UpperCamelCase ) __UpperCAmelCase : str = [[0] * len(UpperCamelCase ) for x in encoded_output["""input_ids"""]] __UpperCAmelCase : List[Any] = tokenizer.pad(UpperCamelCase ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Any = """A, <mask> AllenNLP sentence.""" __UpperCAmelCase : Dict = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) __UpperCAmelCase : List[Any] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> int: '''simple docstring''' if len(_UpperCamelCase ) != len(_UpperCamelCase ): raise ValueError("""String lengths must match!""" ) __UpperCAmelCase : Dict = 0 for chara, chara in zip(_UpperCamelCase , _UpperCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCamelCase__ : """simple docstring""" def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : List[Any]=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : int=99 , UpperCamelCase : Any=[1, 1, 2] , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Union[str, Any]=8 , UpperCamelCase : int=37 , UpperCamelCase : Optional[Any]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : int=0.0 , UpperCamelCase : Union[str, Any]=512 , UpperCamelCase : Any=3 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : str=None , UpperCamelCase : Tuple=False , ): '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : str = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : Optional[Any] = use_input_mask __UpperCAmelCase : Tuple = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Optional[int] = block_sizes __UpperCAmelCase : Optional[Any] = num_decoder_layers __UpperCAmelCase : Union[str, Any] = d_model __UpperCAmelCase : Dict = n_head __UpperCAmelCase : Optional[Any] = d_head __UpperCAmelCase : Dict = d_inner __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout __UpperCAmelCase : List[Any] = attention_dropout __UpperCAmelCase : str = activation_dropout __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : str = 2 __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : List[Any] = num_choices __UpperCAmelCase : Any = scope __UpperCAmelCase : Dict = initializer_std # Used in the tests to check the size of the first attention layer __UpperCAmelCase : Dict = n_head # Used in the tests to check the size of the first hidden state __UpperCAmelCase : Dict = self.d_model # Used in the tests to check the number of output hidden states/attentions __UpperCAmelCase : Dict = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __UpperCAmelCase : List[Any] = self.num_hidden_layers + 2 def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[str] = None if self.use_input_mask: __UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Dict = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : str = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__ ( self : Any , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : List[Any] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : List[str] = model(UpperCamelCase ) __UpperCAmelCase : List[Any] = [input_ids, input_mask] __UpperCAmelCase : Dict = model(UpperCamelCase ) __UpperCAmelCase : Tuple = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __UpperCAmelCase : int = False __UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Optional[Any] = model(UpperCamelCase ) __UpperCAmelCase : int = [input_ids, input_mask] __UpperCAmelCase : int = model(UpperCamelCase ) __UpperCAmelCase : List[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __UpperCAmelCase : List[Any] = False __UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __UpperCAmelCase : int = False __UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : str = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , ): '''simple docstring''' __UpperCAmelCase : Tuple = TFFunnelForPreTraining(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : int = TFFunnelForMaskedLM(config=UpperCamelCase ) __UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Optional[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_labels __UpperCAmelCase : Optional[Any] = TFFunnelForSequenceClassification(config=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Tuple = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : str = TFFunnelForMultipleChoice(config=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : str = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : int = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : List[str] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : str = TFFunnelForTokenClassification(config=UpperCamelCase ) __UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : str , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Any = TFFunnelForQuestionAnswering(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Any = model(UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) , ) : Dict = config_and_inputs __UpperCAmelCase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __a = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __a = False __a = False def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = TFFunnelModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase ) @require_tf class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __a = False __a = False def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : List[str] = TFFunnelModelTester(self , base=UpperCamelCase ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase )
320
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Tuple = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowerCamelCase__ ( A ): """simple docstring""" __a = """roformer""" def __init__( self : Tuple , UpperCamelCase : Any=50_000 , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=768 , UpperCamelCase : Tuple=12 , UpperCamelCase : int=12 , UpperCamelCase : Dict=3_072 , UpperCamelCase : str="gelu" , UpperCamelCase : Tuple=0.1 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[int]=1_536 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : Optional[int]=0 , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Any=True , **UpperCamelCase : Dict , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : List[str] = hidden_size if embedding_size is None else embedding_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Tuple = layer_norm_eps __UpperCAmelCase : int = rotary_value __UpperCAmelCase : Optional[Any] = use_cache class lowerCamelCase__ ( A ): """simple docstring""" @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __UpperCAmelCase : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """sequence"""} __UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
371
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = 0 while b > 0: if b & 1: __UpperCAmelCase : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
320
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any]=8 ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=5_1_2 , _UpperCamelCase : List[str]=5_1_2 ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) __UpperCAmelCase : str = np.array(pil_image.convert("""RGB""" ) ) __UpperCAmelCase : Optional[Any] = arr.astype(np.floataa ) / 127.5 - 1 __UpperCAmelCase : List[Any] = np.transpose(_UpperCamelCase , [2, 0, 1] ) __UpperCAmelCase : Union[str, Any] = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase : UNetaDConditionModel , UpperCamelCase : DDPMScheduler , UpperCamelCase : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=UpperCamelCase , scheduler=UpperCamelCase , movq=UpperCamelCase , ) __UpperCAmelCase : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : List[str] = min(int(num_inference_steps * strength ) , UpperCamelCase ) __UpperCAmelCase : int = max(num_inference_steps - init_timestep , 0 ) __UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : Tuple=None ): '''simple docstring''' if not isinstance(UpperCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCamelCase )}''' ) __UpperCAmelCase : Optional[Any] = image.to(device=UpperCamelCase , dtype=UpperCamelCase ) __UpperCAmelCase : List[str] = batch_size * num_images_per_prompt if image.shape[1] == 4: __UpperCAmelCase : Tuple = image else: if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(UpperCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCamelCase ) ] __UpperCAmelCase : Any = torch.cat(UpperCamelCase , dim=0 ) else: __UpperCAmelCase : List[str] = self.movq.encode(UpperCamelCase ).latent_dist.sample(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = self.movq.config.scaling_factor * init_latents __UpperCAmelCase : Any = torch.cat([init_latents] , dim=0 ) __UpperCAmelCase : Any = init_latents.shape __UpperCAmelCase : str = randn_tensor(UpperCamelCase , generator=UpperCamelCase , device=UpperCamelCase , dtype=UpperCamelCase ) # get latents __UpperCAmelCase : Union[str, Any] = self.scheduler.add_noise(UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = init_latents return latents def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : int=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __UpperCAmelCase : List[str] = torch.device(f'''cuda:{gpu_id}''' ) __UpperCAmelCase : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[int]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __UpperCAmelCase : List[Any] = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase : Tuple = cpu_offload_with_hook(UpperCamelCase , UpperCamelCase , prev_module_hook=UpperCamelCase ) # We'll offload the last model manually. __UpperCAmelCase : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase__ ( self : Any ): '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase ) def __call__( self : List[Any] , UpperCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , UpperCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase : int = 512 , UpperCamelCase : int = 512 , UpperCamelCase : int = 100 , UpperCamelCase : float = 4.0 , UpperCamelCase : float = 0.3 , UpperCamelCase : int = 1 , UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._execution_device __UpperCAmelCase : List[Any] = guidance_scale > 1.0 if isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : Any = torch.cat(UpperCamelCase , dim=0 ) __UpperCAmelCase : int = image_embeds.shape[0] if isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : int = torch.cat(UpperCamelCase , dim=0 ) if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(UpperCamelCase , dim=0 ) __UpperCAmelCase : Union[str, Any] = negative_image_embeds.repeat_interleave(UpperCamelCase , dim=0 ) __UpperCAmelCase : List[str] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase ) if not isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : List[str] = [image] if not all(isinstance(UpperCamelCase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f'''Input is in incorrect format: {[type(UpperCamelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) __UpperCAmelCase : List[Any] = torch.cat([prepare_image(UpperCamelCase , UpperCamelCase , UpperCamelCase ) for i in image] , dim=0 ) __UpperCAmelCase : Optional[int] = image.to(dtype=image_embeds.dtype , device=UpperCamelCase ) __UpperCAmelCase : int = self.movq.encode(UpperCamelCase )["""latents"""] __UpperCAmelCase : Tuple = latents.repeat_interleave(UpperCamelCase , dim=0 ) self.scheduler.set_timesteps(UpperCamelCase , device=UpperCamelCase ) __UpperCAmelCase : List[str] = self.get_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) __UpperCAmelCase : int = downscale_height_and_width(UpperCamelCase , UpperCamelCase , self.movq_scale_factor ) __UpperCAmelCase : int = self.prepare_latents( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , image_embeds.dtype , UpperCamelCase , UpperCamelCase ) for i, t in enumerate(self.progress_bar(UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCAmelCase : Any = {"""image_embeds""": image_embeds} __UpperCAmelCase : List[str] = self.unet( sample=UpperCamelCase , timestep=UpperCamelCase , encoder_hidden_states=UpperCamelCase , added_cond_kwargs=UpperCamelCase , return_dict=UpperCamelCase , )[0] if do_classifier_free_guidance: __UpperCAmelCase : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) __UpperCAmelCase : Any = noise_pred.chunk(2 ) __UpperCAmelCase : Any = variance_pred.chunk(2 ) __UpperCAmelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : List[Any] = self.scheduler.step( UpperCamelCase , UpperCamelCase , UpperCamelCase , generator=UpperCamelCase , )[0] # post-processing __UpperCAmelCase : List[str] = self.movq.decode(UpperCamelCase , force_not_quantize=UpperCamelCase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: __UpperCAmelCase : int = image * 0.5 + 0.5 __UpperCAmelCase : List[Any] = image.clamp(0 , 1 ) __UpperCAmelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCAmelCase : List[Any] = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase )
350
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""image_processor""", """tokenizer"""] __a = """AutoImageProcessor""" __a = """AutoTokenizer""" def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : str = self.image_processor def __call__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=None , **UpperCamelCase : Optional[int] ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: __UpperCAmelCase : Optional[Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: __UpperCAmelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
320
0
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = MobileBertConfig.from_json_file(_UpperCamelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) __UpperCAmelCase : List[Any] = MobileBertForPreTraining(_UpperCamelCase ) # Load weights from tf checkpoint __UpperCAmelCase : List[Any] = load_tf_weights_in_mobilebert(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
351
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : list[float] , _UpperCamelCase : list[float] ) -> float: '''simple docstring''' __UpperCAmelCase : Tuple = sorted(numsa + numsa ) __UpperCAmelCase ,__UpperCAmelCase : Dict = divmod(len(_UpperCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[Any] = [float(x) for x in input('Enter the elements of first array: ').split()] UpperCAmelCase : Optional[int] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int = 1_0_0_0 ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = -1 __UpperCAmelCase : Optional[int] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __UpperCAmelCase : Optional[Any] = (n * n - 2 * a * n) // (2 * n - 2 * a) __UpperCAmelCase : List[Any] = n - a - b if c * c == (a * a + b * b): __UpperCAmelCase : Any = a * b * c if candidate >= product: __UpperCAmelCase : int = candidate return product if __name__ == "__main__": print(F"{solution() = }")
352
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = """hf-internal-testing/tiny-random-t5""" __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Optional[int] = tokenizer("""This is me""" , return_tensors="""pt""" ) __UpperCAmelCase : int = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __UpperCAmelCase : Tuple = model.generate(**UpperCamelCase ) __UpperCAmelCase : Tuple = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase ) __UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __UpperCAmelCase : Tuple = model_reloaded.generate(**UpperCamelCase ) self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase ) ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Any = """hf-internal-testing/tiny-random-t5""" __UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Tuple = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(UpperCamelCase ): model.save_pretrained(UpperCamelCase ) __UpperCAmelCase : Tuple = model.reverse_bettertransformer() model.save_pretrained(UpperCamelCase )
320
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""keras_nlp"""] def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(self , ["""keras_nlp"""] )
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class lowerCamelCase__ ( A ): """simple docstring""" __a = """pix2struct_text_model""" __a = ["""past_key_values"""] __a = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[Any] , UpperCamelCase : Optional[Any]=50_244 , UpperCamelCase : List[Any]=768 , UpperCamelCase : Optional[Any]=64 , UpperCamelCase : Optional[Any]=2_048 , UpperCamelCase : Dict=12 , UpperCamelCase : Dict=12 , UpperCamelCase : List[Any]=32 , UpperCamelCase : Tuple=128 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Optional[Any]=1e-6 , UpperCamelCase : List[Any]=1.0 , UpperCamelCase : str="gelu_new" , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : Optional[int]=False , UpperCamelCase : Optional[int]=0 , UpperCamelCase : Optional[int]=1 , UpperCamelCase : List[Any]=False , UpperCamelCase : Optional[Any]=True , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : List[str] = d_kv __UpperCAmelCase : Union[str, Any] = d_ff __UpperCAmelCase : List[Any] = num_layers __UpperCAmelCase : List[Any] = num_heads __UpperCAmelCase : Union[str, Any] = relative_attention_num_buckets __UpperCAmelCase : Optional[int] = relative_attention_max_distance __UpperCAmelCase : Tuple = dropout_rate __UpperCAmelCase : Dict = layer_norm_epsilon __UpperCAmelCase : Union[str, Any] = initializer_factor __UpperCAmelCase : int = use_cache __UpperCAmelCase : Optional[Any] = eos_token_id __UpperCAmelCase : Tuple = decoder_start_token_id # for backwards compatibility __UpperCAmelCase : Union[str, Any] = dense_act_fn super().__init__( pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , decoder_start_token_id=UpperCamelCase , tie_word_embeddings=UpperCamelCase , is_decoder=UpperCamelCase , **UpperCamelCase , ) @classmethod def lowerCamelCase__ ( cls : Optional[int] , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : List[Any] ): '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase ) __UpperCAmelCase : Any = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": __UpperCAmelCase : int = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class lowerCamelCase__ ( A ): """simple docstring""" __a = """pix2struct_vision_model""" def __init__( self : Union[str, Any] , UpperCamelCase : Union[str, Any]=768 , UpperCamelCase : Optional[Any]=768 , UpperCamelCase : List[Any]=2_048 , UpperCamelCase : Tuple=64 , UpperCamelCase : Optional[int]=12 , UpperCamelCase : int=12 , UpperCamelCase : Any="gelu_new" , UpperCamelCase : List[Any]=1e-6 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : str=1e-1_0 , UpperCamelCase : Union[str, Any]=1.0 , UpperCamelCase : Union[str, Any]=4_096 , UpperCamelCase : Tuple=32 , UpperCamelCase : str=128 , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : List[str] = patch_embed_hidden_size __UpperCAmelCase : Optional[Any] = d_ff __UpperCAmelCase : List[Any] = dropout_rate __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Optional[int] = initializer_factor __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : List[Any] = dense_act_fn __UpperCAmelCase : Optional[Any] = seq_len __UpperCAmelCase : int = relative_attention_num_buckets __UpperCAmelCase : Dict = relative_attention_max_distance __UpperCAmelCase : List[Any] = d_kv @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase ) __UpperCAmelCase : List[str] = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": __UpperCAmelCase : Union[str, Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class lowerCamelCase__ ( A ): """simple docstring""" __a = """pix2struct""" __a = True def __init__( self : int , UpperCamelCase : Any=None , UpperCamelCase : Any=None , UpperCamelCase : Optional[Any]=1.0 , UpperCamelCase : Tuple=0.02 , UpperCamelCase : List[str]=False , UpperCamelCase : List[str]=False , UpperCamelCase : Optional[Any]=True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(tie_word_embeddings=UpperCamelCase , is_encoder_decoder=UpperCamelCase , **UpperCamelCase ) if text_config is None: __UpperCAmelCase : Optional[int] = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: __UpperCAmelCase : List[Any] = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) __UpperCAmelCase : Union[str, Any] = PixaStructTextConfig(**UpperCamelCase ) __UpperCAmelCase : str = PixaStructVisionConfig(**UpperCamelCase ) __UpperCAmelCase : Any = self.text_config.decoder_start_token_id __UpperCAmelCase : str = self.text_config.pad_token_id __UpperCAmelCase : Dict = self.text_config.eos_token_id __UpperCAmelCase : Optional[int] = initializer_factor __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Union[str, Any] = self.initializer_range __UpperCAmelCase : List[str] = self.initializer_range __UpperCAmelCase : Optional[int] = is_vqa @classmethod def lowerCamelCase__ ( cls : List[Any] , UpperCamelCase : PixaStructTextConfig , UpperCamelCase : PixaStructVisionConfig , **UpperCamelCase : List[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Tuple = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Dict = self.text_config.to_dict() __UpperCAmelCase : List[Any] = self.vision_config.to_dict() __UpperCAmelCase : List[Any] = self.__class__.model_type return output
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase : List[str] = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def lowerCamelCase ( _UpperCamelCase : SplitDict ) -> Any: '''simple docstring''' __UpperCAmelCase : str = split_dict._to_yaml_list() assert len(_UpperCamelCase ) == len(_UpperCamelCase ) __UpperCAmelCase : Any = SplitDict._from_yaml_list(_UpperCamelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump __UpperCAmelCase : int = None # the split name of split_dict takes over the name of the split info object __UpperCAmelCase : Tuple = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_UpperCamelCase ), SplitInfo(dataset_name="""my_dataset""" )] ) def lowerCamelCase ( _UpperCamelCase : int ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
355
"""simple docstring""" def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[str] = 1 while len(_UpperCamelCase ) < 1E6: constant.append(str(_UpperCamelCase ) ) i += 1 __UpperCAmelCase : List[str] = """""".join(_UpperCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
320
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> bool: '''simple docstring''' return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def lowerCamelCase ( _UpperCamelCase : int ) -> list[str]: '''simple docstring''' __UpperCAmelCase : str = [] __UpperCAmelCase : Tuple = 1_1 __UpperCAmelCase : Dict = int("""1""" + """0""" * digit_len ) for num in range(_UpperCamelCase , _UpperCamelCase ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(_UpperCamelCase , _UpperCamelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 __UpperCAmelCase : int = 1_0 return solutions def lowerCamelCase ( _UpperCamelCase : int = 2 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = 1.0 for fraction in fraction_list(_UpperCamelCase ): __UpperCAmelCase : Union[str, Any] = Fraction(_UpperCamelCase ) result *= frac.denominator / frac.numerator return int(_UpperCamelCase ) if __name__ == "__main__": print(solution())
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCamelCase__ : """simple docstring""" def __init__( self : str ): '''simple docstring''' __UpperCAmelCase : Dict = {} def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any]=1 ): '''simple docstring''' if self.graph.get(UpperCamelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: __UpperCAmelCase : Optional[int] = [[w, v]] if not self.graph.get(UpperCamelCase ): __UpperCAmelCase : Union[str, Any] = [] def lowerCamelCase__ ( self : Any ): '''simple docstring''' return list(self.graph ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Tuple , UpperCamelCase : Tuple ): '''simple docstring''' if self.graph.get(UpperCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[int]=-2 , UpperCamelCase : Union[str, Any]=-1 ): '''simple docstring''' if s == d: return [] __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : List[str] = [] if s == -2: __UpperCAmelCase : List[Any] = list(self.graph )[0] stack.append(UpperCamelCase ) visited.append(UpperCamelCase ) __UpperCAmelCase : str = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __UpperCAmelCase : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __UpperCAmelCase : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCamelCase ) != 0: __UpperCAmelCase : Dict = stack[len(UpperCamelCase ) - 1] else: __UpperCAmelCase : Optional[int] = ss # check if se have reached the starting point if len(UpperCamelCase ) == 0: return visited def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : List[str]=-1 ): '''simple docstring''' if c == -1: __UpperCAmelCase : Optional[Any] = floor(random() * 10_000 ) + 10 for i in range(UpperCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __UpperCAmelCase : int = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCamelCase , UpperCamelCase , 1 ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[str]=-2 ): '''simple docstring''' __UpperCAmelCase : str = deque() __UpperCAmelCase : Dict = [] if s == -2: __UpperCAmelCase : List[Any] = list(self.graph )[0] d.append(UpperCamelCase ) visited.append(UpperCamelCase ) while d: __UpperCAmelCase : Union[str, Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase__ ( self : str , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Any = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' return len(self.graph[u] ) def lowerCamelCase__ ( self : str , UpperCamelCase : int=-2 ): '''simple docstring''' __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Tuple = [] if s == -2: __UpperCAmelCase : Dict = list(self.graph )[0] stack.append(UpperCamelCase ) visited.append(UpperCamelCase ) __UpperCAmelCase : Dict = s __UpperCAmelCase : Any = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __UpperCAmelCase : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(UpperCamelCase ) != 0: __UpperCAmelCase : Optional[int] = stack[len(UpperCamelCase ) - 1] else: __UpperCAmelCase : Optional[int] = ss # check if se have reached the starting point if len(UpperCamelCase ) == 0: return sorted_nodes def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Dict = [] __UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(UpperCamelCase ) visited.append(UpperCamelCase ) __UpperCAmelCase : List[str] = -2 __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Dict = s __UpperCAmelCase : Tuple = False __UpperCAmelCase : str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __UpperCAmelCase : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __UpperCAmelCase : Union[str, Any] = len(UpperCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __UpperCAmelCase : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() __UpperCAmelCase : Tuple = True if len(UpperCamelCase ) != 0: __UpperCAmelCase : Tuple = stack[len(UpperCamelCase ) - 1] else: __UpperCAmelCase : Dict = False indirect_parents.append(UpperCamelCase ) __UpperCAmelCase : int = s __UpperCAmelCase : int = ss # check if se have reached the starting point if len(UpperCamelCase ) == 0: return list(UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : int = [] __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : List[Any] = list(self.graph )[0] stack.append(UpperCamelCase ) visited.append(UpperCamelCase ) __UpperCAmelCase : List[str] = -2 __UpperCAmelCase : Any = [] __UpperCAmelCase : Any = s __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __UpperCAmelCase : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __UpperCAmelCase : Dict = len(UpperCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __UpperCAmelCase : str = node[1] break # check if all the children are