code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> int:
'''simple docstring'''
if len(_UpperCamelCase ) != len(_UpperCamelCase ):
raise ValueError("""String lengths must match!""" )
__UpperCAmelCase : Dict = 0
for chara, chara in zip(_UpperCamelCase , _UpperCamelCase ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = 0
while b > 0:
if b & 1:
__UpperCAmelCase : int = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 320
| 1
|
"""simple docstring"""
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def lowerCamelCase ( _UpperCamelCase : List[str] ) -> Union[str, Any]:
'''simple docstring'''
def wrapper(*_UpperCamelCase : Optional[int] , **_UpperCamelCase : Any ):
__UpperCAmelCase : Optional[Any] = timeit.default_timer()
__UpperCAmelCase : List[str] = func(*_UpperCamelCase , **_UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = timeit.default_timer() - starttime
return delta
__UpperCAmelCase : Optional[Any] = func.__name__
return wrapper
def lowerCamelCase ( _UpperCamelCase : dict , _UpperCamelCase : str=1_0_0 , _UpperCamelCase : Optional[int]=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : str = []
__UpperCAmelCase : List[str] = seq_shapes or {}
for i in range(_UpperCamelCase ):
__UpperCAmelCase : Union[str, Any] = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(_UpperCamelCase , _ArrayXD ):
__UpperCAmelCase : Any = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(_UpperCamelCase , datasets.Value ):
if v.dtype == "string":
__UpperCAmelCase : Tuple = """The small grey turtle was surprisingly fast when challenged."""
else:
__UpperCAmelCase : str = np.random.randint(1_0 , size=1 ).astype(v.dtype ).item()
elif isinstance(_UpperCamelCase , datasets.Sequence ):
while isinstance(_UpperCamelCase , datasets.Sequence ):
__UpperCAmelCase : str = v.feature
__UpperCAmelCase : Union[str, Any] = seq_shapes[k]
__UpperCAmelCase : str = np.random.rand(*_UpperCamelCase ).astype(v.dtype )
__UpperCAmelCase : List[str] = data
dummy_data.append((i, example) )
return dummy_data
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=1_0_0 , _UpperCamelCase : str=None ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = generate_examples(_UpperCamelCase , num_examples=_UpperCamelCase , seq_shapes=_UpperCamelCase )
with ArrowWriter(features=_UpperCamelCase , path=_UpperCamelCase ) as writer:
for key, record in dummy_data:
__UpperCAmelCase : int = features.encode_example(_UpperCamelCase )
writer.write(_UpperCamelCase )
__UpperCAmelCase ,__UpperCAmelCase : Optional[int] = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' )
__UpperCAmelCase : Tuple = datasets.Dataset.from_file(filename=_UpperCamelCase , info=datasets.DatasetInfo(features=_UpperCamelCase ) )
return dataset
| 320
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = ["""image_processor""", """tokenizer"""]
__a = """AutoImageProcessor"""
__a = """AutoTokenizer"""
def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ):
'''simple docstring'''
super().__init__(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : str = self.image_processor
def __call__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=None , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
__UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )
if images is not None:
__UpperCAmelCase : Optional[Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )
if text is not None and images is not None:
__UpperCAmelCase : str = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase )
def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ):
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : int , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase )
@property
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 320
| 1
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""keras_nlp"""]
def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
requires_backends(self , ["""keras_nlp"""] )
| 320
|
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase ( _UpperCamelCase : list[float] , _UpperCamelCase : list[float] ) -> float:
'''simple docstring'''
__UpperCAmelCase : Tuple = sorted(numsa + numsa )
__UpperCAmelCase ,__UpperCAmelCase : Dict = divmod(len(_UpperCamelCase ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase : List[Any] = [float(x) for x in input('Enter the elements of first array: ').split()]
UpperCAmelCase : Optional[int] = [float(x) for x in input('Enter the elements of second array: ').split()]
print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
| 320
| 1
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = ["""image_processor""", """tokenizer"""]
__a = """AutoImageProcessor"""
__a = """AutoTokenizer"""
def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ):
'''simple docstring'''
super().__init__(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : str = self.image_processor
def __call__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=None , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
__UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )
if images is not None:
__UpperCAmelCase : Optional[Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )
if text is not None and images is not None:
__UpperCAmelCase : str = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase )
def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ):
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : int , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase )
@property
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 320
|
"""simple docstring"""
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = """hf-internal-testing/tiny-random-t5"""
__UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Optional[int] = tokenizer("""This is me""" , return_tensors="""pt""" )
__UpperCAmelCase : int = model.to_bettertransformer()
self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
__UpperCAmelCase : Tuple = model.generate(**UpperCamelCase )
__UpperCAmelCase : Tuple = model.reverse_bettertransformer()
self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCamelCase )
__UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase )
self.assertFalse(
any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
__UpperCAmelCase : Tuple = model_reloaded.generate(**UpperCamelCase )
self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase ) )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Any = """hf-internal-testing/tiny-random-t5"""
__UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Tuple = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(UpperCamelCase ):
model.save_pretrained(UpperCamelCase )
__UpperCAmelCase : Tuple = model.reverse_bettertransformer()
model.save_pretrained(UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : int ) -> int:
'''simple docstring'''
if len(_UpperCamelCase ) != len(_UpperCamelCase ):
raise ValueError("""The length of profit and weight must be same.""" )
if max_weight <= 0:
raise ValueError("""max_weight must greater than zero.""" )
if any(p < 0 for p in profit ):
raise ValueError("""Profit can not be negative.""" )
if any(w < 0 for w in weight ):
raise ValueError("""Weight can not be negative.""" )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
__UpperCAmelCase : List[str] = [p / w for p, w in zip(_UpperCamelCase , _UpperCamelCase )]
# Creating a copy of the list and sorting profit/weight in ascending order
__UpperCAmelCase : List[Any] = sorted(_UpperCamelCase )
# declaring useful variables
__UpperCAmelCase : int = len(_UpperCamelCase )
__UpperCAmelCase : Any = 0
__UpperCAmelCase : Optional[Any] = 0
__UpperCAmelCase : Dict = 0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
__UpperCAmelCase : Optional[int] = sorted_profit_by_weight[length - i - 1]
__UpperCAmelCase : Optional[Any] = profit_by_weight.index(_UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = -1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
'Input profits, weights, and then max_weight (all positive ints) separated by '
'spaces.'
)
UpperCAmelCase : List[Any] = [int(x) for x in input('Input profits separated by spaces: ').split()]
UpperCAmelCase : List[Any] = [int(x) for x in input('Input weights separated by spaces: ').split()]
UpperCAmelCase : Any = int(input('Max weight allowed: '))
# Function Call
calc_profit(profit, weight, max_weight)
| 320
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
UpperCAmelCase : Dict = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
| 1
|
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple[str, float]:
'''simple docstring'''
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError("""You cannot supply more or less than 2 values""" )
elif stress < 0:
raise ValueError("""Stress cannot be negative""" )
elif tangential_force < 0:
raise ValueError("""Tangential Force cannot be negative""" )
elif area < 0:
raise ValueError("""Area cannot be negative""" )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase : List[str] = {
'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'],
'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Tuple = [
'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'AdaptiveEmbedding',
'TransfoXLForSequenceClassification',
'TransfoXLLMHeadModel',
'TransfoXLModel',
'TransfoXLPreTrainedModel',
'load_tf_weights_in_transfo_xl',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Dict = [
'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFAdaptiveEmbedding',
'TFTransfoXLForSequenceClassification',
'TFTransfoXLLMHeadModel',
'TFTransfoXLMainLayer',
'TFTransfoXLModel',
'TFTransfoXLPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_transfo_xl import (
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
AdaptiveEmbedding,
TransfoXLForSequenceClassification,
TransfoXLLMHeadModel,
TransfoXLModel,
TransfoXLPreTrainedModel,
load_tf_weights_in_transfo_xl,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_transfo_xl import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAdaptiveEmbedding,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLMainLayer,
TFTransfoXLModel,
TFTransfoXLPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
| 1
|
"""simple docstring"""
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowerCamelCase ( ) -> str:
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Tuple = 9, 1_4 # noqa: F841
__UpperCAmelCase : Any = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 1_4],
[3, 4, 9],
[5, 4, 1_0],
[1, 7, 1_1],
]
__UpperCAmelCase : List[str] = defaultdict(_UpperCamelCase )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
__UpperCAmelCase : Dict = mst(_UpperCamelCase )
__UpperCAmelCase : List[str] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
__UpperCAmelCase : Tuple = tuple(answer[:2] )
__UpperCAmelCase : Any = tuple(edge[::-1] )
assert edge in result or reverse in result
| 320
|
"""simple docstring"""
def lowerCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : List[str] = 1
while len(_UpperCamelCase ) < 1E6:
constant.append(str(_UpperCamelCase ) )
i += 1
__UpperCAmelCase : List[str] = """""".join(_UpperCamelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[9_9] )
* int(constant[9_9_9] )
* int(constant[9_9_9_9] )
* int(constant[9_9_9_9_9] )
* int(constant[9_9_9_9_9_9] )
)
if __name__ == "__main__":
print(solution())
| 320
| 1
|
"""simple docstring"""
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def lowerCamelCase ( _UpperCamelCase : List[str] ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[str] = []
for line in lines:
__UpperCAmelCase : Any = re.sub(R"""#.*""" , """""" , _UpperCamelCase ) # remove comments
if line:
filtered_lines.append(_UpperCamelCase )
__UpperCAmelCase : Optional[int] = """\n""".join(_UpperCamelCase )
# Make a hash from all this code
__UpperCAmelCase : Dict = full_str.encode("""utf-8""" )
return shaaaa(_UpperCamelCase ).hexdigest()
# get importable module names and hash for caching
UpperCAmelCase : Union[str, Any] = {
'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
UpperCAmelCase : Optional[int] = {
'.csv': ('csv', {}),
'.tsv': ('csv', {'sep': '\t'}),
'.json': ('json', {}),
'.jsonl': ('json', {}),
'.parquet': ('parquet', {}),
'.arrow': ('arrow', {}),
'.txt': ('text', {}),
}
_EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
UpperCAmelCase : List[str] = {'imagefolder', 'audiofolder'}
# Used to filter data files based on extensions given a module name
UpperCAmelCase : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append('.zip')
_MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
| 320
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase : Tuple = {
'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'],
'tokenization_electra': ['ElectraTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : List[Any] = ['ElectraTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Any = [
'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'ElectraForCausalLM',
'ElectraForMaskedLM',
'ElectraForMultipleChoice',
'ElectraForPreTraining',
'ElectraForQuestionAnswering',
'ElectraForSequenceClassification',
'ElectraForTokenClassification',
'ElectraModel',
'ElectraPreTrainedModel',
'load_tf_weights_in_electra',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[Any] = [
'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFElectraForMaskedLM',
'TFElectraForMultipleChoice',
'TFElectraForPreTraining',
'TFElectraForQuestionAnswering',
'TFElectraForSequenceClassification',
'TFElectraForTokenClassification',
'TFElectraModel',
'TFElectraPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str = [
'FlaxElectraForCausalLM',
'FlaxElectraForMaskedLM',
'FlaxElectraForMultipleChoice',
'FlaxElectraForPreTraining',
'FlaxElectraForQuestionAnswering',
'FlaxElectraForSequenceClassification',
'FlaxElectraForTokenClassification',
'FlaxElectraModel',
'FlaxElectraPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
| 1
|
"""simple docstring"""
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
UpperCAmelCase : str = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
UpperCAmelCase : List[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n'
UpperCAmelCase : Union[str, Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
"""simple docstring"""
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : int = CHRF.CHAR_ORDER , UpperCamelCase : int = CHRF.WORD_ORDER , UpperCamelCase : int = CHRF.BETA , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , ):
'''simple docstring'''
__UpperCAmelCase : Tuple = len(references[0] )
if any(len(UpperCamelCase ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
__UpperCAmelCase : int = [[refs[i] for refs in references] for i in range(UpperCamelCase )]
__UpperCAmelCase : str = CHRF(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Optional[Any] = sb_chrf.corpus_score(UpperCamelCase , UpperCamelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 320
|
"""simple docstring"""
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
UpperCAmelCase : Optional[Any] = 'scheduler_config.json'
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = 1
__a = 2
__a = 3
__a = 4
__a = 5
__a = 6
__a = 7
__a = 8
__a = 9
__a = 10
__a = 11
__a = 12
__a = 13
__a = 14
@dataclass
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = 42
class lowerCamelCase__ :
"""simple docstring"""
__a = SCHEDULER_CONFIG_NAME
__a = []
__a = True
@classmethod
def lowerCamelCase__ ( cls : Any , UpperCamelCase : Dict[str, Any] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : int , ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = cls.load_config(
pretrained_model_name_or_path=UpperCamelCase , subfolder=UpperCamelCase , return_unused_kwargs=UpperCamelCase , return_commit_hash=UpperCamelCase , **UpperCamelCase , )
return cls.from_config(UpperCamelCase , return_unused_kwargs=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, os.PathLike] , UpperCamelCase : bool = False , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
self.save_config(save_directory=UpperCamelCase , push_to_hub=UpperCamelCase , **UpperCamelCase )
@property
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
return self._get_compatibles()
@classmethod
def lowerCamelCase__ ( cls : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = list(set([cls.__name__] + cls._compatibles ) )
__UpperCAmelCase : List[str] = importlib.import_module(__name__.split(""".""" )[0] )
__UpperCAmelCase : List[str] = [
getattr(UpperCamelCase , UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase , UpperCamelCase )
]
return compatible_classes
| 320
| 1
|
"""simple docstring"""
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
UpperCAmelCase : Tuple = None
try:
import msvcrt
except ImportError:
UpperCAmelCase : List[Any] = None
try:
import fcntl
except ImportError:
UpperCAmelCase : str = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
UpperCAmelCase : Optional[int] = OSError
# Data
# ------------------------------------------------
UpperCAmelCase : int = [
'Timeout',
'BaseFileLock',
'WindowsFileLock',
'UnixFileLock',
'SoftFileLock',
'FileLock',
]
UpperCAmelCase : Union[str, Any] = '3.0.12'
UpperCAmelCase : Optional[int] = None
def lowerCamelCase ( ) -> Tuple:
'''simple docstring'''
global _logger
__UpperCAmelCase : int = _logger or logging.getLogger(__name__ )
return _logger
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : Any , UpperCamelCase : str ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = lock_file
return None
def __str__( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Tuple = f'''The file lock \'{self.lock_file}\' could not be acquired.'''
return temp
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : List[Any] , UpperCamelCase : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : Any = lock
return None
def __enter__( self : Any ):
'''simple docstring'''
return self.lock
def __exit__( self : Dict , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Tuple ):
'''simple docstring'''
self.lock.release()
return None
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : Tuple , UpperCamelCase : List[str] , UpperCamelCase : List[Any]=-1 , UpperCamelCase : Tuple=None ):
'''simple docstring'''
__UpperCAmelCase : Dict = max_filename_length if max_filename_length is not None else 255
# Hash the filename if it's too long
__UpperCAmelCase : Optional[Any] = self.hash_filename_if_too_long(UpperCamelCase , UpperCamelCase )
# The path to the lock file.
__UpperCAmelCase : str = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
__UpperCAmelCase : int = None
# The default timeout value.
__UpperCAmelCase : Tuple = timeout
# We use this lock primarily for the lock counter.
__UpperCAmelCase : List[Any] = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
__UpperCAmelCase : Any = 0
return None
@property
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
return self._lock_file
@property
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
return self._timeout
@timeout.setter
def lowerCamelCase__ ( self : str , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = float(UpperCamelCase )
return None
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
raise NotImplementedError()
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
raise NotImplementedError()
@property
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return self._lock_file_fd is not None
def lowerCamelCase__ ( self : Dict , UpperCamelCase : Dict=None , UpperCamelCase : int=0.05 ):
'''simple docstring'''
if timeout is None:
__UpperCAmelCase : List[str] = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
__UpperCAmelCase : List[str] = id(self )
__UpperCAmelCase : Dict = self._lock_file
__UpperCAmelCase : Optional[int] = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' )
self._acquire()
if self.is_locked:
logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' )
raise Timeout(self._lock_file )
else:
logger().debug(
f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' )
time.sleep(UpperCamelCase )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
__UpperCAmelCase : Any = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Optional[Any]=False ):
'''simple docstring'''
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
__UpperCAmelCase : Optional[int] = id(self )
__UpperCAmelCase : List[Any] = self._lock_file
logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' )
self._release()
__UpperCAmelCase : Optional[Any] = 0
logger().debug(f'''Lock {lock_id} released on {lock_filename}''' )
return None
def __enter__( self : List[str] ):
'''simple docstring'''
self.acquire()
return self
def __exit__( self : int , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Tuple ):
'''simple docstring'''
self.release()
return None
def __del__( self : Tuple ):
'''simple docstring'''
self.release(force=UpperCamelCase )
return None
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : int ):
'''simple docstring'''
__UpperCAmelCase : int = os.path.basename(UpperCamelCase )
if len(UpperCamelCase ) > max_length and max_length > 0:
__UpperCAmelCase : Dict = os.path.dirname(UpperCamelCase )
__UpperCAmelCase : List[str] = str(hash(UpperCamelCase ) )
__UpperCAmelCase : Optional[Any] = filename[: max_length - len(UpperCamelCase ) - 8] + """...""" + hashed_filename + """.lock"""
return os.path.join(UpperCamelCase , UpperCamelCase )
else:
return path
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : str , UpperCamelCase : Tuple , UpperCamelCase : List[str]=-1 , UpperCamelCase : Union[str, Any]=None ):
'''simple docstring'''
from .file_utils import relative_to_absolute_path
super().__init__(UpperCamelCase , timeout=UpperCamelCase , max_filename_length=UpperCamelCase )
__UpperCAmelCase : str = """\\\\?\\""" + relative_to_absolute_path(self.lock_file )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : Dict = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
__UpperCAmelCase : int = os.open(self._lock_file , UpperCamelCase )
except OSError:
pass
else:
try:
msvcrt.locking(UpperCamelCase , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(UpperCamelCase )
else:
__UpperCAmelCase : int = fd
return None
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self._lock_file_fd
__UpperCAmelCase : List[str] = None
msvcrt.locking(UpperCamelCase , msvcrt.LK_UNLCK , 1 )
os.close(UpperCamelCase )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : str=-1 , UpperCamelCase : Dict=None ):
'''simple docstring'''
__UpperCAmelCase : Any = os.statvfs(os.path.dirname(UpperCamelCase ) ).f_namemax
super().__init__(UpperCamelCase , timeout=UpperCamelCase , max_filename_length=UpperCamelCase )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : str = os.O_RDWR | os.O_CREAT | os.O_TRUNC
__UpperCAmelCase : Tuple = os.open(self._lock_file , UpperCamelCase )
try:
fcntl.flock(UpperCamelCase , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(UpperCamelCase )
else:
__UpperCAmelCase : int = fd
return None
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Dict = self._lock_file_fd
__UpperCAmelCase : Union[str, Any] = None
fcntl.flock(UpperCamelCase , fcntl.LOCK_UN )
os.close(UpperCamelCase )
return None
class lowerCamelCase__ ( A ):
"""simple docstring"""
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Any = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
__UpperCAmelCase : List[Any] = os.open(self._lock_file , UpperCamelCase )
except OSError:
pass
else:
__UpperCAmelCase : str = fd
return None
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
os.close(self._lock_file_fd )
__UpperCAmelCase : str = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
UpperCAmelCase : Optional[Any] = None
if msvcrt:
UpperCAmelCase : Optional[int] = WindowsFileLock
elif fcntl:
UpperCAmelCase : Optional[Any] = UnixFileLock
else:
UpperCAmelCase : int = SoftFileLock
if warnings is not None:
warnings.warn('only soft file lock is available')
| 320
|
"""simple docstring"""
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowerCamelCase__ :
"""simple docstring"""
@staticmethod
def lowerCamelCase__ ( *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
pass
def lowerCamelCase ( _UpperCamelCase : Image ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() )
return m.hexdigest()[:1_0]
def lowerCamelCase ( _UpperCamelCase : Image ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.array(_UpperCamelCase )
__UpperCAmelCase : List[Any] = npimg.shape
return {"hash": hashimage(_UpperCamelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
__a = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
__a = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ):
'''simple docstring'''
pass
@require_tf
@unittest.skip("""Image segmentation not implemented in TF""" )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
pass
@slow
@require_torch
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" )
__UpperCAmelCase : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 )
# Shortening by hashing
__UpperCAmelCase : int = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(UpperCamelCase , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053},
{"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967},
{"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993},
{"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909},
{"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879},
{"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834},
{"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716},
{"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612},
{"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599},
{"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552},
{"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532},
{"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516},
{"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499},
{"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483},
{"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464},
{"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943},
{"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943},
{"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408},
{"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335},
{"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326},
{"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262},
{"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999},
{"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986},
{"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984},
{"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873},
{"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871}
] , )
# fmt: on
@require_torch
@slow
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = """facebook/sam-vit-huge"""
__UpperCAmelCase : str = pipeline("""mask-generation""" , model=UpperCamelCase )
__UpperCAmelCase : int = image_segmenter(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
__UpperCAmelCase : Dict = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(UpperCamelCase , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053},
] , )
| 320
| 1
|
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
UpperCAmelCase : str = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
UpperCAmelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase]
UpperCAmelCase : set[int] = {ord(char) for char in VALID_CHARS}
UpperCAmelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"]
def lowerCamelCase ( _UpperCamelCase : list[int] , _UpperCamelCase : tuple[int, ...] ) -> str | None:
'''simple docstring'''
__UpperCAmelCase : str = ""
__UpperCAmelCase : int
__UpperCAmelCase : int
__UpperCAmelCase : int
for keychar, cipherchar in zip(cycle(_UpperCamelCase ) , _UpperCamelCase ):
__UpperCAmelCase : Optional[Any] = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(_UpperCamelCase )
return decoded
def lowerCamelCase ( _UpperCamelCase : list[int] ) -> list[str]:
'''simple docstring'''
__UpperCAmelCase : list[str] = []
for key in product(_UpperCamelCase , repeat=3 ):
__UpperCAmelCase : Optional[int] = try_key(_UpperCamelCase , _UpperCamelCase )
if encoded is not None:
possibles.append(_UpperCamelCase )
return possibles
def lowerCamelCase ( _UpperCamelCase : list[str] , _UpperCamelCase : str ) -> list[str]:
'''simple docstring'''
return [possible for possible in possibles if common_word in possible.lower()]
def lowerCamelCase ( _UpperCamelCase : str = "p059_cipher.txt" ) -> int:
'''simple docstring'''
__UpperCAmelCase : list[int]
__UpperCAmelCase : list[str]
__UpperCAmelCase : str
__UpperCAmelCase : str
__UpperCAmelCase : str = Path(_UpperCamelCase ).parent.joinpath(_UpperCamelCase ).read_text(encoding="""utf-8""" )
__UpperCAmelCase : Optional[Any] = [int(_UpperCamelCase ) for number in data.strip().split(""",""" )]
__UpperCAmelCase : List[Any] = filter_valid_chars(_UpperCamelCase )
for common_word in COMMON_WORDS:
__UpperCAmelCase : Optional[int] = filter_common_word(_UpperCamelCase , _UpperCamelCase )
if len(_UpperCamelCase ) == 1:
break
__UpperCAmelCase : int = possibles[0]
return sum(ord(_UpperCamelCase ) for char in decoded_text )
if __name__ == "__main__":
print(F"{solution() = }")
| 320
|
"""simple docstring"""
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class lowerCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , UpperCamelCase : str ):
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase )
__UpperCAmelCase : int = list(model.children() )[:-2]
__UpperCAmelCase : List[Any] = nn.Sequential(*UpperCamelCase )
__UpperCAmelCase : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] )
def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.pool(self.model(UpperCamelCase ) )
__UpperCAmelCase : List[Any] = torch.flatten(UpperCamelCase , start_dim=2 )
__UpperCAmelCase : Any = out.transpose(1 , 2 ).contiguous()
return out # BxNx2048
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )]
__UpperCAmelCase : Any = os.path.dirname(UpperCamelCase )
__UpperCAmelCase : List[str] = tokenizer
__UpperCAmelCase : str = labels
__UpperCAmelCase : Optional[int] = len(UpperCamelCase )
__UpperCAmelCase : int = max_seq_length
__UpperCAmelCase : int = transforms
def __len__( self : List[str] ):
'''simple docstring'''
return len(self.data )
def __getitem__( self : List[str] , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) )
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1]
__UpperCAmelCase : Any = sentence[: self.max_seq_length]
__UpperCAmelCase : Tuple = torch.zeros(self.n_classes )
__UpperCAmelCase : str = 1
__UpperCAmelCase : Any = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" )
__UpperCAmelCase : Optional[int] = self.transforms(UpperCamelCase )
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = Counter()
for row in self.data:
label_freqs.update(row["""label"""] )
return label_freqs
def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = [len(row["""sentence"""] ) for row in batch]
__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase )
__UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long )
__UpperCAmelCase : str = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long )
for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ):
__UpperCAmelCase : List[str] = input_row["""sentence"""]
__UpperCAmelCase : Tuple = 1
__UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] )
__UpperCAmelCase : Optional[Any] = torch.stack([row["""label"""] for row in batch] )
__UpperCAmelCase : str = torch.stack([row["""image_start_token"""] for row in batch] )
__UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] )
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def lowerCamelCase ( ) -> int:
'''simple docstring'''
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def lowerCamelCase ( ) -> Optional[Any]:
'''simple docstring'''
return transforms.Compose(
[
transforms.Resize(2_5_6 ),
transforms.CenterCrop(2_2_4 ),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ),
] )
| 320
| 1
|
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase : List[str] = {
'microsoft/unispeech-large-1500h-cv': (
'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = """unispeech"""
def __init__( self : str , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : Union[str, Any]=768 , UpperCamelCase : Any=12 , UpperCamelCase : int=12 , UpperCamelCase : List[str]=3_072 , UpperCamelCase : Tuple="gelu" , UpperCamelCase : str=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Optional[int]=0.0 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : Any=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : int=1e-5 , UpperCamelCase : List[str]="group" , UpperCamelCase : Tuple="gelu" , UpperCamelCase : Any=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase : str=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase : Tuple=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase : str=False , UpperCamelCase : List[str]=128 , UpperCamelCase : Union[str, Any]=16 , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Optional[Any]=True , UpperCamelCase : int=0.05 , UpperCamelCase : Any=10 , UpperCamelCase : Any=2 , UpperCamelCase : Any=0.0 , UpperCamelCase : int=10 , UpperCamelCase : Any=0 , UpperCamelCase : str=320 , UpperCamelCase : Optional[int]=2 , UpperCamelCase : int=0.1 , UpperCamelCase : Union[str, Any]=100 , UpperCamelCase : List[str]=256 , UpperCamelCase : Union[str, Any]=256 , UpperCamelCase : Dict=0.1 , UpperCamelCase : Optional[int]="mean" , UpperCamelCase : Dict=False , UpperCamelCase : Any=False , UpperCamelCase : Tuple=256 , UpperCamelCase : Optional[Any]=80 , UpperCamelCase : int=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : Union[str, Any]=2 , UpperCamelCase : int=0.5 , **UpperCamelCase : Any , ):
'''simple docstring'''
super().__init__(**UpperCamelCase , pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Tuple = feat_extract_norm
__UpperCAmelCase : str = feat_extract_activation
__UpperCAmelCase : Dict = list(UpperCamelCase )
__UpperCAmelCase : Dict = list(UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = list(UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = conv_bias
__UpperCAmelCase : int = num_conv_pos_embeddings
__UpperCAmelCase : str = num_conv_pos_embedding_groups
__UpperCAmelCase : List[str] = len(self.conv_dim )
__UpperCAmelCase : List[str] = num_hidden_layers
__UpperCAmelCase : Tuple = intermediate_size
__UpperCAmelCase : Tuple = hidden_act
__UpperCAmelCase : Dict = num_attention_heads
__UpperCAmelCase : Optional[Any] = hidden_dropout
__UpperCAmelCase : Tuple = attention_dropout
__UpperCAmelCase : Optional[int] = activation_dropout
__UpperCAmelCase : Union[str, Any] = feat_proj_dropout
__UpperCAmelCase : List[str] = final_dropout
__UpperCAmelCase : List[Any] = layerdrop
__UpperCAmelCase : Union[str, Any] = layer_norm_eps
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[Any] = num_ctc_classes
__UpperCAmelCase : List[Any] = vocab_size
__UpperCAmelCase : int = do_stable_layer_norm
__UpperCAmelCase : Tuple = use_weighted_layer_sum
__UpperCAmelCase : Optional[Any] = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCAmelCase : Tuple = apply_spec_augment
__UpperCAmelCase : Dict = mask_time_prob
__UpperCAmelCase : str = mask_time_length
__UpperCAmelCase : Tuple = mask_time_min_masks
__UpperCAmelCase : str = mask_feature_prob
__UpperCAmelCase : Optional[int] = mask_feature_length
__UpperCAmelCase : Union[str, Any] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__UpperCAmelCase : List[str] = num_codevectors_per_group
__UpperCAmelCase : Any = num_codevector_groups
__UpperCAmelCase : Optional[int] = contrastive_logits_temperature
__UpperCAmelCase : str = feat_quantizer_dropout
__UpperCAmelCase : List[Any] = num_negatives
__UpperCAmelCase : str = codevector_dim
__UpperCAmelCase : Optional[Any] = proj_codevector_dim
__UpperCAmelCase : Tuple = diversity_loss_weight
# ctc loss
__UpperCAmelCase : str = ctc_loss_reduction
__UpperCAmelCase : int = ctc_zero_infinity
# pretraining loss
__UpperCAmelCase : Dict = replace_prob
@property
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 320
|
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 320
| 1
|
"""simple docstring"""
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.utils.data import DistributedSampler, RandomSampler
from transformers import PreTrainedModel, Trainer, logging
from transformers.integrations import is_fairscale_available
from transformers.models.fsmt.configuration_fsmt import FSMTConfig
from transformers.optimization import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.trainer_pt_utils import get_tpu_sampler
from transformers.training_args import ParallelMode
from transformers.utils import is_torch_tpu_available
if is_fairscale_available():
from fairscale.optim import OSS
UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
UpperCAmelCase : Dict = {
'linear': get_linear_schedule_with_warmup,
'cosine': get_cosine_schedule_with_warmup,
'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup,
'polynomial': get_polynomial_decay_schedule_with_warmup,
'constant': get_constant_schedule,
'constant_w_warmup': get_constant_schedule_with_warmup,
}
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : Union[str, Any] , UpperCamelCase : int=None , UpperCamelCase : Tuple=None , *UpperCamelCase : str , **UpperCamelCase : List[Any] ):
'''simple docstring'''
super().__init__(*UpperCamelCase , **UpperCamelCase )
if config is None:
assert isinstance(self.model , UpperCamelCase ), (
"If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is"
f''' {self.model.__class__}'''
)
__UpperCAmelCase : str = self.model.config
else:
__UpperCAmelCase : Optional[Any] = config
__UpperCAmelCase : str = data_args
__UpperCAmelCase : Tuple = self.config.tgt_vocab_size if isinstance(self.config , UpperCamelCase ) else self.config.vocab_size
if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss):
assert self.config.pad_token_id is not None, (
"Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss"
" calculation or doing label smoothing."
)
if self.config.pad_token_id is None and self.config.eos_token_id is not None:
logger.warning(
f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for'''
""" padding..""" )
if self.args.label_smoothing == 0:
__UpperCAmelCase : List[str] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id )
else:
# dynamically import label_smoothed_nll_loss
from utils import label_smoothed_nll_loss
__UpperCAmelCase : Any = label_smoothed_nll_loss
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : int ):
'''simple docstring'''
if self.optimizer is None:
__UpperCAmelCase : str = ["""bias""", """LayerNorm.weight"""]
__UpperCAmelCase : List[str] = [
{
"""params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )],
"""weight_decay""": self.args.weight_decay,
},
{
"""params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )],
"""weight_decay""": 0.0,
},
]
__UpperCAmelCase : Optional[Any] = Adafactor if self.args.adafactor else AdamW
if self.args.adafactor:
__UpperCAmelCase : Dict = Adafactor
__UpperCAmelCase : int = {"""scale_parameter""": False, """relative_step""": False}
else:
__UpperCAmelCase : Union[str, Any] = AdamW
__UpperCAmelCase : Optional[Any] = {
"""betas""": (self.args.adam_betaa, self.args.adam_betaa),
"""eps""": self.args.adam_epsilon,
}
__UpperCAmelCase : Dict = self.args.learning_rate
if self.sharded_ddp:
__UpperCAmelCase : List[Any] = OSS(
params=UpperCamelCase , optim=UpperCamelCase , **UpperCamelCase , )
else:
__UpperCAmelCase : Optional[Any] = optimizer_cls(UpperCamelCase , **UpperCamelCase )
if self.lr_scheduler is None:
__UpperCAmelCase : Optional[Any] = self._get_lr_scheduler(UpperCamelCase )
else: # ignoring --lr_scheduler
logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" )
def lowerCamelCase__ ( self : Dict , UpperCamelCase : Dict ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = arg_to_scheduler[self.args.lr_scheduler]
if self.args.lr_scheduler == "constant":
__UpperCAmelCase : int = schedule_func(self.optimizer )
elif self.args.lr_scheduler == "constant_w_warmup":
__UpperCAmelCase : Tuple = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps )
else:
__UpperCAmelCase : Dict = schedule_func(
self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=UpperCamelCase )
return scheduler
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
if isinstance(self.train_dataset , torch.utils.data.IterableDataset ):
return None
elif is_torch_tpu_available():
return get_tpu_sampler(self.train_dataset )
else:
if self.args.sortish_sampler:
self.train_dataset.make_sortish_sampler(
self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , )
return (
RandomSampler(self.train_dataset )
if self.args.local_rank == -1
else DistributedSampler(self.train_dataset )
)
def lowerCamelCase__ ( self : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ):
'''simple docstring'''
if self.args.label_smoothing == 0:
if self.data_args is not None and self.data_args.ignore_pad_token_for_loss:
# force training to ignore pad token
__UpperCAmelCase : Union[str, Any] = model(**UpperCamelCase , use_cache=UpperCamelCase )[0]
__UpperCAmelCase : str = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) )
else:
# compute usual loss via models
__UpperCAmelCase ,__UpperCAmelCase : Any = model(**UpperCamelCase , labels=UpperCamelCase , use_cache=UpperCamelCase )[:2]
else:
# compute label smoothed loss
__UpperCAmelCase : str = model(**UpperCamelCase , use_cache=UpperCamelCase )[0]
__UpperCAmelCase : List[Any] = torch.nn.functional.log_softmax(UpperCamelCase , dim=-1 )
__UpperCAmelCase ,__UpperCAmelCase : str = self.loss_fn(UpperCamelCase , UpperCamelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id )
return loss, logits
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = inputs.pop("""labels""" )
__UpperCAmelCase ,__UpperCAmelCase : Tuple = self._compute_loss(UpperCamelCase , UpperCamelCase , UpperCamelCase )
return loss
def lowerCamelCase__ ( self : int , UpperCamelCase : nn.Module , UpperCamelCase : Dict[str, Union[torch.Tensor, Any]] , UpperCamelCase : bool , UpperCamelCase : Optional[List[str]] = None , ):
'''simple docstring'''
__UpperCAmelCase : Tuple = self._prepare_inputs(UpperCamelCase )
__UpperCAmelCase : Optional[int] = {
"""max_length""": self.data_args.val_max_target_length
if self.data_args is not None
else self.config.max_length,
"""num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams,
}
if self.args.predict_with_generate and not self.args.prediction_loss_only:
__UpperCAmelCase : Optional[int] = self.model.generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **UpperCamelCase , )
# in case the batch is shorter than max length, the output should be padded
if generated_tokens.shape[-1] < gen_kwargs["max_length"]:
__UpperCAmelCase : str = self._pad_tensors_to_max_len(UpperCamelCase , gen_kwargs["""max_length"""] )
__UpperCAmelCase : int = inputs.pop("""labels""" )
with torch.no_grad():
# compute loss on predict data
__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self._compute_loss(UpperCamelCase , UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : int = loss.mean().detach()
if self.args.prediction_loss_only:
return (loss, None, None)
__UpperCAmelCase : Union[str, Any] = generated_tokens if self.args.predict_with_generate else logits
if labels.shape[-1] < gen_kwargs["max_length"]:
__UpperCAmelCase : Union[str, Any] = self._pad_tensors_to_max_len(UpperCamelCase , gen_kwargs["""max_length"""] )
return (loss, logits, labels)
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id
if pad_token_id is None:
raise ValueError(
"""Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be"""
f''' padded to `max_length`={max_length}''' )
__UpperCAmelCase : Union[str, Any] = pad_token_id * torch.ones(
(tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device )
__UpperCAmelCase : Optional[Any] = tensor
return padded_tensor
| 320
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase )
__UpperCAmelCase : List[Any] = sum(_UpperCamelCase )
__UpperCAmelCase : Optional[int] = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
__UpperCAmelCase : Any = True
for i in range(1 , s + 1 ):
__UpperCAmelCase : List[Any] = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
__UpperCAmelCase : Optional[int] = dp[i][j - 1]
if arr[i - 1] <= j:
__UpperCAmelCase : Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
__UpperCAmelCase : Optional[int] = s - 2 * j
break
return diff
| 320
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCAmelCase : int = {
'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'],
'configuration_maskformer_swin': ['MaskFormerSwinConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Any = ['MaskFormerFeatureExtractor']
UpperCAmelCase : Any = ['MaskFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[int] = [
'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'MaskFormerForInstanceSegmentation',
'MaskFormerModel',
'MaskFormerPreTrainedModel',
]
UpperCAmelCase : List[Any] = [
'MaskFormerSwinBackbone',
'MaskFormerSwinModel',
'MaskFormerSwinPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 320
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
if is_vision_available():
import PIL
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = ["""pixel_values"""]
def __init__( self : Tuple , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 255 , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = True , **UpperCamelCase : str , ):
'''simple docstring'''
super().__init__(**UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 224}
__UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase )
__UpperCAmelCase : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase , param_name="""crop_size""" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : Tuple = size
__UpperCAmelCase : Optional[Any] = resample
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : int = crop_size
__UpperCAmelCase : Optional[int] = do_rescale
__UpperCAmelCase : List[Any] = rescale_factor
__UpperCAmelCase : Tuple = do_normalize
__UpperCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__UpperCAmelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD
__UpperCAmelCase : List[Any] = do_convert_rgb
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : List[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
__UpperCAmelCase : int = get_resize_output_image_size(UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase )
return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Dict , ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = get_size_dict(UpperCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, float] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ):
'''simple docstring'''
return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ):
'''simple docstring'''
return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : int = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : Any , ):
'''simple docstring'''
__UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : Dict = size if size is not None else self.size
__UpperCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase , param_name="""size""" , default_to_square=UpperCamelCase )
__UpperCAmelCase : Dict = resample if resample is not None else self.resample
__UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , param_name="""crop_size""" , default_to_square=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : Any = image_std if image_std is not None else self.image_std
__UpperCAmelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__UpperCAmelCase : List[str] = make_list_of_images(UpperCamelCase )
if not valid_images(UpperCamelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__UpperCAmelCase : int = [convert_to_rgb(UpperCamelCase ) for image in images]
# All transformations expect numpy arrays.
__UpperCAmelCase : Tuple = [to_numpy_array(UpperCamelCase ) for image in images]
if do_resize:
__UpperCAmelCase : Optional[int] = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images]
if do_center_crop:
__UpperCAmelCase : int = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images]
if do_rescale:
__UpperCAmelCase : Dict = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images]
if do_normalize:
__UpperCAmelCase : Optional[Any] = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images]
__UpperCAmelCase : Any = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images]
__UpperCAmelCase : Any = {"""pixel_values""": images}
return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline
from diffusers.utils import is_flax_available, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
super().tearDown()
gc.collect()
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : int = FlaxStableDiffusionPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , )
__UpperCAmelCase : Dict = """A painting of a squirrel eating a burger"""
__UpperCAmelCase : Any = jax.device_count()
__UpperCAmelCase : List[str] = num_samples * [prompt]
__UpperCAmelCase : Tuple = sd_pipe.prepare_inputs(UpperCamelCase )
__UpperCAmelCase : int = replicate(UpperCamelCase )
__UpperCAmelCase : Optional[Any] = shard(UpperCamelCase )
__UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
__UpperCAmelCase : Tuple = jax.random.split(UpperCamelCase , jax.device_count() )
__UpperCAmelCase : Tuple = sd_pipe(UpperCamelCase , UpperCamelCase , UpperCamelCase , num_inference_steps=25 , jit=UpperCamelCase )[0]
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
__UpperCAmelCase : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__UpperCAmelCase : Optional[int] = images[0, 253:256, 253:256, -1]
__UpperCAmelCase : str = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__UpperCAmelCase : Optional[int] = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Dict = """stabilityai/stable-diffusion-2"""
__UpperCAmelCase ,__UpperCAmelCase : Any = FlaxDPMSolverMultistepScheduler.from_pretrained(UpperCamelCase , subfolder="""scheduler""" )
__UpperCAmelCase ,__UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained(
UpperCamelCase , scheduler=UpperCamelCase , revision="""bf16""" , dtype=jnp.bfloataa , )
__UpperCAmelCase : List[Any] = scheduler_params
__UpperCAmelCase : Optional[int] = """A painting of a squirrel eating a burger"""
__UpperCAmelCase : Tuple = jax.device_count()
__UpperCAmelCase : Optional[int] = num_samples * [prompt]
__UpperCAmelCase : Optional[int] = sd_pipe.prepare_inputs(UpperCamelCase )
__UpperCAmelCase : List[Any] = replicate(UpperCamelCase )
__UpperCAmelCase : str = shard(UpperCamelCase )
__UpperCAmelCase : str = jax.random.PRNGKey(0 )
__UpperCAmelCase : Tuple = jax.random.split(UpperCamelCase , jax.device_count() )
__UpperCAmelCase : Any = sd_pipe(UpperCamelCase , UpperCamelCase , UpperCamelCase , num_inference_steps=25 , jit=UpperCamelCase )[0]
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
__UpperCAmelCase : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__UpperCAmelCase : Dict = images[0, 253:256, 253:256, -1]
__UpperCAmelCase : Any = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__UpperCAmelCase : List[Any] = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 320
|
"""simple docstring"""
from collections.abc import Sequence
def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) )
def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float:
'''simple docstring'''
__UpperCAmelCase : Dict = 0.0
for coeff in reversed(_UpperCamelCase ):
__UpperCAmelCase : Any = result * x + coeff
return result
if __name__ == "__main__":
UpperCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0)
UpperCAmelCase : str = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 320
| 1
|
"""simple docstring"""
from __future__ import annotations
import numpy as np
def lowerCamelCase ( _UpperCamelCase : list[float] ) -> Optional[Any]:
'''simple docstring'''
return np.maximum(0 , _UpperCamelCase )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 320
|
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase : Optional[int] = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class lowerCamelCase__ :
"""simple docstring"""
__a = PegasusConfig
__a = {}
__a = """gelu"""
def __init__( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Dict=True , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : Union[str, Any]=5 , UpperCamelCase : Any=4 , UpperCamelCase : Tuple=37 , UpperCamelCase : Any=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=20 , UpperCamelCase : List[str]=2 , UpperCamelCase : int=1 , UpperCamelCase : Optional[Any]=0 , ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : str = batch_size
__UpperCAmelCase : Optional[Any] = seq_length
__UpperCAmelCase : Dict = is_training
__UpperCAmelCase : Dict = use_labels
__UpperCAmelCase : List[Any] = vocab_size
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : Optional[Any] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : List[Any] = intermediate_size
__UpperCAmelCase : Union[str, Any] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : List[Any] = max_position_embeddings
__UpperCAmelCase : Any = eos_token_id
__UpperCAmelCase : Optional[int] = pad_token_id
__UpperCAmelCase : List[str] = bos_token_id
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
__UpperCAmelCase : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCAmelCase : Union[str, Any] = np.concatenate([input_ids, eos_tensor] , axis=1 )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Any = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCAmelCase : Any = prepare_pegasus_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase )
return config, inputs_dict
def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = 20
__UpperCAmelCase : Tuple = model_class_name(UpperCamelCase )
__UpperCAmelCase : List[Any] = model.encode(inputs_dict["""input_ids"""] )
__UpperCAmelCase ,__UpperCAmelCase : int = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
__UpperCAmelCase : Optional[int] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCAmelCase : Union[str, Any] = model.decode(
decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCAmelCase : Tuple = model.decode(
decoder_input_ids[:, -1:] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Dict = model.decode(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = 20
__UpperCAmelCase : int = model_class_name(UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] )
__UpperCAmelCase ,__UpperCAmelCase : Dict = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCAmelCase : int = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : List[Any] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCAmelCase : List[str] = model.decode(
decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCAmelCase : Optional[int] = model.decode(
decoder_input_ids[:, -1:] , UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Union[str, Any] = model.decode(UpperCamelCase , UpperCamelCase , decoder_attention_mask=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=None , _UpperCamelCase : Any=None , ) -> Dict:
'''simple docstring'''
if attention_mask is None:
__UpperCAmelCase : Optional[int] = np.not_equal(_UpperCamelCase , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
__UpperCAmelCase : Dict = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__a = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__a = True
__a = False
__a = False
__a = False
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = FlaxPegasusModelTester(self )
__UpperCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCAmelCase : Tuple = self._prepare_for_class(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Dict = model_class(UpperCamelCase )
@jax.jit
def encode_jitted(UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any]=None , **UpperCamelCase : List[str] ):
return model.encode(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )
with self.subTest("""JIT Enabled""" ):
__UpperCAmelCase : Tuple = encode_jitted(**UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCAmelCase : Optional[int] = encode_jitted(**UpperCamelCase ).to_tuple()
self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) )
for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCAmelCase : int = model_class(UpperCamelCase )
__UpperCAmelCase : int = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
__UpperCAmelCase : Any = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ):
return model.decode(
decoder_input_ids=UpperCamelCase , decoder_attention_mask=UpperCamelCase , encoder_outputs=UpperCamelCase , )
with self.subTest("""JIT Enabled""" ):
__UpperCAmelCase : Union[str, Any] = decode_jitted(**UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCAmelCase : str = decode_jitted(**UpperCamelCase ).to_tuple()
self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) )
for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCamelCase )
__UpperCAmelCase : Optional[int] = np.ones((1, 1) )
__UpperCAmelCase : List[str] = model(UpperCamelCase )
self.assertIsNotNone(UpperCamelCase )
@slow
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
__UpperCAmelCase : Union[str, Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
__UpperCAmelCase : List[Any] = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
__UpperCAmelCase : List[str] = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
__UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""np""" , truncation=UpperCamelCase , max_length=512 , padding=UpperCamelCase )
__UpperCAmelCase : int = model.generate(**UpperCamelCase , num_beams=2 ).sequences
__UpperCAmelCase : str = tokenizer.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase )
assert tgt_text == decoded
| 320
| 1
|
"""simple docstring"""
import math
def lowerCamelCase ( ) -> None:
'''simple docstring'''
__UpperCAmelCase : Any = input("""Enter message: """ )
__UpperCAmelCase : int = int(input(f'''Enter key [2-{len(_UpperCamelCase ) - 1}]: ''' ) )
__UpperCAmelCase : Any = input("""Encryption/Decryption [e/d]: """ )
if mode.lower().startswith("""e""" ):
__UpperCAmelCase : str = encrypt_message(_UpperCamelCase , _UpperCamelCase )
elif mode.lower().startswith("""d""" ):
__UpperCAmelCase : Tuple = decrypt_message(_UpperCamelCase , _UpperCamelCase )
# Append pipe symbol (vertical bar) to identify spaces at the end.
print(f'''Output:\n{text + "|"}''' )
def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : str ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = [""""""] * key
for col in range(_UpperCamelCase ):
__UpperCAmelCase : Union[str, Any] = col
while pointer < len(_UpperCamelCase ):
cipher_text[col] += message[pointer]
pointer += key
return "".join(_UpperCamelCase )
def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : str ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = math.ceil(len(_UpperCamelCase ) / key )
__UpperCAmelCase : Union[str, Any] = key
__UpperCAmelCase : Optional[Any] = (num_cols * num_rows) - len(_UpperCamelCase )
__UpperCAmelCase : int = [""""""] * num_cols
__UpperCAmelCase : int = 0
__UpperCAmelCase : int = 0
for symbol in message:
plain_text[col] += symbol
col += 1
if (
(col == num_cols)
or (col == num_cols - 1)
and (row >= num_rows - num_shaded_boxes)
):
__UpperCAmelCase : Optional[Any] = 0
row += 1
return "".join(_UpperCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 320
|
"""simple docstring"""
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase : List[str] = logging.get_logger(__name__)
UpperCAmelCase : List[str] = {
'b0': efficientnet.EfficientNetBa,
'b1': efficientnet.EfficientNetBa,
'b2': efficientnet.EfficientNetBa,
'b3': efficientnet.EfficientNetBa,
'b4': efficientnet.EfficientNetBa,
'b5': efficientnet.EfficientNetBa,
'b6': efficientnet.EfficientNetBa,
'b7': efficientnet.EfficientNetBa,
}
UpperCAmelCase : List[str] = {
'b0': {
'hidden_dim': 1280,
'width_coef': 1.0,
'depth_coef': 1.0,
'image_size': 224,
'dropout_rate': 0.2,
'dw_padding': [],
},
'b1': {
'hidden_dim': 1280,
'width_coef': 1.0,
'depth_coef': 1.1,
'image_size': 240,
'dropout_rate': 0.2,
'dw_padding': [16],
},
'b2': {
'hidden_dim': 1408,
'width_coef': 1.1,
'depth_coef': 1.2,
'image_size': 260,
'dropout_rate': 0.3,
'dw_padding': [5, 8, 16],
},
'b3': {
'hidden_dim': 1536,
'width_coef': 1.2,
'depth_coef': 1.4,
'image_size': 300,
'dropout_rate': 0.3,
'dw_padding': [5, 18],
},
'b4': {
'hidden_dim': 1792,
'width_coef': 1.4,
'depth_coef': 1.8,
'image_size': 380,
'dropout_rate': 0.4,
'dw_padding': [6],
},
'b5': {
'hidden_dim': 2048,
'width_coef': 1.6,
'depth_coef': 2.2,
'image_size': 456,
'dropout_rate': 0.4,
'dw_padding': [13, 27],
},
'b6': {
'hidden_dim': 2304,
'width_coef': 1.8,
'depth_coef': 2.6,
'image_size': 528,
'dropout_rate': 0.5,
'dw_padding': [31],
},
'b7': {
'hidden_dim': 2560,
'width_coef': 2.0,
'depth_coef': 3.1,
'image_size': 600,
'dropout_rate': 0.5,
'dw_padding': [18],
},
}
def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = EfficientNetConfig()
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""hidden_dim"""]
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""width_coef"""]
__UpperCAmelCase : str = CONFIG_MAP[model_name]["""depth_coef"""]
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""]
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""dropout_rate"""]
__UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""]
__UpperCAmelCase : int = """huggingface/label-files"""
__UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json"""
__UpperCAmelCase : str = 1_0_0_0
__UpperCAmelCase : Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) )
__UpperCAmelCase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()}
__UpperCAmelCase : Dict = idalabel
__UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
return config
def lowerCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw )
return im
def lowerCamelCase ( _UpperCamelCase : Any ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = CONFIG_MAP[model_name]["""image_size"""]
__UpperCAmelCase : List[str] = EfficientNetImageProcessor(
size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_UpperCamelCase , )
return preprocessor
def lowerCamelCase ( _UpperCamelCase : Dict ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )]
__UpperCAmelCase : str = sorted(set(_UpperCamelCase ) )
__UpperCAmelCase : Optional[int] = len(_UpperCamelCase )
__UpperCAmelCase : Any = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )}
__UpperCAmelCase : Any = []
rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") )
rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") )
rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") )
rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") )
rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") )
for b in block_names:
__UpperCAmelCase : List[str] = block_name_mapping[b]
rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') )
rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') )
rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') )
rename_keys.append(
(f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') )
rename_keys.append(
(f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') )
rename_keys.append(
(f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') )
rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') )
rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') )
rename_keys.append(
(f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') )
rename_keys.append(
(f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') )
rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') )
rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') )
rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') )
rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') )
rename_keys.append(
(f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') )
rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') )
rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') )
rename_keys.append(
(f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') )
rename_keys.append(
(f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') )
rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") )
rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") )
rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") )
rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") )
rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") )
__UpperCAmelCase : Optional[int] = {}
for item in rename_keys:
if item[0] in original_param_names:
__UpperCAmelCase : Optional[Any] = """efficientnet.""" + item[1]
__UpperCAmelCase : Tuple = """classifier.weight"""
__UpperCAmelCase : Optional[int] = """classifier.bias"""
return key_mapping
def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Tuple:
'''simple docstring'''
for key, value in tf_params.items():
if "normalization" in key:
continue
__UpperCAmelCase : List[Any] = key_mapping[key]
if "_conv" in key and "kernel" in key:
__UpperCAmelCase : int = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
__UpperCAmelCase : Optional[Any] = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
__UpperCAmelCase : List[str] = torch.from_numpy(np.transpose(_UpperCamelCase ) )
else:
__UpperCAmelCase : Tuple = torch.from_numpy(_UpperCamelCase )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(_UpperCamelCase )
@torch.no_grad()
def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = model_classes[model_name](
include_top=_UpperCamelCase , weights="""imagenet""" , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , )
__UpperCAmelCase : List[str] = original_model.trainable_variables
__UpperCAmelCase : List[Any] = original_model.non_trainable_variables
__UpperCAmelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
__UpperCAmelCase : int = param.numpy()
__UpperCAmelCase : Dict = list(tf_params.keys() )
# Load HuggingFace model
__UpperCAmelCase : Optional[Any] = get_efficientnet_config(_UpperCamelCase )
__UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(_UpperCamelCase ).eval()
__UpperCAmelCase : Any = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print("""Converting parameters...""" )
__UpperCAmelCase : Tuple = rename_keys(_UpperCamelCase )
replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
# Initialize preprocessor and preprocess input image
__UpperCAmelCase : List[Any] = convert_image_processor(_UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors="""pt""" )
# HF model inference
hf_model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[int] = hf_model(**_UpperCamelCase )
__UpperCAmelCase : Any = outputs.logits.detach().numpy()
# Original model inference
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""]
__UpperCAmelCase : str = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
__UpperCAmelCase : Optional[Any] = image.img_to_array(_UpperCamelCase )
__UpperCAmelCase : Tuple = np.expand_dims(_UpperCamelCase , axis=0 )
__UpperCAmelCase : str = original_model.predict(_UpperCamelCase )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same."
print("""Model outputs match!""" )
if save_model:
# Create folder to save model
if not os.path.isdir(_UpperCamelCase ):
os.mkdir(_UpperCamelCase )
# Save converted model and image processor
hf_model.save_pretrained(_UpperCamelCase )
preprocessor.save_pretrained(_UpperCamelCase )
if push_to_hub:
# Push model and image processor to hub
print(f'''Pushing converted {model_name} to the hub...''' )
__UpperCAmelCase : List[str] = f'''efficientnet-{model_name}'''
preprocessor.push_to_hub(_UpperCamelCase )
hf_model.push_to_hub(_UpperCamelCase )
if __name__ == "__main__":
UpperCAmelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='b0',
type=str,
help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='hf_model',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--save_model', action='store_true', help='Save model to local')
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
UpperCAmelCase : Any = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 320
| 1
|
"""simple docstring"""
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
UpperCAmelCase : Tuple = [
'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the'
' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe'
' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.',
'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal'
' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s'
' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the'
' body.',
'Amnesty International releases its annual report on the death penalty. The report catalogs the use of'
' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the'
' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital'
' punishment.',
]
UpperCAmelCase : Optional[Any] = [
'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .'
' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz'
' had informed his Lufthansa training school of an episode of severe depression, airline says .',
'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .'