visited if s == ss: stack.pop() __UpperCAmelCase : int = True if len(UpperCamelCase ) != 0: __UpperCAmelCase : Tuple = stack[len(UpperCamelCase ) - 1] else: __UpperCAmelCase : Optional[Any] = False indirect_parents.append(UpperCamelCase ) __UpperCAmelCase : Tuple = s __UpperCAmelCase : List[Any] = ss # check if se have reached the starting point if len(UpperCamelCase ) == 0: return False def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : List[Any]=-2 , UpperCamelCase : Tuple=-1 ): '''simple docstring''' __UpperCAmelCase : Dict = time() self.dfs(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Dict = time() return end - begin def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Union[str, Any]=-2 ): '''simple docstring''' __UpperCAmelCase : int = time() self.bfs(UpperCamelCase ) __UpperCAmelCase : str = time() return end - begin class lowerCamelCase__ : """simple docstring""" def __init__( self : Dict ): '''simple docstring''' __UpperCAmelCase : Any = {} def lowerCamelCase__ ( self : Tuple , UpperCamelCase : int , UpperCamelCase : List[str] , UpperCamelCase : List[Any]=1 ): '''simple docstring''' if self.graph.get(UpperCamelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist __UpperCAmelCase : Union[str, Any] = [[w, v]] # add the other way if self.graph.get(UpperCamelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist __UpperCAmelCase : Any = [[w, u]] def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Tuple ): '''simple docstring''' if self.graph.get(UpperCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCamelCase ) # the other way round if self.graph.get(UpperCamelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, Any]=-2 , UpperCamelCase : int=-1 ): '''simple docstring''' if s == d: return [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Optional[int] = [] if s == -2: __UpperCAmelCase : Optional[int] = list(self.graph )[0] stack.append(UpperCamelCase ) visited.append(UpperCamelCase ) __UpperCAmelCase : List[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __UpperCAmelCase : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __UpperCAmelCase : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCamelCase ) != 0: __UpperCAmelCase : List[str] = stack[len(UpperCamelCase ) - 1] else: __UpperCAmelCase : Dict = ss # check if se have reached the starting point if len(UpperCamelCase ) == 0: return visited def lowerCamelCase__ ( self : Dict , UpperCamelCase : int=-1 ): '''simple docstring''' if c == -1: __UpperCAmelCase : Dict = floor(random() * 10_000 ) + 10 for i in range(UpperCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __UpperCAmelCase : Dict = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCamelCase , UpperCamelCase , 1 ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Tuple=-2 ): '''simple docstring''' __UpperCAmelCase : int = deque() __UpperCAmelCase : List[Any] = [] if s == -2: __UpperCAmelCase : int = list(self.graph )[0] d.append(UpperCamelCase ) visited.append(UpperCamelCase ) while d: __UpperCAmelCase : int = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Tuple ): '''simple docstring''' return len(self.graph[u] ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = [] __UpperCAmelCase : int = [] __UpperCAmelCase : Dict = list(self.graph )[0] stack.append(UpperCamelCase ) visited.append(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = -2 __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Tuple = s __UpperCAmelCase : Dict = False __UpperCAmelCase : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __UpperCAmelCase : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __UpperCAmelCase : Optional[Any] = len(UpperCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() __UpperCAmelCase : Dict = True if len(UpperCamelCase ) != 0: __UpperCAmelCase : int = stack[len(UpperCamelCase ) - 1] else: __UpperCAmelCase : List[str] = False indirect_parents.append(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = s __UpperCAmelCase : Optional[int] = ss # check if se have reached the starting point if len(UpperCamelCase ) == 0: return list(UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Tuple = [] __UpperCAmelCase : str = [] __UpperCAmelCase : Any = list(self.graph )[0] stack.append(UpperCamelCase ) visited.append(UpperCamelCase ) __UpperCAmelCase : str = -2 __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Optional[Any] = s __UpperCAmelCase : Tuple = False __UpperCAmelCase : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __UpperCAmelCase : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __UpperCAmelCase : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() __UpperCAmelCase : Tuple = True if len(UpperCamelCase ) != 0: __UpperCAmelCase : Optional[int] = stack[len(UpperCamelCase ) - 1] else: __UpperCAmelCase : Any = False indirect_parents.append(UpperCamelCase ) __UpperCAmelCase : Dict = s __UpperCAmelCase : Dict = ss # check if se have reached the starting point if len(UpperCamelCase ) == 0: return False def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return list(self.graph ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Dict=-2 , UpperCamelCase : int=-1 ): '''simple docstring''' __UpperCAmelCase : List[str] = time() self.dfs(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : List[str] = time() return end - begin def lowerCamelCase__ ( self : str , UpperCamelCase : Optional[Any]=-2 ): '''simple docstring''' __UpperCAmelCase : Tuple = time() self.bfs(UpperCamelCase ) __UpperCAmelCase : Any = time() return end - begin
357
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput UpperCAmelCase : Optional[Any] = 'scheduler_config.json' class lowerCamelCase__ ( A ): """simple docstring""" __a = 1 __a = 2 __a = 3 __a = 4 __a = 5 __a = 6 __a = 7 __a = 8 __a = 9 __a = 10 __a = 11 __a = 12 __a = 13 __a = 14 @dataclass class lowerCamelCase__ ( A ): """simple docstring""" __a = 42 class lowerCamelCase__ : """simple docstring""" __a = SCHEDULER_CONFIG_NAME __a = [] __a = True @classmethod def lowerCamelCase__ ( cls : Any , UpperCamelCase : Dict[str, Any] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = cls.load_config( pretrained_model_name_or_path=UpperCamelCase , subfolder=UpperCamelCase , return_unused_kwargs=UpperCamelCase , return_commit_hash=UpperCamelCase , **UpperCamelCase , ) return cls.from_config(UpperCamelCase , return_unused_kwargs=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, os.PathLike] , UpperCamelCase : bool = False , **UpperCamelCase : Optional[Any] ): '''simple docstring''' self.save_config(save_directory=UpperCamelCase , push_to_hub=UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return self._get_compatibles() @classmethod def lowerCamelCase__ ( cls : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __UpperCAmelCase : List[str] = importlib.import_module(__name__.split(""".""" )[0] ) __UpperCAmelCase : List[str] = [ getattr(UpperCamelCase , UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase , UpperCamelCase ) ] return compatible_classes
320
0
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Any = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) __UpperCAmelCase : Optional[Any] = VideoClassificationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase , top_k=2 ) __UpperCAmelCase : Any = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : Dict ): '''simple docstring''' for example in examples: __UpperCAmelCase : Tuple = video_classifier(UpperCamelCase ) self.assertEqual( UpperCamelCase , [ {"""score""": ANY(UpperCamelCase ), """label""": ANY(UpperCamelCase )}, {"""score""": ANY(UpperCamelCase ), """label""": ANY(UpperCamelCase )}, ] , ) @require_torch def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Tuple = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" __UpperCAmelCase : Any = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) __UpperCAmelCase : List[str] = pipeline( """video-classification""" , model=UpperCamelCase , feature_extractor=UpperCamelCase , frame_sampling_rate=4 ) __UpperCAmelCase : int = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) __UpperCAmelCase : Optional[int] = video_classifier(UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , ) __UpperCAmelCase : Any = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' pass
358
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase__ ( *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ): '''simple docstring''' pass def lowerCamelCase ( _UpperCamelCase : Image ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def lowerCamelCase ( _UpperCamelCase : Image ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = np.array(_UpperCamelCase ) __UpperCAmelCase : List[Any] = npimg.shape return {"hash": hashimage(_UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __a = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass @slow @require_torch def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) __UpperCAmelCase : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : int = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = """facebook/sam-vit-huge""" __UpperCAmelCase : str = pipeline("""mask-generation""" , model=UpperCamelCase ) __UpperCAmelCase : int = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : Dict = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] , )
320
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase__ ( *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __UpperCAmelCase : Optional[Any] = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Dict = vqa_pipeline(UpperCamelCase , top_k=1 ) self.assertEqual( UpperCamelCase , [ [{"""score""": ANY(UpperCamelCase ), """answer""": ANY(UpperCamelCase )}], [{"""score""": ANY(UpperCamelCase ), """answer""": ANY(UpperCamelCase )}], ] , ) @require_torch def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __UpperCAmelCase : Any = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __UpperCAmelCase : Union[str, Any] = """How many cats are there?""" __UpperCAmelCase : List[str] = vqa_pipeline(image=UpperCamelCase , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( UpperCamelCase , [{"""score""": ANY(UpperCamelCase ), """answer""": ANY(UpperCamelCase )}, {"""score""": ANY(UpperCamelCase ), """answer""": ANY(UpperCamelCase )}] ) __UpperCAmelCase : Union[str, Any] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( UpperCamelCase , [{"""score""": ANY(UpperCamelCase ), """answer""": ANY(UpperCamelCase )}, {"""score""": ANY(UpperCamelCase ), """answer""": ANY(UpperCamelCase )}] ) @slow @require_torch def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : str = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) __UpperCAmelCase : Tuple = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __UpperCAmelCase : Any = """How many cats are there?""" __UpperCAmelCase : List[Any] = vqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) __UpperCAmelCase : List[Any] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) __UpperCAmelCase : Union[str, Any] = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' pass
359
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , UpperCamelCase : str ): '''simple docstring''' super().__init__() __UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase ) __UpperCAmelCase : int = list(model.children() )[:-2] __UpperCAmelCase : List[Any] = nn.Sequential(*UpperCamelCase ) __UpperCAmelCase : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.pool(self.model(UpperCamelCase ) ) __UpperCAmelCase : List[Any] = torch.flatten(UpperCamelCase , start_dim=2 ) __UpperCAmelCase : Any = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )] __UpperCAmelCase : Any = os.path.dirname(UpperCamelCase ) __UpperCAmelCase : List[str] = tokenizer __UpperCAmelCase : str = labels __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) __UpperCAmelCase : int = max_seq_length __UpperCAmelCase : int = transforms def __len__( self : List[str] ): '''simple docstring''' return len(self.data ) def __getitem__( self : List[str] , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Any = sentence[: self.max_seq_length] __UpperCAmelCase : Tuple = torch.zeros(self.n_classes ) __UpperCAmelCase : str = 1 __UpperCAmelCase : Any = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __UpperCAmelCase : Optional[int] = self.transforms(UpperCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = [len(row["""sentence"""] ) for row in batch] __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase ) __UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) __UpperCAmelCase : str = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ): __UpperCAmelCase : List[str] = input_row["""sentence"""] __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] ) __UpperCAmelCase : Optional[Any] = torch.stack([row["""label"""] for row in batch] ) __UpperCAmelCase : str = torch.stack([row["""image_start_token"""] for row in batch] ) __UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ) -> int: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
320
0
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = StableDiffusionPipeline.from_pretrained(_UpperCamelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __UpperCAmelCase : Any = load_file(_UpperCamelCase ) __UpperCAmelCase : Optional[int] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __UpperCAmelCase : List[str] = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) __UpperCAmelCase : Dict = pipeline.text_encoder else: __UpperCAmelCase : Union[str, Any] = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) __UpperCAmelCase : int = pipeline.unet # find the target layer __UpperCAmelCase : Any = layer_infos.pop(0 ) while len(_UpperCamelCase ) > -1: try: __UpperCAmelCase : Optional[int] = curr_layer.__getattr__(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: __UpperCAmelCase : Union[str, Any] = layer_infos.pop(0 ) elif len(_UpperCamelCase ) == 0: break except Exception: if len(_UpperCamelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __UpperCAmelCase : Optional[int] = layer_infos.pop(0 ) __UpperCAmelCase : Dict = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(_UpperCamelCase ) else: pair_keys.append(_UpperCamelCase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __UpperCAmelCase : List[Any] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __UpperCAmelCase : Any = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_UpperCamelCase , _UpperCamelCase ).unsqueeze(2 ).unsqueeze(3 ) else: __UpperCAmelCase : Any = state_dict[pair_keys[0]].to(torch.floataa ) __UpperCAmelCase : Dict = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_UpperCamelCase , _UpperCamelCase ) # update visited list for item in pair_keys: visited.append(_UpperCamelCase ) return pipeline if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') UpperCAmelCase : str = parser.parse_args() UpperCAmelCase : Optional[Any] = args.base_model_path UpperCAmelCase : Any = args.checkpoint_path UpperCAmelCase : Tuple = args.dump_path UpperCAmelCase : Dict = args.lora_prefix_unet UpperCAmelCase : List[Any] = args.lora_prefix_text_encoder UpperCAmelCase : Union[str, Any] = args.alpha UpperCAmelCase : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) UpperCAmelCase : Optional[Any] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
360
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
320
0
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class lowerCamelCase__ ( A , A ): """simple docstring""" __a = """pixel_values""" __a = False __a = TimmBackboneConfig def __init__( self : Dict , UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self , """timm""" ) super().__init__(UpperCamelCase ) __UpperCAmelCase : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(UpperCamelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) __UpperCAmelCase : List[Any] = getattr(UpperCamelCase , """use_pretrained_backbone""" , UpperCamelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. __UpperCAmelCase : int = config.out_indices if getattr(UpperCamelCase , """out_indices""" , UpperCamelCase ) is not None else (-1,) __UpperCAmelCase : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCamelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCamelCase , **UpperCamelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __UpperCAmelCase : Optional[int] = self._backbone.return_layers __UpperCAmelCase : List[Any] = {layer["""module"""]: str(UpperCamelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCamelCase ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , UpperCamelCase : Optional[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : int ): '''simple docstring''' requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig __UpperCAmelCase : int = kwargs.pop("""config""" , TimmBackboneConfig() ) __UpperCAmelCase : Dict = kwargs.pop("""use_timm_backbone""" , UpperCamelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) __UpperCAmelCase : Dict = kwargs.pop("""num_channels""" , config.num_channels ) __UpperCAmelCase : int = kwargs.pop("""features_only""" , config.features_only ) __UpperCAmelCase : str = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) __UpperCAmelCase : Tuple = kwargs.pop("""out_indices""" , config.out_indices ) __UpperCAmelCase : int = TimmBackboneConfig( backbone=UpperCamelCase , num_channels=UpperCamelCase , features_only=UpperCamelCase , use_pretrained_backbone=UpperCamelCase , out_indices=UpperCamelCase , ) return super()._from_config(UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Dict ): '''simple docstring''' pass def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=None , UpperCamelCase : Any=None , UpperCamelCase : List[str]=None , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : int = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __UpperCAmelCase : Any = self._all_layers __UpperCAmelCase : Dict = self._backbone(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : List[Any] = self._return_layers __UpperCAmelCase : int = tuple(hidden_states[i] for i in self.out_indices ) else: __UpperCAmelCase : Optional[int] = self._backbone(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = tuple(UpperCamelCase ) __UpperCAmelCase : Dict = tuple(UpperCamelCase ) if hidden_states is not None else None if not return_dict: __UpperCAmelCase : Optional[Any] = (feature_maps,) if output_hidden_states: __UpperCAmelCase : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCamelCase , hidden_states=UpperCamelCase , attentions=UpperCamelCase )
361
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ) __UpperCAmelCase : List[Any] = sum(_UpperCamelCase ) __UpperCAmelCase : Optional[int] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __UpperCAmelCase : Any = True for i in range(1 , s + 1 ): __UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __UpperCAmelCase : Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __UpperCAmelCase : Optional[int] = s - 2 * j break return diff
320
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = {'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : str = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class lowerCamelCase__ ( A ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = ["""input_ids""", """attention_mask"""] __a = None def __init__( self : Optional[int] , UpperCamelCase : Dict=None , UpperCamelCase : Dict=None , UpperCamelCase : Any=None , UpperCamelCase : int="<unk>" , UpperCamelCase : int="<s>" , UpperCamelCase : Union[str, Any]="</s>" , UpperCamelCase : str="<pad>" , UpperCamelCase : Tuple=False , UpperCamelCase : Tuple=False , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , UpperCamelCase , tokenizer_file=UpperCamelCase , unk_token=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , pad_token=UpperCamelCase , add_prefix_space=UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase , **UpperCamelCase , ) __UpperCAmelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCamelCase ) != add_prefix_space: __UpperCAmelCase : int = getattr(UpperCamelCase , pre_tok_state.pop("""type""" ) ) __UpperCAmelCase : Union[str, Any] = add_prefix_space __UpperCAmelCase : List[Any] = pre_tok_class(**UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = add_prefix_space def lowerCamelCase__ ( self : Optional[Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : str = kwargs.get("""is_split_into_words""" , UpperCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , *UpperCamelCase : Tuple , **UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : List[Any] = kwargs.get("""is_split_into_words""" , UpperCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase : "Conversation" ): '''simple docstring''' __UpperCAmelCase : Optional[int] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) + [self.eos_token_id] ) if len(UpperCamelCase ) > self.model_max_length: __UpperCAmelCase : Any = input_ids[-self.model_max_length :] return input_ids
362
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""pixel_values"""] def __init__( self : Tuple , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 255 , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(**UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) __UpperCAmelCase : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : int = crop_size __UpperCAmelCase : Optional[int] = do_rescale __UpperCAmelCase : List[Any] = rescale_factor __UpperCAmelCase : Tuple = do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCAmelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCAmelCase : List[Any] = do_convert_rgb def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __UpperCAmelCase : int = get_resize_output_image_size(UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Dict , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, float] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ): '''simple docstring''' return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ): '''simple docstring''' return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : int = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Dict = size if size is not None else self.size __UpperCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase , param_name="""size""" , default_to_square=UpperCamelCase ) __UpperCAmelCase : Dict = resample if resample is not None else self.resample __UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , param_name="""crop_size""" , default_to_square=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Any = image_std if image_std is not None else self.image_std __UpperCAmelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCAmelCase : List[str] = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCAmelCase : int = [convert_to_rgb(UpperCamelCase ) for image in images] # All transformations expect numpy arrays. __UpperCAmelCase : Tuple = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: __UpperCAmelCase : Optional[int] = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: __UpperCAmelCase : int = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: __UpperCAmelCase : Dict = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: __UpperCAmelCase : Optional[Any] = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] __UpperCAmelCase : Any = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] __UpperCAmelCase : Any = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
320
0
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase : AutoencoderKL , UpperCamelCase : CLIPTextModel , UpperCamelCase : CLIPTokenizer , UpperCamelCase : UNetaDConditionModel , UpperCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCamelCase : StableDiffusionSafetyChecker , UpperCamelCase : CLIPImageProcessor , ): '''simple docstring''' super().__init__() self.register_modules( vae=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , unet=UpperCamelCase , scheduler=UpperCamelCase , safety_checker=UpperCamelCase , feature_extractor=UpperCamelCase , ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __UpperCAmelCase : Dict = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' self.enable_attention_slicing(UpperCamelCase ) @torch.no_grad() def __call__( self : Tuple , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : int = 512 , UpperCamelCase : int = 512 , UpperCamelCase : int = 50 , UpperCamelCase : float = 7.5 , UpperCamelCase : Optional[Union[str, List[str]]] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[torch.Generator] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , UpperCamelCase : Optional[torch.FloatTensor] = None , **UpperCamelCase : Optional[int] , ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : List[str] = 1 elif isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase , UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(UpperCamelCase )}.''' ) # get prompt text embeddings __UpperCAmelCase : List[Any] = self.tokenizer( UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __UpperCAmelCase : int = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __UpperCAmelCase : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __UpperCAmelCase : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __UpperCAmelCase : Dict = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase : Optional[Any] = text_embeddings.shape __UpperCAmelCase : Any = text_embeddings.repeat(1 , UpperCamelCase , 1 ) __UpperCAmelCase : str = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __UpperCAmelCase : List[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __UpperCAmelCase : List[str] if negative_prompt is None: __UpperCAmelCase : List[Any] = [""""""] elif type(UpperCamelCase ) is not type(UpperCamelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(UpperCamelCase )} !=''' f''' {type(UpperCamelCase )}.''' ) elif isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : Optional[int] = [negative_prompt] elif batch_size != len(UpperCamelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(UpperCamelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __UpperCAmelCase : Dict = negative_prompt __UpperCAmelCase : Tuple = text_input_ids.shape[-1] __UpperCAmelCase : int = self.tokenizer( UpperCamelCase , padding="""max_length""" , max_length=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""pt""" , ) __UpperCAmelCase : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase : Tuple = uncond_embeddings.shape[1] __UpperCAmelCase : Optional[Any] = uncond_embeddings.repeat(UpperCamelCase , UpperCamelCase , 1 ) __UpperCAmelCase : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCAmelCase : str = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __UpperCAmelCase : Optional[int] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __UpperCAmelCase : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __UpperCAmelCase : Optional[int] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __UpperCAmelCase : List[Any] = torch.randn( UpperCamelCase , generator=UpperCamelCase , device="""cpu""" , dtype=UpperCamelCase ).to(self.device ) __UpperCAmelCase : Dict = torch.randn(UpperCamelCase , generator=UpperCamelCase , device="""cpu""" , dtype=UpperCamelCase ).to( self.device ) else: __UpperCAmelCase : Optional[int] = torch.randn( UpperCamelCase , generator=UpperCamelCase , device=self.device , dtype=UpperCamelCase ) __UpperCAmelCase : str = torch.randn(UpperCamelCase , generator=UpperCamelCase , device=self.device , dtype=UpperCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __UpperCAmelCase : List[str] = latents_reference.to(self.device ) __UpperCAmelCase : str = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __UpperCAmelCase : Any = (latents_shape[3] - latents_shape_reference[3]) // 2 __UpperCAmelCase : Dict = (latents_shape[2] - latents_shape_reference[2]) // 2 __UpperCAmelCase : List[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __UpperCAmelCase : Optional[Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __UpperCAmelCase : Dict = 0 if dx < 0 else dx __UpperCAmelCase : Optional[Any] = 0 if dy < 0 else dy __UpperCAmelCase : Optional[Any] = max(-dx , 0 ) __UpperCAmelCase : int = max(-dy , 0 ) # import pdb # pdb.set_trace() __UpperCAmelCase : Dict = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __UpperCAmelCase : Any = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __UpperCAmelCase : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __UpperCAmelCase : List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __UpperCAmelCase : Dict = {} if accepts_eta: __UpperCAmelCase : int = eta for i, t in enumerate(self.progress_bar(UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) # predict the noise residual __UpperCAmelCase : Optional[Any] = self.unet(UpperCamelCase , UpperCamelCase , encoder_hidden_states=UpperCamelCase ).sample # perform guidance if do_classifier_free_guidance: __UpperCAmelCase : List[str] = noise_pred.chunk(2 ) __UpperCAmelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : List[Any] = self.scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = 1 / 0.18215 * latents __UpperCAmelCase : str = self.vae.decode(UpperCamelCase ).sample __UpperCAmelCase : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __UpperCAmelCase : Union[str, Any] = self.feature_extractor(self.numpy_to_pil(UpperCamelCase ) , return_tensors="""pt""" ).to( self.device ) __UpperCAmelCase : str = self.safety_checker( images=UpperCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __UpperCAmelCase : Optional[int] = None if output_type == "pil": __UpperCAmelCase : Optional[Any] = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=UpperCamelCase , nsfw_content_detected=UpperCamelCase )
363
"""simple docstring""" from collections.abc import Sequence def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : Dict = 0.0 for coeff in reversed(_UpperCamelCase ): __UpperCAmelCase : Any = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[int] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __UpperCAmelCase : Dict = n - k # Calculate C(n,k) for i in range(_UpperCamelCase ): result *= n - i result //= i + 1 return result def lowerCamelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return binomial_coefficient(2 * node_count , _UpperCamelCase ) // (node_count + 1) def lowerCamelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) __UpperCAmelCase : Optional[Any] = 1 for i in range(1 , n + 1 ): result *= i return result def lowerCamelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return catalan_number(_UpperCamelCase ) * factorial(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Tuple = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( F"Given {node_count} nodes, there are {binary_tree_count(node_count)} " F"binary trees and {catalan_number(node_count)} binary search trees." )
364
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[int] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCamelCase__ : """simple docstring""" __a = PegasusConfig __a = {} __a = """gelu""" def __init__( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Dict=True , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : Union[str, Any]=5 , UpperCamelCase : Any=4 , UpperCamelCase : Tuple=37 , UpperCamelCase : Any=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=20 , UpperCamelCase : List[str]=2 , UpperCamelCase : int=1 , UpperCamelCase : Optional[Any]=0 , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Any = eos_token_id __UpperCAmelCase : Optional[int] = pad_token_id __UpperCAmelCase : List[str] = bos_token_id def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __UpperCAmelCase : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCAmelCase : Union[str, Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCAmelCase : Any = prepare_pegasus_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, inputs_dict def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 20 __UpperCAmelCase : Tuple = model_class_name(UpperCamelCase ) __UpperCAmelCase : List[Any] = model.encode(inputs_dict["""input_ids"""] ) __UpperCAmelCase ,__UpperCAmelCase : int = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __UpperCAmelCase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCAmelCase : Tuple = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Dict = model.decode(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 20 __UpperCAmelCase : int = model_class_name(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] ) __UpperCAmelCase ,__UpperCAmelCase : Dict = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCAmelCase : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Union[str, Any] = model.decode(UpperCamelCase , UpperCamelCase , decoder_attention_mask=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=None , _UpperCamelCase : Any=None , ) -> Dict: '''simple docstring''' if attention_mask is None: __UpperCAmelCase : Optional[int] = np.not_equal(_UpperCamelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __UpperCAmelCase : Dict = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __a = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __a = True __a = False __a = False __a = False def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = FlaxPegasusModelTester(self ) __UpperCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : Tuple = self._prepare_for_class(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Dict = model_class(UpperCamelCase ) @jax.jit def encode_jitted(UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any]=None , **UpperCamelCase : List[str] ): return model.encode(input_ids=UpperCamelCase , attention_mask=UpperCamelCase ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase : Tuple = encode_jitted(**UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase : Optional[int] = encode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : int = model_class(UpperCamelCase ) __UpperCAmelCase : int = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __UpperCAmelCase : Any = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ): return model.decode( decoder_input_ids=UpperCamelCase , decoder_attention_mask=UpperCamelCase , encoder_outputs=UpperCamelCase , ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase : Union[str, Any] = decode_jitted(**UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase : str = decode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCamelCase ) __UpperCAmelCase : Optional[int] = np.ones((1, 1) ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @slow def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) __UpperCAmelCase : Union[str, Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) __UpperCAmelCase : List[Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCAmelCase : List[str] = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""np""" , truncation=UpperCamelCase , max_length=512 , padding=UpperCamelCase ) __UpperCAmelCase : int = model.generate(**UpperCamelCase , num_beams=2 ).sequences __UpperCAmelCase : str = tokenizer.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) assert tgt_text == decoded
320
0
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING UpperCAmelCase : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : List[str] , *UpperCamelCase : str , **UpperCamelCase : List[Any] ): '''simple docstring''' super().__init__(*UpperCamelCase , **UpperCamelCase ) self.check_model_type(UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Tuple=None , UpperCamelCase : List[Any]=None , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = {}, {} if padding is not None: __UpperCAmelCase : List[Any] = padding if truncation is not None: __UpperCAmelCase : str = truncation if top_k is not None: __UpperCAmelCase : Tuple = top_k return preprocess_params, {}, postprocess_params def __call__( self : Tuple , UpperCamelCase : Union["Image.Image", str] , UpperCamelCase : str = None , **UpperCamelCase : List[str] ): '''simple docstring''' if isinstance(UpperCamelCase , (Image.Image, str) ) and isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : Dict = {"""image""": image, """question""": question} else: __UpperCAmelCase : Tuple = image __UpperCAmelCase : Union[str, Any] = super().__call__(UpperCamelCase , **UpperCamelCase ) return results def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[Any] , UpperCamelCase : int=False , UpperCamelCase : int=False ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = load_image(inputs["""image"""] ) __UpperCAmelCase : int = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=UpperCamelCase , truncation=UpperCamelCase ) __UpperCAmelCase : List[Any] = self.image_processor(images=UpperCamelCase , return_tensors=self.framework ) model_inputs.update(UpperCamelCase ) return model_inputs def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : int = self.model(**UpperCamelCase ) return model_outputs def lowerCamelCase__ ( self : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: __UpperCAmelCase : Tuple = self.model.config.num_labels if self.framework == "pt": __UpperCAmelCase : Optional[int] = model_outputs.logits.sigmoid()[0] __UpperCAmelCase : int = probs.topk(UpperCamelCase ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) __UpperCAmelCase : List[str] = scores.tolist() __UpperCAmelCase : List[str] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase , UpperCamelCase )]
365
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } UpperCAmelCase : List[str] = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = EfficientNetConfig() __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""hidden_dim"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""width_coef"""] __UpperCAmelCase : str = CONFIG_MAP[model_name]["""depth_coef"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""dropout_rate"""] __UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""] __UpperCAmelCase : int = """huggingface/label-files""" __UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json""" __UpperCAmelCase : str = 1_0_0_0 __UpperCAmelCase : Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Dict = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCamelCase ( _UpperCamelCase : Any ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : List[str] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_UpperCamelCase , ) return preprocessor def lowerCamelCase ( _UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __UpperCAmelCase : str = sorted(set(_UpperCamelCase ) ) __UpperCAmelCase : Optional[int] = len(_UpperCamelCase ) __UpperCAmelCase : Any = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )} __UpperCAmelCase : Any = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __UpperCAmelCase : List[str] = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __UpperCAmelCase : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: __UpperCAmelCase : Optional[Any] = """efficientnet.""" + item[1] __UpperCAmelCase : Tuple = """classifier.weight""" __UpperCAmelCase : Optional[int] = """classifier.bias""" return key_mapping def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue __UpperCAmelCase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: __UpperCAmelCase : int = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __UpperCAmelCase : Optional[Any] = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __UpperCAmelCase : List[str] = torch.from_numpy(np.transpose(_UpperCamelCase ) ) else: __UpperCAmelCase : Tuple = torch.from_numpy(_UpperCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCamelCase ) @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = model_classes[model_name]( include_top=_UpperCamelCase , weights="""imagenet""" , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , ) __UpperCAmelCase : List[str] = original_model.trainable_variables __UpperCAmelCase : List[Any] = original_model.non_trainable_variables __UpperCAmelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __UpperCAmelCase : int = param.numpy() __UpperCAmelCase : Dict = list(tf_params.keys() ) # Load HuggingFace model __UpperCAmelCase : Optional[Any] = get_efficientnet_config(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(_UpperCamelCase ).eval() __UpperCAmelCase : Any = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __UpperCAmelCase : Tuple = rename_keys(_UpperCamelCase ) replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Initialize preprocessor and preprocess input image __UpperCAmelCase : List[Any] = convert_image_processor(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = hf_model(**_UpperCamelCase ) __UpperCAmelCase : Any = outputs.logits.detach().numpy() # Original model inference __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : str = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __UpperCAmelCase : Optional[Any] = image.img_to_array(_UpperCamelCase ) __UpperCAmelCase : Tuple = np.expand_dims(_UpperCamelCase , axis=0 ) __UpperCAmelCase : str = original_model.predict(_UpperCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCamelCase ): os.mkdir(_UpperCamelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCamelCase ) preprocessor.save_pretrained(_UpperCamelCase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) __UpperCAmelCase : List[str] = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_UpperCamelCase ) hf_model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') UpperCAmelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
320
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Any = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
366
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""keras_nlp"""] def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(self , ["""keras_nlp"""] )
320
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""image_processor""", """tokenizer"""] __a = """AutoImageProcessor""" __a = """AutoTokenizer""" def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : str = self.image_processor def __call__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=None , **UpperCamelCase : Optional[int] ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: __UpperCAmelCase : Optional[Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: __UpperCAmelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
367
"""simple docstring""" UpperCAmelCase : Dict = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCamelCase ( _UpperCamelCase : bytes ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Any = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_UpperCamelCase ) __UpperCAmelCase : str = """""".join(bin(_UpperCamelCase )[2:].zfill(8 ) for byte in data ) __UpperCAmelCase : int = len(_UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later __UpperCAmelCase : Dict = b"""=""" * ((6 - len(_UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_UpperCamelCase ) % 6) else: __UpperCAmelCase : List[str] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_UpperCamelCase ) , 6 ) ).encode() + padding ) def lowerCamelCase ( _UpperCamelCase : str ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Tuple = ( """argument should be a bytes-like object or ASCII string, """ f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_UpperCamelCase , _UpperCamelCase ): try: __UpperCAmelCase : Optional[Any] = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) __UpperCAmelCase : str = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __UpperCAmelCase : List[str] = encoded_data[:-padding] __UpperCAmelCase : int = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __UpperCAmelCase : Optional[Any] = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) __UpperCAmelCase : List[Any] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_UpperCamelCase ) , 8 ) ] return bytes(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
320
0
"""simple docstring""" from math import sqrt def lowerCamelCase ( _UpperCamelCase : int ) -> bool: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" __UpperCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: __UpperCAmelCase : Dict = False for divisor in range(2 , int(round(sqrt(_UpperCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __UpperCAmelCase : Optional[int] = False break # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'status' must been from type bool" return status def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __UpperCAmelCase : Union[str, Any] = list(range(2 , n + 1 ) ) __UpperCAmelCase : List[str] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_UpperCamelCase ) ): for j in range(i + 1 , len(_UpperCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __UpperCAmelCase : Union[str, Any] = 0 # filters actual prime numbers. __UpperCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type list" return ans def lowerCamelCase ( _UpperCamelCase : int ) -> str: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" __UpperCAmelCase : List[str] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_UpperCamelCase ): ans.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type list" return ans def lowerCamelCase ( _UpperCamelCase : str ) -> Optional[Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and number >= 0, "'number' must been an int and >= 0" __UpperCAmelCase : str = [] # this list will be returns of the function. # potential prime number factors. __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_UpperCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_UpperCamelCase ): while quotient != 1: if is_prime(_UpperCamelCase ) and (quotient % factor == 0): ans.append(_UpperCamelCase ) quotient /= factor else: factor += 1 else: ans.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type list" return ans def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __UpperCAmelCase : Optional[Any] = 0 # prime factorization of 'number' __UpperCAmelCase : Tuple = prime_factorization(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = max(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type int" return ans def lowerCamelCase ( _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __UpperCAmelCase : Optional[int] = 0 # prime factorization of 'number' __UpperCAmelCase : Tuple = prime_factorization(_UpperCamelCase ) __UpperCAmelCase : Tuple = min(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'ans' must been from type int" return ans def lowerCamelCase ( _UpperCamelCase : List[str] ) -> int: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _UpperCamelCase ), "compare bust been from type bool" return number % 2 == 0 def lowerCamelCase ( _UpperCamelCase : Tuple ) -> List[str]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _UpperCamelCase ), "compare bust been from type bool" return number % 2 != 0 def lowerCamelCase ( _UpperCamelCase : Any ) -> Union[str, Any]: '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (number > 2) and is_even(_UpperCamelCase ) ), "'number' must been an int, even and > 2" __UpperCAmelCase : str = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __UpperCAmelCase : Tuple = get_prime_numbers(_UpperCamelCase ) __UpperCAmelCase : Tuple = len(_UpperCamelCase ) # run variable for while-loops. __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Tuple = None # exit variable. for break up the loops __UpperCAmelCase : int = True while i < len_pn and loop: __UpperCAmelCase : List[str] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __UpperCAmelCase : List[Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (len(_UpperCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __UpperCAmelCase : Optional[Any] = 0 while numbera != 0: __UpperCAmelCase : Union[str, Any] = numbera % numbera __UpperCAmelCase : Any = numbera __UpperCAmelCase : Tuple = rest # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __UpperCAmelCase : Optional[Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __UpperCAmelCase : Dict = prime_factorization(_UpperCamelCase ) __UpperCAmelCase : List[Any] = prime_factorization(_UpperCamelCase ) elif numbera == 1 or numbera == 1: __UpperCAmelCase : str = [] __UpperCAmelCase : Any = [] __UpperCAmelCase : Tuple = max(_UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : Any = 0 __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : List[Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __UpperCAmelCase : Union[str, Any] = prime_fac_a.count(_UpperCamelCase ) __UpperCAmelCase : List[str] = prime_fac_a.count(_UpperCamelCase ) for _ in range(max(_UpperCamelCase , _UpperCamelCase ) ): ans *= n else: __UpperCAmelCase : List[str] = prime_fac_a.count(_UpperCamelCase ) for _ in range(_UpperCamelCase ): ans *= n done.append(_UpperCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __UpperCAmelCase : Tuple = prime_fac_a.count(_UpperCamelCase ) for _ in range(_UpperCamelCase ): ans *= n done.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCamelCase ( _UpperCamelCase : Any ) -> Tuple: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 0), "'number' must been a positive int" __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_UpperCamelCase ): ans += 1 # precondition assert isinstance(_UpperCamelCase , _UpperCamelCase ) and is_prime( _UpperCamelCase ), "'ans' must been a prime number and from type int" return ans def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' assert ( is_prime(_UpperCamelCase ) and is_prime(_UpperCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __UpperCAmelCase : int = p_number_a + 1 # jump to the next number __UpperCAmelCase : Any = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_UpperCamelCase ): number += 1 while number < p_number_a: ans.append(_UpperCamelCase ) number += 1 # fetch the next prime number. while not is_prime(_UpperCamelCase ): number += 1 # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and ans[0] != p_number_a and ans[len(_UpperCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 1), "'n' must been int and >= 1" __UpperCAmelCase : List[str] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_UpperCamelCase ) # precondition assert ans[0] == 1 and ans[len(_UpperCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCamelCase ( _UpperCamelCase : Optional[Any] ) -> int: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" __UpperCAmelCase : List[str] = get_divisors(_UpperCamelCase ) # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (divisors[0] == 1) and (divisors[len(_UpperCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : int ) -> str: '''simple docstring''' assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __UpperCAmelCase : Any = gcd(abs(_UpperCamelCase ) , abs(_UpperCamelCase ) ) # precondition assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCamelCase ( _UpperCamelCase : Dict ) -> Any: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 0), "'n' must been a int and >= 0" __UpperCAmelCase : Union[str, Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (n >= 0), "'n' must been an int and >= 0" __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : List[Any] = 1 # this will be return for _ in range(n - 1 ): __UpperCAmelCase : Any = ans ans += fiba __UpperCAmelCase : List[Any] = tmp return ans
368
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase : str = logging.get_logger(__name__) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ): '''simple docstring''' warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
320
0
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase__ ( A ): """simple docstring""" @require_torch def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ __UpperCAmelCase : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ __UpperCAmelCase : int = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache __UpperCAmelCase : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(UpperCamelCase ) BertModel.from_pretrained(UpperCamelCase ) BertTokenizer.from_pretrained(UpperCamelCase ) pipeline(task="""fill-mask""" , model=UpperCamelCase ) # baseline - just load from_pretrained with normal network __UpperCAmelCase : Any = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed __UpperCAmelCase : str = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __UpperCAmelCase : Union[str, Any] = """1""" __UpperCAmelCase : List[str] = subprocess.run(UpperCamelCase , env=UpperCamelCase , check=UpperCamelCase , capture_output=UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Dict = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ __UpperCAmelCase : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ __UpperCAmelCase : Dict = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache __UpperCAmelCase : List[Any] = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(UpperCamelCase ) BertModel.from_pretrained(UpperCamelCase ) BertTokenizer.from_pretrained(UpperCamelCase ) pipeline(task="""fill-mask""" , model=UpperCamelCase ) # baseline - just load from_pretrained with normal network __UpperCAmelCase : str = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed __UpperCAmelCase : Dict = self.get_env() __UpperCAmelCase : List[Any] = subprocess.run(UpperCamelCase , env=UpperCamelCase , check=UpperCamelCase , capture_output=UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : int = """ from transformers import BertConfig, BertModel, BertTokenizer """ __UpperCAmelCase : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ __UpperCAmelCase : str = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network __UpperCAmelCase : Optional[int] = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed __UpperCAmelCase : Optional[int] = self.get_env() __UpperCAmelCase : List[str] = subprocess.run(UpperCamelCase , env=UpperCamelCase , check=UpperCamelCase , capture_output=UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network __UpperCAmelCase : str = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __UpperCAmelCase : Tuple = """1""" __UpperCAmelCase : List[Any] = subprocess.run(UpperCamelCase , env=UpperCamelCase , check=UpperCamelCase , capture_output=UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = """ from transformers import pipeline """ __UpperCAmelCase : Tuple = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ __UpperCAmelCase : Dict = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ __UpperCAmelCase : int = self.get_env() __UpperCAmelCase : Any = """1""" __UpperCAmelCase : List[str] = [sys.executable, """-c""", """\n""".join([load, mock, run] )] __UpperCAmelCase : List[str] = subprocess.run(UpperCamelCase , env=UpperCamelCase , check=UpperCamelCase , capture_output=UpperCamelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = """ from transformers import AutoModel """ __UpperCAmelCase : Optional[Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network __UpperCAmelCase : List[str] = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed __UpperCAmelCase : str = self.get_env() __UpperCAmelCase : int = subprocess.run(UpperCamelCase , env=UpperCamelCase , check=UpperCamelCase , capture_output=UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __UpperCAmelCase : Optional[int] = """1""" __UpperCAmelCase : Union[str, Any] = subprocess.run(UpperCamelCase , env=UpperCamelCase , check=UpperCamelCase , capture_output=UpperCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