' Israel and the United States opposed the move, which could open the door to war crimes investigations against'
' Israelis .',
'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to'
' death . Organization claims that governments around the world are using the threat of terrorism to advance'
' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death'
' sentences up by 28% .',
]
def lowerCamelCase ( ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = calculate_rouge(_UpperCamelCase , _UpperCamelCase , bootstrap_aggregation=_UpperCamelCase , rouge_keys=["""rouge2""", """rougeL"""] )
assert isinstance(_UpperCamelCase , _UpperCamelCase )
__UpperCAmelCase : int = calculate_rouge(_UpperCamelCase , _UpperCamelCase , bootstrap_aggregation=_UpperCamelCase , rouge_keys=["""rouge2"""] )
assert (
pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean()
)
def lowerCamelCase ( ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = """rougeLsum"""
__UpperCAmelCase : Optional[Any] = calculate_rouge(_UpperCamelCase , _UpperCamelCase , newline_sep=_UpperCamelCase , rouge_keys=[k] )[k]
__UpperCAmelCase : Any = calculate_rouge(_UpperCamelCase , _UpperCamelCase , newline_sep=_UpperCamelCase , rouge_keys=[k] )[k]
assert score > score_no_sep
def lowerCamelCase ( ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[str] = ["""rouge1""", """rouge2""", """rougeL"""]
__UpperCAmelCase : Optional[Any] = calculate_rouge(_UpperCamelCase , _UpperCamelCase , newline_sep=_UpperCamelCase , rouge_keys=_UpperCamelCase )
__UpperCAmelCase : List[str] = calculate_rouge(_UpperCamelCase , _UpperCamelCase , newline_sep=_UpperCamelCase , rouge_keys=_UpperCamelCase )
assert score_sep == score_no_sep
def lowerCamelCase ( ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = [
"""Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""",
"""Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""",
]
__UpperCAmelCase : int = [
"""Margot Frank, died in 1945, a month earlier than previously thought.""",
"""Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of"""
""" the final seconds on board Flight 9525.""",
]
assert calculate_rouge(_UpperCamelCase , _UpperCamelCase , newline_sep=_UpperCamelCase ) == calculate_rouge(_UpperCamelCase , _UpperCamelCase , newline_sep=_UpperCamelCase )
def lowerCamelCase ( ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [
"""\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """
]
__UpperCAmelCase : str = [
""" Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ."""
]
__UpperCAmelCase : Dict = calculate_rouge(_UpperCamelCase , _UpperCamelCase , rouge_keys=["""rougeLsum"""] , newline_sep=_UpperCamelCase )["""rougeLsum"""]
__UpperCAmelCase : Union[str, Any] = calculate_rouge(_UpperCamelCase , _UpperCamelCase , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""]
assert new_score > prev_score
def lowerCamelCase ( ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Path("""examples/seq2seq/test_data/wmt_en_ro""" )
__UpperCAmelCase : List[Any] = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) )
assert isinstance(_UpperCamelCase , _UpperCamelCase )
__UpperCAmelCase : int = calculate_rouge_path(
data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=_UpperCamelCase )
assert isinstance(_UpperCamelCase , _UpperCamelCase )
| 320
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""keras_nlp"""]
def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
requires_backends(self , ["""keras_nlp"""] )
| 320
| 1
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] ) -> int:
'''simple docstring'''
def update_area_of_max_square(_UpperCamelCase : int , _UpperCamelCase : int ) -> int:
# BASE CASE
if row >= rows or col >= cols:
return 0
__UpperCAmelCase : Optional[int] = update_area_of_max_square(_UpperCamelCase , col + 1 )
__UpperCAmelCase : int = update_area_of_max_square(row + 1 , col + 1 )
__UpperCAmelCase : Optional[Any] = update_area_of_max_square(row + 1 , _UpperCamelCase )
if mat[row][col]:
__UpperCAmelCase : List[Any] = 1 + min([right, diagonal, down] )
__UpperCAmelCase : Any = max(largest_square_area[0] , _UpperCamelCase )
return sub_problem_sol
else:
return 0
__UpperCAmelCase : Optional[int] = [0]
update_area_of_max_square(0 , 0 )
return largest_square_area[0]
def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] ) -> int:
'''simple docstring'''
def update_area_of_max_square_using_dp_array(
_UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] ) -> int:
if row >= rows or col >= cols:
return 0
if dp_array[row][col] != -1:
return dp_array[row][col]
__UpperCAmelCase : List[str] = update_area_of_max_square_using_dp_array(_UpperCamelCase , col + 1 , _UpperCamelCase )
__UpperCAmelCase : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _UpperCamelCase )
__UpperCAmelCase : str = update_area_of_max_square_using_dp_array(row + 1 , _UpperCamelCase , _UpperCamelCase )
if mat[row][col]:
__UpperCAmelCase : List[Any] = 1 + min([right, diagonal, down] )
__UpperCAmelCase : Optional[Any] = max(largest_square_area[0] , _UpperCamelCase )
__UpperCAmelCase : Tuple = sub_problem_sol
return sub_problem_sol
else:
return 0
__UpperCAmelCase : Dict = [0]
__UpperCAmelCase : Any = [[-1] * cols for _ in range(_UpperCamelCase )]
update_area_of_max_square_using_dp_array(0 , 0 , _UpperCamelCase )
return largest_square_area[0]
def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[Any] = [[0] * (cols + 1) for _ in range(rows + 1 )]
__UpperCAmelCase : Any = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
__UpperCAmelCase : Union[str, Any] = dp_array[row][col + 1]
__UpperCAmelCase : Optional[int] = dp_array[row + 1][col + 1]
__UpperCAmelCase : Optional[Any] = dp_array[row + 1][col]
if mat[row][col] == 1:
__UpperCAmelCase : Optional[int] = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
__UpperCAmelCase : Optional[Any] = max(dp_array[row][col] , _UpperCamelCase )
else:
__UpperCAmelCase : int = 0
return largest_square_area
def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = [0] * (cols + 1)
__UpperCAmelCase : Tuple = [0] * (cols + 1)
__UpperCAmelCase : int = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
__UpperCAmelCase : int = current_row[col + 1]
__UpperCAmelCase : List[Any] = next_row[col + 1]
__UpperCAmelCase : str = next_row[col]
if mat[row][col] == 1:
__UpperCAmelCase : Any = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = max(current_row[col] , _UpperCamelCase )
else:
__UpperCAmelCase : Tuple = 0
__UpperCAmelCase : Any = current_row
return largest_square_area
if __name__ == "__main__":
import doctest
doctest.testmod()
print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
| 320
|
"""simple docstring"""
UpperCAmelCase : Dict = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
def lowerCamelCase ( _UpperCamelCase : bytes ) -> bytes:
'''simple docstring'''
if not isinstance(_UpperCamelCase , _UpperCamelCase ):
__UpperCAmelCase : Any = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(_UpperCamelCase )
__UpperCAmelCase : str = """""".join(bin(_UpperCamelCase )[2:].zfill(8 ) for byte in data )
__UpperCAmelCase : int = len(_UpperCamelCase ) % 6 != 0
if padding_needed:
# The padding that will be added later
__UpperCAmelCase : Dict = b"""=""" * ((6 - len(_UpperCamelCase ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_UpperCamelCase ) % 6)
else:
__UpperCAmelCase : List[str] = b""""""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(_UpperCamelCase ) , 6 ) ).encode()
+ padding
)
def lowerCamelCase ( _UpperCamelCase : str ) -> bytes:
'''simple docstring'''
if not isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ):
__UpperCAmelCase : Tuple = (
"""argument should be a bytes-like object or ASCII string, """
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(_UpperCamelCase )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_UpperCamelCase , _UpperCamelCase ):
try:
__UpperCAmelCase : Optional[Any] = encoded_data.decode("""utf-8""" )
except UnicodeDecodeError:
raise ValueError("""base64 encoded data should only contain ASCII characters""" )
__UpperCAmelCase : str = encoded_data.count("""=""" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
__UpperCAmelCase : List[str] = encoded_data[:-padding]
__UpperCAmelCase : int = """""".join(
bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
__UpperCAmelCase : Optional[Any] = """""".join(
bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )
__UpperCAmelCase : List[Any] = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(_UpperCamelCase ) , 8 )
]
return bytes(_UpperCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320
| 1
|
"""simple docstring"""
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = ["""image_processor""", """tokenizer"""]
__a = """OwlViTImageProcessor"""
__a = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self : List[Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Tuple=None , **UpperCamelCase : str ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , UpperCamelCase , )
__UpperCAmelCase : Optional[int] = kwargs.pop("""feature_extractor""" )
__UpperCAmelCase : Optional[int] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(UpperCamelCase , UpperCamelCase )
def __call__( self : Union[str, Any] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Tuple="max_length" , UpperCamelCase : str="np" , **UpperCamelCase : List[Any] ):
'''simple docstring'''
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""" )
if text is not None:
if isinstance(UpperCamelCase , UpperCamelCase ) or (isinstance(UpperCamelCase , UpperCamelCase ) and not isinstance(text[0] , UpperCamelCase )):
__UpperCAmelCase : Tuple = [self.tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )]
elif isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(text[0] , UpperCamelCase ):
__UpperCAmelCase : Optional[int] = []
# Maximum number of queries across batch
__UpperCAmelCase : List[str] = max([len(UpperCamelCase ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(UpperCamelCase ) != max_num_queries:
__UpperCAmelCase : Optional[int] = t + [""" """] * (max_num_queries - len(UpperCamelCase ))
__UpperCAmelCase : Tuple = self.tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )
encodings.append(UpperCamelCase )
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" )
if return_tensors == "np":
__UpperCAmelCase : int = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
__UpperCAmelCase : Tuple = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
__UpperCAmelCase : Any = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
__UpperCAmelCase : List[str] = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
__UpperCAmelCase : List[Any] = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 )
__UpperCAmelCase : Tuple = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
__UpperCAmelCase : Any = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
__UpperCAmelCase : int = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
else:
raise ValueError("""Target return tensor type could not be returned""" )
__UpperCAmelCase : int = BatchEncoding()
__UpperCAmelCase : Optional[int] = input_ids
__UpperCAmelCase : Dict = attention_mask
if query_images is not None:
__UpperCAmelCase : Tuple = BatchEncoding()
__UpperCAmelCase : Tuple = self.image_processor(
UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ).pixel_values
__UpperCAmelCase : List[str] = query_pixel_values
if images is not None:
__UpperCAmelCase : str = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )
if text is not None and images is not None:
__UpperCAmelCase : Optional[Any] = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
__UpperCAmelCase : Dict = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase )
def lowerCamelCase__ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : str ):
'''simple docstring'''
return self.image_processor.post_process(*UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
return self.image_processor.post_process_object_detection(*UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Tuple , *UpperCamelCase : Tuple , **UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
return self.image_processor.post_process_image_guided_detection(*UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : int , *UpperCamelCase : int , **UpperCamelCase : Dict ):
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : int , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Any ):
'''simple docstring'''
return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase )
@property
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCamelCase , )
return self.image_processor_class
@property
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCamelCase , )
return self.image_processor
| 320
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
UpperCAmelCase : str = logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ):
'''simple docstring'''
warnings.warn(
"""The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , )
super().__init__(*UpperCamelCase , **UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : int ) -> int:
'''simple docstring'''
__UpperCAmelCase : Dict = 0
while num > 0:
digit_sum += num % 1_0
num //= 1_0
return digit_sum
def lowerCamelCase ( _UpperCamelCase : int = 1_0_0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Dict = 1
__UpperCAmelCase : Union[str, Any] = 2
for i in range(2 , max_n + 1 ):
__UpperCAmelCase : int = pre_numerator
__UpperCAmelCase : Dict = 2 * i // 3 if i % 3 == 0 else 1
__UpperCAmelCase : Tuple = cur_numerator
__UpperCAmelCase : List[Any] = e_cont * pre_numerator + temp
return sum_digits(_UpperCamelCase )
if __name__ == "__main__":
print(F"{solution() = }")
| 320
|
"""simple docstring"""
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = LEDTokenizer
__a = LEDTokenizerFast
__a = True
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
super().setUp()
__UpperCAmelCase : Tuple = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
__UpperCAmelCase : str = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) )
__UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
__UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""}
__UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(UpperCamelCase ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(UpperCamelCase ) )
def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : int ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase )
def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : List[str] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase )
def lowerCamelCase__ ( self : str , UpperCamelCase : Any ):
'''simple docstring'''
return "lower newer", "lower newer"
@cached_property
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" )
@cached_property
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" )
@require_torch
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
__UpperCAmelCase : Union[str, Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Any = tokenizer(UpperCamelCase , max_length=len(UpperCamelCase ) , padding=UpperCamelCase , return_tensors="""pt""" )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
__UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0]
self.assertListEqual(UpperCamelCase , UpperCamelCase )
@require_torch
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors="""pt""" )
self.assertIn("""input_ids""" , UpperCamelCase )
self.assertIn("""attention_mask""" , UpperCamelCase )
self.assertNotIn("""labels""" , UpperCamelCase )
self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase )
@require_torch
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = [
"""Summary of the text.""",
"""Another summary.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Optional[Any] = tokenizer(text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
@require_torch
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : str = tokenizer(
["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""pt""" )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
self.assertEqual(batch.input_ids.shape , (2, 5_122) )
@require_torch
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization."""]
__UpperCAmelCase : int = [
"""Summary of the text.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""pt""" )
__UpperCAmelCase : Tuple = tokenizer(text_target=UpperCamelCase , return_tensors="""pt""" )
__UpperCAmelCase : Optional[Any] = inputs["""input_ids"""]
__UpperCAmelCase : List[str] = targets["""input_ids"""]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Any = ["""Summary of the text.""", """Another summary."""]
__UpperCAmelCase : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
__UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , padding=UpperCamelCase )
__UpperCAmelCase : str = [[0] * len(UpperCamelCase ) for x in encoded_output["""input_ids"""]]
__UpperCAmelCase : List[Any] = tokenizer.pad(UpperCamelCase )
self.assertSequenceEqual(outputs["""global_attention_mask"""] , UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase )
__UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase )
__UpperCAmelCase : Any = """A, <mask> AllenNLP sentence."""
__UpperCAmelCase : Dict = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase )
__UpperCAmelCase : List[Any] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase )
self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) )
self.assertEqual(
sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , )
__UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] )
__UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] )
self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
self.assertSequenceEqual(
UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
| 320
| 1
|
"""simple docstring"""
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[Any] , UpperCamelCase : int , UpperCamelCase : Any=7 , UpperCamelCase : List[str]=3 , UpperCamelCase : str=30 , UpperCamelCase : str=400 , UpperCamelCase : Tuple=True , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[int]=[0.5, 0.5, 0.5] , UpperCamelCase : List[str]=[0.5, 0.5, 0.5] , UpperCamelCase : Tuple=True , UpperCamelCase : int=1 / 255 , UpperCamelCase : Union[str, Any]=True , ):
'''simple docstring'''
__UpperCAmelCase : Dict = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333}
__UpperCAmelCase : Dict = parent
__UpperCAmelCase : List[str] = batch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : Optional[Any] = min_resolution
__UpperCAmelCase : List[Any] = max_resolution
__UpperCAmelCase : Tuple = do_resize
__UpperCAmelCase : Any = size
__UpperCAmelCase : List[str] = do_normalize
__UpperCAmelCase : List[str] = image_mean
__UpperCAmelCase : Any = image_std
__UpperCAmelCase : Union[str, Any] = do_rescale
__UpperCAmelCase : Optional[int] = rescale_factor
__UpperCAmelCase : Dict = do_pad
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def lowerCamelCase__ ( self : Any , UpperCamelCase : Any , UpperCamelCase : List[Any]=False ):
'''simple docstring'''
if not batched:
__UpperCAmelCase : Optional[Any] = image_inputs[0]
if isinstance(UpperCamelCase , Image.Image ):
__UpperCAmelCase ,__UpperCAmelCase : int = image.size
else:
__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = image.shape[1], image.shape[2]
if w < h:
__UpperCAmelCase : Optional[int] = int(self.size["""shortest_edge"""] * h / w )
__UpperCAmelCase : Optional[int] = self.size["""shortest_edge"""]
elif w > h:
__UpperCAmelCase : Union[str, Any] = self.size["""shortest_edge"""]
__UpperCAmelCase : List[str] = int(self.size["""shortest_edge"""] * w / h )
else:
__UpperCAmelCase : Optional[int] = self.size["""shortest_edge"""]
__UpperCAmelCase : Any = self.size["""shortest_edge"""]
else:
__UpperCAmelCase : Tuple = []
for image in image_inputs:
__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__UpperCAmelCase : Any = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0]
__UpperCAmelCase : List[str] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = YolosImageProcessor if is_vision_available() else None
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = YolosImageProcessingTester(self )
@property
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCamelCase , """image_mean""" ) )
self.assertTrue(hasattr(UpperCamelCase , """image_std""" ) )
self.assertTrue(hasattr(UpperCamelCase , """do_normalize""" ) )
self.assertTrue(hasattr(UpperCamelCase , """do_resize""" ) )
self.assertTrue(hasattr(UpperCamelCase , """size""" ) )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1_333} )
self.assertEqual(image_processor.do_pad , UpperCamelCase )
__UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} )
self.assertEqual(image_processor.do_pad , UpperCamelCase )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase , Image.Image )
# Test not batched input
__UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__UpperCAmelCase ,__UpperCAmelCase : Any = self.image_processor_tester.get_expected_values(UpperCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCAmelCase ,__UpperCAmelCase : List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase )
__UpperCAmelCase : str = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase , np.ndarray )
# Test not batched input
__UpperCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__UpperCAmelCase ,__UpperCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCAmelCase : Tuple = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values
__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase , torch.Tensor )
# Test not batched input
__UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCAmelCase : Union[str, Any] = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values
__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
__UpperCAmelCase : List[Any] = self.image_processing_class(do_resize=UpperCamelCase , do_normalize=UpperCamelCase , do_rescale=UpperCamelCase )
# create random PyTorch tensors
__UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase , torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
__UpperCAmelCase : Tuple = image_processing_a.pad(UpperCamelCase , return_tensors="""pt""" )
__UpperCAmelCase : Optional[int] = image_processing_a(UpperCamelCase , return_tensors="""pt""" )
self.assertTrue(
torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) )
@slow
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
__UpperCAmelCase : str = json.loads(f.read() )
__UpperCAmelCase : Optional[Any] = {"""image_id""": 39_769, """annotations""": target}
# encode them
__UpperCAmelCase : int = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" )
__UpperCAmelCase : Optional[Any] = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , return_tensors="""pt""" )
# verify pixel values
__UpperCAmelCase : Optional[int] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase )
__UpperCAmelCase : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) )
# verify area
__UpperCAmelCase : Tuple = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) )
# verify boxes
__UpperCAmelCase : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase )
__UpperCAmelCase : Optional[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) )
# verify image_id
__UpperCAmelCase : Any = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) )
# verify is_crowd
__UpperCAmelCase : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) )
# verify class_labels
__UpperCAmelCase : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) )
# verify orig_size
__UpperCAmelCase : List[Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) )
# verify size
__UpperCAmelCase : Optional[Any] = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) )
@slow
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
__UpperCAmelCase : Optional[Any] = json.loads(f.read() )
__UpperCAmelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target}
__UpperCAmelCase : Optional[int] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
__UpperCAmelCase : Optional[int] = YolosImageProcessor(format="""coco_panoptic""" )
__UpperCAmelCase : str = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , masks_path=UpperCamelCase , return_tensors="""pt""" )
# verify pixel values
__UpperCAmelCase : Optional[int] = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase )
__UpperCAmelCase : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) )
# verify area
__UpperCAmelCase : Tuple = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) )
# verify boxes
__UpperCAmelCase : List[str] = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase )
__UpperCAmelCase : Any = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) )
# verify image_id
__UpperCAmelCase : List[Any] = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) )
# verify is_crowd
__UpperCAmelCase : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) )
# verify class_labels
__UpperCAmelCase : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) )
# verify masks
__UpperCAmelCase : List[Any] = 822_873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCamelCase )
# verify orig_size
__UpperCAmelCase : Optional[Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) )
# verify size
__UpperCAmelCase : str = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) )
| 320
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : List[Any]=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : int=99 , UpperCamelCase : Any=[1, 1, 2] , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Union[str, Any]=8 , UpperCamelCase : int=37 , UpperCamelCase : Optional[Any]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : int=0.0 , UpperCamelCase : Union[str, Any]=512 , UpperCamelCase : Any=3 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : str=None , UpperCamelCase : Tuple=False , ):
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : int = batch_size
__UpperCAmelCase : str = seq_length
__UpperCAmelCase : Optional[Any] = is_training
__UpperCAmelCase : Optional[Any] = use_input_mask
__UpperCAmelCase : Tuple = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Tuple = vocab_size
__UpperCAmelCase : Optional[int] = block_sizes
__UpperCAmelCase : Optional[Any] = num_decoder_layers
__UpperCAmelCase : Union[str, Any] = d_model
__UpperCAmelCase : Dict = n_head
__UpperCAmelCase : Optional[Any] = d_head
__UpperCAmelCase : Dict = d_inner
__UpperCAmelCase : Any = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout
__UpperCAmelCase : List[Any] = attention_dropout
__UpperCAmelCase : str = activation_dropout
__UpperCAmelCase : Union[str, Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : str = 2
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : List[Any] = num_choices
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Dict = initializer_std
# Used in the tests to check the size of the first attention layer
__UpperCAmelCase : Dict = n_head
# Used in the tests to check the size of the first hidden state
__UpperCAmelCase : Dict = self.d_model
# Used in the tests to check the number of output hidden states/attentions
__UpperCAmelCase : Dict = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
__UpperCAmelCase : List[Any] = self.num_hidden_layers + 2
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[str] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Dict = None
__UpperCAmelCase : Optional[Any] = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : str = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCamelCase__ ( self : Any , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = TFFunnelModel(config=UpperCamelCase )
__UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : List[str] = model(UpperCamelCase )
__UpperCAmelCase : List[Any] = [input_ids, input_mask]
__UpperCAmelCase : Dict = model(UpperCamelCase )
__UpperCAmelCase : Tuple = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
__UpperCAmelCase : int = False
__UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
__UpperCAmelCase : Any = False
__UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase )
__UpperCAmelCase : List[str] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Any , ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = TFFunnelBaseModel(config=UpperCamelCase )
__UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Optional[Any] = model(UpperCamelCase )
__UpperCAmelCase : int = [input_ids, input_mask]
__UpperCAmelCase : int = model(UpperCamelCase )
__UpperCAmelCase : List[Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
__UpperCAmelCase : List[Any] = False
__UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) )
__UpperCAmelCase : int = False
__UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase )
__UpperCAmelCase : str = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Tuple = TFFunnelForPreTraining(config=UpperCamelCase )
__UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : int = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : int , ):
'''simple docstring'''
__UpperCAmelCase : int = TFFunnelForMaskedLM(config=UpperCamelCase )
__UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Optional[Any] = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_labels
__UpperCAmelCase : Optional[Any] = TFFunnelForSequenceClassification(config=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Tuple = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int , ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : str = TFFunnelForMultipleChoice(config=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : str = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : int = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : List[str] = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
__UpperCAmelCase : int = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Any , ):
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : str = TFFunnelForTokenClassification(config=UpperCamelCase )
__UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : int = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase__ ( self : str , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Any = TFFunnelForQuestionAnswering(config=UpperCamelCase )
__UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Any = model(UpperCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,
) : Dict = config_and_inputs
__UpperCAmelCase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( A , A , unittest.TestCase ):
"""simple docstring"""
__a = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
__a = (
{
"""feature-extraction""": (TFFunnelBaseModel, TFFunnelModel),
"""fill-mask""": TFFunnelForMaskedLM,
"""question-answering""": TFFunnelForQuestionAnswering,
"""text-classification""": TFFunnelForSequenceClassification,
"""token-classification""": TFFunnelForTokenClassification,
"""zero-shot""": TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
__a = False
__a = False
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = TFFunnelModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCamelCase )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCamelCase )
@require_tf
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
__a = False
__a = False
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : List[str] = TFFunnelModelTester(self , base=UpperCamelCase )
__UpperCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*UpperCamelCase )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase : Dict = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = 0
while b > 0:
if b & 1:
__UpperCAmelCase : int = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 320
| 1
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 1 # To kept the Calculated Value
# Since C(n, k) = C(n, n-k)
if k > (n - k):
__UpperCAmelCase : Dict = n - k
# Calculate C(n,k)
for i in range(_UpperCamelCase ):
result *= n - i
result //= i + 1
return result
def lowerCamelCase ( _UpperCamelCase : int ) -> int:
'''simple docstring'''
return binomial_coefficient(2 * node_count , _UpperCamelCase ) // (node_count + 1)
def lowerCamelCase ( _UpperCamelCase : int ) -> int:
'''simple docstring'''
if n < 0:
raise ValueError("""factorial() not defined for negative values""" )
__UpperCAmelCase : Optional[Any] = 1
for i in range(1 , n + 1 ):
result *= i
return result
def lowerCamelCase ( _UpperCamelCase : int ) -> int:
'''simple docstring'''
return catalan_number(_UpperCamelCase ) * factorial(_UpperCamelCase )
if __name__ == "__main__":
UpperCAmelCase : Tuple = int(input('Enter the number of nodes: ').strip() or 0)
if node_count <= 0:
raise ValueError('We need some nodes to work with.')
print(
F"Given {node_count} nodes, there are {binary_tree_count(node_count)} "
F"binary trees and {catalan_number(node_count)} binary search trees."
)
| 320
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = ["""image_processor""", """tokenizer"""]
__a = """AutoImageProcessor"""
__a = """AutoTokenizer"""
def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ):
'''simple docstring'''
super().__init__(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : str = self.image_processor
def __call__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=None , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
__UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )
if images is not None:
__UpperCAmelCase : Optional[Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )
if text is not None and images is not None:
__UpperCAmelCase : str = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase )
def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ):
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : int , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase )
@property
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 320
| 1
|
"""simple docstring"""
import math
def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float ) -> float:
'''simple docstring'''
if (
not isinstance(_UpperCamelCase , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * power_factor
def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float ) -> float:
'''simple docstring'''
if (
not isinstance(_UpperCamelCase , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("""power_factor must be a valid float value between -1 and 1.""" )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320
|
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase ( _UpperCamelCase : list[float] , _UpperCamelCase : list[float] ) -> float:
'''simple docstring'''
__UpperCAmelCase : Tuple = sorted(numsa + numsa )
__UpperCAmelCase ,__UpperCAmelCase : Dict = divmod(len(_UpperCamelCase ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase : List[Any] = [float(x) for x in input('Enter the elements of first array: ').split()]
UpperCAmelCase : Optional[int] = [float(x) for x in input('Enter the elements of second array: ').split()]
print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
| 320
| 1
|
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def lowerCamelCase ( _UpperCamelCase : int ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[str] = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__UpperCAmelCase : Optional[int] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
__UpperCAmelCase : str = 4
__UpperCAmelCase : Optional[Any] = 4_8
__UpperCAmelCase : List[str] = """pixelshuffle_aux"""
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__UpperCAmelCase : List[Any] = [6, 6, 6, 6]
__UpperCAmelCase : Dict = 6_0
__UpperCAmelCase : Optional[int] = [6, 6, 6, 6]
__UpperCAmelCase : Any = """pixelshuffledirect"""
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__UpperCAmelCase : Optional[Any] = 4
__UpperCAmelCase : str = """nearest+conv"""
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
__UpperCAmelCase : Optional[int] = 1
__UpperCAmelCase : List[str] = 1
__UpperCAmelCase : List[str] = 1_2_6
__UpperCAmelCase : Tuple = 7
__UpperCAmelCase : Optional[Any] = 255.0
__UpperCAmelCase : str = """"""
return config
def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : str ) -> str:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
__UpperCAmelCase : Optional[int] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
__UpperCAmelCase : List[Any] = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" )
if "layers" in name:
__UpperCAmelCase : List[Any] = name.replace("""layers""" , """encoder.stages""" )
if "residual_group.blocks" in name:
__UpperCAmelCase : Tuple = name.replace("""residual_group.blocks""" , """layers""" )
if "attn.proj" in name:
__UpperCAmelCase : Tuple = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
__UpperCAmelCase : Optional[int] = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
__UpperCAmelCase : str = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
__UpperCAmelCase : List[Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
__UpperCAmelCase : List[str] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__UpperCAmelCase : str = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
__UpperCAmelCase : Dict = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
__UpperCAmelCase : int = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
__UpperCAmelCase : List[str] = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if "patch_embed.proj" in name:
__UpperCAmelCase : Optional[int] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" )
if name == "norm.weight":
__UpperCAmelCase : Optional[int] = """layernorm.weight"""
if name == "norm.bias":
__UpperCAmelCase : Tuple = """layernorm.bias"""
if "conv_first" in name:
__UpperCAmelCase : Optional[Any] = name.replace("""conv_first""" , """first_convolution""" )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
__UpperCAmelCase : str = name.replace("""conv_last""" , """final_convolution""" )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
__UpperCAmelCase : List[str] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" )
if "upsample.0" in name:
__UpperCAmelCase : Tuple = name.replace("""upsample.0""" , """upsample.convolution_0""" )
if "upsample.2" in name:
__UpperCAmelCase : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" )
__UpperCAmelCase : Optional[Any] = """upsample.""" + name
elif config.upsampler == "pixelshuffledirect":
__UpperCAmelCase : Dict = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" )
__UpperCAmelCase : Union[str, Any] = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" )
else:
pass
else:
__UpperCAmelCase : Union[str, Any] = """swin2sr.""" + name
return name
def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
__UpperCAmelCase : Any = orig_state_dict.pop(_UpperCamelCase )
if "qkv" in key:
__UpperCAmelCase : Optional[int] = key.split(""".""" )
__UpperCAmelCase : Optional[int] = int(key_split[1] )
__UpperCAmelCase : str = int(key_split[4] )
__UpperCAmelCase : Any = config.embed_dim
if "weight" in key:
__UpperCAmelCase : Any = val[:dim, :]
__UpperCAmelCase : Any = val[dim : dim * 2, :]
__UpperCAmelCase : Dict = val[-dim:, :]
else:
__UpperCAmelCase : List[Any] = val[:dim]
__UpperCAmelCase : Dict = val[dim : dim * 2]
__UpperCAmelCase : Union[str, Any] = val[-dim:]
pass
else:
__UpperCAmelCase : Union[str, Any] = val
return orig_state_dict
def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : int , _UpperCamelCase : Dict ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = get_config(_UpperCamelCase )
__UpperCAmelCase : int = SwinaSRForImageSuperResolution(_UpperCamelCase )
model.eval()
__UpperCAmelCase : Any = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="""cpu""" )
__UpperCAmelCase : int = convert_state_dict(_UpperCamelCase , _UpperCamelCase )
__UpperCAmelCase ,__UpperCAmelCase : Optional[int] = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase )
if len(_UpperCamelCase ) > 0:
raise ValueError("""Missing keys when converting: {}""".format(_UpperCamelCase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(f'''Unexpected key {key} in state_dict''' )
# verify values
__UpperCAmelCase : Optional[Any] = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true"""
__UpperCAmelCase : Union[str, Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ).convert("""RGB""" )
__UpperCAmelCase : Union[str, Any] = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
__UpperCAmelCase : List[Any] = 1_2_6 if """Jpeg""" in checkpoint_url else 2_5_6
__UpperCAmelCase : int = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__UpperCAmelCase : Tuple = transforms(_UpperCamelCase ).unsqueeze(0 )
if config.num_channels == 1:
__UpperCAmelCase : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
__UpperCAmelCase : List[str] = model(_UpperCamelCase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
__UpperCAmelCase : int = torch.Size([1, 3, 5_1_2, 5_1_2] )
__UpperCAmelCase : str = torch.tensor(
[[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__UpperCAmelCase : Union[str, Any] = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] )
__UpperCAmelCase : str = torch.tensor(
[[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
__UpperCAmelCase : Optional[int] = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] )
__UpperCAmelCase : str = torch.tensor(
[[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__UpperCAmelCase : List[str] = torch.Size([1, 3, 5_1_2, 5_1_2] )
__UpperCAmelCase : int = torch.tensor(
[[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__UpperCAmelCase : Tuple = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] )
__UpperCAmelCase : Dict = torch.tensor(
[[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] )
assert (
outputs.reconstruction.shape == expected_shape
), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'''
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCamelCase , atol=1E-3 )
print("""Looks ok!""" )
__UpperCAmelCase : Union[str, Any] = {
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": (
"""swin2SR-classical-sr-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": (
"""swin2SR-classical-sr-x4-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": (
"""swin2SR-compressed-sr-x4-48"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": (
"""swin2SR-lightweight-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": (
"""swin2SR-realworld-sr-x4-64-bsrgan-psnr"""
),
}
__UpperCAmelCase : Optional[Any] = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(_UpperCamelCase )
if push_to_hub:
model.push_to_hub(f'''caidas/{model_name}''' )
processor.push_to_hub(f'''caidas/{model_name}''' )
if __name__ == "__main__":
UpperCAmelCase : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth',
type=str,
help='URL of the original Swin2SR checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.')
UpperCAmelCase : Optional[Any] = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 320
|
"""simple docstring"""
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = """hf-internal-testing/tiny-random-t5"""
__UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Optional[int] = tokenizer("""This is me""" , return_tensors="""pt""" )
__UpperCAmelCase : int = model.to_bettertransformer()
self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
__UpperCAmelCase : Tuple = model.generate(**UpperCamelCase )
__UpperCAmelCase : Tuple = model.reverse_bettertransformer()
self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCamelCase )
__UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase )
self.assertFalse(
any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
__UpperCAmelCase : Tuple = model_reloaded.generate(**UpperCamelCase )
self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase ) )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Any = """hf-internal-testing/tiny-random-t5"""
__UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Tuple = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(UpperCamelCase ):
model.save_pretrained(UpperCamelCase )
__UpperCAmelCase : Tuple = model.reverse_bettertransformer()
model.save_pretrained(UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any=13 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Dict=True , UpperCamelCase : List[str]=True , UpperCamelCase : int=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Union[str, Any]=224 , UpperCamelCase : List[str]=1_000 , UpperCamelCase : Optional[Any]=[3, 3, 6, 4] , UpperCamelCase : str=[48, 56, 112, 220] , ):
'''simple docstring'''
__UpperCAmelCase : Dict = parent
__UpperCAmelCase : List[str] = batch_size
__UpperCAmelCase : Optional[Any] = num_channels
__UpperCAmelCase : Dict = is_training
__UpperCAmelCase : Dict = use_labels
__UpperCAmelCase : List[Any] = hidden_dropout_prob
__UpperCAmelCase : Dict = attention_probs_dropout_prob
__UpperCAmelCase : Dict = num_labels
__UpperCAmelCase : int = image_size
__UpperCAmelCase : str = layer_depths
__UpperCAmelCase : Tuple = embed_dims
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Any = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase : Dict = self.get_config()
return config, pixel_values, labels
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=UpperCamelCase , layer_scale_init_value=1e-5 , )
def lowerCamelCase__ ( self : Dict , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
__UpperCAmelCase : Tuple = SwiftFormerModel(config=UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
__UpperCAmelCase : Dict = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : List[str] = self.num_labels
__UpperCAmelCase : Any = SwiftFormerForImageClassification(UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
__UpperCAmelCase : List[str] = model(UpperCamelCase , labels=UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
__UpperCAmelCase : Any = SwiftFormerForImageClassification(UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
__UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : List[str] = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
((__UpperCAmelCase) ,(__UpperCAmelCase) ,(__UpperCAmelCase)) : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( A , A , unittest.TestCase ):
"""simple docstring"""
__a = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
__a = (
{"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
__a = False
__a = False
__a = False
__a = False
__a = False
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : List[str] = SwiftFormerModelTester(self )
__UpperCAmelCase : List[str] = ConfigTester(
self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Optional[int] = model_class(UpperCamelCase )
__UpperCAmelCase : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCamelCase , nn.Linear ) )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Any = model_class(UpperCamelCase )
__UpperCAmelCase : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : Tuple = [*signature.parameters.keys()]
__UpperCAmelCase : List[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase )
@slow
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Optional[int] = SwiftFormerModel.from_pretrained(UpperCamelCase )
self.assertIsNotNone(UpperCamelCase )
@unittest.skip(reason="""SwiftFormer does not output attentions""" )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
def check_hidden_states_output(UpperCamelCase : Dict , UpperCamelCase : Any , UpperCamelCase : Optional[int] ):
__UpperCAmelCase : Any = model_class(UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Any = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) )
__UpperCAmelCase : int = outputs.hidden_states
__UpperCAmelCase : int = 8
self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(UpperCamelCase ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
__UpperCAmelCase ,__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = True
check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Dict = True
check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
def _config_zero_init(UpperCamelCase : str ):
__UpperCAmelCase : Optional[int] = copy.deepcopy(UpperCamelCase )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(UpperCamelCase , UpperCamelCase , 1e-1_0 )
if isinstance(getattr(UpperCamelCase , UpperCamelCase , UpperCamelCase ) , UpperCamelCase ):
__UpperCAmelCase : List[Any] = _config_zero_init(getattr(UpperCamelCase , UpperCamelCase ) )
setattr(UpperCamelCase , UpperCamelCase , UpperCamelCase )
return configs_no_init
__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Dict = _config_zero_init(UpperCamelCase )
for model_class in self.all_model_classes:
__UpperCAmelCase : List[str] = model_class(config=UpperCamelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
pass
def lowerCamelCase ( ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : List[str] = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(UpperCamelCase )
__UpperCAmelCase : Any = self.default_image_processor
__UpperCAmelCase : Optional[int] = prepare_img()
__UpperCAmelCase : Dict = image_processor(images=UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Dict = model(**UpperCamelCase )
# verify the logits
__UpperCAmelCase : Dict = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCamelCase )
__UpperCAmelCase : int = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) )
| 320
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
UpperCAmelCase : Dict = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
| 1
|
"""simple docstring"""
import argparse
UpperCAmelCase : Optional[int] = 'docs/source/_static/js/custom.js'
def lowerCamelCase ( _UpperCamelCase : str ) -> Union[str, Any]:
'''simple docstring'''
with open(_UpperCamelCase , encoding="""utf-8""" , newline="""\n""" ) as f:
__UpperCAmelCase : Optional[Any] = f.readlines()
__UpperCAmelCase : str = 0
# First let's put the right version
while not lines[index].startswith("""const stableVersion =""" ):
index += 1
__UpperCAmelCase : int = f'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith("""const versionMapping = {""" ):
index += 1
# We go until the end
while not lines[index].startswith("""}""" ):
index += 1
# We add the new version at the end
lines[index - 1] += f''' "v{version}": "v{version}",\n'''
with open(_UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(_UpperCamelCase )
if __name__ == "__main__":
UpperCAmelCase : int = argparse.ArgumentParser()
parser.add_argument('--version', help='Release version.')
UpperCAmelCase : Tuple = parser.parse_args()
update_custom_js(args.version)
| 320
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase : List[str] = {
'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'],
'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Tuple = [
'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'AdaptiveEmbedding',
'TransfoXLForSequenceClassification',
'TransfoXLLMHeadModel',
'TransfoXLModel',
'TransfoXLPreTrainedModel',
'load_tf_weights_in_transfo_xl',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Dict = [
'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFAdaptiveEmbedding',
'TFTransfoXLForSequenceClassification',
'TFTransfoXLLMHeadModel',
'TFTransfoXLMainLayer',
'TFTransfoXLModel',
'TFTransfoXLPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_transfo_xl import (
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
AdaptiveEmbedding,
TransfoXLForSequenceClassification,
TransfoXLLMHeadModel,
TransfoXLModel,
TransfoXLPreTrainedModel,
load_tf_weights_in_transfo_xl,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_transfo_xl import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAdaptiveEmbedding,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLMainLayer,
TFTransfoXLModel,
TFTransfoXLPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
| 1
|
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : Dict = logging.get_logger(__name__)
UpperCAmelCase : Dict = {
'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json',
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = """wav2vec2"""
def __init__( self : Dict , UpperCamelCase : Tuple=32 , UpperCamelCase : Optional[Any]=768 , UpperCamelCase : Any=12 , UpperCamelCase : int=12 , UpperCamelCase : Dict=3_072 , UpperCamelCase : str="gelu" , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : Any=0.0 , UpperCamelCase : int=0.1 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : str=0.02 , UpperCamelCase : List[Any]=1e-5 , UpperCamelCase : int="group" , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : List[Any]=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase : Tuple=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase : Any=False , UpperCamelCase : str=128 , UpperCamelCase : Dict=16 , UpperCamelCase : List[str]=False , UpperCamelCase : List[Any]=True , UpperCamelCase : Dict=0.05 , UpperCamelCase : str=10 , UpperCamelCase : Tuple=2 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : Optional[Any]=10 , UpperCamelCase : List[str]=0 , UpperCamelCase : Dict=320 , UpperCamelCase : Any=2 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=100 , UpperCamelCase : Dict=256 , UpperCamelCase : int=256 , UpperCamelCase : Dict=0.1 , UpperCamelCase : Optional[Any]="sum" , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=256 , UpperCamelCase : str=(512, 512, 512, 512, 1_500) , UpperCamelCase : Any=(5, 3, 3, 1, 1) , UpperCamelCase : str=(1, 2, 3, 1, 1) , UpperCamelCase : List[Any]=512 , UpperCamelCase : List[str]=0 , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : int=2 , UpperCamelCase : Dict=False , UpperCamelCase : int=3 , UpperCamelCase : Union[str, Any]=2 , UpperCamelCase : Dict=3 , UpperCamelCase : str=None , UpperCamelCase : List[str]=None , **UpperCamelCase : List[str] , ):
'''simple docstring'''
super().__init__(**UpperCamelCase , pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase )
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : List[str] = feat_extract_norm
__UpperCAmelCase : List[str] = feat_extract_activation
__UpperCAmelCase : Union[str, Any] = list(UpperCamelCase )
__UpperCAmelCase : Dict = list(UpperCamelCase )
__UpperCAmelCase : Any = list(UpperCamelCase )
__UpperCAmelCase : Optional[int] = conv_bias
__UpperCAmelCase : Optional[int] = num_conv_pos_embeddings
__UpperCAmelCase : List[str] = num_conv_pos_embedding_groups
__UpperCAmelCase : str = len(self.conv_dim )
__UpperCAmelCase : int = num_hidden_layers
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : str = hidden_act
__UpperCAmelCase : int = num_attention_heads
__UpperCAmelCase : Any = hidden_dropout
__UpperCAmelCase : Any = attention_dropout
__UpperCAmelCase : Tuple = activation_dropout
__UpperCAmelCase : Tuple = feat_proj_dropout
__UpperCAmelCase : Tuple = final_dropout
__UpperCAmelCase : Optional[int] = layerdrop
__UpperCAmelCase : List[str] = layer_norm_eps
__UpperCAmelCase : Any = initializer_range
__UpperCAmelCase : int = vocab_size
__UpperCAmelCase : int = do_stable_layer_norm
__UpperCAmelCase : List[str] = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCAmelCase : Tuple = apply_spec_augment
__UpperCAmelCase : List[Any] = mask_time_prob
__UpperCAmelCase : Dict = mask_time_length
__UpperCAmelCase : List[Any] = mask_time_min_masks
__UpperCAmelCase : List[str] = mask_feature_prob
__UpperCAmelCase : str = mask_feature_length
__UpperCAmelCase : Optional[Any] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__UpperCAmelCase : Optional[Any] = num_codevectors_per_group
__UpperCAmelCase : Tuple = num_codevector_groups
__UpperCAmelCase : Union[str, Any] = contrastive_logits_temperature
__UpperCAmelCase : Tuple = feat_quantizer_dropout
__UpperCAmelCase : Optional[Any] = num_negatives
__UpperCAmelCase : Tuple = codevector_dim
__UpperCAmelCase : Tuple = proj_codevector_dim
__UpperCAmelCase : str = diversity_loss_weight
# ctc loss
__UpperCAmelCase : int = ctc_loss_reduction
__UpperCAmelCase : Dict = ctc_zero_infinity
# adapter
__UpperCAmelCase : List[str] = add_adapter
__UpperCAmelCase : Union[str, Any] = adapter_kernel_size
__UpperCAmelCase : Optional[Any] = adapter_stride
__UpperCAmelCase : str = num_adapter_layers
__UpperCAmelCase : List[str] = output_hidden_size or hidden_size
__UpperCAmelCase : Tuple = adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__UpperCAmelCase : List[str] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__UpperCAmelCase : int = list(UpperCamelCase )
__UpperCAmelCase : int = list(UpperCamelCase )
__UpperCAmelCase : Optional[int] = list(UpperCamelCase )
__UpperCAmelCase : int = xvector_output_dim
@property
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 320
|
"""simple docstring"""
def lowerCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : List[str] = 1
while len(_UpperCamelCase ) < 1E6:
constant.append(str(_UpperCamelCase ) )
i += 1
__UpperCAmelCase : List[str] = """""".join(_UpperCamelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[9_9] )
* int(constant[9_9_9] )
* int(constant[9_9_9_9] )
* int(constant[9_9_9_9_9] )
* int(constant[9_9_9_9_9_9] )
)
if __name__ == "__main__":
print(solution())
| 320
| 1
|
"""simple docstring"""
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
UpperCAmelCase : str = logging.get_logger(__name__)
def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = nn.functional.normalize(_UpperCamelCase )
__UpperCAmelCase : str = nn.functional.normalize(_UpperCamelCase )
return torch.mm(_UpperCamelCase , normalized_text_embeds.t() )
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = CLIPConfig
__a = ["""CLIPEncoderLayer"""]
def __init__( self : Dict , UpperCamelCase : CLIPConfig ):
'''simple docstring'''
super().__init__(UpperCamelCase )
__UpperCAmelCase : Optional[int] = CLIPVisionModel(config.vision_config )
__UpperCAmelCase : List[Any] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=UpperCamelCase )
__UpperCAmelCase : List[Any] = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=UpperCamelCase )
__UpperCAmelCase : str = nn.Parameter(torch.ones(17 ) , requires_grad=UpperCamelCase )
__UpperCAmelCase : Tuple = nn.Parameter(torch.ones(3 ) , requires_grad=UpperCamelCase )
@torch.no_grad()
def lowerCamelCase__ ( self : str , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : str = self.vision_model(UpperCamelCase )[1] # pooled_output
__UpperCAmelCase : Optional[int] = self.visual_projection(UpperCamelCase )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__UpperCAmelCase : Dict = cosine_distance(UpperCamelCase , self.special_care_embeds ).cpu().float().numpy()
__UpperCAmelCase : str = cosine_distance(UpperCamelCase , self.concept_embeds ).cpu().float().numpy()
__UpperCAmelCase : str = []
__UpperCAmelCase : str = image_embeds.shape[0]
for i in range(UpperCamelCase ):
__UpperCAmelCase : Union[str, Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
__UpperCAmelCase : Dict = 0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
__UpperCAmelCase : List[Any] = special_cos_dist[i][concept_idx]
__UpperCAmelCase : int = self.special_care_embeds_weights[concept_idx].item()
__UpperCAmelCase : Tuple = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} )
__UpperCAmelCase : Optional[int] = 0.01
for concept_idx in range(len(cos_dist[0] ) ):
__UpperCAmelCase : str = cos_dist[i][concept_idx]
__UpperCAmelCase : Optional[Any] = self.concept_embeds_weights[concept_idx].item()
__UpperCAmelCase : Any = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(UpperCamelCase )
result.append(UpperCamelCase )
__UpperCAmelCase : str = [len(res["""bad_concepts"""] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : torch.FloatTensor ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.vision_model(UpperCamelCase )[1] # pooled_output
__UpperCAmelCase : int = self.visual_projection(UpperCamelCase )
__UpperCAmelCase : int = cosine_distance(UpperCamelCase , self.special_care_embeds )
__UpperCAmelCase : Any = cosine_distance(UpperCamelCase , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
__UpperCAmelCase : Tuple = 0.0
__UpperCAmelCase : Any = special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
__UpperCAmelCase : List[Any] = torch.any(special_scores > 0 , dim=1 )
__UpperCAmelCase : List[Any] = special_care * 0.01
__UpperCAmelCase : Dict = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
__UpperCAmelCase : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
__UpperCAmelCase : List[Any] = torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 320
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase : Tuple = {
'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'],
'tokenization_electra': ['ElectraTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : List[Any] = ['ElectraTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Any = [
'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'ElectraForCausalLM',
'ElectraForMaskedLM',
'ElectraForMultipleChoice',
'ElectraForPreTraining',
'ElectraForQuestionAnswering',
'ElectraForSequenceClassification',
'ElectraForTokenClassification',
'ElectraModel',
'ElectraPreTrainedModel',
'load_tf_weights_in_electra',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[Any] = [
'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFElectraForMaskedLM',
'TFElectraForMultipleChoice',
'TFElectraForPreTraining',
'TFElectraForQuestionAnswering',
'TFElectraForSequenceClassification',
'TFElectraForTokenClassification',
'TFElectraModel',
'TFElectraPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str = [
'FlaxElectraForCausalLM',
'FlaxElectraForMaskedLM',
'FlaxElectraForMultipleChoice',
'FlaxElectraForPreTraining',
'FlaxElectraForQuestionAnswering',
'FlaxElectraForSequenceClassification',
'FlaxElectraForTokenClassification',
'FlaxElectraModel',
'FlaxElectraPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
| 1
|
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str , UpperCamelCase : List[Any] , UpperCamelCase : Tuple=100 , UpperCamelCase : List[Any]=13 , UpperCamelCase : List[str]=30 , UpperCamelCase : List[str]=2 , UpperCamelCase : Dict=3 , UpperCamelCase : List[str]=True , UpperCamelCase : Tuple=True , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : Tuple=5 , UpperCamelCase : Optional[Any]=4 , UpperCamelCase : Optional[int]=37 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : int=10 , UpperCamelCase : List[str]=0.02 , UpperCamelCase : List[str]=3 , ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : Any = vocab_size
__UpperCAmelCase : List[Any] = batch_size
__UpperCAmelCase : Dict = image_size
__UpperCAmelCase : Tuple = patch_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : Any = is_training
__UpperCAmelCase : Optional[int] = use_labels
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Optional[Any] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : Optional[int] = hidden_dropout_prob
__UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
__UpperCAmelCase : int = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__UpperCAmelCase : Any = (image_size // patch_size) ** 2
__UpperCAmelCase : Tuple = num_patches + 1
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Optional[Any] = BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , )
return config, pixel_values, labels
def lowerCamelCase__ ( self : Any , UpperCamelCase : Dict , UpperCamelCase : str , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = FlaxBeitModel(config=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : str ):
'''simple docstring'''
__UpperCAmelCase : int = FlaxBeitForMaskedImageModeling(config=UpperCamelCase )
__UpperCAmelCase : List[str] = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : int , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.type_sequence_label_size
__UpperCAmelCase : str = FlaxBeitForImageClassification(config=UpperCamelCase )
__UpperCAmelCase : Optional[int] = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__UpperCAmelCase : Optional[Any] = 1
__UpperCAmelCase : Optional[int] = FlaxBeitForImageClassification(UpperCamelCase )
__UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : int = model(UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,
) : List[str] = config_and_inputs
__UpperCAmelCase : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : List[str] = FlaxBeitModelTester(self )
__UpperCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(UpperCamelCase )
__UpperCAmelCase : Any = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()]
__UpperCAmelCase : int = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCAmelCase : Dict = self._prepare_for_class(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model_class(UpperCamelCase )
@jax.jit
def model_jitted(UpperCamelCase : Optional[Any] , **UpperCamelCase : Tuple ):
return model(pixel_values=UpperCamelCase , **UpperCamelCase )
with self.subTest("""JIT Enabled""" ):
__UpperCAmelCase : str = model_jitted(**UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCAmelCase : Any = model_jitted(**UpperCamelCase ).to_tuple()
self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) )
for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase )
@slow
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class_name.from_pretrained("""microsoft/beit-base-patch16-224""" )
__UpperCAmelCase : Dict = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(UpperCamelCase )
def lowerCamelCase ( ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FlaxBeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" )
__UpperCAmelCase : Optional[int] = self.default_image_processor
__UpperCAmelCase : Tuple = prepare_img()
__UpperCAmelCase : str = image_processor(images=UpperCamelCase , return_tensors="""np""" ).pixel_values
# prepare bool_masked_pos
__UpperCAmelCase : Union[str, Any] = np.ones((1, 196) , dtype=UpperCamelCase )
# forward pass
__UpperCAmelCase : Tuple = model(pixel_values=UpperCamelCase , bool_masked_pos=UpperCamelCase )
__UpperCAmelCase : Dict = outputs.logits
# verify the logits
__UpperCAmelCase : Any = (1, 196, 8_192)
self.assertEqual(logits.shape , UpperCamelCase )
__UpperCAmelCase : Any = np.array(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , UpperCamelCase , atol=1e-2 ) )
@slow
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Any = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" )
__UpperCAmelCase : int = self.default_image_processor
__UpperCAmelCase : Dict = prepare_img()
__UpperCAmelCase : List[Any] = image_processor(images=UpperCamelCase , return_tensors="""np""" )
# forward pass
__UpperCAmelCase : Any = model(**UpperCamelCase )
__UpperCAmelCase : Tuple = outputs.logits
# verify the logits
__UpperCAmelCase : Optional[int] = (1, 1_000)
self.assertEqual(logits.shape , UpperCamelCase )
__UpperCAmelCase : str = np.array([-1.2385, -1.0987, -1.0108] )
self.assertTrue(np.allclose(logits[0, :3] , UpperCamelCase , atol=1e-4 ) )
__UpperCAmelCase : int = 281
self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase )
@slow
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : str = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" )
__UpperCAmelCase : Dict = self.default_image_processor
__UpperCAmelCase : Dict = prepare_img()
__UpperCAmelCase : List[Any] = image_processor(images=UpperCamelCase , return_tensors="""np""" )
# forward pass
__UpperCAmelCase : str = model(**UpperCamelCase )
__UpperCAmelCase : Optional[int] = outputs.logits
# verify the logits
__UpperCAmelCase : List[Any] = (1, 21_841)
self.assertEqual(logits.shape , UpperCamelCase )
__UpperCAmelCase : Tuple = np.array([1.6881, -0.2787, 0.5901] )
self.assertTrue(np.allclose(logits[0, :3] , UpperCamelCase , atol=1e-4 ) )
__UpperCAmelCase : str = 2_396
self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase )
| 320
|
"""simple docstring"""
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
UpperCAmelCase : Optional[Any] = 'scheduler_config.json'
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = 1
__a = 2
__a = 3
__a = 4
__a = 5
__a = 6
__a = 7
__a = 8
__a = 9
__a = 10
__a = 11
__a = 12
__a = 13
__a = 14
@dataclass
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = 42
class lowerCamelCase__ :
"""simple docstring"""
__a = SCHEDULER_CONFIG_NAME
__a = []
__a = True
@classmethod
def lowerCamelCase__ ( cls : Any , UpperCamelCase : Dict[str, Any] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : int , ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = cls.load_config(
pretrained_model_name_or_path=UpperCamelCase , subfolder=UpperCamelCase , return_unused_kwargs=UpperCamelCase , return_commit_hash=UpperCamelCase , **UpperCamelCase , )
return cls.from_config(UpperCamelCase , return_unused_kwargs=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, os.PathLike] , UpperCamelCase : bool = False , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
self.save_config(save_directory=UpperCamelCase , push_to_hub=UpperCamelCase , **UpperCamelCase )
@property
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
return self._get_compatibles()
@classmethod
def lowerCamelCase__ ( cls : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = list(set([cls.__name__] + cls._compatibles ) )
__UpperCAmelCase : List[str] = importlib.import_module(__name__.split(""".""" )[0] )
__UpperCAmelCase : List[str] = [
getattr(UpperCamelCase , UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase , UpperCamelCase )
]
return compatible_classes
| 320
| 1
|
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , )
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue_model_parallelism.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
] )
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
if self.framework == "pytorch":
subprocess.run(
f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=UpperCamelCase , )
assert hasattr(self , """env""" )
def lowerCamelCase__ ( self : int , UpperCamelCase : Dict ):
'''simple docstring'''
__UpperCAmelCase : int = {
"""enabled""": True,
"""processes_per_host""": 8,
}
__UpperCAmelCase : Union[str, Any] = {
"""enabled""": True,
"""parameters""": {
"""microbatches""": 4,
"""placement_strategy""": """spread""",
"""pipeline""": """interleaved""",
"""optimize""": """speed""",
"""partitions""": 4,
"""ddp""": True,
},
}
__UpperCAmelCase : Optional[int] = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options}
__UpperCAmelCase : Optional[Any] = """trainer""" if self.script == """run_glue.py""" else """smtrainer"""
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=UpperCamelCase , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase , hyperparameters={
**self.env.hyperparameters,
"""model_name_or_path""": self.model_name_or_path,
"""max_steps""": 500,
} , metric_definitions=self.env.metric_definitions , distribution=UpperCamelCase , py_version="""py36""" , )
def lowerCamelCase__ ( self : Dict , UpperCamelCase : Dict ):
'''simple docstring'''
TrainingJobAnalytics(UpperCamelCase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' )
@parameterized.expand([(1,)] )
def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : str = self.create_estimator(UpperCamelCase )