369
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = LEDTokenizer __a = LEDTokenizerFast __a = True def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' super().setUp() __UpperCAmelCase : Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __UpperCAmelCase : str = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase ) ) def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : str , UpperCamelCase : Any ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self : str ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCAmelCase : Union[str, Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = tokenizer(UpperCamelCase , max_length=len(UpperCamelCase ) , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCamelCase , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIn("""input_ids""" , UpperCamelCase ) self.assertIn("""attention_mask""" , UpperCamelCase ) self.assertNotIn("""labels""" , UpperCamelCase ) self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[Any] = tokenizer(text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : str = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization."""] __UpperCAmelCase : int = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Tuple = tokenizer(text_target=UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Optional[Any] = inputs["""input_ids"""] __UpperCAmelCase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = ["""Summary of the text.""", """Another summary."""] __UpperCAmelCase : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , padding=UpperCamelCase ) __UpperCAmelCase : str = [[0] * len(UpperCamelCase ) for x in encoded_output["""input_ids"""]] __UpperCAmelCase : List[Any] = tokenizer.pad(UpperCamelCase ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Any = """A, <mask> AllenNLP sentence.""" __UpperCAmelCase : Dict = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) __UpperCAmelCase : List[Any] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
320
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase : Dict = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = ['MobileViTFeatureExtractor'] UpperCAmelCase : Union[str, Any] = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
370
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCamelCase__ : """simple docstring""" def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : List[Any]=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : int=99 , UpperCamelCase : Any=[1, 1, 2] , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Union[str, Any]=8 , UpperCamelCase : int=37 , UpperCamelCase : Optional[Any]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : int=0.0 , UpperCamelCase : Union[str, Any]=512 , UpperCamelCase : Any=3 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : str=None , UpperCamelCase : Tuple=False , ): '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : str = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : Optional[Any] = use_input_mask __UpperCAmelCase : Tuple = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Optional[int] = block_sizes __UpperCAmelCase : Optional[Any] = num_decoder_layers __UpperCAmelCase : Union[str, Any] = d_model __UpperCAmelCase : Dict = n_head __UpperCAmelCase : Optional[Any] = d_head __UpperCAmelCase : Dict = d_inner __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout __UpperCAmelCase : List[Any] = attention_dropout __UpperCAmelCase : str = activation_dropout __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : str = 2 __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : List[Any] = num_choices __UpperCAmelCase : Any = scope __UpperCAmelCase : Dict = initializer_std # Used in the tests to check the size of the first attention layer __UpperCAmelCase : Dict = n_head # Used in the tests to check the size of the first hidden state __UpperCAmelCase : Dict = self.d_model # Used in the tests to check the number of output hidden states/attentions __UpperCAmelCase : Dict = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __UpperCAmelCase : List[Any] = self.num_hidden_layers + 2 def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[str] = None if self.use_input_mask: __UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Dict = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : str = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__ ( self : Any , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : List[Any] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : List[str] = model(UpperCamelCase ) __UpperCAmelCase : List[Any] = [input_ids, input_mask] __UpperCAmelCase : Dict = model(UpperCamelCase ) __UpperCAmelCase : Tuple = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __UpperCAmelCase : int = False __UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Optional[Any] = model(UpperCamelCase ) __UpperCAmelCase : int = [input_ids, input_mask] __UpperCAmelCase : int = model(UpperCamelCase ) __UpperCAmelCase : List[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __UpperCAmelCase : List[Any] = False __UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __UpperCAmelCase : int = False __UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : str = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , ): '''simple docstring''' __UpperCAmelCase : Tuple = TFFunnelForPreTraining(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : int = TFFunnelForMaskedLM(config=UpperCamelCase ) __UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Optional[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_labels __UpperCAmelCase : Optional[Any] = TFFunnelForSequenceClassification(config=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Tuple = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : str = TFFunnelForMultipleChoice(config=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : str = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : int = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : List[str] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : str = TFFunnelForTokenClassification(config=UpperCamelCase ) __UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : str , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Any = TFFunnelForQuestionAnswering(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Any = model(UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) , ) : Dict = config_and_inputs __UpperCAmelCase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __a = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __a = False __a = False def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = TFFunnelModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase ) @require_tf class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __a = False __a = False def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : List[str] = TFFunnelModelTester(self , base=UpperCamelCase ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase )
320
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def lowerCamelCase ( _UpperCamelCase : Any ) -> int: '''simple docstring''' if "cls_token" in name: __UpperCAmelCase : Dict = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: __UpperCAmelCase : Dict = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: __UpperCAmelCase : int = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __UpperCAmelCase : int = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __UpperCAmelCase : List[str] = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __UpperCAmelCase : Optional[int] = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: __UpperCAmelCase : List[str] = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __UpperCAmelCase : Any = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: __UpperCAmelCase : Dict = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __UpperCAmelCase : str = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __UpperCAmelCase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __UpperCAmelCase : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __UpperCAmelCase : Tuple = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __UpperCAmelCase : Optional[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __UpperCAmelCase : List[Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __UpperCAmelCase : Optional[Any] = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __UpperCAmelCase : List[str] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: __UpperCAmelCase : str = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: __UpperCAmelCase : Tuple = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> Optional[int]: '''simple docstring''' for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Optional[Any] = orig_state_dict.pop(_UpperCamelCase ) if "qkv" in key: __UpperCAmelCase : str = key.split(""".""" ) __UpperCAmelCase : Tuple = int(key_split[1] ) if "decoder_blocks" in key: __UpperCAmelCase : str = config.decoder_hidden_size __UpperCAmelCase : Dict = """decoder.decoder_layers.""" if "weight" in key: __UpperCAmelCase : Any = val[:dim, :] __UpperCAmelCase : Tuple = val[dim : dim * 2, :] __UpperCAmelCase : Union[str, Any] = val[-dim:, :] elif "bias" in key: __UpperCAmelCase : Tuple = val[:dim] __UpperCAmelCase : Any = val[dim : dim * 2] __UpperCAmelCase : List[Any] = val[-dim:] else: __UpperCAmelCase : Tuple = config.hidden_size __UpperCAmelCase : Tuple = """vit.encoder.layer.""" if "weight" in key: __UpperCAmelCase : Any = val[:dim, :] __UpperCAmelCase : Union[str, Any] = val[dim : dim * 2, :] __UpperCAmelCase : int = val[-dim:, :] elif "bias" in key: __UpperCAmelCase : int = val[:dim] __UpperCAmelCase : List[Any] = val[dim : dim * 2] __UpperCAmelCase : Dict = val[-dim:] else: __UpperCAmelCase : List[Any] = val return orig_state_dict def lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = ViTMAEConfig() if "large" in checkpoint_url: __UpperCAmelCase : int = 1_0_2_4 __UpperCAmelCase : Dict = 4_0_9_6 __UpperCAmelCase : Optional[int] = 2_4 __UpperCAmelCase : int = 1_6 elif "huge" in checkpoint_url: __UpperCAmelCase : Tuple = 1_4 __UpperCAmelCase : Tuple = 1_2_8_0 __UpperCAmelCase : Optional[Any] = 5_1_2_0 __UpperCAmelCase : str = 3_2 __UpperCAmelCase : Union[str, Any] = 1_6 __UpperCAmelCase : List[str] = ViTMAEForPreTraining(_UpperCamelCase ) __UpperCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="""cpu""" )["""model"""] __UpperCAmelCase : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size ) __UpperCAmelCase : Tuple = convert_state_dict(_UpperCamelCase , _UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() __UpperCAmelCase : int = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" __UpperCAmelCase : Any = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) __UpperCAmelCase : Tuple = ViTMAEImageProcessor(size=config.image_size ) __UpperCAmelCase : Any = image_processor(images=_UpperCamelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) __UpperCAmelCase : int = model(**_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = outputs.logits if "large" in checkpoint_url: __UpperCAmelCase : Optional[int] = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: __UpperCAmelCase : Optional[Any] = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , _UpperCamelCase , atol=1E-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase : str = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
371
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = 0 while b > 0: if b & 1: __UpperCAmelCase : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
320
0
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = AlbertConfig.from_json_file(_UpperCamelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) __UpperCAmelCase : str = AlbertForPreTraining(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
350
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""image_processor""", """tokenizer"""] __a = """AutoImageProcessor""" __a = """AutoTokenizer""" def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : str = self.image_processor def __call__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=None , **UpperCamelCase : Optional[int] ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: __UpperCAmelCase : Optional[Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: __UpperCAmelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
320
0
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase : int=None , UpperCamelCase : Tuple=None , *UpperCamelCase : str , **UpperCamelCase : List[Any] ): '''simple docstring''' super().__init__(*UpperCamelCase , **UpperCamelCase ) if config is None: assert isinstance(self.model , UpperCamelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) __UpperCAmelCase : str = self.model.config else: __UpperCAmelCase : Optional[Any] = config __UpperCAmelCase : str = data_args __UpperCAmelCase : Tuple = self.config.tgt_vocab_size if isinstance(self.config , UpperCamelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: __UpperCAmelCase : List[str] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __UpperCAmelCase : Any = label_smoothed_nll_loss def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : int ): '''simple docstring''' if self.optimizer is None: __UpperCAmelCase : str = ["""bias""", """LayerNorm.weight"""] __UpperCAmelCase : List[str] = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] __UpperCAmelCase : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __UpperCAmelCase : Dict = Adafactor __UpperCAmelCase : int = {"""scale_parameter""": False, """relative_step""": False} else: __UpperCAmelCase : Union[str, Any] = AdamW __UpperCAmelCase : Optional[Any] = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } __UpperCAmelCase : Dict = self.args.learning_rate if self.sharded_ddp: __UpperCAmelCase : List[Any] = OSS( params=UpperCamelCase , optim=UpperCamelCase , **UpperCamelCase , ) else: __UpperCAmelCase : Optional[Any] = optimizer_cls(UpperCamelCase , **UpperCamelCase ) if self.lr_scheduler is None: __UpperCAmelCase : Optional[Any] = self._get_lr_scheduler(UpperCamelCase ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __UpperCAmelCase : int = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __UpperCAmelCase : Tuple = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: __UpperCAmelCase : Dict = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=UpperCamelCase ) return scheduler def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__ ( self : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __UpperCAmelCase : Union[str, Any] = model(**UpperCamelCase , use_cache=UpperCamelCase )[0] __UpperCAmelCase : str = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models __UpperCAmelCase : Any = model(**UpperCamelCase , labels=UpperCamelCase , use_cache=UpperCamelCase )[:2] else: # compute label smoothed loss __UpperCAmelCase : str = model(**UpperCamelCase , use_cache=UpperCamelCase )[0] __UpperCAmelCase : List[Any] = torch.nn.functional.log_softmax(UpperCamelCase , dim=-1 ) __UpperCAmelCase : str = self.loss_fn(UpperCamelCase , UpperCamelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = inputs.pop("""labels""" ) __UpperCAmelCase : Tuple = self._compute_loss(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return loss def lowerCamelCase__ ( self : int , UpperCamelCase : nn.Module , UpperCamelCase : Dict[str, Union[torch.Tensor, Any]] , UpperCamelCase : bool , UpperCamelCase : Optional[List[str]] = None , ): '''simple docstring''' __UpperCAmelCase : Tuple = self._prepare_inputs(UpperCamelCase ) __UpperCAmelCase : Optional[int] = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __UpperCAmelCase : Optional[int] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **UpperCamelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __UpperCAmelCase : str = self._pad_tensors_to_max_len(UpperCamelCase , gen_kwargs["""max_length"""] ) __UpperCAmelCase : int = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data __UpperCAmelCase : Optional[Any] = self._compute_loss(UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : int = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __UpperCAmelCase : Union[str, Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __UpperCAmelCase : Union[str, Any] = self._pad_tensors_to_max_len(UpperCamelCase , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) __UpperCAmelCase : Union[str, Any] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) __UpperCAmelCase : Optional[Any] = tensor return padded_tensor
351
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : list[float] , _UpperCamelCase : list[float] ) -> float: '''simple docstring''' __UpperCAmelCase : Tuple = sorted(numsa + numsa ) __UpperCAmelCase ,__UpperCAmelCase : Dict = divmod(len(_UpperCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[Any] = [float(x) for x in input('Enter the elements of first array: ').split()] UpperCAmelCase : Optional[int] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def lowerCamelCase ( _UpperCamelCase : int = 1_0_0 ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Union[str, Any] = 2 for i in range(2 , max_n + 1 ): __UpperCAmelCase : int = pre_numerator __UpperCAmelCase : Dict = 2 * i // 3 if i % 3 == 0 else 1 __UpperCAmelCase : Tuple = cur_numerator __UpperCAmelCase : List[Any] = e_cont * pre_numerator + temp return sum_digits(_UpperCamelCase ) if __name__ == "__main__": print(F"{solution() = }")
352
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = """hf-internal-testing/tiny-random-t5""" __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Optional[int] = tokenizer("""This is me""" , return_tensors="""pt""" ) __UpperCAmelCase : int = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __UpperCAmelCase : Tuple = model.generate(**UpperCamelCase ) __UpperCAmelCase : Tuple = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase ) __UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __UpperCAmelCase : Tuple = model_reloaded.generate(**UpperCamelCase ) self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase ) ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Any = """hf-internal-testing/tiny-random-t5""" __UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Tuple = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(UpperCamelCase ): model.save_pretrained(UpperCamelCase ) __UpperCAmelCase : Tuple = model.reverse_bettertransformer() model.save_pretrained(UpperCamelCase )
320
0
"""simple docstring""" from PIL import Image def lowerCamelCase ( _UpperCamelCase : Image , _UpperCamelCase : float ) -> Image: '''simple docstring''' def brightness(_UpperCamelCase : int ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 UpperCAmelCase : Optional[int] = change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" from __future__ import annotations import numpy as np def lowerCamelCase ( _UpperCamelCase : list[float] ) -> Optional[Any]: '''simple docstring''' return np.maximum(0 , _UpperCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase : List[str] = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCAmelCase : Any = logging.getLogger(__name__) class lowerCamelCase__ ( A ): """simple docstring""" __a = """token-classification""" def __init__( self : Dict , UpperCamelCase : Dict ): '''simple docstring''' if type(UpperCamelCase ) == dict: __UpperCAmelCase : Tuple = Namespace(**UpperCamelCase ) __UpperCAmelCase : int = import_module("""tasks""" ) try: __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase , hparams.task_type ) __UpperCAmelCase : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) __UpperCAmelCase : List[Any] = self.token_classification_task.get_labels(hparams.labels ) __UpperCAmelCase : Union[str, Any] = CrossEntropyLoss().ignore_index super().__init__(UpperCamelCase , len(self.labels ) , self.mode ) def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : Optional[int] ): '''simple docstring''' return self.model(**UpperCamelCase ) def lowerCamelCase__ ( self : str , UpperCamelCase : List[Any] , UpperCamelCase : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __UpperCAmelCase : Union[str, Any] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCAmelCase : Optional[Any] = self(**UpperCamelCase ) __UpperCAmelCase : Optional[int] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : str = self.hparams for mode in ["train", "dev", "test"]: __UpperCAmelCase : Optional[Any] = self._feature_file(UpperCamelCase ) if os.path.exists(UpperCamelCase ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , UpperCamelCase ) __UpperCAmelCase : Optional[int] = torch.load(UpperCamelCase ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) __UpperCAmelCase : Optional[int] = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase ) __UpperCAmelCase : str = self.token_classification_task.convert_examples_to_features( UpperCamelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , UpperCamelCase ) torch.save(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : bool = False ): '''simple docstring''' __UpperCAmelCase : str = self._feature_file(UpperCamelCase ) logger.info("""Loading features from cached file %s""" , UpperCamelCase ) __UpperCAmelCase : Optional[int] = torch.load(UpperCamelCase ) __UpperCAmelCase : Optional[int] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __UpperCAmelCase : Dict = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: __UpperCAmelCase : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: __UpperCAmelCase : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) __UpperCAmelCase : str = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , batch_size=UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' """Compute validation""" "" __UpperCAmelCase : Union[str, Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": __UpperCAmelCase : Union[str, Any] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCAmelCase : int = self(**UpperCamelCase ) __UpperCAmelCase : List[str] = outputs[:2] __UpperCAmelCase : Optional[int] = logits.detach().cpu().numpy() __UpperCAmelCase : Any = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = torch.stack([x["""val_loss"""] for x in outputs] ).mean() __UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) __UpperCAmelCase : int = np.argmax(UpperCamelCase , axis=2 ) __UpperCAmelCase : Optional[Any] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) __UpperCAmelCase : Tuple = dict(enumerate(self.labels ) ) __UpperCAmelCase : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] __UpperCAmelCase : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) __UpperCAmelCase : Union[str, Any] = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(UpperCamelCase , UpperCamelCase ), """precision""": precision_score(UpperCamelCase , UpperCamelCase ), """recall""": recall_score(UpperCamelCase , UpperCamelCase ), """f1""": fa_score(UpperCamelCase , UpperCamelCase ), } __UpperCAmelCase : List[Any] = dict(results.items() ) __UpperCAmelCase : Optional[int] = results return ret, preds_list, out_label_list def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Tuple ): '''simple docstring''' __UpperCAmelCase : Dict = self._eval_end(UpperCamelCase ) __UpperCAmelCase : Dict = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCamelCase__ ( self : int , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : List[str] = self._eval_end(UpperCamelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __UpperCAmelCase : str = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCamelCase__ ( UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] ): '''simple docstring''' BaseTransformer.add_model_specific_args(UpperCamelCase , UpperCamelCase ) parser.add_argument( """--task_type""" , default="""NER""" , type=UpperCamelCase , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=UpperCamelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=UpperCamelCase , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=UpperCamelCase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCAmelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCAmelCase : Union[str, Any] = parser.parse_args() UpperCAmelCase : List[Any] = NERTransformer(args) UpperCAmelCase : List[str] = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCAmelCase : Optional[Any] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) UpperCAmelCase : str = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
355
"""simple docstring""" def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[str] = 1 while len(_UpperCamelCase ) < 1E6: constant.append(str(_UpperCamelCase ) ) i += 1 __UpperCAmelCase : List[str] = """""".join(_UpperCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
320
0
"""simple docstring""" UpperCAmelCase : List[Any] = range(2, 20 + 1) UpperCAmelCase : Optional[int] = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase : dict[int, dict[int, list[list[int]]]] = {} def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : str = sum(a_i[j] for j in range(_UpperCamelCase , len(_UpperCamelCase ) ) ) __UpperCAmelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_UpperCamelCase ) , _UpperCamelCase ) ) ) __UpperCAmelCase : str = 0, 0 __UpperCAmelCase : Optional[int] = n - i __UpperCAmelCase : Optional[int] = memo.get(_UpperCamelCase ) if sub_memo is not None: __UpperCAmelCase : Any = sub_memo.get(_UpperCamelCase ) if jumps is not None and len(_UpperCamelCase ) > 0: # find and make the largest jump without going over __UpperCAmelCase : List[Any] = -1 for _k in range(len(_UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __UpperCAmelCase : List[Any] = _k break if max_jump >= 0: __UpperCAmelCase : Tuple = jumps[max_jump] # since the difference between jumps is cached, add c __UpperCAmelCase : Dict = diff + c for j in range(min(_UpperCamelCase , len(_UpperCamelCase ) ) ): __UpperCAmelCase : str = divmod(_UpperCamelCase , 1_0 ) if new_c > 0: add(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: __UpperCAmelCase : str = [] else: __UpperCAmelCase : Dict = {c: []} __UpperCAmelCase : Union[str, Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __UpperCAmelCase : Union[str, Any] = next_term(_UpperCamelCase , k - 1 , i + dn , _UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __UpperCAmelCase : Dict = compute(_UpperCamelCase , _UpperCamelCase , i + dn , _UpperCamelCase ) diff += _diff dn += terms_jumped __UpperCAmelCase : Union[str, Any] = sub_memo[c] # keep jumps sorted by # of terms skipped __UpperCAmelCase : Optional[int] = 0 while j < len(_UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_UpperCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' if i >= n: return 0, i if k > len(_UpperCamelCase ): a_i.extend([0 for _ in range(k - len(_UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __UpperCAmelCase : Dict = i __UpperCAmelCase : List[Any] = 0, 0, 0 for j in range(len(_UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __UpperCAmelCase : Union[str, Any] = ds_c + ds_b diff += addend __UpperCAmelCase : Tuple = 0 for j in range(_UpperCamelCase ): __UpperCAmelCase : int = a_i[j] + addend __UpperCAmelCase : str = divmod(_UpperCamelCase , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return diff, i - start_i def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple ) -> Dict: '''simple docstring''' for j in range(_UpperCamelCase , len(_UpperCamelCase ) ): __UpperCAmelCase : Optional[Any] = digits[j] + addend if s >= 1_0: __UpperCAmelCase : List[Any] = divmod(_UpperCamelCase , 1_0 ) __UpperCAmelCase : Union[str, Any] = addend // 1_0 + quotient else: __UpperCAmelCase : List[str] = s __UpperCAmelCase : Optional[int] = addend // 1_0 if addend == 0: break while addend > 0: __UpperCAmelCase : str = divmod(_UpperCamelCase , 1_0 ) digits.append(_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : int = 1_0**1_5 ) -> int: '''simple docstring''' __UpperCAmelCase : str = [1] __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = 0 while True: __UpperCAmelCase : List[Any] = next_term(_UpperCamelCase , 2_0 , i + dn , _UpperCamelCase ) dn += terms_jumped if dn == n - i: break __UpperCAmelCase : List[Any] = 0 for j in range(len(_UpperCamelCase ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(F"{solution() = }")