# run training
estimator.fit()
# result dataframe
__UpperCAmelCase : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__UpperCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
__UpperCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__UpperCAmelCase : Optional[Any] = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999_999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , UpperCamelCase )
| 320
|
"""simple docstring"""
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowerCamelCase__ :
"""simple docstring"""
@staticmethod
def lowerCamelCase__ ( *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
pass
def lowerCamelCase ( _UpperCamelCase : Image ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() )
return m.hexdigest()[:1_0]
def lowerCamelCase ( _UpperCamelCase : Image ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.array(_UpperCamelCase )
__UpperCAmelCase : List[Any] = npimg.shape
return {"hash": hashimage(_UpperCamelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
__a = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
__a = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ):
'''simple docstring'''
pass
@require_tf
@unittest.skip("""Image segmentation not implemented in TF""" )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
pass
@slow
@require_torch
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" )
__UpperCAmelCase : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 )
# Shortening by hashing
__UpperCAmelCase : int = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(UpperCamelCase , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053},
{"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967},
{"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993},
{"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909},
{"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879},
{"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834},
{"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716},
{"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612},
{"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599},
{"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552},
{"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532},
{"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516},
{"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499},
{"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483},
{"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464},
{"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943},
{"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943},
{"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408},
{"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335},
{"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326},
{"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262},
{"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999},
{"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986},
{"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984},
{"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873},
{"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871}
] , )
# fmt: on
@require_torch
@slow
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = """facebook/sam-vit-huge"""
__UpperCAmelCase : str = pipeline("""mask-generation""" , model=UpperCamelCase )
__UpperCAmelCase : int = image_segmenter(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
__UpperCAmelCase : Dict = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(UpperCamelCase , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053},
] , )
| 320
| 1
|
"""simple docstring"""
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : List[str] ) -> Any:
'''simple docstring'''
assert isinstance(_UpperCamelCase , _UpperCamelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : str ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = tmp_path / """cache"""
__UpperCAmelCase : Optional[Any] = {"""text""": """string"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__UpperCAmelCase : List[Any] = TextDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase ).read()
_check_text_dataset(_UpperCamelCase , _UpperCamelCase )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""text""": """string"""},
{"""text""": """int32"""},
{"""text""": """float32"""},
] , )
def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[Any] = tmp_path / """cache"""
__UpperCAmelCase : Tuple = {"""text""": """string"""}
__UpperCAmelCase : List[Any] = features.copy() if features else default_expected_features
__UpperCAmelCase : Dict = (
Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase : str = TextDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
_check_text_dataset(_UpperCamelCase , _UpperCamelCase )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : str ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = tmp_path / """cache"""
__UpperCAmelCase : Any = {"""text""": """string"""}
__UpperCAmelCase : str = TextDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase , split=_UpperCamelCase ).read()
_check_text_dataset(_UpperCamelCase , _UpperCamelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("""path_type""" , [str, list] )
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
if issubclass(_UpperCamelCase , _UpperCamelCase ):
__UpperCAmelCase : Union[str, Any] = text_path
elif issubclass(_UpperCamelCase , _UpperCamelCase ):
__UpperCAmelCase : int = [text_path]
__UpperCAmelCase : List[Any] = tmp_path / """cache"""
__UpperCAmelCase : Dict = {"""text""": """string"""}
__UpperCAmelCase : int = TextDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
_check_text_dataset(_UpperCamelCase , _UpperCamelCase )
def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : str=("train",) ) -> Dict:
'''simple docstring'''
assert isinstance(_UpperCamelCase , _UpperCamelCase )
for split in splits:
__UpperCAmelCase : Optional[Any] = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = tmp_path / """cache"""
__UpperCAmelCase : List[Any] = {"""text""": """string"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__UpperCAmelCase : List[str] = TextDatasetReader({"""train""": text_path} , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase ).read()
_check_text_datasetdict(_UpperCamelCase , _UpperCamelCase )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""text""": """string"""},
{"""text""": """int32"""},
{"""text""": """float32"""},
] , )
def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Tuple = tmp_path / """cache"""
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
__UpperCAmelCase : Union[str, Any] = {"""text""": """string"""}
__UpperCAmelCase : str = features.copy() if features else default_expected_features
__UpperCAmelCase : List[str] = (
Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase : Optional[int] = TextDatasetReader({"""train""": text_path} , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
_check_text_datasetdict(_UpperCamelCase , _UpperCamelCase )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict ) -> List[Any]:
'''simple docstring'''
if split:
__UpperCAmelCase : List[str] = {split: text_path}
else:
__UpperCAmelCase : Optional[Any] = """train"""
__UpperCAmelCase : Any = {"""train""": text_path, """test""": text_path}
__UpperCAmelCase : List[Any] = tmp_path / """cache"""
__UpperCAmelCase : List[Any] = {"""text""": """string"""}
__UpperCAmelCase : Any = TextDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
_check_text_datasetdict(_UpperCamelCase , _UpperCamelCase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 320
|
"""simple docstring"""
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class lowerCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , UpperCamelCase : str ):
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase )
__UpperCAmelCase : int = list(model.children() )[:-2]
__UpperCAmelCase : List[Any] = nn.Sequential(*UpperCamelCase )
__UpperCAmelCase : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] )
def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.pool(self.model(UpperCamelCase ) )
__UpperCAmelCase : List[Any] = torch.flatten(UpperCamelCase , start_dim=2 )
__UpperCAmelCase : Any = out.transpose(1 , 2 ).contiguous()
return out # BxNx2048
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )]
__UpperCAmelCase : Any = os.path.dirname(UpperCamelCase )
__UpperCAmelCase : List[str] = tokenizer
__UpperCAmelCase : str = labels
__UpperCAmelCase : Optional[int] = len(UpperCamelCase )
__UpperCAmelCase : int = max_seq_length
__UpperCAmelCase : int = transforms
def __len__( self : List[str] ):
'''simple docstring'''
return len(self.data )
def __getitem__( self : List[str] , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) )
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1]
__UpperCAmelCase : Any = sentence[: self.max_seq_length]
__UpperCAmelCase : Tuple = torch.zeros(self.n_classes )
__UpperCAmelCase : str = 1
__UpperCAmelCase : Any = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" )
__UpperCAmelCase : Optional[int] = self.transforms(UpperCamelCase )
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = Counter()
for row in self.data:
label_freqs.update(row["""label"""] )
return label_freqs
def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = [len(row["""sentence"""] ) for row in batch]
__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase )
__UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long )
__UpperCAmelCase : str = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long )
for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ):
__UpperCAmelCase : List[str] = input_row["""sentence"""]
__UpperCAmelCase : Tuple = 1
__UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] )
__UpperCAmelCase : Optional[Any] = torch.stack([row["""label"""] for row in batch] )
__UpperCAmelCase : str = torch.stack([row["""image_start_token"""] for row in batch] )
__UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] )
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def lowerCamelCase ( ) -> int:
'''simple docstring'''
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def lowerCamelCase ( ) -> Optional[Any]:
'''simple docstring'''
return transforms.Compose(
[
transforms.Resize(2_5_6 ),
transforms.CenterCrop(2_2_4 ),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ),
] )
| 320
| 1
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int:
'''simple docstring'''
try:
__UpperCAmelCase : str = int(_UpperCamelCase )
except (TypeError, ValueError):
raise TypeError("""Parameter n must be int or castable to int.""" )
if n <= 0:
raise ValueError("""Parameter n must be greater than or equal to one.""" )
__UpperCAmelCase : Any = 2
__UpperCAmelCase : List[Any] = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
__UpperCAmelCase : str = i
while n % i == 0:
__UpperCAmelCase : Any = n // i
i += 1
return int(_UpperCamelCase )
if __name__ == "__main__":
print(F"{solution() = }")
| 320
|
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 320
| 1
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Dict ) -> List[str]:
'''simple docstring'''
if index == r:
for j in range(_UpperCamelCase ):
print(data[j] , end=""" """ )
print(""" """ )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
__UpperCAmelCase : Any = arr[i]
combination_util(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : List[str] ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : str = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , 0 , _UpperCamelCase , 0 )
if __name__ == "__main__":
# Driver code to check the function above
UpperCAmelCase : Dict = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 320
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase )
__UpperCAmelCase : List[Any] = sum(_UpperCamelCase )
__UpperCAmelCase : Optional[int] = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
__UpperCAmelCase : Any = True
for i in range(1 , s + 1 ):
__UpperCAmelCase : List[Any] = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
__UpperCAmelCase : Optional[int] = dp[i][j - 1]
if arr[i - 1] <= j:
__UpperCAmelCase : Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
__UpperCAmelCase : Optional[int] = s - 2 * j
break
return diff
| 320
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : str = {
'configuration_trajectory_transformer': [
'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'TrajectoryTransformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : int = [
'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrajectoryTransformerModel',
'TrajectoryTransformerPreTrainedModel',
'load_tf_weights_in_trajectory_transformer',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
if is_vision_available():
import PIL
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = ["""pixel_values"""]
def __init__( self : Tuple , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 255 , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = True , **UpperCamelCase : str , ):
'''simple docstring'''
super().__init__(**UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 224}
__UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase )
__UpperCAmelCase : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase , param_name="""crop_size""" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : Tuple = size
__UpperCAmelCase : Optional[Any] = resample
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : int = crop_size
__UpperCAmelCase : Optional[int] = do_rescale
__UpperCAmelCase : List[Any] = rescale_factor
__UpperCAmelCase : Tuple = do_normalize
__UpperCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__UpperCAmelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD
__UpperCAmelCase : List[Any] = do_convert_rgb
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : List[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
__UpperCAmelCase : int = get_resize_output_image_size(UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase )
return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Dict , ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = get_size_dict(UpperCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, float] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ):
'''simple docstring'''
return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ):
'''simple docstring'''
return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : int = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : Any , ):
'''simple docstring'''
__UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : Dict = size if size is not None else self.size
__UpperCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase , param_name="""size""" , default_to_square=UpperCamelCase )
__UpperCAmelCase : Dict = resample if resample is not None else self.resample
__UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , param_name="""crop_size""" , default_to_square=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : Any = image_std if image_std is not None else self.image_std
__UpperCAmelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__UpperCAmelCase : List[str] = make_list_of_images(UpperCamelCase )
if not valid_images(UpperCamelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__UpperCAmelCase : int = [convert_to_rgb(UpperCamelCase ) for image in images]
# All transformations expect numpy arrays.
__UpperCAmelCase : Tuple = [to_numpy_array(UpperCamelCase ) for image in images]
if do_resize:
__UpperCAmelCase : Optional[int] = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images]
if do_center_crop:
__UpperCAmelCase : int = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images]
if do_rescale:
__UpperCAmelCase : Dict = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images]
if do_normalize:
__UpperCAmelCase : Optional[Any] = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images]
__UpperCAmelCase : Any = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images]
__UpperCAmelCase : Any = {"""pixel_values""": images}
return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
UpperCAmelCase : Dict = logging.getLogger(__name__)
require_version('pytorch_lightning>=1.0.4')
UpperCAmelCase : int = {
'base': AutoModel,
'sequence-classification': AutoModelForSequenceClassification,
'question-answering': AutoModelForQuestionAnswering,
'pretraining': AutoModelForPreTraining,
'token-classification': AutoModelForTokenClassification,
'language-modeling': AutoModelWithLMHead,
'summarization': AutoModelForSeqaSeqLM,
'translation': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
UpperCAmelCase : Dict = {
'linear': get_linear_schedule_with_warmup,
'cosine': get_cosine_schedule_with_warmup,
'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup,
'polynomial': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
UpperCAmelCase : Optional[Any] = sorted(arg_to_scheduler.keys())
UpperCAmelCase : List[str] = '{' + ', '.join(arg_to_scheduler_choices) + '}'
class lowerCamelCase__ ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Optional[int] , UpperCamelCase : argparse.Namespace , UpperCamelCase : Dict=None , UpperCamelCase : Tuple="base" , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Union[str, Any]=None , **UpperCamelCase : List[str] , ):
'''simple docstring'''
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(UpperCamelCase )
__UpperCAmelCase : Optional[Any] = 0
__UpperCAmelCase : List[Any] = Path(self.hparams.output_dir )
__UpperCAmelCase : Any = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=UpperCamelCase , **UpperCamelCase , )
else:
__UpperCAmelCase : PretrainedConfig = config
__UpperCAmelCase : Optional[int] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""")
for p in extra_model_params:
if getattr(self.hparams , UpperCamelCase , UpperCamelCase ):
assert hasattr(self.config , UpperCamelCase ), f'''model config doesn\'t have a `{p}` attribute'''
setattr(self.config , UpperCamelCase , getattr(self.hparams , UpperCamelCase ) )
if tokenizer is None:
__UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=UpperCamelCase , )
else:
__UpperCAmelCase : PreTrainedTokenizer = tokenizer
__UpperCAmelCase : List[Any] = MODEL_MODES[mode]
if model is None:
__UpperCAmelCase : str = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=UpperCamelCase , )
else:
__UpperCAmelCase : Optional[Any] = model
def lowerCamelCase__ ( self : int , *UpperCamelCase : Optional[int] , **UpperCamelCase : str ):
'''simple docstring'''
__UpperCAmelCase : Any = self.model_type.from_pretrained(*UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler]
__UpperCAmelCase : Union[str, Any] = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
__UpperCAmelCase : Optional[int] = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1}
return scheduler
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : str = self.model
__UpperCAmelCase : Dict = ["""bias""", """LayerNorm.weight"""]
__UpperCAmelCase : List[Any] = [
{
"""params""": [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
"""weight_decay""": self.hparams.weight_decay,
},
{
"""params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
"""weight_decay""": 0.0,
},
]
if self.hparams.adafactor:
__UpperCAmelCase : Tuple = Adafactor(
UpperCamelCase , lr=self.hparams.learning_rate , scale_parameter=UpperCamelCase , relative_step=UpperCamelCase )
else:
__UpperCAmelCase : Dict = AdamW(
UpperCamelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
__UpperCAmelCase : Tuple = optimizer
__UpperCAmelCase : List[str] = self.get_lr_scheduler()
return [optimizer], [scheduler]
def lowerCamelCase__ ( self : str , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
return self.validation_step(UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : List[str] ):
'''simple docstring'''
return self.validation_end(UpperCamelCase )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
__UpperCAmelCase : List[str] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str ):
'''simple docstring'''
if stage == "test":
__UpperCAmelCase : List[Any] = len(self.test_dataloader().dataset )
else:
__UpperCAmelCase : Optional[Any] = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=UpperCamelCase )
__UpperCAmelCase : int = len(self.train_dataloader().dataset )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : bool = False ):
'''simple docstring'''
raise NotImplementedError("""You must implement this for your task""" )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
return self.train_loader
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=UpperCamelCase )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=UpperCamelCase )
def lowerCamelCase__ ( self : int , UpperCamelCase : Tuple ):
'''simple docstring'''
return os.path.join(
self.hparams.data_dir , """cached_{}_{}_{}""".format(
UpperCamelCase , list(filter(UpperCamelCase , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Dict[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = self.output_dir.joinpath("""best_tfmr""" )
__UpperCAmelCase : Optional[int] = self.step_count
self.model.save_pretrained(UpperCamelCase )
self.tokenizer.save_pretrained(UpperCamelCase )
@staticmethod
def lowerCamelCase__ ( UpperCamelCase : Any , UpperCamelCase : Tuple ):
'''simple docstring'''
parser.add_argument(
"""--model_name_or_path""" , default=UpperCamelCase , type=UpperCamelCase , required=UpperCamelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--config_name""" , default="""""" , type=UpperCamelCase , help="""Pretrained config name or path if not the same as model_name""" )
parser.add_argument(
"""--tokenizer_name""" , default=UpperCamelCase , type=UpperCamelCase , help="""Pretrained tokenizer name or path if not the same as model_name""" , )
parser.add_argument(
"""--cache_dir""" , default=str(Path(UpperCamelCase ).parent / """test_run""" / """cache""" ) , type=UpperCamelCase , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , )
parser.add_argument(
"""--encoder_layerdrop""" , type=UpperCamelCase , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , )
parser.add_argument(
"""--decoder_layerdrop""" , type=UpperCamelCase , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , )
parser.add_argument(
"""--dropout""" , type=UpperCamelCase , help="""Dropout probability (Optional). Goes into model.config""" , )
parser.add_argument(
"""--attention_dropout""" , type=UpperCamelCase , help="""Attention dropout probability (Optional). Goes into model.config""" , )
parser.add_argument("""--learning_rate""" , default=5e-5 , type=UpperCamelCase , help="""The initial learning rate for Adam.""" )
parser.add_argument(
"""--lr_scheduler""" , default="""linear""" , choices=UpperCamelCase , metavar=UpperCamelCase , type=UpperCamelCase , help="""Learning rate scheduler""" , )
parser.add_argument("""--weight_decay""" , default=0.0 , type=UpperCamelCase , help="""Weight decay if we apply some.""" )
parser.add_argument("""--adam_epsilon""" , default=1e-8 , type=UpperCamelCase , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--warmup_steps""" , default=0 , type=UpperCamelCase , help="""Linear warmup over warmup_steps.""" )
parser.add_argument("""--num_workers""" , default=4 , type=UpperCamelCase , help="""kwarg passed to DataLoader""" )
parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=UpperCamelCase )
parser.add_argument("""--train_batch_size""" , default=32 , type=UpperCamelCase )
parser.add_argument("""--eval_batch_size""" , default=32 , type=UpperCamelCase )
parser.add_argument("""--adafactor""" , action="""store_true""" )
class lowerCamelCase__ ( pl.Callback ):
"""simple docstring"""
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] ):
'''simple docstring'''
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class lowerCamelCase__ ( pl.Callback ):
"""simple docstring"""
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : Tuple ):
'''simple docstring'''
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(UpperCamelCase )
class lowerCamelCase__ ( pl.Callback ):
"""simple docstring"""
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = trainer.lr_schedulers[0]["""scheduler"""]
__UpperCAmelCase : Optional[Any] = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(UpperCamelCase )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : pl.Trainer , UpperCamelCase : pl.LightningModule ):
'''simple docstring'''
rank_zero_info("""***** Validation results *****""" )
__UpperCAmelCase : Optional[int] = trainer.callback_metrics
# Log results
for key in sorted(UpperCamelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info("""{} = {}\n""".format(UpperCamelCase , str(metrics[key] ) ) )
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : pl.Trainer , UpperCamelCase : pl.LightningModule ):
'''simple docstring'''
rank_zero_info("""***** Test results *****""" )
__UpperCAmelCase : Optional[int] = trainer.callback_metrics
# Log and save results to file
__UpperCAmelCase : List[str] = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" )
with open(UpperCamelCase , """w""" ) as writer:
for key in sorted(UpperCamelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info("""{} = {}\n""".format(UpperCamelCase , str(metrics[key] ) ) )
writer.write("""{} = {}\n""".format(UpperCamelCase , str(metrics[key] ) ) )
def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> None:
'''simple docstring'''
parser.add_argument(
"""--output_dir""" , default=str(Path(_UpperCamelCase ).parent / """test_run""" / """model_checkpoints""" ) , type=_UpperCamelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , )
parser.add_argument(
"""--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , )
parser.add_argument(
"""--fp16_opt_level""" , type=_UpperCamelCase , default="""O2""" , help=(
"""For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."""
"""See details at https://nvidia.github.io/apex/amp.html"""
) , )
parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=_UpperCamelCase )
parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=_UpperCamelCase , help="""Max gradient norm""" )
parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" )
parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" )
parser.add_argument(
"""--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=_UpperCamelCase , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , )
parser.add_argument("""--seed""" , type=_UpperCamelCase , default=4_2 , help="""random seed for initialization""" )
parser.add_argument(
"""--data_dir""" , default=str(Path(_UpperCamelCase ).parent / """test_run""" / """dummy-train-data""" ) , type=_UpperCamelCase , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , )
def lowerCamelCase ( _UpperCamelCase : BaseTransformer , _UpperCamelCase : argparse.Namespace , _UpperCamelCase : Any=None , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[Any]=[] , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Tuple=None , **_UpperCamelCase : List[Any] , ) -> Any:
'''simple docstring'''
pl.seed_everything(args.seed )
# init model
__UpperCAmelCase : Optional[int] = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=_UpperCamelCase )
# add custom checkpoints
if checkpoint_callback is None:
__UpperCAmelCase : Optional[int] = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(_UpperCamelCase )
if logging_callback is None:
__UpperCAmelCase : str = LoggingCallback()
__UpperCAmelCase : Dict = {}
if args.fpaa:
__UpperCAmelCase : Union[str, Any] = 1_6
if args.gpus > 1:
__UpperCAmelCase : int = """auto"""
__UpperCAmelCase : List[str] = """ddp"""
__UpperCAmelCase : int = args.accumulate_grad_batches
__UpperCAmelCase : Dict = None
__UpperCAmelCase : List[Any] = """auto"""
__UpperCAmelCase : Union[str, Any] = pl.Trainer.from_argparse_args(
_UpperCamelCase , weights_summary=_UpperCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_UpperCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_UpperCamelCase , )
if args.do_train:
trainer.fit(_UpperCamelCase )
else:
print("""RAG modeling tests with new set functions successfuly executed!""" )
return trainer
| 320
|
"""simple docstring"""
from collections.abc import Sequence
def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) )
def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float:
'''simple docstring'''
__UpperCAmelCase : Dict = 0.0
for coeff in reversed(_UpperCamelCase ):
__UpperCAmelCase : Any = result * x + coeff
return result
if __name__ == "__main__":
UpperCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0)
UpperCAmelCase : str = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 320
| 1
|
"""simple docstring"""
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
UpperCAmelCase : Tuple = {
'sample_size': 32,
'in_channels': 3,
'out_channels': 3,
'layers_per_block': 2,
'num_class_embeds': 1000,
'block_out_channels': [32, 64],
'attention_head_dim': 8,
'down_block_types': [
'ResnetDownsampleBlock2D',
'AttnDownBlock2D',
],
'up_block_types': [
'AttnUpBlock2D',
'ResnetUpsampleBlock2D',
],
'resnet_time_scale_shift': 'scale_shift',
'upsample_type': 'resnet',
'downsample_type': 'resnet',
}
UpperCAmelCase : Union[str, Any] = {
'sample_size': 64,
'in_channels': 3,
'out_channels': 3,
'layers_per_block': 3,
'num_class_embeds': 1000,
'block_out_channels': [192, 192 * 2, 192 * 3, 192 * 4],
'attention_head_dim': 64,
'down_block_types': [
'ResnetDownsampleBlock2D',
'AttnDownBlock2D',
'AttnDownBlock2D',
'AttnDownBlock2D',
],
'up_block_types': [
'AttnUpBlock2D',
'AttnUpBlock2D',
'AttnUpBlock2D',
'ResnetUpsampleBlock2D',
],
'resnet_time_scale_shift': 'scale_shift',
'upsample_type': 'resnet',
'downsample_type': 'resnet',
}
UpperCAmelCase : List[Any] = {
'sample_size': 256,
'in_channels': 3,
'out_channels': 3,
'layers_per_block': 2,
'num_class_embeds': None,
'block_out_channels': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4],
'attention_head_dim': 64,
'down_block_types': [
'ResnetDownsampleBlock2D',
'ResnetDownsampleBlock2D',
'ResnetDownsampleBlock2D',
'AttnDownBlock2D',
'AttnDownBlock2D',
'AttnDownBlock2D',
],
'up_block_types': [
'AttnUpBlock2D',
'AttnUpBlock2D',
'AttnUpBlock2D',
'ResnetUpsampleBlock2D',
'ResnetUpsampleBlock2D',
'ResnetUpsampleBlock2D',
],
'resnet_time_scale_shift': 'default',
'upsample_type': 'resnet',
'downsample_type': 'resnet',
}
UpperCAmelCase : List[str] = {
'num_train_timesteps': 40,
'sigma_min': 0.002,
'sigma_max': 80.0,
}
UpperCAmelCase : List[str] = {
'num_train_timesteps': 201,
'sigma_min': 0.002,
'sigma_max': 80.0,
}
UpperCAmelCase : List[str] = {
'num_train_timesteps': 151,
'sigma_min': 0.002,
'sigma_max': 80.0,
}
def lowerCamelCase ( _UpperCamelCase : int ) -> str:
'''simple docstring'''
if isinstance(_UpperCamelCase , _UpperCamelCase ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("""boolean value expected""" )
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any]=False ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = checkpoint[f'''{old_prefix}.in_layers.0.weight''']
__UpperCAmelCase : Dict = checkpoint[f'''{old_prefix}.in_layers.0.bias''']
__UpperCAmelCase : List[Any] = checkpoint[f'''{old_prefix}.in_layers.2.weight''']
__UpperCAmelCase : List[str] = checkpoint[f'''{old_prefix}.in_layers.2.bias''']
__UpperCAmelCase : int = checkpoint[f'''{old_prefix}.emb_layers.1.weight''']
__UpperCAmelCase : Optional[int] = checkpoint[f'''{old_prefix}.emb_layers.1.bias''']
__UpperCAmelCase : str = checkpoint[f'''{old_prefix}.out_layers.0.weight''']
__UpperCAmelCase : Optional[Any] = checkpoint[f'''{old_prefix}.out_layers.0.bias''']
__UpperCAmelCase : List[Any] = checkpoint[f'''{old_prefix}.out_layers.3.weight''']
__UpperCAmelCase : List[Any] = checkpoint[f'''{old_prefix}.out_layers.3.bias''']
if has_skip:
__UpperCAmelCase : Union[str, Any] = checkpoint[f'''{old_prefix}.skip_connection.weight''']
__UpperCAmelCase : str = checkpoint[f'''{old_prefix}.skip_connection.bias''']
return new_checkpoint
def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict=None ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = checkpoint[f'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 )
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : int = checkpoint[f'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 )
__UpperCAmelCase : List[str] = checkpoint[f'''{old_prefix}.norm.weight''']
__UpperCAmelCase : Any = checkpoint[f'''{old_prefix}.norm.bias''']
__UpperCAmelCase : Tuple = weight_q.squeeze(-1 ).squeeze(-1 )
__UpperCAmelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 )
__UpperCAmelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 )
__UpperCAmelCase : Any = bias_k.squeeze(-1 ).squeeze(-1 )
__UpperCAmelCase : Union[str, Any] = weight_v.squeeze(-1 ).squeeze(-1 )
__UpperCAmelCase : Any = bias_v.squeeze(-1 ).squeeze(-1 )
__UpperCAmelCase : Optional[int] = (
checkpoint[f'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 )
)
__UpperCAmelCase : List[str] = checkpoint[f'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 )
return new_checkpoint
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Dict ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = torch.load(_UpperCamelCase , map_location="""cpu""" )
__UpperCAmelCase : Dict = {}
__UpperCAmelCase : Dict = checkpoint["""time_embed.0.weight"""]
__UpperCAmelCase : int = checkpoint["""time_embed.0.bias"""]
__UpperCAmelCase : List[str] = checkpoint["""time_embed.2.weight"""]
__UpperCAmelCase : int = checkpoint["""time_embed.2.bias"""]
if unet_config["num_class_embeds"] is not None:
__UpperCAmelCase : List[Any] = checkpoint["""label_emb.weight"""]
__UpperCAmelCase : Optional[Any] = checkpoint["""input_blocks.0.0.weight"""]
__UpperCAmelCase : Union[str, Any] = checkpoint["""input_blocks.0.0.bias"""]
__UpperCAmelCase : Optional[Any] = unet_config["""down_block_types"""]
__UpperCAmelCase : Optional[int] = unet_config["""layers_per_block"""]
__UpperCAmelCase : int = unet_config["""attention_head_dim"""]
__UpperCAmelCase : Dict = unet_config["""block_out_channels"""]
__UpperCAmelCase : Optional[int] = 1
__UpperCAmelCase : Optional[int] = channels_list[0]
for i, layer_type in enumerate(_UpperCamelCase ):
__UpperCAmelCase : int = channels_list[i]
__UpperCAmelCase : Union[str, Any] = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(_UpperCamelCase ):
__UpperCAmelCase : str = f'''down_blocks.{i}.resnets.{j}'''
__UpperCAmelCase : Dict = f'''input_blocks.{current_layer}.0'''
__UpperCAmelCase : Any = True if j == 0 and downsample_block_has_skip else False
__UpperCAmelCase : List[Any] = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase )
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(_UpperCamelCase ):
__UpperCAmelCase : Optional[int] = f'''down_blocks.{i}.resnets.{j}'''
__UpperCAmelCase : Tuple = f'''input_blocks.{current_layer}.0'''
__UpperCAmelCase : Optional[int] = True if j == 0 and downsample_block_has_skip else False
__UpperCAmelCase : List[str] = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase )
__UpperCAmelCase : Dict = f'''down_blocks.{i}.attentions.{j}'''
__UpperCAmelCase : Dict = f'''input_blocks.{current_layer}.1'''
__UpperCAmelCase : Optional[int] = convert_attention(
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
current_layer += 1
if i != len(_UpperCamelCase ) - 1:
__UpperCAmelCase : Any = f'''down_blocks.{i}.downsamplers.0'''
__UpperCAmelCase : Tuple = f'''input_blocks.{current_layer}.0'''
__UpperCAmelCase : List[str] = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
current_layer += 1
__UpperCAmelCase : Union[str, Any] = current_channels
# hardcoded the mid-block for now
__UpperCAmelCase : Union[str, Any] = """mid_block.resnets.0"""
__UpperCAmelCase : Any = """middle_block.0"""
__UpperCAmelCase : Dict = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
__UpperCAmelCase : Tuple = """mid_block.attentions.0"""
__UpperCAmelCase : Any = """middle_block.1"""
__UpperCAmelCase : int = convert_attention(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
__UpperCAmelCase : Optional[int] = """mid_block.resnets.1"""
__UpperCAmelCase : Union[str, Any] = """middle_block.2"""
__UpperCAmelCase : str = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
__UpperCAmelCase : Any = 0
__UpperCAmelCase : Optional[int] = unet_config["""up_block_types"""]
for i, layer_type in enumerate(_UpperCamelCase ):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1 ):
__UpperCAmelCase : Dict = f'''up_blocks.{i}.resnets.{j}'''
__UpperCAmelCase : Tuple = f'''output_blocks.{current_layer}.0'''
__UpperCAmelCase : Dict = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase )
current_layer += 1
if i != len(_UpperCamelCase ) - 1:
__UpperCAmelCase : int = f'''up_blocks.{i}.upsamplers.0'''
__UpperCAmelCase : int = f'''output_blocks.{current_layer-1}.1'''
__UpperCAmelCase : Union[str, Any] = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1 ):
__UpperCAmelCase : Optional[Any] = f'''up_blocks.{i}.resnets.{j}'''
__UpperCAmelCase : List[Any] = f'''output_blocks.{current_layer}.0'''
__UpperCAmelCase : Tuple = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase )
__UpperCAmelCase : List[Any] = f'''up_blocks.{i}.attentions.{j}'''
__UpperCAmelCase : Union[str, Any] = f'''output_blocks.{current_layer}.1'''
__UpperCAmelCase : List[str] = convert_attention(
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
current_layer += 1
if i != len(_UpperCamelCase ) - 1:
__UpperCAmelCase : Optional[int] = f'''up_blocks.{i}.upsamplers.0'''
__UpperCAmelCase : Dict = f'''output_blocks.{current_layer-1}.2'''
__UpperCAmelCase : Optional[Any] = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
__UpperCAmelCase : int = checkpoint["""out.0.weight"""]
__UpperCAmelCase : List[Any] = checkpoint["""out.0.bias"""]
__UpperCAmelCase : Optional[int] = checkpoint["""out.2.weight"""]
__UpperCAmelCase : int = checkpoint["""out.2.bias"""]
return new_checkpoint
if __name__ == "__main__":
UpperCAmelCase : int = argparse.ArgumentParser()
parser.add_argument('--unet_path', default=None, type=str, required=True, help='Path to the unet.pt to convert.')