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import math def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if ( not isinstance(_UpperCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if ( not isinstance(_UpperCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput UpperCAmelCase : Optional[Any] = 'scheduler_config.json' class lowerCamelCase__ ( A ): """simple docstring""" __a = 1 __a = 2 __a = 3 __a = 4 __a = 5 __a = 6 __a = 7 __a = 8 __a = 9 __a = 10 __a = 11 __a = 12 __a = 13 __a = 14 @dataclass class lowerCamelCase__ ( A ): """simple docstring""" __a = 42 class lowerCamelCase__ : """simple docstring""" __a = SCHEDULER_CONFIG_NAME __a = [] __a = True @classmethod def lowerCamelCase__ ( cls : Any , UpperCamelCase : Dict[str, Any] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = cls.load_config( pretrained_model_name_or_path=UpperCamelCase , subfolder=UpperCamelCase , return_unused_kwargs=UpperCamelCase , return_commit_hash=UpperCamelCase , **UpperCamelCase , ) return cls.from_config(UpperCamelCase , return_unused_kwargs=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, os.PathLike] , UpperCamelCase : bool = False , **UpperCamelCase : Optional[Any] ): '''simple docstring''' self.save_config(save_directory=UpperCamelCase , push_to_hub=UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return self._get_compatibles() @classmethod def lowerCamelCase__ ( cls : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __UpperCAmelCase : List[str] = importlib.import_module(__name__.split(""".""" )[0] ) __UpperCAmelCase : List[str] = [ getattr(UpperCamelCase , UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase , UpperCamelCase ) ] return compatible_classes
320
0
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets UpperCAmelCase : str = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' UpperCAmelCase : List[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' UpperCAmelCase : Union[str, Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self : Any ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : int = CHRF.CHAR_ORDER , UpperCamelCase : int = CHRF.WORD_ORDER , UpperCamelCase : int = CHRF.BETA , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , ): '''simple docstring''' __UpperCAmelCase : Tuple = len(references[0] ) if any(len(UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __UpperCAmelCase : int = [[refs[i] for refs in references] for i in range(UpperCamelCase )] __UpperCAmelCase : str = CHRF(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Optional[Any] = sb_chrf.corpus_score(UpperCamelCase , UpperCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
358
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase__ ( *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ): '''simple docstring''' pass def lowerCamelCase ( _UpperCamelCase : Image ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def lowerCamelCase ( _UpperCamelCase : Image ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = np.array(_UpperCamelCase ) __UpperCAmelCase : List[Any] = npimg.shape return {"hash": hashimage(_UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __a = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass @slow @require_torch def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) __UpperCAmelCase : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : int = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = """facebook/sam-vit-huge""" __UpperCAmelCase : str = pipeline("""mask-generation""" , model=UpperCamelCase ) __UpperCAmelCase : int = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : Dict = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] , )
320
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , UpperCamelCase : str ): '''simple docstring''' super().__init__() __UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase ) __UpperCAmelCase : int = list(model.children() )[:-2] __UpperCAmelCase : List[Any] = nn.Sequential(*UpperCamelCase ) __UpperCAmelCase : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.pool(self.model(UpperCamelCase ) ) __UpperCAmelCase : List[Any] = torch.flatten(UpperCamelCase , start_dim=2 ) __UpperCAmelCase : Any = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )] __UpperCAmelCase : Any = os.path.dirname(UpperCamelCase ) __UpperCAmelCase : List[str] = tokenizer __UpperCAmelCase : str = labels __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) __UpperCAmelCase : int = max_seq_length __UpperCAmelCase : int = transforms def __len__( self : List[str] ): '''simple docstring''' return len(self.data ) def __getitem__( self : List[str] , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Any = sentence[: self.max_seq_length] __UpperCAmelCase : Tuple = torch.zeros(self.n_classes ) __UpperCAmelCase : str = 1 __UpperCAmelCase : Any = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __UpperCAmelCase : Optional[int] = self.transforms(UpperCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = [len(row["""sentence"""] ) for row in batch] __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase ) __UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) __UpperCAmelCase : str = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ): __UpperCAmelCase : List[str] = input_row["""sentence"""] __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] ) __UpperCAmelCase : Optional[Any] = torch.stack([row["""label"""] for row in batch] ) __UpperCAmelCase : str = torch.stack([row["""image_start_token"""] for row in batch] ) __UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ) -> int: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
320
0
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class lowerCamelCase__ ( A ): """simple docstring""" __a = """MCTCTFeatureExtractor""" __a = """AutoTokenizer""" def __init__( self : Tuple , UpperCamelCase : List[str] , UpperCamelCase : int ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Tuple = self.feature_extractor __UpperCAmelCase : List[str] = False def __call__( self : List[str] , *UpperCamelCase : Tuple , **UpperCamelCase : Optional[int] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*UpperCamelCase , **UpperCamelCase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) __UpperCAmelCase : List[str] = kwargs.pop("""raw_speech""" ) else: __UpperCAmelCase : Optional[int] = kwargs.pop("""audio""" , UpperCamelCase ) __UpperCAmelCase : int = kwargs.pop("""sampling_rate""" , UpperCamelCase ) __UpperCAmelCase : Optional[Any] = kwargs.pop("""text""" , UpperCamelCase ) if len(UpperCamelCase ) > 0: __UpperCAmelCase : int = args[0] __UpperCAmelCase : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: __UpperCAmelCase : Optional[int] = self.feature_extractor(UpperCamelCase , *UpperCamelCase , sampling_rate=UpperCamelCase , **UpperCamelCase ) if text is not None: __UpperCAmelCase : Optional[Any] = self.tokenizer(UpperCamelCase , **UpperCamelCase ) if text is None: return inputs elif audio is None: return encodings else: __UpperCAmelCase : List[str] = encodings["""input_ids"""] return inputs def lowerCamelCase__ ( self : Dict , *UpperCamelCase : Any , **UpperCamelCase : str ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Tuple ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Dict = kwargs.pop("""input_features""" , UpperCamelCase ) __UpperCAmelCase : Any = kwargs.pop("""labels""" , UpperCamelCase ) if len(UpperCamelCase ) > 0: __UpperCAmelCase : Optional[Any] = args[0] __UpperCAmelCase : str = args[1:] if input_features is not None: __UpperCAmelCase : Any = self.feature_extractor.pad(UpperCamelCase , *UpperCamelCase , **UpperCamelCase ) if labels is not None: __UpperCAmelCase : List[Any] = self.tokenizer.pad(UpperCamelCase , **UpperCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: __UpperCAmelCase : Any = labels["""input_ids"""] return input_features def lowerCamelCase__ ( self : Dict , *UpperCamelCase : Any , **UpperCamelCase : str ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @contextmanager def lowerCamelCase__ ( self : Dict ): '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : List[Any] = self.tokenizer yield __UpperCAmelCase : Tuple = self.feature_extractor __UpperCAmelCase : int = False
360
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
320
0
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase : str = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' UpperCAmelCase : int = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' UpperCAmelCase : Optional[int] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> int: '''simple docstring''' def remove_articles(_UpperCamelCase : str ): __UpperCAmelCase : Optional[Any] = re.compile(R"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(_UpperCamelCase , """ """ , _UpperCamelCase ) def white_space_fix(_UpperCamelCase : Any ): return " ".join(text.split() ) def remove_punc(_UpperCamelCase : Dict ): __UpperCAmelCase : Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCamelCase : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCamelCase ) ) ) ) def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' return int(normalize_answer(_UpperCamelCase ) == normalize_answer(_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Dict ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = [any(compute_exact(_UpperCamelCase , _UpperCamelCase ) for ref in refs ) for pred, refs in zip(_UpperCamelCase , _UpperCamelCase )] return (sum(_UpperCamelCase ) / len(_UpperCamelCase )) * 1_0_0 def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = [rgram for rgrams in rgramslist for rgram in rgrams] __UpperCAmelCase : Dict = Counter(_UpperCamelCase ) __UpperCAmelCase : int = Counter(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = Counter() for sgram, scount in sgramcounter.items(): __UpperCAmelCase : Dict = scount * numref __UpperCAmelCase : Dict = Counter(_UpperCamelCase ) __UpperCAmelCase : Tuple = Counter() for cgram, ccount in cgramcounter.items(): __UpperCAmelCase : Optional[int] = ccount * numref # KEEP __UpperCAmelCase : Union[str, Any] = sgramcounter_rep & cgramcounter_rep __UpperCAmelCase : Union[str, Any] = keepgramcounter_rep & rgramcounter __UpperCAmelCase : List[str] = sgramcounter_rep & rgramcounter __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[str] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Any = 1 if len(_UpperCamelCase ) > 0: __UpperCAmelCase : Any = keeptmpscorea / len(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) __UpperCAmelCase : Optional[int] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) __UpperCAmelCase : int = 0 if keepscore_precision > 0 or keepscore_recall > 0: __UpperCAmelCase : List[str] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION __UpperCAmelCase : Any = sgramcounter_rep - cgramcounter_rep __UpperCAmelCase : int = delgramcounter_rep - rgramcounter __UpperCAmelCase : Union[str, Any] = sgramcounter_rep - rgramcounter __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : str = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __UpperCAmelCase : List[str] = 1 if len(_UpperCamelCase ) > 0: __UpperCAmelCase : List[Any] = deltmpscorea / len(_UpperCamelCase ) # ADDITION __UpperCAmelCase : List[Any] = set(_UpperCamelCase ) - set(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = set(_UpperCamelCase ) & set(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = set(_UpperCamelCase ) - set(_UpperCamelCase ) __UpperCAmelCase : int = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Tuple = 1 if len(_UpperCamelCase ) > 0: __UpperCAmelCase : Any = addtmpscore / len(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: __UpperCAmelCase : Dict = addtmpscore / len(_UpperCamelCase ) __UpperCAmelCase : Dict = 0 if addscore_precision > 0 or addscore_recall > 0: __UpperCAmelCase : Dict = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Dict ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = len(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = ssent.split(""" """ ) __UpperCAmelCase : Optional[int] = csent.split(""" """ ) __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = [] __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Union[str, Any] = [] for rsent in rsents: __UpperCAmelCase : str = rsent.split(""" """ ) __UpperCAmelCase : str = [] __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = [] ragramslist.append(_UpperCamelCase ) for i in range(0 , len(_UpperCamelCase ) - 1 ): if i < len(_UpperCamelCase ) - 1: __UpperCAmelCase : Tuple = ragrams[i] + """ """ + ragrams[i + 1] ragrams.append(_UpperCamelCase ) if i < len(_UpperCamelCase ) - 2: __UpperCAmelCase : Dict = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] ragrams.append(_UpperCamelCase ) if i < len(_UpperCamelCase ) - 3: __UpperCAmelCase : Any = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3] ragrams.append(_UpperCamelCase ) ragramslist.append(_UpperCamelCase ) ragramslist.append(_UpperCamelCase ) ragramslist.append(_UpperCamelCase ) for i in range(0 , len(_UpperCamelCase ) - 1 ): if i < len(_UpperCamelCase ) - 1: __UpperCAmelCase : List[Any] = sagrams[i] + """ """ + sagrams[i + 1] sagrams.append(_UpperCamelCase ) if i < len(_UpperCamelCase ) - 2: __UpperCAmelCase : Union[str, Any] = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] sagrams.append(_UpperCamelCase ) if i < len(_UpperCamelCase ) - 3: __UpperCAmelCase : Dict = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3] sagrams.append(_UpperCamelCase ) for i in range(0 , len(_UpperCamelCase ) - 1 ): if i < len(_UpperCamelCase ) - 1: __UpperCAmelCase : Dict = cagrams[i] + """ """ + cagrams[i + 1] cagrams.append(_UpperCamelCase ) if i < len(_UpperCamelCase ) - 2: __UpperCAmelCase : List[str] = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] cagrams.append(_UpperCamelCase ) if i < len(_UpperCamelCase ) - 3: __UpperCAmelCase : List[Any] = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3] cagrams.append(_UpperCamelCase ) (__UpperCAmelCase) : Tuple = SARIngram(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) (__UpperCAmelCase) : str = SARIngram(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) (__UpperCAmelCase) : List[str] = SARIngram(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) (__UpperCAmelCase) : Dict = SARIngram(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : List[str] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 __UpperCAmelCase : Optional[Any] = sum([delascore, delascore, delascore, delascore] ) / 4 __UpperCAmelCase : List[Any] = sum([addascore, addascore, addascore, addascore] ) / 4 __UpperCAmelCase : int = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : str = "13a" , _UpperCamelCase : bool = True ) -> Union[str, Any]: '''simple docstring''' if lowercase: __UpperCAmelCase : Dict = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: __UpperCAmelCase : int = sacrebleu.metrics.bleu._get_tokenizer(_UpperCamelCase )()(_UpperCamelCase ) else: __UpperCAmelCase : str = sacrebleu.TOKENIZERS[tokenizer]()(_UpperCamelCase ) elif tokenizer == "moses": __UpperCAmelCase : List[Any] = sacremoses.MosesTokenizer().tokenize(_UpperCamelCase , return_str=_UpperCamelCase , escape=_UpperCamelCase ) elif tokenizer == "penn": __UpperCAmelCase : List[Any] = sacremoses.MosesTokenizer().penn_tokenize(_UpperCamelCase , return_str=_UpperCamelCase ) else: __UpperCAmelCase : str = sentence if not return_str: __UpperCAmelCase : str = normalized_sent.split() return normalized_sent def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str] ) -> List[str]: '''simple docstring''' if not (len(_UpperCamelCase ) == len(_UpperCamelCase ) == len(_UpperCamelCase )): raise ValueError("""Sources length must match predictions and references lengths.""" ) __UpperCAmelCase : int = 0 for src, pred, refs in zip(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): sari_score += SARIsent(normalize(_UpperCamelCase ) , normalize(_UpperCamelCase ) , [normalize(_UpperCamelCase ) for sent in refs] ) __UpperCAmelCase : Tuple = sari_score / len(_UpperCamelCase ) return 1_0_0 * sari_score def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple="exp" , _UpperCamelCase : List[str]=None , _UpperCamelCase : List[str]=False , _UpperCamelCase : Any=False , _UpperCamelCase : Tuple=False , ) -> Dict: '''simple docstring''' __UpperCAmelCase : Any = len(references[0] ) if any(len(_UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __UpperCAmelCase : Dict = [[refs[i] for refs in references] for i in range(_UpperCamelCase )] __UpperCAmelCase : int = sacrebleu.corpus_bleu( _UpperCamelCase , _UpperCamelCase , smooth_method=_UpperCamelCase , smooth_value=_UpperCamelCase , force=_UpperCamelCase , lowercase=_UpperCamelCase , use_effective_order=_UpperCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self : str ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] , reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = {} result.update({"""sari""": compute_sari(sources=UpperCamelCase , predictions=UpperCamelCase , references=UpperCamelCase )} ) result.update({"""sacrebleu""": compute_sacrebleu(predictions=UpperCamelCase , references=UpperCamelCase )} ) result.update({"""exact""": compute_em(predictions=UpperCamelCase , references=UpperCamelCase )} ) return result
361
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ) __UpperCAmelCase : List[Any] = sum(_UpperCamelCase ) __UpperCAmelCase : Optional[int] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __UpperCAmelCase : Any = True for i in range(1 , s + 1 ): __UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __UpperCAmelCase : Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __UpperCAmelCase : Optional[int] = s - 2 * j break return diff
320
0
"""simple docstring""" import requests UpperCAmelCase : Optional[int] = 'YOUR API KEY' def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : str = giphy_api_key ) -> list: '''simple docstring''' __UpperCAmelCase : List[Any] = """+""".join(query.split() ) __UpperCAmelCase : Union[str, Any] = f'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __UpperCAmelCase : str = requests.get(_UpperCamelCase ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
362
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""pixel_values"""] def __init__( self : Tuple , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 255 , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(**UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) __UpperCAmelCase : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : int = crop_size __UpperCAmelCase : Optional[int] = do_rescale __UpperCAmelCase : List[Any] = rescale_factor __UpperCAmelCase : Tuple = do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCAmelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCAmelCase : List[Any] = do_convert_rgb def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __UpperCAmelCase : int = get_resize_output_image_size(UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Dict , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, float] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ): '''simple docstring''' return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ): '''simple docstring''' return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : int = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Dict = size if size is not None else self.size __UpperCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase , param_name="""size""" , default_to_square=UpperCamelCase ) __UpperCAmelCase : Dict = resample if resample is not None else self.resample __UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , param_name="""crop_size""" , default_to_square=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Any = image_std if image_std is not None else self.image_std __UpperCAmelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCAmelCase : List[str] = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCAmelCase : int = [convert_to_rgb(UpperCamelCase ) for image in images] # All transformations expect numpy arrays. __UpperCAmelCase : Tuple = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: __UpperCAmelCase : Optional[int] = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: __UpperCAmelCase : int = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: __UpperCAmelCase : Dict = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: __UpperCAmelCase : Optional[Any] = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] __UpperCAmelCase : Any = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] __UpperCAmelCase : Any = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
320
0
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase : List[str] = True except (ImportError, ModuleNotFoundError): UpperCAmelCase : Any = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCamelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' re.sub("""<n>""" , """""" , _UpperCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_UpperCamelCase ) )
363
"""simple docstring""" from collections.abc import Sequence def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : Dict = 0.0 for coeff in reversed(_UpperCamelCase ): __UpperCAmelCase : Any = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
320
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = KandinskyImgaImgPipeline __a = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] __a = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] __a = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __a = False @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return self.time_input_dim @property def lowerCamelCase__ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self : str ): '''simple docstring''' return 100 @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Dict = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowerCamelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) __UpperCAmelCase : List[Any] = MultilingualCLIP(UpperCamelCase ) __UpperCAmelCase : Any = text_encoder.eval() return text_encoder @property def lowerCamelCase__ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __UpperCAmelCase : Tuple = UNetaDConditionModel(**UpperCamelCase ) return model @property def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.dummy_text_encoder __UpperCAmelCase : int = self.dummy_tokenizer __UpperCAmelCase : Tuple = self.dummy_unet __UpperCAmelCase : Union[str, Any] = self.dummy_movq __UpperCAmelCase : Optional[Any] = { """num_train_timesteps""": 1_000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __UpperCAmelCase : str = DDIMScheduler(**UpperCamelCase ) __UpperCAmelCase : Optional[Any] = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ ( self : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple=0 ): '''simple docstring''' __UpperCAmelCase : Any = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) __UpperCAmelCase : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCamelCase ) # create init_image __UpperCAmelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCAmelCase : Dict = Image.fromarray(np.uinta(UpperCamelCase ) ).convert("""RGB""" ).resize((256, 256) ) if str(UpperCamelCase ).startswith("""mps""" ): __UpperCAmelCase : List[Any] = torch.manual_seed(UpperCamelCase ) else: __UpperCAmelCase : Optional[Any] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) __UpperCAmelCase : List[str] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Tuple = """cpu""" __UpperCAmelCase : Optional[Any] = self.get_dummy_components() __UpperCAmelCase : Optional[Any] = self.pipeline_class(**UpperCamelCase ) __UpperCAmelCase : Optional[Any] = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) __UpperCAmelCase : Dict = output.images __UpperCAmelCase : List[str] = pipe( **self.get_dummy_inputs(UpperCamelCase ) , return_dict=UpperCamelCase , )[0] __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] __UpperCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __UpperCAmelCase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __UpperCAmelCase : Optional[int] = """A red cartoon frog, 4k""" __UpperCAmelCase : Dict = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase ) __UpperCAmelCase : Dict = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __UpperCAmelCase : Dict = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) __UpperCAmelCase : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __UpperCAmelCase : Dict = pipe_prior( UpperCamelCase , generator=UpperCamelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __UpperCAmelCase : int = pipeline( UpperCamelCase , image=UpperCamelCase , image_embeds=UpperCamelCase , negative_image_embeds=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) __UpperCAmelCase : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
364