parser.add_argument(
'--dump_path', default=None, type=str, required=True, help='Path to output the converted UNet model.'
)
parser.add_argument('--class_cond', default=True, type=str, help='Whether the model is class-conditional.')
UpperCAmelCase : List[str] = parser.parse_args()
UpperCAmelCase : int = strabool(args.class_cond)
UpperCAmelCase : int = os.path.basename(args.unet_path)
print(F"Checkpoint: {ckpt_name}")
# Get U-Net config
if "imagenet64" in ckpt_name:
UpperCAmelCase : Dict = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
UpperCAmelCase : str = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
UpperCAmelCase : List[str] = TEST_UNET_CONFIG
else:
raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.")
if not args.class_cond:
UpperCAmelCase : List[Any] = None
UpperCAmelCase : Any = con_pt_to_diffuser(args.unet_path, unet_config)
UpperCAmelCase : Any = UNetaDModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
UpperCAmelCase : List[str] = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
UpperCAmelCase : List[Any] = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
UpperCAmelCase : Dict = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.")
UpperCAmelCase : str = CMStochasticIterativeScheduler(**scheduler_config)
UpperCAmelCase : List[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path)
| 320
|
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase : Optional[int] = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class lowerCamelCase__ :
"""simple docstring"""
__a = PegasusConfig
__a = {}
__a = """gelu"""
def __init__( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Dict=True , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : Union[str, Any]=5 , UpperCamelCase : Any=4 , UpperCamelCase : Tuple=37 , UpperCamelCase : Any=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=20 , UpperCamelCase : List[str]=2 , UpperCamelCase : int=1 , UpperCamelCase : Optional[Any]=0 , ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : str = batch_size
__UpperCAmelCase : Optional[Any] = seq_length
__UpperCAmelCase : Dict = is_training
__UpperCAmelCase : Dict = use_labels
__UpperCAmelCase : List[Any] = vocab_size
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : Optional[Any] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : List[Any] = intermediate_size
__UpperCAmelCase : Union[str, Any] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : List[Any] = max_position_embeddings
__UpperCAmelCase : Any = eos_token_id
__UpperCAmelCase : Optional[int] = pad_token_id
__UpperCAmelCase : List[str] = bos_token_id
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
__UpperCAmelCase : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCAmelCase : Union[str, Any] = np.concatenate([input_ids, eos_tensor] , axis=1 )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Any = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCAmelCase : Any = prepare_pegasus_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase )
return config, inputs_dict
def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = 20
__UpperCAmelCase : Tuple = model_class_name(UpperCamelCase )
__UpperCAmelCase : List[Any] = model.encode(inputs_dict["""input_ids"""] )
__UpperCAmelCase ,__UpperCAmelCase : int = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
__UpperCAmelCase : Optional[int] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCAmelCase : Union[str, Any] = model.decode(
decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCAmelCase : Tuple = model.decode(
decoder_input_ids[:, -1:] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Dict = model.decode(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = 20
__UpperCAmelCase : int = model_class_name(UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] )
__UpperCAmelCase ,__UpperCAmelCase : Dict = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCAmelCase : int = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : List[Any] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCAmelCase : List[str] = model.decode(
decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCAmelCase : Optional[int] = model.decode(
decoder_input_ids[:, -1:] , UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Union[str, Any] = model.decode(UpperCamelCase , UpperCamelCase , decoder_attention_mask=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=None , _UpperCamelCase : Any=None , ) -> Dict:
'''simple docstring'''
if attention_mask is None:
__UpperCAmelCase : Optional[int] = np.not_equal(_UpperCamelCase , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
__UpperCAmelCase : Dict = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__a = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__a = True
__a = False
__a = False
__a = False
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = FlaxPegasusModelTester(self )
__UpperCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCAmelCase : Tuple = self._prepare_for_class(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Dict = model_class(UpperCamelCase )
@jax.jit
def encode_jitted(UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any]=None , **UpperCamelCase : List[str] ):
return model.encode(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )
with self.subTest("""JIT Enabled""" ):
__UpperCAmelCase : Tuple = encode_jitted(**UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCAmelCase : Optional[int] = encode_jitted(**UpperCamelCase ).to_tuple()
self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) )
for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCAmelCase : int = model_class(UpperCamelCase )
__UpperCAmelCase : int = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
__UpperCAmelCase : Any = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ):
return model.decode(
decoder_input_ids=UpperCamelCase , decoder_attention_mask=UpperCamelCase , encoder_outputs=UpperCamelCase , )
with self.subTest("""JIT Enabled""" ):
__UpperCAmelCase : Union[str, Any] = decode_jitted(**UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCAmelCase : str = decode_jitted(**UpperCamelCase ).to_tuple()
self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) )
for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCamelCase )
__UpperCAmelCase : Optional[int] = np.ones((1, 1) )
__UpperCAmelCase : List[str] = model(UpperCamelCase )
self.assertIsNotNone(UpperCamelCase )
@slow
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
__UpperCAmelCase : Union[str, Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
__UpperCAmelCase : List[Any] = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
__UpperCAmelCase : List[str] = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
__UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""np""" , truncation=UpperCamelCase , max_length=512 , padding=UpperCamelCase )
__UpperCAmelCase : int = model.generate(**UpperCamelCase , num_beams=2 ).sequences
__UpperCAmelCase : str = tokenizer.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase )
assert tgt_text == decoded
| 320
| 1
|
"""simple docstring"""
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = LEDTokenizer
__a = LEDTokenizerFast
__a = True
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
super().setUp()
__UpperCAmelCase : Tuple = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
__UpperCAmelCase : str = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) )
__UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
__UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""}
__UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(UpperCamelCase ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(UpperCamelCase ) )
def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : int ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase )
def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : List[str] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase )
def lowerCamelCase__ ( self : str , UpperCamelCase : Any ):
'''simple docstring'''
return "lower newer", "lower newer"
@cached_property
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" )
@cached_property
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" )
@require_torch
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
__UpperCAmelCase : Union[str, Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Any = tokenizer(UpperCamelCase , max_length=len(UpperCamelCase ) , padding=UpperCamelCase , return_tensors="""pt""" )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
__UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0]
self.assertListEqual(UpperCamelCase , UpperCamelCase )
@require_torch
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors="""pt""" )
self.assertIn("""input_ids""" , UpperCamelCase )
self.assertIn("""attention_mask""" , UpperCamelCase )
self.assertNotIn("""labels""" , UpperCamelCase )
self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase )
@require_torch
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = [
"""Summary of the text.""",
"""Another summary.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Optional[Any] = tokenizer(text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
@require_torch
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : str = tokenizer(
["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""pt""" )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
self.assertEqual(batch.input_ids.shape , (2, 5_122) )
@require_torch
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization."""]
__UpperCAmelCase : int = [
"""Summary of the text.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""pt""" )
__UpperCAmelCase : Tuple = tokenizer(text_target=UpperCamelCase , return_tensors="""pt""" )
__UpperCAmelCase : Optional[Any] = inputs["""input_ids"""]
__UpperCAmelCase : List[str] = targets["""input_ids"""]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Any = ["""Summary of the text.""", """Another summary."""]
__UpperCAmelCase : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
__UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , padding=UpperCamelCase )
__UpperCAmelCase : str = [[0] * len(UpperCamelCase ) for x in encoded_output["""input_ids"""]]
__UpperCAmelCase : List[Any] = tokenizer.pad(UpperCamelCase )
self.assertSequenceEqual(outputs["""global_attention_mask"""] , UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase )
__UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase )
__UpperCAmelCase : Any = """A, <mask> AllenNLP sentence."""
__UpperCAmelCase : Dict = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase )
__UpperCAmelCase : List[Any] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase )
self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) )
self.assertEqual(
sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , )
__UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] )
__UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] )
self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
self.assertSequenceEqual(
UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
| 320
|
"""simple docstring"""
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase : List[str] = logging.get_logger(__name__)
UpperCAmelCase : List[str] = {
'b0': efficientnet.EfficientNetBa,
'b1': efficientnet.EfficientNetBa,
'b2': efficientnet.EfficientNetBa,
'b3': efficientnet.EfficientNetBa,
'b4': efficientnet.EfficientNetBa,
'b5': efficientnet.EfficientNetBa,
'b6': efficientnet.EfficientNetBa,
'b7': efficientnet.EfficientNetBa,
}
UpperCAmelCase : List[str] = {
'b0': {
'hidden_dim': 1280,
'width_coef': 1.0,
'depth_coef': 1.0,
'image_size': 224,
'dropout_rate': 0.2,
'dw_padding': [],
},
'b1': {
'hidden_dim': 1280,
'width_coef': 1.0,
'depth_coef': 1.1,
'image_size': 240,
'dropout_rate': 0.2,
'dw_padding': [16],
},
'b2': {
'hidden_dim': 1408,
'width_coef': 1.1,
'depth_coef': 1.2,
'image_size': 260,
'dropout_rate': 0.3,
'dw_padding': [5, 8, 16],
},
'b3': {
'hidden_dim': 1536,
'width_coef': 1.2,
'depth_coef': 1.4,
'image_size': 300,
'dropout_rate': 0.3,
'dw_padding': [5, 18],
},
'b4': {
'hidden_dim': 1792,
'width_coef': 1.4,
'depth_coef': 1.8,
'image_size': 380,
'dropout_rate': 0.4,
'dw_padding': [6],
},
'b5': {
'hidden_dim': 2048,
'width_coef': 1.6,
'depth_coef': 2.2,
'image_size': 456,
'dropout_rate': 0.4,
'dw_padding': [13, 27],
},
'b6': {
'hidden_dim': 2304,
'width_coef': 1.8,
'depth_coef': 2.6,
'image_size': 528,
'dropout_rate': 0.5,
'dw_padding': [31],
},
'b7': {
'hidden_dim': 2560,
'width_coef': 2.0,
'depth_coef': 3.1,
'image_size': 600,
'dropout_rate': 0.5,
'dw_padding': [18],
},
}
def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = EfficientNetConfig()
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""hidden_dim"""]
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""width_coef"""]
__UpperCAmelCase : str = CONFIG_MAP[model_name]["""depth_coef"""]
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""]
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""dropout_rate"""]
__UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""]
__UpperCAmelCase : int = """huggingface/label-files"""
__UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json"""
__UpperCAmelCase : str = 1_0_0_0
__UpperCAmelCase : Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) )
__UpperCAmelCase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()}
__UpperCAmelCase : Dict = idalabel
__UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
return config
def lowerCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw )
return im
def lowerCamelCase ( _UpperCamelCase : Any ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = CONFIG_MAP[model_name]["""image_size"""]
__UpperCAmelCase : List[str] = EfficientNetImageProcessor(
size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_UpperCamelCase , )
return preprocessor
def lowerCamelCase ( _UpperCamelCase : Dict ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )]
__UpperCAmelCase : str = sorted(set(_UpperCamelCase ) )
__UpperCAmelCase : Optional[int] = len(_UpperCamelCase )
__UpperCAmelCase : Any = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )}
__UpperCAmelCase : Any = []
rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") )
rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") )
rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") )
rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") )
rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") )
for b in block_names:
__UpperCAmelCase : List[str] = block_name_mapping[b]
rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') )
rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') )
rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') )
rename_keys.append(
(f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') )
rename_keys.append(
(f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') )
rename_keys.append(
(f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') )
rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') )
rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') )
rename_keys.append(
(f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') )
rename_keys.append(
(f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') )
rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') )
rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') )
rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') )
rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') )
rename_keys.append(
(f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') )
rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') )
rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') )
rename_keys.append(
(f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') )
rename_keys.append(
(f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') )
rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") )
rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") )
rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") )
rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") )
rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") )
__UpperCAmelCase : Optional[int] = {}
for item in rename_keys:
if item[0] in original_param_names:
__UpperCAmelCase : Optional[Any] = """efficientnet.""" + item[1]
__UpperCAmelCase : Tuple = """classifier.weight"""
__UpperCAmelCase : Optional[int] = """classifier.bias"""
return key_mapping
def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Tuple:
'''simple docstring'''
for key, value in tf_params.items():
if "normalization" in key:
continue
__UpperCAmelCase : List[Any] = key_mapping[key]
if "_conv" in key and "kernel" in key:
__UpperCAmelCase : int = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
__UpperCAmelCase : Optional[Any] = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
__UpperCAmelCase : List[str] = torch.from_numpy(np.transpose(_UpperCamelCase ) )
else:
__UpperCAmelCase : Tuple = torch.from_numpy(_UpperCamelCase )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(_UpperCamelCase )
@torch.no_grad()
def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = model_classes[model_name](
include_top=_UpperCamelCase , weights="""imagenet""" , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , )
__UpperCAmelCase : List[str] = original_model.trainable_variables
__UpperCAmelCase : List[Any] = original_model.non_trainable_variables
__UpperCAmelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
__UpperCAmelCase : int = param.numpy()
__UpperCAmelCase : Dict = list(tf_params.keys() )
# Load HuggingFace model
__UpperCAmelCase : Optional[Any] = get_efficientnet_config(_UpperCamelCase )
__UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(_UpperCamelCase ).eval()
__UpperCAmelCase : Any = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print("""Converting parameters...""" )
__UpperCAmelCase : Tuple = rename_keys(_UpperCamelCase )
replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
# Initialize preprocessor and preprocess input image
__UpperCAmelCase : List[Any] = convert_image_processor(_UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors="""pt""" )
# HF model inference
hf_model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[int] = hf_model(**_UpperCamelCase )
__UpperCAmelCase : Any = outputs.logits.detach().numpy()
# Original model inference
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""]
__UpperCAmelCase : str = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
__UpperCAmelCase : Optional[Any] = image.img_to_array(_UpperCamelCase )
__UpperCAmelCase : Tuple = np.expand_dims(_UpperCamelCase , axis=0 )
__UpperCAmelCase : str = original_model.predict(_UpperCamelCase )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same."
print("""Model outputs match!""" )
if save_model:
# Create folder to save model
if not os.path.isdir(_UpperCamelCase ):
os.mkdir(_UpperCamelCase )
# Save converted model and image processor
hf_model.save_pretrained(_UpperCamelCase )
preprocessor.save_pretrained(_UpperCamelCase )
if push_to_hub:
# Push model and image processor to hub
print(f'''Pushing converted {model_name} to the hub...''' )
__UpperCAmelCase : List[str] = f'''efficientnet-{model_name}'''
preprocessor.push_to_hub(_UpperCamelCase )
hf_model.push_to_hub(_UpperCamelCase )
if __name__ == "__main__":
UpperCAmelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='b0',
type=str,
help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='hf_model',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--save_model', action='store_true', help='Save model to local')
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
UpperCAmelCase : Any = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 320
| 1
|
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
UpperCAmelCase : List[Any] = {
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json',
# See all BART models at https://huggingface.co/models?filter=bart
}
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = """bart"""
__a = ["""past_key_values"""]
__a = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : int , UpperCamelCase : List[str]=50_265 , UpperCamelCase : Any=1_024 , UpperCamelCase : List[str]=12 , UpperCamelCase : List[Any]=4_096 , UpperCamelCase : str=16 , UpperCamelCase : Any=12 , UpperCamelCase : Optional[Any]=4_096 , UpperCamelCase : Tuple=16 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : int=0.0 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=1_024 , UpperCamelCase : str=0.1 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : int=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Optional[Any]=0.0 , UpperCamelCase : Tuple=False , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=3 , UpperCamelCase : int=1 , UpperCamelCase : str=0 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : str=True , UpperCamelCase : Any=2 , UpperCamelCase : Tuple=2 , **UpperCamelCase : List[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Dict = vocab_size
__UpperCAmelCase : Dict = max_position_embeddings
__UpperCAmelCase : int = d_model
__UpperCAmelCase : str = encoder_ffn_dim
__UpperCAmelCase : Tuple = encoder_layers
__UpperCAmelCase : List[str] = encoder_attention_heads
__UpperCAmelCase : Optional[Any] = decoder_ffn_dim
__UpperCAmelCase : List[Any] = decoder_layers
__UpperCAmelCase : List[str] = decoder_attention_heads
__UpperCAmelCase : Optional[int] = dropout
__UpperCAmelCase : List[str] = attention_dropout
__UpperCAmelCase : str = activation_dropout
__UpperCAmelCase : Optional[int] = activation_function
__UpperCAmelCase : Union[str, Any] = init_std
__UpperCAmelCase : str = encoder_layerdrop
__UpperCAmelCase : Optional[int] = decoder_layerdrop
__UpperCAmelCase : Dict = classifier_dropout
__UpperCAmelCase : Any = use_cache
__UpperCAmelCase : Any = encoder_layers
__UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=UpperCamelCase , pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , UpperCamelCase ):
__UpperCAmelCase : Tuple = self.bos_token_id
warnings.warn(
f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '''
"""The config can simply be saved and uploaded again to be fixed.""" )
class lowerCamelCase__ ( A ):
"""simple docstring"""
@property
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
__UpperCAmelCase : str = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
__UpperCAmelCase : Tuple = {0: """batch"""}
__UpperCAmelCase : List[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
__UpperCAmelCase : List[Any] = {0: """batch""", 1: """decoder_sequence"""}
__UpperCAmelCase : Optional[int] = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(UpperCamelCase , direction="""inputs""" )
elif self.task == "causal-lm":
# TODO: figure this case out.
__UpperCAmelCase : Optional[Any] = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
__UpperCAmelCase ,__UpperCAmelCase : Any = self.num_layers
for i in range(UpperCamelCase ):
__UpperCAmelCase : Any = {0: """batch""", 2: """past_sequence + sequence"""}
__UpperCAmelCase : List[str] = {0: """batch""", 2: """past_sequence + sequence"""}
else:
__UpperCAmelCase : List[Any] = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}),
("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}),
] )
return common_inputs
@property
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
__UpperCAmelCase : List[Any] = super().outputs
else:
__UpperCAmelCase : Union[str, Any] = super(UpperCamelCase , self ).outputs
if self.use_past:
__UpperCAmelCase ,__UpperCAmelCase : Any = self.num_layers
for i in range(UpperCamelCase ):
__UpperCAmelCase : List[Any] = {0: """batch""", 2: """past_sequence + sequence"""}
__UpperCAmelCase : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""}
return common_outputs
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int = -1 , UpperCamelCase : int = -1 , UpperCamelCase : bool = False , UpperCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
# Generate decoder inputs
__UpperCAmelCase : int = seq_length if not self.use_past else 1
__UpperCAmelCase : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : List[Any] = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()}
__UpperCAmelCase : List[str] = dict(**UpperCamelCase , **UpperCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__UpperCAmelCase ,__UpperCAmelCase : Optional[int] = common_inputs["""input_ids"""].shape
__UpperCAmelCase : Any = common_inputs["""decoder_input_ids"""].shape[1]
__UpperCAmelCase ,__UpperCAmelCase : List[Any] = self.num_attention_heads
__UpperCAmelCase : Any = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__UpperCAmelCase : List[Any] = decoder_seq_length + 3
__UpperCAmelCase : Optional[int] = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
__UpperCAmelCase : Any = torch.cat(
[common_inputs["""decoder_attention_mask"""], torch.ones(UpperCamelCase , UpperCamelCase )] , dim=1 )
__UpperCAmelCase : Optional[Any] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.num_layers
__UpperCAmelCase : Optional[Any] = min(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Dict = max(UpperCamelCase , UpperCamelCase ) - min_num_layers
__UpperCAmelCase : Dict = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder"""
for _ in range(UpperCamelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(UpperCamelCase ),
torch.zeros(UpperCamelCase ),
torch.zeros(UpperCamelCase ),
torch.zeros(UpperCamelCase ),
) )