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[int] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCamelCase__ : """simple docstring""" __a = PegasusConfig __a = {} __a = """gelu""" def __init__( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Dict=True , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : Union[str, Any]=5 , UpperCamelCase : Any=4 , UpperCamelCase : Tuple=37 , UpperCamelCase : Any=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=20 , UpperCamelCase : List[str]=2 , UpperCamelCase : int=1 , UpperCamelCase : Optional[Any]=0 , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Any = eos_token_id __UpperCAmelCase : Optional[int] = pad_token_id __UpperCAmelCase : List[str] = bos_token_id def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __UpperCAmelCase : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCAmelCase : Union[str, Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCAmelCase : Any = prepare_pegasus_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, inputs_dict def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 20 __UpperCAmelCase : Tuple = model_class_name(UpperCamelCase ) __UpperCAmelCase : List[Any] = model.encode(inputs_dict["""input_ids"""] ) __UpperCAmelCase ,__UpperCAmelCase : int = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __UpperCAmelCase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCAmelCase : Tuple = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Dict = model.decode(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 20 __UpperCAmelCase : int = model_class_name(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] ) __UpperCAmelCase ,__UpperCAmelCase : Dict = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCAmelCase : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) __UpperCAmelCase : Union[str, Any] = model.decode(UpperCamelCase , UpperCamelCase , decoder_attention_mask=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=None , _UpperCamelCase : Any=None , ) -> Dict: '''simple docstring''' if attention_mask is None: __UpperCAmelCase : Optional[int] = np.not_equal(_UpperCamelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __UpperCAmelCase : Dict = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __a = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __a = True __a = False __a = False __a = False def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = FlaxPegasusModelTester(self ) __UpperCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : Tuple = self._prepare_for_class(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Dict = model_class(UpperCamelCase ) @jax.jit def encode_jitted(UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any]=None , **UpperCamelCase : List[str] ): return model.encode(input_ids=UpperCamelCase , attention_mask=UpperCamelCase ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase : Tuple = encode_jitted(**UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase : Optional[int] = encode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : int = model_class(UpperCamelCase ) __UpperCAmelCase : int = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __UpperCAmelCase : Any = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ): return model.decode( decoder_input_ids=UpperCamelCase , decoder_attention_mask=UpperCamelCase , encoder_outputs=UpperCamelCase , ) with self.subTest("""JIT Enabled""" ): __UpperCAmelCase : Union[str, Any] = decode_jitted(**UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCAmelCase : str = decode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCamelCase ) __UpperCAmelCase : Optional[int] = np.ones((1, 1) ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @slow def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) __UpperCAmelCase : Union[str, Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) __UpperCAmelCase : List[Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCAmelCase : List[str] = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""np""" , truncation=UpperCamelCase , max_length=512 , padding=UpperCamelCase ) __UpperCAmelCase : int = model.generate(**UpperCamelCase , num_beams=2 ).sequences __UpperCAmelCase : str = tokenizer.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) assert tgt_text == decoded
320
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : list[float] , _UpperCamelCase : list[float] ) -> float: '''simple docstring''' __UpperCAmelCase : Tuple = sorted(numsa + numsa ) __UpperCAmelCase : Dict = divmod(len(_UpperCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[Any] = [float(x) for x in input('Enter the elements of first array: ').split()] UpperCAmelCase : Optional[int] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
365
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } UpperCAmelCase : List[str] = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = EfficientNetConfig() __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""hidden_dim"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""width_coef"""] __UpperCAmelCase : str = CONFIG_MAP[model_name]["""depth_coef"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""dropout_rate"""] __UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""] __UpperCAmelCase : int = """huggingface/label-files""" __UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json""" __UpperCAmelCase : str = 1_0_0_0 __UpperCAmelCase : Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Dict = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCamelCase ( _UpperCamelCase : Any ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : List[str] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_UpperCamelCase , ) return preprocessor def lowerCamelCase ( _UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __UpperCAmelCase : str = sorted(set(_UpperCamelCase ) ) __UpperCAmelCase : Optional[int] = len(_UpperCamelCase ) __UpperCAmelCase : Any = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )} __UpperCAmelCase : Any = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __UpperCAmelCase : List[str] = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __UpperCAmelCase : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: __UpperCAmelCase : Optional[Any] = """efficientnet.""" + item[1] __UpperCAmelCase : Tuple = """classifier.weight""" __UpperCAmelCase : Optional[int] = """classifier.bias""" return key_mapping def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue __UpperCAmelCase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: __UpperCAmelCase : int = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __UpperCAmelCase : Optional[Any] = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __UpperCAmelCase : List[str] = torch.from_numpy(np.transpose(_UpperCamelCase ) ) else: __UpperCAmelCase : Tuple = torch.from_numpy(_UpperCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCamelCase ) @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = model_classes[model_name]( include_top=_UpperCamelCase , weights="""imagenet""" , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , ) __UpperCAmelCase : List[str] = original_model.trainable_variables __UpperCAmelCase : List[Any] = original_model.non_trainable_variables __UpperCAmelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __UpperCAmelCase : int = param.numpy() __UpperCAmelCase : Dict = list(tf_params.keys() ) # Load HuggingFace model __UpperCAmelCase : Optional[Any] = get_efficientnet_config(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(_UpperCamelCase ).eval() __UpperCAmelCase : Any = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __UpperCAmelCase : Tuple = rename_keys(_UpperCamelCase ) replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Initialize preprocessor and preprocess input image __UpperCAmelCase : List[Any] = convert_image_processor(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = hf_model(**_UpperCamelCase ) __UpperCAmelCase : Any = outputs.logits.detach().numpy() # Original model inference __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : str = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __UpperCAmelCase : Optional[Any] = image.img_to_array(_UpperCamelCase ) __UpperCAmelCase : Tuple = np.expand_dims(_UpperCamelCase , axis=0 ) __UpperCAmelCase : str = original_model.predict(_UpperCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCamelCase ): os.mkdir(_UpperCamelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCamelCase ) preprocessor.save_pretrained(_UpperCamelCase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) __UpperCAmelCase : List[str] = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_UpperCamelCase ) hf_model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') UpperCAmelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
320
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""keras_nlp"""] def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(self , ["""keras_nlp"""] )
320
0
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) UpperCAmelCase : Tuple = { 'sample_size': 32, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': 1000, 'block_out_channels': [32, 64], 'attention_head_dim': 8, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } UpperCAmelCase : Union[str, Any] = { 'sample_size': 64, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 3, 'num_class_embeds': 1000, 'block_out_channels': [192, 192 * 2, 192 * 3, 192 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } UpperCAmelCase : List[Any] = { 'sample_size': 256, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': None, 'block_out_channels': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'default', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } UpperCAmelCase : List[str] = { 'num_train_timesteps': 40, 'sigma_min': 0.002, 'sigma_max': 80.0, } UpperCAmelCase : List[str] = { 'num_train_timesteps': 201, 'sigma_min': 0.002, 'sigma_max': 80.0, } UpperCAmelCase : List[str] = { 'num_train_timesteps': 151, 'sigma_min': 0.002, 'sigma_max': 80.0, } def lowerCamelCase ( _UpperCamelCase : int ) -> str: '''simple docstring''' if isinstance(_UpperCamelCase , _UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any]=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = checkpoint[f'''{old_prefix}.in_layers.0.weight'''] __UpperCAmelCase : Dict = checkpoint[f'''{old_prefix}.in_layers.0.bias'''] __UpperCAmelCase : List[Any] = checkpoint[f'''{old_prefix}.in_layers.2.weight'''] __UpperCAmelCase : List[str] = checkpoint[f'''{old_prefix}.in_layers.2.bias'''] __UpperCAmelCase : int = checkpoint[f'''{old_prefix}.emb_layers.1.weight'''] __UpperCAmelCase : Optional[int] = checkpoint[f'''{old_prefix}.emb_layers.1.bias'''] __UpperCAmelCase : str = checkpoint[f'''{old_prefix}.out_layers.0.weight'''] __UpperCAmelCase : Optional[Any] = checkpoint[f'''{old_prefix}.out_layers.0.bias'''] __UpperCAmelCase : List[Any] = checkpoint[f'''{old_prefix}.out_layers.3.weight'''] __UpperCAmelCase : List[Any] = checkpoint[f'''{old_prefix}.out_layers.3.bias'''] if has_skip: __UpperCAmelCase : Union[str, Any] = checkpoint[f'''{old_prefix}.skip_connection.weight'''] __UpperCAmelCase : str = checkpoint[f'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = checkpoint[f'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) __UpperCAmelCase : int = checkpoint[f'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) __UpperCAmelCase : List[str] = checkpoint[f'''{old_prefix}.norm.weight'''] __UpperCAmelCase : Any = checkpoint[f'''{old_prefix}.norm.bias'''] __UpperCAmelCase : Tuple = weight_q.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : Any = bias_k.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : Union[str, Any] = weight_v.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : Any = bias_v.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : Optional[int] = ( checkpoint[f'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) __UpperCAmelCase : List[str] = checkpoint[f'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Dict ) -> int: '''simple docstring''' __UpperCAmelCase : str = torch.load(_UpperCamelCase , map_location="""cpu""" ) __UpperCAmelCase : Dict = {} __UpperCAmelCase : Dict = checkpoint["""time_embed.0.weight"""] __UpperCAmelCase : int = checkpoint["""time_embed.0.bias"""] __UpperCAmelCase : List[str] = checkpoint["""time_embed.2.weight"""] __UpperCAmelCase : int = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: __UpperCAmelCase : List[Any] = checkpoint["""label_emb.weight"""] __UpperCAmelCase : Optional[Any] = checkpoint["""input_blocks.0.0.weight"""] __UpperCAmelCase : Union[str, Any] = checkpoint["""input_blocks.0.0.bias"""] __UpperCAmelCase : Optional[Any] = unet_config["""down_block_types"""] __UpperCAmelCase : Optional[int] = unet_config["""layers_per_block"""] __UpperCAmelCase : int = unet_config["""attention_head_dim"""] __UpperCAmelCase : Dict = unet_config["""block_out_channels"""] __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(_UpperCamelCase ): __UpperCAmelCase : int = channels_list[i] __UpperCAmelCase : Union[str, Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_UpperCamelCase ): __UpperCAmelCase : str = f'''down_blocks.{i}.resnets.{j}''' __UpperCAmelCase : Dict = f'''input_blocks.{current_layer}.0''' __UpperCAmelCase : Any = True if j == 0 and downsample_block_has_skip else False __UpperCAmelCase : List[Any] = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_UpperCamelCase ): __UpperCAmelCase : Optional[int] = f'''down_blocks.{i}.resnets.{j}''' __UpperCAmelCase : Tuple = f'''input_blocks.{current_layer}.0''' __UpperCAmelCase : Optional[int] = True if j == 0 and downsample_block_has_skip else False __UpperCAmelCase : List[str] = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase ) __UpperCAmelCase : Dict = f'''down_blocks.{i}.attentions.{j}''' __UpperCAmelCase : Dict = f'''input_blocks.{current_layer}.1''' __UpperCAmelCase : Optional[int] = convert_attention( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) current_layer += 1 if i != len(_UpperCamelCase ) - 1: __UpperCAmelCase : Any = f'''down_blocks.{i}.downsamplers.0''' __UpperCAmelCase : Tuple = f'''input_blocks.{current_layer}.0''' __UpperCAmelCase : List[str] = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) current_layer += 1 __UpperCAmelCase : Union[str, Any] = current_channels # hardcoded the mid-block for now __UpperCAmelCase : Union[str, Any] = """mid_block.resnets.0""" __UpperCAmelCase : Any = """middle_block.0""" __UpperCAmelCase : Dict = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : Tuple = """mid_block.attentions.0""" __UpperCAmelCase : Any = """middle_block.1""" __UpperCAmelCase : int = convert_attention(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : Optional[int] = """mid_block.resnets.1""" __UpperCAmelCase : Union[str, Any] = """middle_block.2""" __UpperCAmelCase : str = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : Any = 0 __UpperCAmelCase : Optional[int] = unet_config["""up_block_types"""] for i, layer_type in enumerate(_UpperCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __UpperCAmelCase : Dict = f'''up_blocks.{i}.resnets.{j}''' __UpperCAmelCase : Tuple = f'''output_blocks.{current_layer}.0''' __UpperCAmelCase : Dict = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase ) current_layer += 1 if i != len(_UpperCamelCase ) - 1: __UpperCAmelCase : int = f'''up_blocks.{i}.upsamplers.0''' __UpperCAmelCase : int = f'''output_blocks.{current_layer-1}.1''' __UpperCAmelCase : Union[str, Any] = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __UpperCAmelCase : Optional[Any] = f'''up_blocks.{i}.resnets.{j}''' __UpperCAmelCase : List[Any] = f'''output_blocks.{current_layer}.0''' __UpperCAmelCase : Tuple = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase ) __UpperCAmelCase : List[Any] = f'''up_blocks.{i}.attentions.{j}''' __UpperCAmelCase : Union[str, Any] = f'''output_blocks.{current_layer}.1''' __UpperCAmelCase : List[str] = convert_attention( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) current_layer += 1 if i != len(_UpperCamelCase ) - 1: __UpperCAmelCase : Optional[int] = f'''up_blocks.{i}.upsamplers.0''' __UpperCAmelCase : Dict = f'''output_blocks.{current_layer-1}.2''' __UpperCAmelCase : Optional[Any] = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : int = checkpoint["""out.0.weight"""] __UpperCAmelCase : List[Any] = checkpoint["""out.0.bias"""] __UpperCAmelCase : Optional[int] = checkpoint["""out.2.weight"""] __UpperCAmelCase : int = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument('--unet_path', default=None, type=str, required=True, help='Path to the unet.pt to convert.') parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output the converted UNet model.' ) parser.add_argument('--class_cond', default=True, type=str, help='Whether the model is class-conditional.') UpperCAmelCase : List[str] = parser.parse_args() UpperCAmelCase : int = strabool(args.class_cond) UpperCAmelCase : int = os.path.basename(args.unet_path) print(F"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: UpperCAmelCase : Dict = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCAmelCase : str = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: UpperCAmelCase : List[str] = TEST_UNET_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: UpperCAmelCase : List[Any] = None UpperCAmelCase : Any = con_pt_to_diffuser(args.unet_path, unet_config) UpperCAmelCase : Any = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: UpperCAmelCase : List[str] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: UpperCAmelCase : List[Any] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCAmelCase : Dict = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") UpperCAmelCase : str = CMStochasticIterativeScheduler(**scheduler_config) UpperCAmelCase : List[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
367
"""simple docstring""" UpperCAmelCase : Dict = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCamelCase ( _UpperCamelCase : bytes ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Any = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_UpperCamelCase ) __UpperCAmelCase : str = """""".join(bin(_UpperCamelCase )[2:].zfill(8 ) for byte in data ) __UpperCAmelCase : int = len(_UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later __UpperCAmelCase : Dict = b"""=""" * ((6 - len(_UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_UpperCamelCase ) % 6) else: __UpperCAmelCase : List[str] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_UpperCamelCase ) , 6 ) ).encode() + padding ) def lowerCamelCase ( _UpperCamelCase : str ) -> bytes: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Tuple = ( """argument should be a bytes-like object or ASCII string, """ f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_UpperCamelCase , _UpperCamelCase ): try: __UpperCAmelCase : Optional[Any] = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) __UpperCAmelCase : str = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __UpperCAmelCase : List[str] = encoded_data[:-padding] __UpperCAmelCase : int = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __UpperCAmelCase : Optional[Any] = """""".join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) __UpperCAmelCase : List[Any] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_UpperCamelCase ) , 8 ) ] return bytes(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
320
0
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : int ): '''simple docstring''' super().tearDown() gc.collect() def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : int = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __UpperCAmelCase : Dict = """A painting of a squirrel eating a burger""" __UpperCAmelCase : Any = jax.device_count() __UpperCAmelCase : List[str] = num_samples * [prompt] __UpperCAmelCase : Tuple = sd_pipe.prepare_inputs(UpperCamelCase ) __UpperCAmelCase : int = replicate(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = shard(UpperCamelCase ) __UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) __UpperCAmelCase : Tuple = jax.random.split(UpperCamelCase , jax.device_count() ) __UpperCAmelCase : Tuple = sd_pipe(UpperCamelCase , UpperCamelCase , UpperCamelCase , num_inference_steps=25 , jit=UpperCamelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __UpperCAmelCase : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __UpperCAmelCase : Optional[int] = images[0, 253:256, 253:256, -1] __UpperCAmelCase : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __UpperCAmelCase : Optional[int] = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Dict = """stabilityai/stable-diffusion-2""" __UpperCAmelCase : Any = FlaxDPMSolverMultistepScheduler.from_pretrained(UpperCamelCase , subfolder="""scheduler""" ) __UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( UpperCamelCase , scheduler=UpperCamelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __UpperCAmelCase : List[Any] = scheduler_params __UpperCAmelCase : Optional[int] = """A painting of a squirrel eating a burger""" __UpperCAmelCase : Tuple = jax.device_count() __UpperCAmelCase : Optional[int] = num_samples * [prompt] __UpperCAmelCase : Optional[int] = sd_pipe.prepare_inputs(UpperCamelCase ) __UpperCAmelCase : List[Any] = replicate(UpperCamelCase ) __UpperCAmelCase : str = shard(UpperCamelCase ) __UpperCAmelCase : str = jax.random.PRNGKey(0 ) __UpperCAmelCase : Tuple = jax.random.split(UpperCamelCase , jax.device_count() ) __UpperCAmelCase : Any = sd_pipe(UpperCamelCase , UpperCamelCase , UpperCamelCase , num_inference_steps=25 , jit=UpperCamelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __UpperCAmelCase : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __UpperCAmelCase : Dict = images[0, 253:256, 253:256, -1] __UpperCAmelCase : Any = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __UpperCAmelCase : List[Any] = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
368
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase : str = logging.get_logger(__name__) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ): '''simple docstring''' warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
320
0
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase__ : """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any=13 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Dict=True , UpperCamelCase : List[str]=True , UpperCamelCase : int=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Union[str, Any]=224 , UpperCamelCase : List[str]=1_000 , UpperCamelCase : Optional[Any]=[3, 3, 6, 4] , UpperCamelCase : str=[48, 56, 112, 220] , ): '''simple docstring''' __UpperCAmelCase : Dict = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : Dict = num_labels __UpperCAmelCase : int = image_size __UpperCAmelCase : str = layer_depths __UpperCAmelCase : Tuple = embed_dims def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : str ): '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=UpperCamelCase , layer_scale_init_value=1e-5 , ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Tuple = SwiftFormerModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : Dict = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : List[str] = self.num_labels __UpperCAmelCase : Any = SwiftFormerForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase : Any = SwiftFormerForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' (__UpperCAmelCase) : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __a = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) __a = False __a = False __a = False __a = False __a = False def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : List[str] = SwiftFormerModelTester(self ) __UpperCAmelCase : List[str] = ConfigTester( self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCamelCase__ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(UpperCamelCase ) __UpperCAmelCase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase , nn.Linear ) ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = model_class(UpperCamelCase ) __UpperCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Tuple = [*signature.parameters.keys()] __UpperCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = SwiftFormerModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def lowerCamelCase__ ( self : int ): '''simple docstring''' pass def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase : Dict , UpperCamelCase : Any , UpperCamelCase : Optional[int] ): __UpperCAmelCase : Any = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Any = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) __UpperCAmelCase : int = outputs.hidden_states __UpperCAmelCase : int = 8 self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(UpperCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Dict = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' def _config_zero_init(UpperCamelCase : str ): __UpperCAmelCase : Optional[int] = copy.deepcopy(UpperCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(UpperCamelCase , UpperCamelCase , 1e-1_0 ) if isinstance(getattr(UpperCamelCase , UpperCamelCase , UpperCamelCase ) , UpperCamelCase ): __UpperCAmelCase : List[Any] = _config_zero_init(getattr(UpperCamelCase , UpperCamelCase ) ) setattr(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return configs_no_init __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = _config_zero_init(UpperCamelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = model_class(config=UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' pass def lowerCamelCase ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : List[str] = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(UpperCamelCase ) __UpperCAmelCase : Any = self.default_image_processor __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : Dict = image_processor(images=UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Dict = model(**UpperCamelCase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) __UpperCAmelCase : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) )
369
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = LEDTokenizer __a = LEDTokenizerFast __a = True def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' super().setUp() __UpperCAmelCase : Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __UpperCAmelCase : str = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase ) ) def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : str , UpperCamelCase : Any ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self : str ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCAmelCase : Union[str, Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = tokenizer(UpperCamelCase , max_length=len(UpperCamelCase ) , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCamelCase , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIn("""input_ids""" , UpperCamelCase ) self.assertIn("""attention_mask""" , UpperCamelCase ) self.assertNotIn("""labels""" , UpperCamelCase ) self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[Any] = tokenizer(text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : str = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization."""] __UpperCAmelCase : int = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Tuple = tokenizer(text_target=UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Optional[Any] = inputs["""input_ids"""] __UpperCAmelCase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = ["""Summary of the text.""", """Another summary."""] __UpperCAmelCase : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , padding=UpperCamelCase ) __UpperCAmelCase : str = [[0] * len(UpperCamelCase ) for x in encoded_output["""input_ids"""]] __UpperCAmelCase : List[Any] = tokenizer.pad(UpperCamelCase ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Any = """A, <mask> AllenNLP sentence.""" __UpperCAmelCase : Dict = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) __UpperCAmelCase : List[Any] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
320
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = KandinskyVaaControlnetPipeline __a = ["""image_embeds""", """negative_image_embeds""", """hint"""] __a = ["""image_embeds""", """negative_image_embeds""", """hint"""] __a = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __a = False @property def lowerCamelCase__ ( self : int ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self : int ): '''simple docstring''' return self.time_input_dim @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 100 @property def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __UpperCAmelCase : Dict = UNetaDConditionModel(**UpperCamelCase ) return model @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Any = self.dummy_unet __UpperCAmelCase : str = self.dummy_movq __UpperCAmelCase : Optional[int] = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCamelCase , ) __UpperCAmelCase : List[str] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ ( self : int , UpperCamelCase : Optional[int] , UpperCamelCase : Dict=0 ): '''simple docstring''' __UpperCAmelCase : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) __UpperCAmelCase : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase ) # create hint __UpperCAmelCase : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith("""mps""" ): __UpperCAmelCase : List[str] = torch.manual_seed(UpperCamelCase ) else: __UpperCAmelCase : Optional[Any] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) __UpperCAmelCase : List[Any] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = """cpu""" __UpperCAmelCase : Optional[int] = self.get_dummy_components() __UpperCAmelCase : Optional[Any] = self.pipeline_class(**UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __UpperCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) __UpperCAmelCase : Tuple = output.images __UpperCAmelCase : str = pipe( **self.get_dummy_inputs(UpperCamelCase ) , return_dict=UpperCamelCase , )[0] __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] __UpperCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase : List[Any] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) __UpperCAmelCase : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) __UpperCAmelCase : Optional[int] = torch.from_numpy(np.array(UpperCamelCase ) ).float() / 255.0 __UpperCAmelCase : Optional[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __UpperCAmelCase : Optional[int] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase ) __UpperCAmelCase : Dict = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) __UpperCAmelCase : Optional[Any] = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) __UpperCAmelCase : str = """A robot, 4k photo""" __UpperCAmelCase : Tuple = torch.Generator(device="""cuda""" ).manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = pipe_prior( UpperCamelCase , generator=UpperCamelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __UpperCAmelCase : int = torch.Generator(device="""cuda""" ).manual_seed(0 ) __UpperCAmelCase : Optional[Any] = pipeline( image_embeds=UpperCamelCase , negative_image_embeds=UpperCamelCase , hint=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=100 , output_type="""np""" , ) __UpperCAmelCase : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
370
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCamelCase__ : """simple docstring""" def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : List[Any]=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : int=99 , UpperCamelCase : Any=[1, 1, 2] , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Union[str, Any]=8 , UpperCamelCase : int=37 , UpperCamelCase : Optional[Any]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : int=0.0 , UpperCamelCase : Union[str, Any]=512 , UpperCamelCase : Any=3 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : str=None , UpperCamelCase : Tuple=False , ): '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : str = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : Optional[Any] = use_input_mask __UpperCAmelCase : Tuple = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Optional[int] = block_sizes __UpperCAmelCase : Optional[Any] = num_decoder_layers __UpperCAmelCase : Union[str, Any] = d_model __UpperCAmelCase : Dict = n_head __UpperCAmelCase : Optional[Any] = d_head __UpperCAmelCase : Dict = d_inner __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout __UpperCAmelCase : List[Any] = attention_dropout __UpperCAmelCase : str = activation_dropout __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : str = 2 __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : List[Any] = num_choices __UpperCAmelCase : Any = scope __UpperCAmelCase : Dict = initializer_std # Used in the tests to check the size of the first attention layer __UpperCAmelCase : Dict = n_head # Used in the tests to check the size of the first hidden state __UpperCAmelCase : Dict = self.d_model # Used in the tests to check the number of output hidden states/attentions __UpperCAmelCase : Dict = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __UpperCAmelCase : List[Any] = self.num_hidden_layers + 2 def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[str] = None if self.use_input_mask: __UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Dict = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : str = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__ ( self : Any , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : List[Any] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : List[str] = model(UpperCamelCase ) __UpperCAmelCase : List[Any] = [input_ids, input_mask] __UpperCAmelCase : Dict = model(UpperCamelCase ) __UpperCAmelCase : Tuple = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __UpperCAmelCase : int = False __UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Optional[Any] = model(UpperCamelCase ) __UpperCAmelCase : int = [input_ids, input_mask] __UpperCAmelCase : int = model(UpperCamelCase ) __UpperCAmelCase : List[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __UpperCAmelCase : List[Any] = False __UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __UpperCAmelCase : int = False __UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase ) __UpperCAmelCase : str = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , ): '''simple docstring''' __UpperCAmelCase : Tuple = TFFunnelForPreTraining(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : int = TFFunnelForMaskedLM(config=UpperCamelCase ) __UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Optional[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_labels __UpperCAmelCase : Optional[Any] = TFFunnelForSequenceClassification(config=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Tuple = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : str = TFFunnelForMultipleChoice(config=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : str = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : int = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : List[str] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : str = TFFunnelForTokenClassification(config=UpperCamelCase ) __UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : int = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : str , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Any = TFFunnelForQuestionAnswering(config=UpperCamelCase ) __UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __UpperCAmelCase : Any = model(UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) , ) : Dict = config_and_inputs __UpperCAmelCase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __a = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __a = False __a = False def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = TFFunnelModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase ) @require_tf class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __a = False __a = False def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : List[str] = TFFunnelModelTester(self , base=UpperCamelCase ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase )
320
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Union[str, Any] = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = 0 while b > 0: if b & 1: __UpperCAmelCase : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
320
0
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def lowerCamelCase ( _UpperCamelCase : Union[str, Any]="ro" , _UpperCamelCase : Dict="en" , _UpperCamelCase : Dict="wmt16" , _UpperCamelCase : Optional[int]=None ) -> None: '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __UpperCAmelCase : str = f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) __UpperCAmelCase : Dict = datasets.load_dataset(_UpperCamelCase , _UpperCamelCase ) if save_dir is None: __UpperCAmelCase : List[Any] = f'''{dataset}-{pair}''' __UpperCAmelCase : Tuple = Path(_UpperCamelCase ) save_dir.mkdir(exist_ok=_UpperCamelCase ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets __UpperCAmelCase : List[str] = """val""" if split == """validation""" else split __UpperCAmelCase : str = save_dir.joinpath(f'''{fn}.source''' ) __UpperCAmelCase : str = save_dir.joinpath(f'''{fn}.target''' ) __UpperCAmelCase : Any = src_path.open("""w+""" ) __UpperCAmelCase : Dict = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __UpperCAmelCase : Optional[int] = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
350
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""image_processor""", """tokenizer"""] __a = """AutoImageProcessor""" __a = """AutoTokenizer""" def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : str = self.image_processor def __call__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=None , **UpperCamelCase : Optional[int] ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: __UpperCAmelCase : Optional[Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: __UpperCAmelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
320
0
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase__ : """simple docstring""" __a = field( default=A , metadata={"""help""": """Model type selected in the list: """ + """, """.join(A )} ) __a = field( default=A , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) __a = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __a = field( default=128 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) __a = field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) __a = field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) __a = field( default=A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __a = field( default=A , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) __a = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) __a = field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) __a = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) __a = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class lowerCamelCase__ ( A ): """simple docstring""" __a = """train""" __a = """dev""" class lowerCamelCase__ ( A ): """simple docstring""" __a = 42 __a = 42 __a = 42 __a = 42 def __init__( self : int , UpperCamelCase : SquadDataTrainingArguments , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : Optional[int] = None , UpperCamelCase : Union[str, Split] = Split.train , UpperCamelCase : Optional[bool] = False , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "pt" , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = args __UpperCAmelCase : Optional[Any] = is_language_sensitive __UpperCAmelCase : str = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(UpperCamelCase , UpperCamelCase ): try: __UpperCAmelCase : List[str] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __UpperCAmelCase : int = mode # Load data features from cache or dataset file __UpperCAmelCase : Tuple = """v2""" if args.version_2_with_negative else """v1""" __UpperCAmelCase : Tuple = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __UpperCAmelCase : int = cached_features_file + """.lock""" with FileLock(UpperCamelCase ): if os.path.exists(UpperCamelCase ) and not args.overwrite_cache: __UpperCAmelCase : List[str] = time.time() __UpperCAmelCase : str = torch.load(UpperCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __UpperCAmelCase : int = self.old_features["""features"""] __UpperCAmelCase : int = self.old_features.get("""dataset""" , UpperCamelCase ) __UpperCAmelCase : Optional[int] = self.old_features.get("""examples""" , UpperCamelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' """ future run""" ) else: if mode == Split.dev: __UpperCAmelCase : List[Any] = self.processor.get_dev_examples(args.data_dir ) else: __UpperCAmelCase : Any = self.processor.get_train_examples(args.data_dir ) __UpperCAmelCase : List[str] = squad_convert_examples_to_features( examples=self.examples , tokenizer=UpperCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=UpperCamelCase , ) __UpperCAmelCase : str = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , UpperCamelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : List[Any] , UpperCamelCase : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.features[i] __UpperCAmelCase : List[Any] = torch.tensor(feature.input_ids , dtype=torch.long ) __UpperCAmelCase : List[str] = torch.tensor(feature.attention_mask , dtype=torch.long ) __UpperCAmelCase : str = torch.tensor(feature.token_type_ids , dtype=torch.long ) __UpperCAmelCase : str = torch.tensor(feature.cls_index , dtype=torch.long ) __UpperCAmelCase : Tuple = torch.tensor(feature.p_mask , dtype=torch.float ) __UpperCAmelCase : str = torch.tensor(feature.is_impossible , dtype=torch.float ) __UpperCAmelCase : Optional[int] = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __UpperCAmelCase : str = torch.tensor(feature.start_position , dtype=torch.long ) __UpperCAmelCase : Union[str, Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
351
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : list[float] , _UpperCamelCase : list[float] ) -> float: '''simple docstring''' __UpperCAmelCase : Tuple = sorted(numsa + numsa ) __UpperCAmelCase ,__UpperCAmelCase : Dict = divmod(len(_UpperCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[Any] = [float(x) for x in input('Enter the elements of first array: ').split()] UpperCAmelCase : Optional[int] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
320
0
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase ( _UpperCamelCase : Optional[Any] ) -> int: '''simple docstring''' if ( (cp >= 0x4e_00 and cp <= 0x9f_ff) or (cp >= 0x34_00 and cp <= 0x4d_bf) # or (cp >= 0x2_00_00 and cp <= 0x2_a6_df) # or (cp >= 0x2_a7_00 and cp <= 0x2_b7_3f) # or (cp >= 0x2_b7_40 and cp <= 0x2_b8_1f) # or (cp >= 0x2_b8_20 and cp <= 0x2_ce_af) # or (cp >= 0xf9_00 and cp <= 0xfa_ff) or (cp >= 0x2_f8_00 and cp <= 0x2_fa_1f) # ): # return True return False def lowerCamelCase ( _UpperCamelCase : str ) -> Any: '''simple docstring''' for char in word: __UpperCAmelCase : Dict = ord(_UpperCamelCase ) if not _is_chinese_char(_UpperCamelCase ): return 0 return 1 def lowerCamelCase ( _UpperCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : str = set() for token in tokens: __UpperCAmelCase : List[Any] = len(_UpperCamelCase ) > 1 and is_chinese(_UpperCamelCase ) if chinese_word: word_set.add(_UpperCamelCase ) __UpperCAmelCase : List[str] = list(_UpperCamelCase ) return word_list def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : set() ) -> Optional[int]: '''simple docstring''' if not chinese_word_set: return bert_tokens __UpperCAmelCase : Optional[Any] = max([len(_UpperCamelCase ) for w in chinese_word_set] ) __UpperCAmelCase : Optional[Any] = bert_tokens __UpperCAmelCase : Tuple = 0, len(_UpperCamelCase ) while start < end: __UpperCAmelCase : List[Any] = True if is_chinese(bert_word[start] ): __UpperCAmelCase : Optional[Any] = min(end - start , _UpperCamelCase ) for i in range(_UpperCamelCase , 1 , -1 ): __UpperCAmelCase : Tuple = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __UpperCAmelCase : List[str] = """##""" + bert_word[j] __UpperCAmelCase : int = start + i __UpperCAmelCase : Optional[int] = False break if single_word: start += 1 return bert_word def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : LTP , _UpperCamelCase : BertTokenizer ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : int = [] for i in range(0 , len(_UpperCamelCase ) , 1_0_0 ): __UpperCAmelCase : int = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=["""cws"""] ).cws __UpperCAmelCase : Union[str, Any] = [get_chinese_word(_UpperCamelCase ) for r in res] ltp_res.extend(_UpperCamelCase ) assert len(_UpperCamelCase ) == len(_UpperCamelCase ) __UpperCAmelCase : Any = [] for i in range(0 , len(_UpperCamelCase ) , 1_0_0 ): __UpperCAmelCase : Tuple = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=_UpperCamelCase , truncation=_UpperCamelCase , max_length=5_1_2 ) bert_res.extend(res["""input_ids"""] ) assert len(_UpperCamelCase ) == len(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = [] for input_ids, chinese_word in zip(_UpperCamelCase , _UpperCamelCase ): __UpperCAmelCase : Union[str, Any] = [] for id in input_ids: __UpperCAmelCase : str = bert_tokenizer._convert_id_to_token(_UpperCamelCase ) input_tokens.append(_UpperCamelCase ) __UpperCAmelCase : Tuple = add_sub_symbol(_UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : Optional[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_UpperCamelCase ): if token[:2] == "##": __UpperCAmelCase : List[str] = token[2:] # save chinese tokens' pos if len(_UpperCamelCase ) == 1 and _is_chinese_char(ord(_UpperCamelCase ) ): ref_id.append(_UpperCamelCase ) ref_ids.append(_UpperCamelCase ) assert len(_UpperCamelCase ) == len(_UpperCamelCase ) return ref_ids def lowerCamelCase ( _UpperCamelCase : Any ) -> Union[str, Any]: '''simple docstring''' with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: __UpperCAmelCase : List[Any] = f.readlines() __UpperCAmelCase : Tuple = [line.strip() for line in data if len(_UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __UpperCAmelCase : Union[str, Any] = LTP(args.ltp ) # faster in GPU device __UpperCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) __UpperCAmelCase : List[Any] = prepare_ref(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: __UpperCAmelCase : Any = [json.dumps(_UpperCamelCase ) + """\n""" for ref in ref_ids] f.writelines(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) UpperCAmelCase : Any = parser.parse_args() main(args)
352
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = """hf-internal-testing/tiny-random-t5""" __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Optional[int] = tokenizer("""This is me""" , return_tensors="""pt""" ) __UpperCAmelCase : int = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __UpperCAmelCase : Tuple = model.generate(**UpperCamelCase ) __UpperCAmelCase : Tuple = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase ) __UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __UpperCAmelCase : Tuple = model_reloaded.generate(**UpperCamelCase ) self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase ) ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Any = """hf-internal-testing/tiny-random-t5""" __UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Tuple = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(UpperCamelCase ): model.save_pretrained(UpperCamelCase ) __UpperCAmelCase : Tuple = model.reverse_bettertransformer() model.save_pretrained(UpperCamelCase )
320
0
"""simple docstring""" UpperCAmelCase : Optional[Any] = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , UpperCamelCase : int , UpperCamelCase : Any=7 , UpperCamelCase : List[str]=3 , UpperCamelCase : str=30 , UpperCamelCase : str=400 , UpperCamelCase : Tuple=True , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[int]=[0.5, 0.5, 0.5] , UpperCamelCase : List[str]=[0.5, 0.5, 0.5] , UpperCamelCase : Tuple=True , UpperCamelCase : int=1 / 255 , UpperCamelCase : Union[str, Any]=True , ): '''simple docstring''' __UpperCAmelCase : Dict = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333} __UpperCAmelCase : Dict = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : Optional[Any] = min_resolution __UpperCAmelCase : List[Any] = max_resolution __UpperCAmelCase : Tuple = do_resize __UpperCAmelCase : Any = size __UpperCAmelCase : List[str] = do_normalize __UpperCAmelCase : List[str] = image_mean __UpperCAmelCase : Any = image_std __UpperCAmelCase : Union[str, Any] = do_rescale __UpperCAmelCase : Optional[int] = rescale_factor __UpperCAmelCase : Dict = do_pad def lowerCamelCase__ ( self : int ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase__ ( self : Any , UpperCamelCase : Any , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: __UpperCAmelCase : Optional[Any] = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): __UpperCAmelCase : int = image.size else: __UpperCAmelCase : Optional[Any] = image.shape[1], image.shape[2] if w < h: __UpperCAmelCase : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __UpperCAmelCase : Optional[int] = self.size["""shortest_edge"""] elif w > h: __UpperCAmelCase : Union[str, Any] = self.size["""shortest_edge"""] __UpperCAmelCase : List[str] = int(self.size["""shortest_edge"""] * w / h ) else: __UpperCAmelCase : Optional[int] = self.size["""shortest_edge"""] __UpperCAmelCase : Any = self.size["""shortest_edge"""] else: __UpperCAmelCase : Tuple = [] for image in image_inputs: __UpperCAmelCase : Union[str, Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCAmelCase : Any = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] __UpperCAmelCase : List[str] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = YolosImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = YolosImageProcessingTester(self ) @property def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """size""" ) ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1_333} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input __UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __UpperCAmelCase : Any = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) __UpperCAmelCase : str = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input __UpperCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __UpperCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : Tuple = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values __UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input __UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : Union[str, Any] = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values __UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) __UpperCAmelCase : List[Any] = self.image_processing_class(do_resize=UpperCamelCase , do_normalize=UpperCamelCase , do_rescale=UpperCamelCase ) # create random PyTorch tensors __UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __UpperCAmelCase : Tuple = image_processing_a.pad(UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : Optional[int] = image_processing_a(UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __UpperCAmelCase : str = json.loads(f.read() ) __UpperCAmelCase : Optional[Any] = {"""image_id""": 39_769, """annotations""": target} # encode them __UpperCAmelCase : int = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) __UpperCAmelCase : Optional[Any] = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values __UpperCAmelCase : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) __UpperCAmelCase : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area __UpperCAmelCase : Tuple = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes __UpperCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) __UpperCAmelCase : Optional[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id __UpperCAmelCase : Any = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd __UpperCAmelCase : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels __UpperCAmelCase : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify orig_size __UpperCAmelCase : List[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size __UpperCAmelCase : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __UpperCAmelCase : Optional[Any] = json.loads(f.read() ) __UpperCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target} __UpperCAmelCase : Optional[int] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __UpperCAmelCase : Optional[int] = YolosImageProcessor(format="""coco_panoptic""" ) __UpperCAmelCase : str = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , masks_path=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values __UpperCAmelCase : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) __UpperCAmelCase : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area __UpperCAmelCase : Tuple = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes __UpperCAmelCase : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) __UpperCAmelCase : Any = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id __UpperCAmelCase : List[Any] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd __UpperCAmelCase : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels __UpperCAmelCase : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify masks __UpperCAmelCase : List[Any] = 822_873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCamelCase ) # verify orig_size __UpperCAmelCase : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size __UpperCAmelCase : str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) )
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase : List[str] = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str]=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Tuple=18 , UpperCamelCase : List[str]=30 , UpperCamelCase : Dict=400 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=[0.5, 0.5, 0.5] , UpperCamelCase : str=[0.5, 0.5, 0.5] , ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18} __UpperCAmelCase : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : List[str] = image_size __UpperCAmelCase : Any = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : List[str] = do_resize __UpperCAmelCase : Optional[int] = size __UpperCAmelCase : Dict = do_center_crop __UpperCAmelCase : Optional[Any] = crop_size __UpperCAmelCase : Dict = do_normalize __UpperCAmelCase : Dict = image_mean __UpperCAmelCase : List[Any] = image_std def lowerCamelCase__ ( self : str ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = LevitImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = LevitImageProcessingTester(self ) @property def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(UpperCamelCase , """size""" ) ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCamelCase__ ( self : str ): '''simple docstring''' pass def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input __UpperCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __UpperCAmelCase : str = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input __UpperCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __UpperCAmelCase : int = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input __UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __UpperCAmelCase : Optional[int] = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
355
"""simple docstring""" def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[str] = 1 while len(_UpperCamelCase ) < 1E6: constant.append(str(_UpperCamelCase ) ) i += 1 __UpperCAmelCase : List[str] = """""".join(_UpperCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
320