# TODO: test this.
__UpperCAmelCase : List[Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape
for _ in range(UpperCamelCase , UpperCamelCase ):
common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase ), torch.zeros(UpperCamelCase )) )
return common_inputs
def lowerCamelCase__ ( self : Any , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int = -1 , UpperCamelCase : int = -1 , UpperCamelCase : bool = False , UpperCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__UpperCAmelCase ,__UpperCAmelCase : Any = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__UpperCAmelCase : Any = seqlen + 2
__UpperCAmelCase ,__UpperCAmelCase : List[Any] = self.num_layers
__UpperCAmelCase ,__UpperCAmelCase : int = self.num_attention_heads
__UpperCAmelCase : List[str] = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__UpperCAmelCase : int = common_inputs["""attention_mask"""].dtype
__UpperCAmelCase : List[Any] = torch.cat(
[common_inputs["""attention_mask"""], torch.ones(UpperCamelCase , UpperCamelCase , dtype=UpperCamelCase )] , dim=1 )
__UpperCAmelCase : List[Any] = [
(torch.zeros(UpperCamelCase ), torch.zeros(UpperCamelCase )) for _ in range(UpperCamelCase )
]
return common_inputs
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int = -1 , UpperCamelCase : int = -1 , UpperCamelCase : bool = False , UpperCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
__UpperCAmelCase : Dict = compute_effective_axis_dimension(
UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__UpperCAmelCase : Any = tokenizer.num_special_tokens_to_add(UpperCamelCase )
__UpperCAmelCase : int = compute_effective_axis_dimension(
UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase )
# Generate dummy inputs according to compute batch and sequence
__UpperCAmelCase : Optional[int] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size
__UpperCAmelCase : List[str] = dict(tokenizer(UpperCamelCase , return_tensors=UpperCamelCase ) )
return common_inputs
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : int = -1 , UpperCamelCase : int = -1 , UpperCamelCase : bool = False , UpperCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
__UpperCAmelCase : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
UpperCamelCase , batch_size=UpperCamelCase , seq_length=UpperCamelCase , is_pair=UpperCamelCase , framework=UpperCamelCase )
elif self.task == "causal-lm":
__UpperCAmelCase : List[Any] = self._generate_dummy_inputs_for_causal_lm(
UpperCamelCase , batch_size=UpperCamelCase , seq_length=UpperCamelCase , is_pair=UpperCamelCase , framework=UpperCamelCase )
else:
__UpperCAmelCase : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
UpperCamelCase , batch_size=UpperCamelCase , seq_length=UpperCamelCase , is_pair=UpperCamelCase , framework=UpperCamelCase )
return common_inputs
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
__UpperCAmelCase : Union[str, Any] = super()._flatten_past_key_values_(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
else:
__UpperCAmelCase : str = super(UpperCamelCase , self )._flatten_past_key_values_(
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
| 320
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""keras_nlp"""]
def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
requires_backends(self , ["""keras_nlp"""] )
| 320
| 1
|
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase ( _UpperCamelCase : list[float] , _UpperCamelCase : list[float] ) -> float:
'''simple docstring'''
__UpperCAmelCase : Tuple = sorted(numsa + numsa )
__UpperCAmelCase ,__UpperCAmelCase : Dict = divmod(len(_UpperCamelCase ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase : List[Any] = [float(x) for x in input('Enter the elements of first array: ').split()]
UpperCAmelCase : Optional[int] = [float(x) for x in input('Enter the elements of second array: ').split()]
print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
| 320
|
"""simple docstring"""
UpperCAmelCase : Dict = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
def lowerCamelCase ( _UpperCamelCase : bytes ) -> bytes:
'''simple docstring'''
if not isinstance(_UpperCamelCase , _UpperCamelCase ):
__UpperCAmelCase : Any = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(_UpperCamelCase )
__UpperCAmelCase : str = """""".join(bin(_UpperCamelCase )[2:].zfill(8 ) for byte in data )
__UpperCAmelCase : int = len(_UpperCamelCase ) % 6 != 0
if padding_needed:
# The padding that will be added later
__UpperCAmelCase : Dict = b"""=""" * ((6 - len(_UpperCamelCase ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_UpperCamelCase ) % 6)
else:
__UpperCAmelCase : List[str] = b""""""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(_UpperCamelCase ) , 6 ) ).encode()
+ padding
)
def lowerCamelCase ( _UpperCamelCase : str ) -> bytes:
'''simple docstring'''
if not isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ):
__UpperCAmelCase : Tuple = (
"""argument should be a bytes-like object or ASCII string, """
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(_UpperCamelCase )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_UpperCamelCase , _UpperCamelCase ):
try:
__UpperCAmelCase : Optional[Any] = encoded_data.decode("""utf-8""" )
except UnicodeDecodeError:
raise ValueError("""base64 encoded data should only contain ASCII characters""" )
__UpperCAmelCase : str = encoded_data.count("""=""" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
__UpperCAmelCase : List[str] = encoded_data[:-padding]
__UpperCAmelCase : int = """""".join(
bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
__UpperCAmelCase : Optional[Any] = """""".join(
bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )
__UpperCAmelCase : List[Any] = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(_UpperCamelCase ) , 8 )
]
return bytes(_UpperCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320
| 1
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
UpperCAmelCase : List[Any] = logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : List[Any] , *UpperCamelCase : Dict , **UpperCamelCase : int ):
'''simple docstring'''
warnings.warn(
"""The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use DeformableDetrImageProcessor instead.""" , UpperCamelCase , )
super().__init__(*UpperCamelCase , **UpperCamelCase )
| 320
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
UpperCAmelCase : str = logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ):
'''simple docstring'''
warnings.warn(
"""The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , )
super().__init__(*UpperCamelCase , **UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def lowerCamelCase ( _UpperCamelCase : str ) -> Optional[int]:
'''simple docstring'''
if isinstance(_UpperCamelCase , collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class lowerCamelCase__ :
"""simple docstring"""
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : str , UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : float ):
'''simple docstring'''
__UpperCAmelCase : Any = np.abs((a - b) ).max()
self.assertLessEqual(UpperCamelCase , UpperCamelCase , f'''Difference between torch and flax is {diff} (>= {tol}).''' )
def lowerCamelCase__ ( self : Dict , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple=None , **UpperCamelCase : Tuple ):
'''simple docstring'''
__UpperCAmelCase : int = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = FlaxVisionTextDualEncoderModel(UpperCamelCase )
__UpperCAmelCase : str = model(input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Any=None , **UpperCamelCase : Dict ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = self.get_vision_text_model(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model}
__UpperCAmelCase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase )
__UpperCAmelCase : int = model(input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Union[str, Any]=None , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : List[str] = self.get_vision_text_model(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Dict = {"""vision_model""": vision_model, """text_model""": text_model}
__UpperCAmelCase : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase )
__UpperCAmelCase : Optional[int] = model(input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase )
__UpperCAmelCase : Optional[int] = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCamelCase )
__UpperCAmelCase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase )
__UpperCAmelCase : List[Any] = model(input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase )
__UpperCAmelCase : Any = after_output[0]
__UpperCAmelCase : List[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(UpperCamelCase , 1e-3 )
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=None , **UpperCamelCase : int ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : int = self.get_vision_text_model(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model}
__UpperCAmelCase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase )
__UpperCAmelCase : List[str] = model(
input_ids=UpperCamelCase , pixel_values=UpperCamelCase , attention_mask=UpperCamelCase , output_attentions=UpperCamelCase )
__UpperCAmelCase : Any = output.vision_model_output.attentions
self.assertEqual(len(UpperCamelCase ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
__UpperCAmelCase : Dict = to_atuple(vision_model.config.image_size )
__UpperCAmelCase : Any = to_atuple(vision_model.config.patch_size )
__UpperCAmelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
__UpperCAmelCase : List[str] = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
__UpperCAmelCase : Union[str, Any] = output.text_model_output.attentions
self.assertEqual(len(UpperCamelCase ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Dict ):
'''simple docstring'''
pt_model.to(UpperCamelCase )
pt_model.eval()
# prepare inputs
__UpperCAmelCase : List[Any] = inputs_dict
__UpperCAmelCase : List[str] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
__UpperCAmelCase : str = pt_model(**UpperCamelCase ).to_tuple()
__UpperCAmelCase : List[Any] = fx_model(**UpperCamelCase ).to_tuple()
self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(UpperCamelCase , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(UpperCamelCase )
__UpperCAmelCase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase , from_pt=UpperCamelCase )
__UpperCAmelCase : Dict = fx_model_loaded(**UpperCamelCase ).to_tuple()
self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(UpperCamelCase , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(UpperCamelCase , from_flax=UpperCamelCase )
pt_model_loaded.to(UpperCamelCase )
pt_model_loaded.eval()
with torch.no_grad():
__UpperCAmelCase : int = pt_model_loaded(**UpperCamelCase ).to_tuple()
self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(UpperCamelCase , pt_output_loaded.numpy() , 4e-2 )
def lowerCamelCase__ ( self : int , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : int ):
'''simple docstring'''
__UpperCAmelCase : List[str] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : List[Any] = VisionTextDualEncoderModel(UpperCamelCase )
__UpperCAmelCase : List[str] = FlaxVisionTextDualEncoderModel(UpperCamelCase )
__UpperCAmelCase : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCamelCase )
__UpperCAmelCase : List[Any] = fx_state
self.check_pt_flax_equivalence(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : int , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : Any = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : int = VisionTextDualEncoderModel(UpperCamelCase )
__UpperCAmelCase : Optional[Any] = FlaxVisionTextDualEncoderModel(UpperCamelCase )
__UpperCAmelCase : Optional[int] = load_flax_weights_in_pytorch_model(UpperCamelCase , fx_model.params )
self.check_pt_flax_equivalence(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**UpperCamelCase )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
self.check_save_load(**UpperCamelCase )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**UpperCamelCase )
@is_pt_flax_cross_test
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.prepare_config_and_inputs()
__UpperCAmelCase : Tuple = config_inputs_dict.pop("""vision_config""" )
__UpperCAmelCase : Optional[Any] = config_inputs_dict.pop("""text_config""" )
__UpperCAmelCase : Dict = config_inputs_dict
self.check_equivalence_pt_to_flax(UpperCamelCase , UpperCamelCase , UpperCamelCase )
self.check_equivalence_flax_to_pt(UpperCamelCase , UpperCamelCase , UpperCamelCase )
@slow
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Tuple = self.get_pretrained_model_and_inputs()
__UpperCAmelCase : str = model_a(**UpperCamelCase )
__UpperCAmelCase : int = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(UpperCamelCase )
__UpperCAmelCase : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Dict = model_a(**UpperCamelCase )
__UpperCAmelCase : Any = after_outputs[0]
__UpperCAmelCase : Tuple = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(UpperCamelCase , 1e-5 )
@require_flax
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=UpperCamelCase , text_from_pt=UpperCamelCase , )
__UpperCAmelCase : List[Any] = 13
__UpperCAmelCase : Union[str, Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
__UpperCAmelCase : Optional[int] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
__UpperCAmelCase : Tuple = random_attention_mask([batch_size, 4] )
__UpperCAmelCase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = FlaxViTModel(UpperCamelCase )
__UpperCAmelCase : Dict = FlaxBertModel(UpperCamelCase )
return vision_model, text_model
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = FlaxViTModelTester(self )
__UpperCAmelCase : Optional[Any] = FlaxBertModelTester(self )
__UpperCAmelCase : Optional[Any] = vit_model_tester.prepare_config_and_inputs()
__UpperCAmelCase : Optional[int] = bert_model_tester.prepare_config_and_inputs()
__UpperCAmelCase ,__UpperCAmelCase : Dict = vision_config_and_inputs
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=UpperCamelCase , text_from_pt=UpperCamelCase , )
__UpperCAmelCase : str = 13
__UpperCAmelCase : Tuple = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
__UpperCAmelCase : Optional[int] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
__UpperCAmelCase : Dict = random_attention_mask([batch_size, 4] )
__UpperCAmelCase : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Dict , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FlaxCLIPVisionModel(UpperCamelCase )
__UpperCAmelCase : List[str] = FlaxBertModel(UpperCamelCase )
return vision_model, text_model
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = FlaxCLIPVisionModelTester(self )
__UpperCAmelCase : Any = FlaxBertModelTester(self )
__UpperCAmelCase : str = clip_model_tester.prepare_config_and_inputs()
__UpperCAmelCase : Optional[Any] = bert_model_tester.prepare_config_and_inputs()
__UpperCAmelCase ,__UpperCAmelCase : int = vision_config_and_inputs
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 )
__UpperCAmelCase : Tuple = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" )
__UpperCAmelCase : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__UpperCAmelCase : List[Any] = processor(
text=["""una foto di un gatto""", """una foto di un cane"""] , images=UpperCamelCase , padding=UpperCamelCase , return_tensors="""np""" )
__UpperCAmelCase : List[Any] = model(**UpperCamelCase )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
__UpperCAmelCase : int = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , UpperCamelCase , atol=1e-3 ) )
| 320
|
"""simple docstring"""
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = LEDTokenizer
__a = LEDTokenizerFast
__a = True
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
super().setUp()
__UpperCAmelCase : Tuple = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
__UpperCAmelCase : str = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) )
__UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
__UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""}
__UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(UpperCamelCase ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(UpperCamelCase ) )
def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : int ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase )
def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : List[str] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase )
def lowerCamelCase__ ( self : str , UpperCamelCase : Any ):
'''simple docstring'''
return "lower newer", "lower newer"
@cached_property
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" )
@cached_property
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" )
@require_torch
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
__UpperCAmelCase : Union[str, Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Any = tokenizer(UpperCamelCase , max_length=len(UpperCamelCase ) , padding=UpperCamelCase , return_tensors="""pt""" )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
__UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0]
self.assertListEqual(UpperCamelCase , UpperCamelCase )
@require_torch
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors="""pt""" )
self.assertIn("""input_ids""" , UpperCamelCase )
self.assertIn("""attention_mask""" , UpperCamelCase )
self.assertNotIn("""labels""" , UpperCamelCase )
self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase )
@require_torch
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = [
"""Summary of the text.""",
"""Another summary.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Optional[Any] = tokenizer(text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
@require_torch
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : str = tokenizer(
["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""pt""" )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
self.assertEqual(batch.input_ids.shape , (2, 5_122) )
@require_torch
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization."""]
__UpperCAmelCase : int = [
"""Summary of the text.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""pt""" )
__UpperCAmelCase : Tuple = tokenizer(text_target=UpperCamelCase , return_tensors="""pt""" )
__UpperCAmelCase : Optional[Any] = inputs["""input_ids"""]
__UpperCAmelCase : List[str] = targets["""input_ids"""]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Any = ["""Summary of the text.""", """Another summary."""]
__UpperCAmelCase : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
__UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , padding=UpperCamelCase )
__UpperCAmelCase : str = [[0] * len(UpperCamelCase ) for x in encoded_output["""input_ids"""]]
__UpperCAmelCase : List[Any] = tokenizer.pad(UpperCamelCase )
self.assertSequenceEqual(outputs["""global_attention_mask"""] , UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase )
__UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase )
__UpperCAmelCase : Any = """A, <mask> AllenNLP sentence."""
__UpperCAmelCase : Dict = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase )
__UpperCAmelCase : List[Any] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase )
self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) )
self.assertEqual(
sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , )
__UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] )
__UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] )
self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
self.assertSequenceEqual(
UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
| 320
| 1
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
UpperCAmelCase : Tuple = logging.get_logger(__name__)
UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCAmelCase : Dict = [
'small',
'small-base',
'medium',
'medium-base',
'intermediate',
'intermediate-base',
'large',
'large-base',
'xlarge',
'xlarge-base',
]
UpperCAmelCase : Optional[int] = {
'vocab_file': {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt',
'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt',
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt',
'funnel-transformer/medium-base': (
'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt'
),
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt',
'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt',
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt',
'funnel-transformer/xlarge-base': (
'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json',
'funnel-transformer/small-base': (
'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json'
),
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json',
'funnel-transformer/medium-base': (
'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json'
),
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json',
'funnel-transformer/large-base': (
'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json'
),
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json',
'funnel-transformer/xlarge-base': (
'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json'
),
},
}
UpperCAmelCase : Optional[int] = {F"funnel-transformer/{name}": 512 for name in _model_names}
UpperCAmelCase : Dict = {F"funnel-transformer/{name}": {'do_lower_case': True} for name in _model_names}
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = VOCAB_FILES_NAMES
__a = PRETRAINED_VOCAB_FILES_MAP
__a = PRETRAINED_INIT_CONFIGURATION
__a = FunnelTokenizer
__a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a = 2
def __init__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Union[str, Any]="<unk>" , UpperCamelCase : Any="<sep>" , UpperCamelCase : Union[str, Any]="<pad>" , UpperCamelCase : str="<cls>" , UpperCamelCase : Optional[Any]="<mask>" , UpperCamelCase : int="<s>" , UpperCamelCase : List[Any]="</s>" , UpperCamelCase : List[str]=True , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Tuple=None , UpperCamelCase : Dict="##" , **UpperCamelCase : str , ):
'''simple docstring'''
super().__init__(
UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , clean_text=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , wordpieces_prefix=UpperCamelCase , **UpperCamelCase , )
__UpperCAmelCase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCamelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCamelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCamelCase ) != tokenize_chinese_chars
):
__UpperCAmelCase : List[str] = getattr(UpperCamelCase , normalizer_state.pop("""type""" ) )
__UpperCAmelCase : Dict = do_lower_case
__UpperCAmelCase : int = strip_accents
__UpperCAmelCase : Optional[int] = tokenize_chinese_chars
__UpperCAmelCase : Optional[int] = normalizer_class(**UpperCamelCase )
__UpperCAmelCase : Optional[int] = do_lower_case
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : List[str]=None ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [self.sep_token_id]
__UpperCAmelCase : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase__ ( self : str , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ):
'''simple docstring'''
__UpperCAmelCase : List[str] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase )
return tuple(UpperCamelCase )
| 320
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : List[Any]=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : int=99 , UpperCamelCase : Any=[1, 1, 2] , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Union[str, Any]=8 , UpperCamelCase : int=37 , UpperCamelCase : Optional[Any]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : int=0.0 , UpperCamelCase : Union[str, Any]=512 , UpperCamelCase : Any=3 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : str=None , UpperCamelCase : Tuple=False , ):
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : int = batch_size
__UpperCAmelCase : str = seq_length
__UpperCAmelCase : Optional[Any] = is_training
__UpperCAmelCase : Optional[Any] = use_input_mask
__UpperCAmelCase : Tuple = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Tuple = vocab_size
__UpperCAmelCase : Optional[int] = block_sizes
__UpperCAmelCase : Optional[Any] = num_decoder_layers
__UpperCAmelCase : Union[str, Any] = d_model
__UpperCAmelCase : Dict = n_head
__UpperCAmelCase : Optional[Any] = d_head
__UpperCAmelCase : Dict = d_inner
__UpperCAmelCase : Any = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout
__UpperCAmelCase : List[Any] = attention_dropout
__UpperCAmelCase : str = activation_dropout
__UpperCAmelCase : Union[str, Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : str = 2
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : List[Any] = num_choices
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Dict = initializer_std
# Used in the tests to check the size of the first attention layer
__UpperCAmelCase : Dict = n_head
# Used in the tests to check the size of the first hidden state
__UpperCAmelCase : Dict = self.d_model
# Used in the tests to check the number of output hidden states/attentions
__UpperCAmelCase : Dict = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
__UpperCAmelCase : List[Any] = self.num_hidden_layers + 2
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[str] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Dict = None
__UpperCAmelCase : Optional[Any] = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : str = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCamelCase__ ( self : Any , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = TFFunnelModel(config=UpperCamelCase )
__UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : List[str] = model(UpperCamelCase )
__UpperCAmelCase : List[Any] = [input_ids, input_mask]
__UpperCAmelCase : Dict = model(UpperCamelCase )
__UpperCAmelCase : Tuple = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
__UpperCAmelCase : int = False
__UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
__UpperCAmelCase : Any = False
__UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase )
__UpperCAmelCase : List[str] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Any , ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = TFFunnelBaseModel(config=UpperCamelCase )
__UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Optional[Any] = model(UpperCamelCase )
__UpperCAmelCase : int = [input_ids, input_mask]
__UpperCAmelCase : int = model(UpperCamelCase )
__UpperCAmelCase : List[Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
__UpperCAmelCase : List[Any] = False
__UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) )
__UpperCAmelCase : int = False
__UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase )
__UpperCAmelCase : str = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Tuple = TFFunnelForPreTraining(config=UpperCamelCase )
__UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : int = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : int , ):
'''simple docstring'''
__UpperCAmelCase : int = TFFunnelForMaskedLM(config=UpperCamelCase )
__UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Optional[Any] = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_labels
__UpperCAmelCase : Optional[Any] = TFFunnelForSequenceClassification(config=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Tuple = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int , ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : str = TFFunnelForMultipleChoice(config=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : str = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : int = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : List[str] = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
__UpperCAmelCase : int = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Any , ):
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : str = TFFunnelForTokenClassification(config=UpperCamelCase )
__UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : int = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase__ ( self : str , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Any = TFFunnelForQuestionAnswering(config=UpperCamelCase )
__UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Any = model(UpperCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,
) : Dict = config_and_inputs
__UpperCAmelCase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( A , A , unittest.TestCase ):
"""simple docstring"""
__a = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
__a = (
{
"""feature-extraction""": (TFFunnelBaseModel, TFFunnelModel),
"""fill-mask""": TFFunnelForMaskedLM,
"""question-answering""": TFFunnelForQuestionAnswering,
"""text-classification""": TFFunnelForSequenceClassification,
"""token-classification""": TFFunnelForTokenClassification,
"""zero-shot""": TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
__a = False
__a = False
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = TFFunnelModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCamelCase )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCamelCase )
@require_tf
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
__a = False
__a = False
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : List[str] = TFFunnelModelTester(self , base=UpperCamelCase )
__UpperCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*UpperCamelCase )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 320
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = 0
while b > 0:
if b & 1:
__UpperCAmelCase : int = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 320
| 1
|
"""simple docstring"""
import os
from pathlib import Path
def lowerCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
from torch.utils.cpp_extension import load
__UpperCAmelCase : Any = Path(_UpperCamelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
__UpperCAmelCase : List[str] = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ),
os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ),
]
]
load(
"""MultiScaleDeformableAttention""" , _UpperCamelCase , with_cuda=_UpperCamelCase , extra_include_paths=[str(_UpperCamelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[
"""-DCUDA_HAS_FP16=1""",
"""-D__CUDA_NO_HALF_OPERATORS__""",
"""-D__CUDA_NO_HALF_CONVERSIONS__""",
"""-D__CUDA_NO_HALF2_OPERATORS__""",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 320
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = ["""image_processor""", """tokenizer"""]
__a = """AutoImageProcessor"""
__a = """AutoTokenizer"""
def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ):
'''simple docstring'''
super().__init__(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : str = self.image_processor
def __call__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=None , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
__UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )
if images is not None:
__UpperCAmelCase : Optional[Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )
if text is not None and images is not None:
__UpperCAmelCase : str = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase )
def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ):
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : int , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase )
@property
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 320
| 1
|
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
UpperCAmelCase : Optional[int] = datasets.logging.get_logger(__name__)
UpperCAmelCase : Any = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
UpperCAmelCase : str = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
UpperCAmelCase : Dict = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str]=False , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : List[Any]=True , _UpperCamelCase : List[str]=False , _UpperCamelCase : Optional[int]="dummy_doc" ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = {doc: key_lines}
__UpperCAmelCase : Union[str, Any] = {doc: sys_lines}
__UpperCAmelCase : List[str] = {}
__UpperCAmelCase : Tuple = 0
__UpperCAmelCase : Optional[int] = 0
__UpperCAmelCase : List[str] = 0
__UpperCAmelCase : Optional[Any] = 0
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : Tuple = 0
__UpperCAmelCase ,__UpperCAmelCase : List[Any] = reader.get_doc_mentions(_UpperCamelCase , key_doc_lines[doc] , _UpperCamelCase )
key_singletons_num += singletons_num
if NP_only or min_span:
__UpperCAmelCase : List[str] = reader.set_annotated_parse_trees(_UpperCamelCase , key_doc_lines[doc] , _UpperCamelCase , _UpperCamelCase )
__UpperCAmelCase ,__UpperCAmelCase : List[str] = reader.get_doc_mentions(_UpperCamelCase , sys_doc_lines[doc] , _UpperCamelCase )
sys_singletons_num += singletons_num
if NP_only or min_span:
__UpperCAmelCase : Dict = reader.set_annotated_parse_trees(_UpperCamelCase , key_doc_lines[doc] , _UpperCamelCase , _UpperCamelCase )
if remove_nested:
__UpperCAmelCase ,__UpperCAmelCase : Any = reader.remove_nested_coref_mentions(_UpperCamelCase , _UpperCamelCase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
__UpperCAmelCase ,__UpperCAmelCase : Dict = reader.remove_nested_coref_mentions(_UpperCamelCase , _UpperCamelCase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
__UpperCAmelCase : Union[str, Any] = reader.get_mention_assignments(_UpperCamelCase , _UpperCamelCase )
__UpperCAmelCase : Optional[Any] = reader.get_mention_assignments(_UpperCamelCase , _UpperCamelCase )
__UpperCAmelCase : Dict = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
f'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' )
logger.info(
"""Number of resulting singleton clusters in the key """
f'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' )
if not keep_singletons:
logger.info(
f'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '''
"""files, respectively""" )
return doc_coref_infos
def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = get_coref_infos(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
__UpperCAmelCase : List[Any] = {}
__UpperCAmelCase : Union[str, Any] = 0
__UpperCAmelCase : str = 0
for name, metric in metrics:
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = evaluator.evaluate_documents(_UpperCamelCase , _UpperCamelCase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({f'''{name}/recall''': recall, f'''{name}/precision''': precision, f'''{name}/f1''': fa} )
logger.info(
name.ljust(1_0 ) , f'''Recall: {recall * 1_0_0:.2f}''' , f''' Precision: {precision * 1_0_0:.2f}''' , f''' F1: {fa * 1_0_0:.2f}''' , )
if conll_subparts_num == 3:
__UpperCAmelCase : Tuple = (conll / 3) * 1_0_0
logger.info(f'''CoNLL score: {conll:.2f}''' )
output_scores.update({"""conll_score""": conll} )
return output_scores
def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
__UpperCAmelCase : str = line.split()[5]
if not parse_col == "-":
__UpperCAmelCase : List[str] = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
"""simple docstring"""
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Sequence(datasets.Value("""string""" ) ),
} ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def lowerCamelCase__ ( self : int , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=True , UpperCamelCase : List[Any]=False , UpperCamelCase : Optional[int]=False , UpperCamelCase : Union[str, Any]=False ):
'''simple docstring'''
__UpperCAmelCase : Tuple = [
("""mentions""", evaluator.mentions),
("""muc""", evaluator.muc),
("""bcub""", evaluator.b_cubed),
("""ceafe""", evaluator.ceafe),
("""lea""", evaluator.lea),
]
if min_span:
__UpperCAmelCase : str = util.check_gold_parse_annotation(UpperCamelCase )
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
__UpperCAmelCase : int = evaluate(
key_lines=UpperCamelCase , sys_lines=UpperCamelCase , metrics=UpperCamelCase , NP_only=UpperCamelCase , remove_nested=UpperCamelCase , keep_singletons=UpperCamelCase , min_span=UpperCamelCase , )
return score
| 320
|
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase ( _UpperCamelCase : list[float] , _UpperCamelCase : list[float] ) -> float:
'''simple docstring'''
__UpperCAmelCase : Tuple = sorted(numsa + numsa )
__UpperCAmelCase ,__UpperCAmelCase : Dict = divmod(len(_UpperCamelCase ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase : List[Any] = [float(x) for x in input('Enter the elements of first array: ').split()]
UpperCAmelCase : Optional[int] = [float(x) for x in input('Enter the elements of second array: ').split()]
print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
| 320
| 1
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase : int = logging.get_logger(__name__)
def lowerCamelCase ( _UpperCamelCase : Any ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[str] = DPTConfig(embedding_type="""hybrid""" )
if "large" in checkpoint_url:
__UpperCAmelCase : Optional[int] = 1_0_2_4
__UpperCAmelCase : List[Any] = 4_0_9_6
__UpperCAmelCase : int = 2_4
__UpperCAmelCase : List[str] = 1_6
__UpperCAmelCase : Optional[Any] = [5, 1_1, 1_7, 2_3]
__UpperCAmelCase : Optional[Any] = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4]
__UpperCAmelCase : Union[str, Any] = (1, 3_8_4, 3_8_4)
if "nyu" or "midas" in checkpoint_url:
__UpperCAmelCase : List[str] = 7_6_8
__UpperCAmelCase : Dict = [1, 1, 1, 0.5]
__UpperCAmelCase : Any = [2_5_6, 5_1_2, 7_6_8, 7_6_8]
__UpperCAmelCase : List[str] = 1_5_0
__UpperCAmelCase : Union[str, Any] = 1_6
__UpperCAmelCase : Optional[Any] = (1, 3_8_4, 3_8_4)
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : Dict = """project"""
if "ade" in checkpoint_url:
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Dict = 7_6_8
__UpperCAmelCase : Optional[Any] = [1, 1, 1, 0.5]
__UpperCAmelCase : List[str] = 1_5_0
__UpperCAmelCase : Union[str, Any] = 1_6
__UpperCAmelCase : List[str] = """huggingface/label-files"""
__UpperCAmelCase : Optional[int] = """ade20k-id2label.json"""
__UpperCAmelCase : int = json.load(open(cached_download(hf_hub_url(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) )
__UpperCAmelCase : Optional[int] = {int(_UpperCamelCase ): v for k, v in idalabel.items()}
__UpperCAmelCase : str = idalabel
__UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : List[str] = [1, 1_5_0, 4_8_0, 4_8_0]
return config, expected_shape
def lowerCamelCase ( _UpperCamelCase : int ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : int = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(_UpperCamelCase , _UpperCamelCase )
def lowerCamelCase ( _UpperCamelCase : str ) -> List[str]:
'''simple docstring'''
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
__UpperCAmelCase : List[str] = name.replace("""pretrained.model""" , """dpt.encoder""" )
if "pretrained.model" in name:
__UpperCAmelCase : str = name.replace("""pretrained.model""" , """dpt.embeddings""" )
if "patch_embed" in name:
__UpperCAmelCase : Optional[Any] = name.replace("""patch_embed""" , """""" )
if "pos_embed" in name:
__UpperCAmelCase : Dict = name.replace("""pos_embed""" , """position_embeddings""" )
if "attn.proj" in name:
__UpperCAmelCase : Optional[int] = name.replace("""attn.proj""" , """attention.output.dense""" )
if "proj" in name and "project" not in name:
__UpperCAmelCase : Dict = name.replace("""proj""" , """projection""" )
if "blocks" in name:
__UpperCAmelCase : Optional[int] = name.replace("""blocks""" , """layer""" )
if "mlp.fc1" in name:
__UpperCAmelCase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__UpperCAmelCase : Dict = name.replace("""mlp.fc2""" , """output.dense""" )
if "norm1" in name and "backbone" not in name:
__UpperCAmelCase : Dict = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name and "backbone" not in name:
__UpperCAmelCase : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" )
if "scratch.output_conv" in name:
__UpperCAmelCase : Tuple = name.replace("""scratch.output_conv""" , """head""" )
if "scratch" in name:
__UpperCAmelCase : Tuple = name.replace("""scratch""" , """neck""" )
if "layer1_rn" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("""layer1_rn""" , """convs.0""" )
if "layer2_rn" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("""layer2_rn""" , """convs.1""" )
if "layer3_rn" in name:
__UpperCAmelCase : str = name.replace("""layer3_rn""" , """convs.2""" )
if "layer4_rn" in name:
__UpperCAmelCase : Dict = name.replace("""layer4_rn""" , """convs.3""" )
if "refinenet" in name:
__UpperCAmelCase : Optional[Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
__UpperCAmelCase : List[Any] = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
__UpperCAmelCase : Dict = name.replace("""out_conv""" , """projection""" )
if "resConfUnit1" in name:
__UpperCAmelCase : Tuple = name.replace("""resConfUnit1""" , """residual_layer1""" )
if "resConfUnit2" in name:
__UpperCAmelCase : List[Any] = name.replace("""resConfUnit2""" , """residual_layer2""" )
if "conv1" in name:
__UpperCAmelCase : Optional[int] = name.replace("""conv1""" , """convolution1""" )
if "conv2" in name:
__UpperCAmelCase : Dict = name.replace("""conv2""" , """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
__UpperCAmelCase : Optional[int] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
__UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
__UpperCAmelCase : int = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
__UpperCAmelCase : Any = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
__UpperCAmelCase : List[Any] = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
__UpperCAmelCase : Dict = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
__UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
__UpperCAmelCase : Tuple = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
__UpperCAmelCase : Optional[int] = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
__UpperCAmelCase : int = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
__UpperCAmelCase : List[str] = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
__UpperCAmelCase : str = name.replace("""pretrained""" , """dpt""" )
if "bn" in name:
__UpperCAmelCase : str = name.replace("""bn""" , """batch_norm""" )
if "head" in name:
__UpperCAmelCase : int = name.replace("""head""" , """head.head""" )
if "encoder.norm" in name:
__UpperCAmelCase : Optional[int] = name.replace("""encoder.norm""" , """layernorm""" )
if "auxlayer" in name:
__UpperCAmelCase : Tuple = name.replace("""auxlayer""" , """auxiliary_head.head""" )
if "backbone" in name:
__UpperCAmelCase : Dict = name.replace("""backbone""" , """backbone.bit.encoder""" )
if ".." in name:
__UpperCAmelCase : Optional[Any] = name.replace("""..""" , """.""" )
if "stem.conv" in name:
__UpperCAmelCase : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
__UpperCAmelCase : Optional[int] = name.replace("""blocks""" , """layers""" )
if "convolution" in name and "backbone" in name:
__UpperCAmelCase : Optional[Any] = name.replace("""convolution""" , """conv""" )
if "layer" in name and "backbone" in name:
__UpperCAmelCase : str = name.replace("""layer""" , """layers""" )
if "backbone.bit.encoder.bit" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" )
if "embedder.conv" in name:
__UpperCAmelCase : List[Any] = name.replace("""embedder.conv""" , """embedder.convolution""" )
if "backbone.bit.encoder.stem.norm" in name:
__UpperCAmelCase : List[Any] = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" )
return name
def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] ) -> List[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__UpperCAmelCase : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
__UpperCAmelCase : str = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :]
__UpperCAmelCase : Tuple = in_proj_bias[: config.hidden_size]
__UpperCAmelCase : List[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__UpperCAmelCase : Optional[int] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__UpperCAmelCase : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
__UpperCAmelCase : str = in_proj_bias[-config.hidden_size :]
def lowerCamelCase ( ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__UpperCAmelCase : Optional[int] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw )
return im
@torch.no_grad()
def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple ) -> str:
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : List[Any] = get_dpt_config(_UpperCamelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
__UpperCAmelCase : Dict = torch.load(_UpperCamelCase , map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(_UpperCamelCase )
# rename keys
for key in state_dict.copy().keys():
__UpperCAmelCase : Tuple = state_dict.pop(_UpperCamelCase )
__UpperCAmelCase : Optional[int] = val
# read in qkv matrices
read_in_q_k_v(_UpperCamelCase , _UpperCamelCase )
# load HuggingFace model
__UpperCAmelCase : Any = DPTForSemanticSegmentation(_UpperCamelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(_UpperCamelCase )
model.load_state_dict(_UpperCamelCase )
model.eval()
# Check outputs on an image
__UpperCAmelCase : Optional[int] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4
__UpperCAmelCase : Union[str, Any] = DPTImageProcessor(size=_UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = prepare_img()
__UpperCAmelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""pt""" )
# forward pass
__UpperCAmelCase : int = model(**_UpperCamelCase ).logits if """ade""" in checkpoint_url else model(**_UpperCamelCase ).predicted_depth
if show_prediction:
__UpperCAmelCase : Optional[int] = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=_UpperCamelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show()
if pytorch_dump_folder_path is not None:
Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_UpperCamelCase )
if push_to_hub:
model.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
if __name__ == "__main__":
UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
parser.add_argument(
'--show_prediction',
action='store_true',
)
UpperCAmelCase : List[str] = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 320
|
"""simple docstring"""
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = """hf-internal-testing/tiny-random-t5"""
__UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Optional[int] = tokenizer("""This is me""" , return_tensors="""pt""" )
__UpperCAmelCase : int = model.to_bettertransformer()
self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
__UpperCAmelCase : Tuple = model.generate(**UpperCamelCase )
__UpperCAmelCase : Tuple = model.reverse_bettertransformer()
self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCamelCase )
__UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase )
self.assertFalse(
any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
__UpperCAmelCase : Tuple = model_reloaded.generate(**UpperCamelCase )
self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase ) )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Any = """hf-internal-testing/tiny-random-t5"""
__UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Tuple = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(UpperCamelCase ):
model.save_pretrained(UpperCamelCase )
__UpperCAmelCase : Tuple = model.reverse_bettertransformer()
model.save_pretrained(UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
UpperCAmelCase : Optional[int] = 'pt'
elif is_tf_available():
UpperCAmelCase : Tuple = 'tf'
else:
UpperCAmelCase : Tuple = 'jax'
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = PerceiverTokenizer
__a = False
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
super().setUp()
__UpperCAmelCase : List[str] = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" )
def lowerCamelCase__ ( self : int , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict=False , UpperCamelCase : str=20 , UpperCamelCase : str=5 ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = []
for i in range(len(UpperCamelCase ) ):
try:
__UpperCAmelCase : List[str] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__UpperCAmelCase : Optional[Any] = list(filter(lambda UpperCamelCase : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , UpperCamelCase ) )
__UpperCAmelCase : List[str] = list(filter(lambda UpperCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase ) , UpperCamelCase ) )
if max_length is not None and len(UpperCamelCase ) > max_length:
__UpperCAmelCase : int = toks[:max_length]
if min_length is not None and len(UpperCamelCase ) < min_length and len(UpperCamelCase ) > 0:
while len(UpperCamelCase ) < min_length:
__UpperCAmelCase : Optional[Any] = toks + toks
# toks_str = [t[1] for t in toks]
__UpperCAmelCase : Union[str, Any] = [t[0] for t in toks]
# Ensure consistency
__UpperCAmelCase : Any = tokenizer.decode(UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase )
if " " not in output_txt and len(UpperCamelCase ) > 1:
__UpperCAmelCase : Dict = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase )
+ """ """
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase )
)
if with_prefix_space:
__UpperCAmelCase : str = """ """ + output_txt
__UpperCAmelCase : int = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
return output_txt, output_ids
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : str = self.perceiver_tokenizer