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = get_failure_array(_UpperCamelCase ) # 2) Step through text searching for pattern __UpperCAmelCase : List[Any] = 0, 0 # index into text, pattern while i < len(_UpperCamelCase ): if pattern[j] == text[i]: if j == (len(_UpperCamelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __UpperCAmelCase : Union[str, Any] = failure[j - 1] continue i += 1 return False def lowerCamelCase ( _UpperCamelCase : str ) -> list[int]: '''simple docstring''' __UpperCAmelCase : List[str] = [0] __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[int] = 1 while j < len(_UpperCamelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __UpperCAmelCase : List[str] = failure[i - 1] continue j += 1 failure.append(_UpperCamelCase ) return failure if __name__ == "__main__": # Test 1) UpperCAmelCase : Tuple = 'abc1abc12' UpperCAmelCase : Dict = 'alskfjaldsabc1abc1abc12k23adsfabcabc' UpperCAmelCase : str = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCAmelCase : Optional[int] = 'ABABX' UpperCAmelCase : List[str] = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) UpperCAmelCase : Union[str, Any] = 'AAAB' UpperCAmelCase : str = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) UpperCAmelCase : Any = 'abcdabcy' UpperCAmelCase : int = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) UpperCAmelCase : List[Any] = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase : int = 16 UpperCAmelCase : Union[str, Any] = 32 def lowerCamelCase ( _UpperCamelCase : Accelerator , _UpperCamelCase : int = 1_6 ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : List[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_UpperCamelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : Tuple = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_UpperCamelCase , max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCAmelCase : List[str] = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCAmelCase : str = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_UpperCamelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCAmelCase : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCAmelCase : List[Any] = 1_6 elif accelerator.mixed_precision != "no": __UpperCAmelCase : Dict = 8 else: __UpperCAmelCase : Optional[int] = None return tokenizer.pad( _UpperCamelCase , padding="""longest""" , max_length=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase , drop_last=_UpperCamelCase ) __UpperCAmelCase : Optional[int] = DataLoader( tokenized_datasets["""validation"""] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase : Tuple = config["""lr"""] __UpperCAmelCase : int = int(config["""num_epochs"""] ) __UpperCAmelCase : List[Any] = int(config["""seed"""] ) __UpperCAmelCase : Any = int(config["""batch_size"""] ) __UpperCAmelCase : List[Any] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation __UpperCAmelCase : int = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCAmelCase : Tuple = batch_size // MAX_GPU_BATCH_SIZE __UpperCAmelCase : Optional[Any] = MAX_GPU_BATCH_SIZE set_seed(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = get_dataloaders(_UpperCamelCase , _UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCAmelCase : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer __UpperCAmelCase : List[str] = AdamW(params=model.parameters() , lr=_UpperCamelCase ) # Instantiate scheduler __UpperCAmelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(_UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase : Optional[Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCAmelCase : Tuple = model(**_UpperCamelCase ) __UpperCAmelCase : str = outputs.loss __UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(_UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase : str = model(**_UpperCamelCase ) __UpperCAmelCase : int = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase : Optional[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_UpperCamelCase , references=_UpperCamelCase , ) __UpperCAmelCase : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _UpperCamelCase ) def lowerCamelCase ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_UpperCamelCase , default=_UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __UpperCAmelCase : Optional[int] = parser.parse_args() __UpperCAmelCase : Union[str, Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
357
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput UpperCAmelCase : Optional[Any] = 'scheduler_config.json' class lowerCamelCase__ ( A ): """simple docstring""" __a = 1 __a = 2 __a = 3 __a = 4 __a = 5 __a = 6 __a = 7 __a = 8 __a = 9 __a = 10 __a = 11 __a = 12 __a = 13 __a = 14 @dataclass class lowerCamelCase__ ( A ): """simple docstring""" __a = 42 class lowerCamelCase__ : """simple docstring""" __a = SCHEDULER_CONFIG_NAME __a = [] __a = True @classmethod def lowerCamelCase__ ( cls : Any , UpperCamelCase : Dict[str, Any] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = cls.load_config( pretrained_model_name_or_path=UpperCamelCase , subfolder=UpperCamelCase , return_unused_kwargs=UpperCamelCase , return_commit_hash=UpperCamelCase , **UpperCamelCase , ) return cls.from_config(UpperCamelCase , return_unused_kwargs=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, os.PathLike] , UpperCamelCase : bool = False , **UpperCamelCase : Optional[Any] ): '''simple docstring''' self.save_config(save_directory=UpperCamelCase , push_to_hub=UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return self._get_compatibles() @classmethod def lowerCamelCase__ ( cls : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __UpperCAmelCase : List[str] = importlib.import_module(__name__.split(""".""" )[0] ) __UpperCAmelCase : List[str] = [ getattr(UpperCamelCase , UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase , UpperCamelCase ) ] return compatible_classes
320
0
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __UpperCAmelCase : Dict = Vector() def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCamelCase ) , """(0,0,0,0,0,1)""" ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCamelCase ) , 4 ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : int = Vector([1, 2] ) __UpperCAmelCase : Optional[Any] = Vector([1, 2, 3, 4, 5] ) __UpperCAmelCase : Optional[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __UpperCAmelCase : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Vector([1, 2, 3] ) __UpperCAmelCase : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = Vector([1, 2, 3] ) __UpperCAmelCase : List[str] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : int = Vector([1, 2, 3] ) __UpperCAmelCase : Any = Vector([2, -1, 4] ) # for test of dot product __UpperCAmelCase : int = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def lowerCamelCase__ ( self : str ): '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = Vector([1, 2, 3] ) __UpperCAmelCase : Dict = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCamelCase , UpperCamelCase ) ) , """(3,4,7)""" ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = Vector([1, 0, 0, 0, 0, 0] ) __UpperCAmelCase : str = x.copy() self.assertEqual(str(UpperCamelCase ) , str(UpperCamelCase ) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCamelCase ) , """(0,1,0)""" ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCamelCase ) ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __UpperCAmelCase : Optional[int] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCamelCase , UpperCamelCase ) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __UpperCAmelCase : Any = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCamelCase , UpperCamelCase ) ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Tuple = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __UpperCAmelCase : Optional[Any] = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCamelCase ) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __UpperCAmelCase : Tuple = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __UpperCAmelCase : List[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
358
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase__ ( *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ): '''simple docstring''' pass def lowerCamelCase ( _UpperCamelCase : Image ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def lowerCamelCase ( _UpperCamelCase : Image ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = np.array(_UpperCamelCase ) __UpperCAmelCase : List[Any] = npimg.shape return {"hash": hashimage(_UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __a = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __a = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass @slow @require_torch def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) __UpperCAmelCase : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : int = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = """facebook/sam-vit-huge""" __UpperCAmelCase : str = pipeline("""mask-generation""" , model=UpperCamelCase ) __UpperCAmelCase : int = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __UpperCAmelCase : Dict = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] , )
320
0
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Dict = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : int = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Dict = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Optional[Any] = sorted(arg_to_scheduler.keys()) UpperCAmelCase : List[str] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCamelCase__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase : argparse.Namespace , UpperCamelCase : Dict=None , UpperCamelCase : Tuple="base" , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Union[str, Any]=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = Path(self.hparams.output_dir ) __UpperCAmelCase : Any = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=UpperCamelCase , **UpperCamelCase , ) else: __UpperCAmelCase : PretrainedConfig = config __UpperCAmelCase : Optional[int] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams , UpperCamelCase , UpperCamelCase ): assert hasattr(self.config , UpperCamelCase ), f'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , UpperCamelCase , getattr(self.hparams , UpperCamelCase ) ) if tokenizer is None: __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=UpperCamelCase , ) else: __UpperCAmelCase : PreTrainedTokenizer = tokenizer __UpperCAmelCase : List[Any] = MODEL_MODES[mode] if model is None: __UpperCAmelCase : str = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=UpperCamelCase , ) else: __UpperCAmelCase : Optional[Any] = model def lowerCamelCase__ ( self : int , *UpperCamelCase : Optional[int] , **UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Any = self.model_type.from_pretrained(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] __UpperCAmelCase : Union[str, Any] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __UpperCAmelCase : Optional[int] = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : str = self.model __UpperCAmelCase : Dict = ["""bias""", """LayerNorm.weight"""] __UpperCAmelCase : List[Any] = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: __UpperCAmelCase : Tuple = Adafactor( UpperCamelCase , lr=self.hparams.learning_rate , scale_parameter=UpperCamelCase , relative_step=UpperCamelCase ) else: __UpperCAmelCase : Dict = AdamW( UpperCamelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __UpperCAmelCase : Tuple = optimizer __UpperCAmelCase : List[str] = self.get_lr_scheduler() return [optimizer], [scheduler] def lowerCamelCase__ ( self : str , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.validation_step(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : List[str] ): '''simple docstring''' return self.validation_end(UpperCamelCase ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __UpperCAmelCase : List[str] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str ): '''simple docstring''' if stage == "test": __UpperCAmelCase : List[Any] = len(self.test_dataloader().dataset ) else: __UpperCAmelCase : Optional[Any] = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=UpperCamelCase ) __UpperCAmelCase : int = len(self.train_dataloader().dataset ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : bool = False ): '''simple docstring''' raise NotImplementedError("""You must implement this for your task""" ) def lowerCamelCase__ ( self : str ): '''simple docstring''' return self.train_loader def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=UpperCamelCase ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : Tuple ): '''simple docstring''' return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( UpperCamelCase , list(filter(UpperCamelCase , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Dict[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.output_dir.joinpath("""best_tfmr""" ) __UpperCAmelCase : Optional[int] = self.step_count self.model.save_pretrained(UpperCamelCase ) self.tokenizer.save_pretrained(UpperCamelCase ) @staticmethod def lowerCamelCase__ ( UpperCamelCase : Any , UpperCamelCase : Tuple ): '''simple docstring''' parser.add_argument( """--model_name_or_path""" , default=UpperCamelCase , type=UpperCamelCase , required=UpperCamelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=UpperCamelCase , help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""" , default=UpperCamelCase , type=UpperCamelCase , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(UpperCamelCase ).parent / """test_run""" / """cache""" ) , type=UpperCamelCase , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=UpperCamelCase , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=UpperCamelCase , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=UpperCamelCase , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=UpperCamelCase , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5e-5 , type=UpperCamelCase , help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=UpperCamelCase , metavar=UpperCamelCase , type=UpperCamelCase , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=UpperCamelCase , help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""" , default=1e-8 , type=UpperCamelCase , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""" , default=0 , type=UpperCamelCase , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""" , default=4 , type=UpperCamelCase , help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=UpperCamelCase ) parser.add_argument("""--train_batch_size""" , default=32 , type=UpperCamelCase ) parser.add_argument("""--eval_batch_size""" , default=32 , type=UpperCamelCase ) parser.add_argument("""--adafactor""" , action="""store_true""" ) class lowerCamelCase__ ( pl.Callback ): """simple docstring""" def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase__ ( pl.Callback ): """simple docstring""" def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : Tuple ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(UpperCamelCase ) class lowerCamelCase__ ( pl.Callback ): """simple docstring""" def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = trainer.lr_schedulers[0]["""scheduler"""] __UpperCAmelCase : Optional[Any] = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : pl.Trainer , UpperCamelCase : pl.LightningModule ): '''simple docstring''' rank_zero_info("""***** Validation results *****""" ) __UpperCAmelCase : Optional[int] = trainer.callback_metrics # Log results for key in sorted(UpperCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(UpperCamelCase , str(metrics[key] ) ) ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : pl.Trainer , UpperCamelCase : pl.LightningModule ): '''simple docstring''' rank_zero_info("""***** Test results *****""" ) __UpperCAmelCase : Optional[int] = trainer.callback_metrics # Log and save results to file __UpperCAmelCase : List[str] = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" ) with open(UpperCamelCase , """w""" ) as writer: for key in sorted(UpperCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(UpperCamelCase , str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(UpperCamelCase , str(metrics[key] ) ) ) def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> None: '''simple docstring''' parser.add_argument( """--output_dir""" , default=str(Path(_UpperCamelCase ).parent / """test_run""" / """model_checkpoints""" ) , type=_UpperCamelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=_UpperCamelCase , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=_UpperCamelCase ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=_UpperCamelCase , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=_UpperCamelCase , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=_UpperCamelCase , default=4_2 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(_UpperCamelCase ).parent / """test_run""" / """dummy-train-data""" ) , type=_UpperCamelCase , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def lowerCamelCase ( _UpperCamelCase : BaseTransformer , _UpperCamelCase : argparse.Namespace , _UpperCamelCase : Any=None , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[Any]=[] , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Tuple=None , **_UpperCamelCase : List[Any] , ) -> Any: '''simple docstring''' pl.seed_everything(args.seed ) # init model __UpperCAmelCase : Optional[int] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_UpperCamelCase ) # add custom checkpoints if checkpoint_callback is None: __UpperCAmelCase : Optional[int] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_UpperCamelCase ) if logging_callback is None: __UpperCAmelCase : str = LoggingCallback() __UpperCAmelCase : Dict = {} if args.fpaa: __UpperCAmelCase : Union[str, Any] = 1_6 if args.gpus > 1: __UpperCAmelCase : int = """auto""" __UpperCAmelCase : List[str] = """ddp""" __UpperCAmelCase : int = args.accumulate_grad_batches __UpperCAmelCase : Dict = None __UpperCAmelCase : List[Any] = """auto""" __UpperCAmelCase : Union[str, Any] = pl.Trainer.from_argparse_args( _UpperCamelCase , weights_summary=_UpperCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_UpperCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_UpperCamelCase , ) if args.do_train: trainer.fit(_UpperCamelCase ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
359
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , UpperCamelCase : str ): '''simple docstring''' super().__init__() __UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase ) __UpperCAmelCase : int = list(model.children() )[:-2] __UpperCAmelCase : List[Any] = nn.Sequential(*UpperCamelCase ) __UpperCAmelCase : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.pool(self.model(UpperCamelCase ) ) __UpperCAmelCase : List[Any] = torch.flatten(UpperCamelCase , start_dim=2 ) __UpperCAmelCase : Any = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )] __UpperCAmelCase : Any = os.path.dirname(UpperCamelCase ) __UpperCAmelCase : List[str] = tokenizer __UpperCAmelCase : str = labels __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) __UpperCAmelCase : int = max_seq_length __UpperCAmelCase : int = transforms def __len__( self : List[str] ): '''simple docstring''' return len(self.data ) def __getitem__( self : List[str] , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Any = sentence[: self.max_seq_length] __UpperCAmelCase : Tuple = torch.zeros(self.n_classes ) __UpperCAmelCase : str = 1 __UpperCAmelCase : Any = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __UpperCAmelCase : Optional[int] = self.transforms(UpperCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = [len(row["""sentence"""] ) for row in batch] __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase ) __UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) __UpperCAmelCase : str = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ): __UpperCAmelCase : List[str] = input_row["""sentence"""] __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] ) __UpperCAmelCase : Optional[Any] = torch.stack([row["""label"""] for row in batch] ) __UpperCAmelCase : str = torch.stack([row["""image_start_token"""] for row in batch] ) __UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ) -> int: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
320
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class lowerCamelCase__ ( A ): """simple docstring""" __a = """decision_transformer""" __a = ["""past_key_values"""] __a = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , UpperCamelCase : str=17 , UpperCamelCase : List[Any]=4 , UpperCamelCase : str=128 , UpperCamelCase : Optional[int]=4_096 , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]=1 , UpperCamelCase : Union[str, Any]=1_024 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : List[str]=1 , UpperCamelCase : List[Any]=None , UpperCamelCase : Any="relu" , UpperCamelCase : Dict=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Union[str, Any]=1e-5 , UpperCamelCase : str=0.02 , UpperCamelCase : Tuple=True , UpperCamelCase : Any=True , UpperCamelCase : List[Any]=50_256 , UpperCamelCase : int=50_256 , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Union[str, Any]=False , **UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : List[str] = state_dim __UpperCAmelCase : List[Any] = act_dim __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : int = max_ep_len __UpperCAmelCase : Union[str, Any] = action_tanh __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Optional[Any] = n_positions __UpperCAmelCase : Optional[Any] = n_layer __UpperCAmelCase : Optional[Any] = n_head __UpperCAmelCase : Optional[int] = n_inner __UpperCAmelCase : Union[str, Any] = activation_function __UpperCAmelCase : Optional[int] = resid_pdrop __UpperCAmelCase : Optional[int] = embd_pdrop __UpperCAmelCase : Any = attn_pdrop __UpperCAmelCase : Union[str, Any] = layer_norm_epsilon __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : int = scale_attn_weights __UpperCAmelCase : Tuple = use_cache __UpperCAmelCase : Any = scale_attn_by_inverse_layer_idx __UpperCAmelCase : Dict = reorder_and_upcast_attn __UpperCAmelCase : Dict = bos_token_id __UpperCAmelCase : List[Any] = eos_token_id super().__init__(bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase )
360
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
320
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Dict = self.dummy_uncond_unet __UpperCAmelCase : List[Any] = ScoreSdeVeScheduler() __UpperCAmelCase : int = ScoreSdeVePipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) sde_ve.to(UpperCamelCase ) sde_ve.set_progress_bar_config(disable=UpperCamelCase ) __UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) __UpperCAmelCase : Any = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=UpperCamelCase ).images __UpperCAmelCase : Dict = torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=UpperCamelCase , return_dict=UpperCamelCase )[ 0 ] __UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] __UpperCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = """google/ncsnpp-church-256""" __UpperCAmelCase : str = UNetaDModel.from_pretrained(UpperCamelCase ) __UpperCAmelCase : int = ScoreSdeVeScheduler.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Tuple = ScoreSdeVePipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) sde_ve.to(UpperCamelCase ) sde_ve.set_progress_bar_config(disable=UpperCamelCase ) __UpperCAmelCase : Tuple = torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=UpperCamelCase ).images __UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __UpperCAmelCase : Optional[Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
361
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ) __UpperCAmelCase : List[Any] = sum(_UpperCamelCase ) __UpperCAmelCase : Optional[int] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __UpperCAmelCase : Any = True for i in range(1 , s + 1 ): __UpperCAmelCase : List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __UpperCAmelCase : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __UpperCAmelCase : Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __UpperCAmelCase : Optional[int] = s - 2 * j break return diff
320
0
"""simple docstring""" from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Dict[Optional[str], Type[Formatter]] = {} UpperCAmelCase : Dict[Optional[str], str] = {} UpperCAmelCase : Dict[Optional[str], Exception] = {} def lowerCamelCase ( _UpperCamelCase : type , _UpperCamelCase : Optional[str] , _UpperCamelCase : Optional[List[str]] = None , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Tuple = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) __UpperCAmelCase : Tuple = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) __UpperCAmelCase : List[Any] = format_type def lowerCamelCase ( _UpperCamelCase : Exception , _UpperCamelCase : Optional[str] , _UpperCamelCase : Optional[List[str]] = None ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __UpperCAmelCase : Optional[Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: UpperCAmelCase : Dict = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: UpperCAmelCase : Optional[Any] = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: UpperCAmelCase : str = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def lowerCamelCase ( _UpperCamelCase : Optional[str] ) -> Optional[str]: '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def lowerCamelCase ( _UpperCamelCase : Optional[str] , **_UpperCamelCase : int ) -> Formatter: '''simple docstring''' __UpperCAmelCase : Dict = get_format_type_from_alias(_UpperCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_UpperCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
362
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""pixel_values"""] def __init__( self : Tuple , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 255 , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = True , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(**UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) __UpperCAmelCase : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : int = crop_size __UpperCAmelCase : Optional[int] = do_rescale __UpperCAmelCase : List[Any] = rescale_factor __UpperCAmelCase : Tuple = do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCAmelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCAmelCase : List[Any] = do_convert_rgb def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __UpperCAmelCase : int = get_resize_output_image_size(UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Dict , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, float] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ): '''simple docstring''' return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ): '''simple docstring''' return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : int = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Dict = size if size is not None else self.size __UpperCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase , param_name="""size""" , default_to_square=UpperCamelCase ) __UpperCAmelCase : Dict = resample if resample is not None else self.resample __UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , param_name="""crop_size""" , default_to_square=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Any = image_std if image_std is not None else self.image_std __UpperCAmelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCAmelCase : List[str] = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCAmelCase : int = [convert_to_rgb(UpperCamelCase ) for image in images] # All transformations expect numpy arrays. __UpperCAmelCase : Tuple = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: __UpperCAmelCase : Optional[int] = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: __UpperCAmelCase : int = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: __UpperCAmelCase : Dict = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: __UpperCAmelCase : Optional[Any] = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] __UpperCAmelCase : Any = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] __UpperCAmelCase : Any = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
320
0