__UpperCAmelCase : int = """Unicode €."""
__UpperCAmelCase : int = tokenizer(UpperCamelCase )
__UpperCAmelCase : Tuple = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded["""input_ids"""] , UpperCamelCase )
# decoding
__UpperCAmelCase : Optional[int] = tokenizer.decode(UpperCamelCase )
self.assertEqual(UpperCamelCase , """[CLS]Unicode €.[SEP]""" )
__UpperCAmelCase : str = tokenizer("""e è é ê ë""" )
__UpperCAmelCase : int = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded["""input_ids"""] , UpperCamelCase )
# decoding
__UpperCAmelCase : Tuple = tokenizer.decode(UpperCamelCase )
self.assertEqual(UpperCamelCase , """[CLS]e è é ê ë[SEP]""" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : List[str] = self.perceiver_tokenizer
__UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
# fmt: off
__UpperCAmelCase : Tuple = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
__UpperCAmelCase : Union[str, Any] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors=UpperCamelCase )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
if FRAMEWORK != "jax":
__UpperCAmelCase : Any = list(batch.input_ids.numpy()[0] )
else:
__UpperCAmelCase : List[str] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.perceiver_tokenizer
__UpperCAmelCase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
__UpperCAmelCase : List[Any] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors=UpperCamelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("""input_ids""" , UpperCamelCase )
self.assertIn("""attention_mask""" , UpperCamelCase )
self.assertNotIn("""decoder_input_ids""" , UpperCamelCase )
self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : str = self.perceiver_tokenizer
__UpperCAmelCase : int = [
"""Summary of the text.""",
"""Another summary.""",
]
__UpperCAmelCase : Any = tokenizer(
text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , truncation=UpperCamelCase , return_tensors=UpperCamelCase )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__UpperCAmelCase : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : List[str] = tempfile.mkdtemp()
__UpperCAmelCase : Dict = """ He is very happy, UNwant\u00E9d,running"""
__UpperCAmelCase : List[Any] = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
tokenizer.save_pretrained(UpperCamelCase )
__UpperCAmelCase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Optional[Any] = after_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
shutil.rmtree(UpperCamelCase )
__UpperCAmelCase : Dict = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : Optional[Any] = tempfile.mkdtemp()
__UpperCAmelCase : Tuple = """ He is very happy, UNwant\u00E9d,running"""
tokenizer.add_tokens(["""bim""", """bambam"""] )
__UpperCAmelCase : List[str] = tokenizer.additional_special_tokens
additional_special_tokens.append("""new_additional_special_token""" )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
__UpperCAmelCase : int = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
tokenizer.save_pretrained(UpperCamelCase )
__UpperCAmelCase : Any = tokenizer.__class__.from_pretrained(UpperCamelCase )
__UpperCAmelCase : List[Any] = after_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__UpperCAmelCase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(UpperCamelCase )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : str = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(UpperCamelCase )
with open(os.path.join(UpperCamelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
__UpperCAmelCase : List[Any] = json.load(UpperCamelCase )
with open(os.path.join(UpperCamelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
__UpperCAmelCase : List[Any] = json.load(UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = [f'''<extra_id_{i}>''' for i in range(125 )]
__UpperCAmelCase : str = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
__UpperCAmelCase : str = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
with open(os.path.join(UpperCamelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(UpperCamelCase , UpperCamelCase )
with open(os.path.join(UpperCamelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(UpperCamelCase , UpperCamelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(
UpperCamelCase , )
self.assertIn(
"""an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__UpperCAmelCase : Optional[Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=UpperCamelCase )]
__UpperCAmelCase : Dict = tokenizer_class.from_pretrained(
UpperCamelCase , additional_special_tokens=UpperCamelCase , )
self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens )
self.assertEqual(
["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ) , """�""" )
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : List[str] = self.get_tokenizers(fast=UpperCamelCase , do_lower_case=UpperCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : Optional[int] = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""]
__UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
| 320
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
UpperCAmelCase : Dict = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
| 1
|
"""simple docstring"""
import os
def lowerCamelCase ( _UpperCamelCase : str = "input.txt" ) -> int:
'''simple docstring'''
with open(os.path.join(os.path.dirname(_UpperCamelCase ) , _UpperCamelCase ) ) as input_file:
__UpperCAmelCase : Union[str, Any] = [
[int(_UpperCamelCase ) for element in line.split(""",""" )]
for line in input_file.readlines()
]
__UpperCAmelCase : List[str] = len(_UpperCamelCase )
__UpperCAmelCase : str = len(matrix[0] )
__UpperCAmelCase : List[Any] = [[-1 for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase )]
for i in range(_UpperCamelCase ):
__UpperCAmelCase : int = matrix[i][0]
for j in range(1 , _UpperCamelCase ):
for i in range(_UpperCamelCase ):
__UpperCAmelCase : List[Any] = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , _UpperCamelCase ):
__UpperCAmelCase : Tuple = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
__UpperCAmelCase : List[str] = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(F"{solution() = }")
| 320
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase : List[str] = {
'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'],
'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Tuple = [
'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'AdaptiveEmbedding',
'TransfoXLForSequenceClassification',
'TransfoXLLMHeadModel',
'TransfoXLModel',
'TransfoXLPreTrainedModel',
'load_tf_weights_in_transfo_xl',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Dict = [
'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFAdaptiveEmbedding',
'TFTransfoXLForSequenceClassification',
'TFTransfoXLLMHeadModel',
'TFTransfoXLMainLayer',
'TFTransfoXLModel',
'TFTransfoXLPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_transfo_xl import (
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
AdaptiveEmbedding,
TransfoXLForSequenceClassification,
TransfoXLLMHeadModel,
TransfoXLModel,
TransfoXLPreTrainedModel,
load_tf_weights_in_transfo_xl,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_transfo_xl import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAdaptiveEmbedding,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLMainLayer,
TFTransfoXLModel,
TFTransfoXLPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
| 1
|
"""simple docstring"""
import re
def lowerCamelCase ( _UpperCamelCase : str ) -> bool:
'''simple docstring'''
__UpperCAmelCase : str = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" )
if match := re.search(_UpperCamelCase , _UpperCamelCase ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator('+918827897895'))
| 320
|
"""simple docstring"""
def lowerCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : List[str] = 1
while len(_UpperCamelCase ) < 1E6:
constant.append(str(_UpperCamelCase ) )
i += 1
__UpperCAmelCase : List[str] = """""".join(_UpperCamelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[9_9] )
* int(constant[9_9_9] )
* int(constant[9_9_9_9] )
* int(constant[9_9_9_9_9] )
* int(constant[9_9_9_9_9_9] )
)
if __name__ == "__main__":
print(solution())
| 320
| 1
|
"""simple docstring"""
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
UpperCAmelCase : Any = logging.get_logger(__name__)
def lowerCamelCase ( ) -> int:
'''simple docstring'''
__UpperCAmelCase : str = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" )
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
__UpperCAmelCase : str = json.loads(_UpperCamelCase )
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
__UpperCAmelCase : Optional[int] = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" )
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
__UpperCAmelCase : Any = json.loads(_UpperCamelCase )
if not mpi_options.get("""sagemaker_mpi_enabled""" , _UpperCamelCase ):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec("""smdistributed""" ) is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = field(
default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
super().__post_init__()
warnings.warn(
"""`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """
"""`TrainingArguments` instead.""" , UpperCamelCase , )
@cached_property
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
logger.info("""PyTorch: setting up devices""" )
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
"""torch.distributed process group is initialized, but local_rank == -1. """
"""In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" )
if self.no_cuda:
__UpperCAmelCase : Optional[Any] = torch.device("""cpu""" )
__UpperCAmelCase : Union[str, Any] = 0
elif is_sagemaker_model_parallel_available():
__UpperCAmelCase : Tuple = smp.local_rank()
__UpperCAmelCase : Optional[Any] = torch.device("""cuda""" , UpperCamelCase )
__UpperCAmelCase : str = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta )
__UpperCAmelCase : Dict = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) )
__UpperCAmelCase : Dict = torch.device("""cuda""" , self.local_rank )
__UpperCAmelCase : Optional[int] = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
__UpperCAmelCase : Optional[Any] = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" )
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
__UpperCAmelCase : Dict = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta )
__UpperCAmelCase : str = torch.device("""cuda""" , self.local_rank )
__UpperCAmelCase : List[str] = 1
if device.type == "cuda":
torch.cuda.set_device(UpperCamelCase )
return device
@property
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
return not is_sagemaker_model_parallel_available()
@property
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
return False
| 320
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase : Tuple = {
'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'],
'tokenization_electra': ['ElectraTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : List[Any] = ['ElectraTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Any = [
'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'ElectraForCausalLM',
'ElectraForMaskedLM',
'ElectraForMultipleChoice',
'ElectraForPreTraining',
'ElectraForQuestionAnswering',
'ElectraForSequenceClassification',
'ElectraForTokenClassification',
'ElectraModel',
'ElectraPreTrainedModel',
'load_tf_weights_in_electra',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[Any] = [
'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFElectraForMaskedLM',
'TFElectraForMultipleChoice',
'TFElectraForPreTraining',
'TFElectraForQuestionAnswering',
'TFElectraForSequenceClassification',
'TFElectraForTokenClassification',
'TFElectraModel',
'TFElectraPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str = [
'FlaxElectraForCausalLM',
'FlaxElectraForMaskedLM',
'FlaxElectraForMultipleChoice',
'FlaxElectraForPreTraining',
'FlaxElectraForQuestionAnswering',
'FlaxElectraForSequenceClassification',
'FlaxElectraForTokenClassification',
'FlaxElectraModel',
'FlaxElectraPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
| 1
|
"""simple docstring"""
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Any = inspect.getfile(accelerate.test_utils )
__UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] )
__UpperCAmelCase : Dict = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] )
__UpperCAmelCase : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] )
@require_multi_gpu
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
print(f'''Found {torch.cuda.device_count()} devices.''' )
__UpperCAmelCase : Union[str, Any] = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(UpperCamelCase , env=os.environ.copy() )
@require_multi_gpu
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
print(f'''Found {torch.cuda.device_count()} devices.''' )
__UpperCAmelCase : str = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path]
print(f'''Command: {cmd}''' )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(UpperCamelCase , env=os.environ.copy() )
@require_multi_gpu
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : List[str] = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(UpperCamelCase , env=os.environ.copy() )
@require_multi_gpu
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' )
__UpperCAmelCase : Optional[int] = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ):
execute_subprocess_async(UpperCamelCase , env=os.environ.copy() )
if __name__ == "__main__":
UpperCAmelCase : Tuple = Accelerator()
UpperCAmelCase : Union[str, Any] = (accelerator.state.process_index + 2, 10)
UpperCAmelCase : Any = torch.randint(0, 10, shape).to(accelerator.device)
UpperCAmelCase : int = ''
UpperCAmelCase : List[str] = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
UpperCAmelCase : Tuple = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
UpperCAmelCase : Dict = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 320
|
"""simple docstring"""
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
UpperCAmelCase : Optional[Any] = 'scheduler_config.json'
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = 1
__a = 2
__a = 3
__a = 4
__a = 5
__a = 6
__a = 7
__a = 8
__a = 9
__a = 10
__a = 11
__a = 12
__a = 13
__a = 14
@dataclass
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = 42
class lowerCamelCase__ :
"""simple docstring"""
__a = SCHEDULER_CONFIG_NAME
__a = []
__a = True
@classmethod
def lowerCamelCase__ ( cls : Any , UpperCamelCase : Dict[str, Any] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : int , ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = cls.load_config(
pretrained_model_name_or_path=UpperCamelCase , subfolder=UpperCamelCase , return_unused_kwargs=UpperCamelCase , return_commit_hash=UpperCamelCase , **UpperCamelCase , )
return cls.from_config(UpperCamelCase , return_unused_kwargs=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, os.PathLike] , UpperCamelCase : bool = False , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
self.save_config(save_directory=UpperCamelCase , push_to_hub=UpperCamelCase , **UpperCamelCase )
@property
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
return self._get_compatibles()
@classmethod
def lowerCamelCase__ ( cls : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = list(set([cls.__name__] + cls._compatibles ) )
__UpperCAmelCase : List[str] = importlib.import_module(__name__.split(""".""" )[0] )
__UpperCAmelCase : List[str] = [
getattr(UpperCamelCase , UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase , UpperCamelCase )
]
return compatible_classes
| 320
| 1
|
"""simple docstring"""
from PIL import Image
def lowerCamelCase ( _UpperCamelCase : Image , _UpperCamelCase : int ) -> Image:
'''simple docstring'''
__UpperCAmelCase : List[str] = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level))
def contrast(_UpperCamelCase : int ) -> int:
return int(1_2_8 + factor * (c - 1_2_8) )
return img.point(_UpperCamelCase )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change contrast to 170
UpperCAmelCase : Any = change_contrast(img, 170)
cont_img.save('image_data/lena_high_contrast.png', format='png')
| 320
|
"""simple docstring"""
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowerCamelCase__ :
"""simple docstring"""
@staticmethod
def lowerCamelCase__ ( *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
pass
def lowerCamelCase ( _UpperCamelCase : Image ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() )
return m.hexdigest()[:1_0]
def lowerCamelCase ( _UpperCamelCase : Image ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.array(_UpperCamelCase )
__UpperCAmelCase : List[Any] = npimg.shape
return {"hash": hashimage(_UpperCamelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
__a = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
__a = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ):
'''simple docstring'''
pass
@require_tf
@unittest.skip("""Image segmentation not implemented in TF""" )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
pass
@slow
@require_torch
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" )
__UpperCAmelCase : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 )
# Shortening by hashing
__UpperCAmelCase : int = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(UpperCamelCase , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053},
{"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967},
{"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993},
{"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909},
{"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879},
{"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834},
{"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716},
{"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612},
{"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599},
{"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552},
{"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532},
{"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516},
{"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499},
{"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483},
{"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464},
{"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943},
{"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943},
{"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408},
{"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335},
{"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326},
{"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262},
{"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999},
{"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986},
{"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984},
{"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873},
{"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871}
] , )
# fmt: on
@require_torch
@slow
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = """facebook/sam-vit-huge"""
__UpperCAmelCase : str = pipeline("""mask-generation""" , model=UpperCamelCase )
__UpperCAmelCase : int = image_segmenter(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
__UpperCAmelCase : Dict = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(UpperCamelCase , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053},
] , )
| 320
| 1
|
"""simple docstring"""
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
UpperCAmelCase : List[str] = logging.get_logger(__name__)
UpperCAmelCase : Dict[Optional[str], Type[Formatter]] = {}
UpperCAmelCase : Dict[Optional[str], str] = {}
UpperCAmelCase : Dict[Optional[str], Exception] = {}
def lowerCamelCase ( _UpperCamelCase : type , _UpperCamelCase : Optional[str] , _UpperCamelCase : Optional[List[str]] = None , ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' )
__UpperCAmelCase : Tuple = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' )
__UpperCAmelCase : List[Any] = format_type
def lowerCamelCase ( _UpperCamelCase : Exception , _UpperCamelCase : Optional[str] , _UpperCamelCase : Optional[List[str]] = None ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
__UpperCAmelCase : Optional[Any] = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=['python'])
_register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow'])
_register_formatter(NumpyFormatter, 'numpy', aliases=['np'])
_register_formatter(PandasFormatter, 'pandas', aliases=['pd'])
_register_formatter(CustomFormatter, 'custom')
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch'])
else:
UpperCAmelCase : Dict = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.')
_register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch'])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, 'tensorflow', aliases=['tf'])
else:
UpperCAmelCase : Optional[Any] = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.')
_register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf'])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, 'jax', aliases=[])
else:
UpperCAmelCase : str = ValueError('JAX needs to be installed to be able to return JAX arrays.')
_register_unavailable_formatter(_jax_error, 'jax', aliases=[])
def lowerCamelCase ( _UpperCamelCase : Optional[str] ) -> Optional[str]:
'''simple docstring'''
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def lowerCamelCase ( _UpperCamelCase : Optional[str] , **_UpperCamelCase : int ) -> Formatter:
'''simple docstring'''
__UpperCAmelCase : Dict = get_format_type_from_alias(_UpperCamelCase )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**_UpperCamelCase )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
| 320
|
"""simple docstring"""
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class lowerCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , UpperCamelCase : str ):
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase )
__UpperCAmelCase : int = list(model.children() )[:-2]
__UpperCAmelCase : List[Any] = nn.Sequential(*UpperCamelCase )
__UpperCAmelCase : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] )
def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.pool(self.model(UpperCamelCase ) )
__UpperCAmelCase : List[Any] = torch.flatten(UpperCamelCase , start_dim=2 )
__UpperCAmelCase : Any = out.transpose(1 , 2 ).contiguous()
return out # BxNx2048
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )]
__UpperCAmelCase : Any = os.path.dirname(UpperCamelCase )
__UpperCAmelCase : List[str] = tokenizer
__UpperCAmelCase : str = labels
__UpperCAmelCase : Optional[int] = len(UpperCamelCase )
__UpperCAmelCase : int = max_seq_length
__UpperCAmelCase : int = transforms
def __len__( self : List[str] ):
'''simple docstring'''
return len(self.data )
def __getitem__( self : List[str] , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) )
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1]
__UpperCAmelCase : Any = sentence[: self.max_seq_length]
__UpperCAmelCase : Tuple = torch.zeros(self.n_classes )
__UpperCAmelCase : str = 1
__UpperCAmelCase : Any = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" )
__UpperCAmelCase : Optional[int] = self.transforms(UpperCamelCase )
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = Counter()
for row in self.data:
label_freqs.update(row["""label"""] )
return label_freqs
def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = [len(row["""sentence"""] ) for row in batch]
__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase )
__UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long )
__UpperCAmelCase : str = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long )
for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ):
__UpperCAmelCase : List[str] = input_row["""sentence"""]
__UpperCAmelCase : Tuple = 1
__UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] )
__UpperCAmelCase : Optional[Any] = torch.stack([row["""label"""] for row in batch] )
__UpperCAmelCase : str = torch.stack([row["""image_start_token"""] for row in batch] )
__UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] )
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def lowerCamelCase ( ) -> int:
'''simple docstring'''
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def lowerCamelCase ( ) -> Optional[Any]:
'''simple docstring'''
return transforms.Compose(
[
transforms.Resize(2_5_6 ),
transforms.CenterCrop(2_2_4 ),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ),
] )
| 320
| 1
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : str = logging.get_logger(__name__)
UpperCAmelCase : Dict = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = """cvt"""
def __init__( self : Optional[int] , UpperCamelCase : str=3 , UpperCamelCase : Union[str, Any]=[7, 3, 3] , UpperCamelCase : Dict=[4, 2, 2] , UpperCamelCase : Dict=[2, 1, 1] , UpperCamelCase : Optional[int]=[64, 192, 384] , UpperCamelCase : Optional[Any]=[1, 3, 6] , UpperCamelCase : str=[1, 2, 10] , UpperCamelCase : str=[4.0, 4.0, 4.0] , UpperCamelCase : Any=[0.0, 0.0, 0.0] , UpperCamelCase : Any=[0.0, 0.0, 0.0] , UpperCamelCase : Optional[int]=[0.0, 0.0, 0.1] , UpperCamelCase : str=[True, True, True] , UpperCamelCase : Optional[Any]=[False, False, True] , UpperCamelCase : List[Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase : Tuple=[3, 3, 3] , UpperCamelCase : int=[1, 1, 1] , UpperCamelCase : str=[2, 2, 2] , UpperCamelCase : Optional[Any]=[1, 1, 1] , UpperCamelCase : List[Any]=[1, 1, 1] , UpperCamelCase : List[str]=0.02 , UpperCamelCase : Any=1e-1_2 , **UpperCamelCase : int , ):
'''simple docstring'''
super().__init__(**UpperCamelCase )
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : int = patch_sizes
__UpperCAmelCase : Union[str, Any] = patch_stride
__UpperCAmelCase : Any = patch_padding
__UpperCAmelCase : Union[str, Any] = embed_dim
__UpperCAmelCase : Any = num_heads
__UpperCAmelCase : Tuple = depth
__UpperCAmelCase : str = mlp_ratio
__UpperCAmelCase : Dict = attention_drop_rate
__UpperCAmelCase : Dict = drop_rate
__UpperCAmelCase : Any = drop_path_rate
__UpperCAmelCase : Dict = qkv_bias
__UpperCAmelCase : Any = cls_token
__UpperCAmelCase : Optional[int] = qkv_projection_method
__UpperCAmelCase : Optional[int] = kernel_qkv
__UpperCAmelCase : str = padding_kv
__UpperCAmelCase : Optional[Any] = stride_kv
__UpperCAmelCase : List[str] = padding_q
__UpperCAmelCase : Union[str, Any] = stride_q
__UpperCAmelCase : Any = initializer_range
__UpperCAmelCase : Tuple = layer_norm_eps
| 320
|
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 320
| 1
|
"""simple docstring"""
from __future__ import annotations
from math import pi, sqrt
def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float ) -> tuple:
'''simple docstring'''
if inductance <= 0:
raise ValueError("""Inductance cannot be 0 or negative""" )
elif capacitance <= 0:
raise ValueError("""Capacitance cannot be 0 or negative""" )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase )
__UpperCAmelCase : List[Any] = sum(_UpperCamelCase )
__UpperCAmelCase : Optional[int] = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
__UpperCAmelCase : Any = True
for i in range(1 , s + 1 ):
__UpperCAmelCase : List[Any] = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
__UpperCAmelCase : Optional[int] = dp[i][j - 1]
if arr[i - 1] <= j:
__UpperCAmelCase : Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
__UpperCAmelCase : Optional[int] = s - 2 * j
break
return diff
| 320
| 1
|
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
UpperCAmelCase : Any = {
'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = """deformable_detr"""
__a = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self : str , UpperCamelCase : int=True , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : List[Any]=3 , UpperCamelCase : int=300 , UpperCamelCase : List[Any]=1_024 , UpperCamelCase : Tuple=6 , UpperCamelCase : Optional[Any]=1_024 , UpperCamelCase : str=8 , UpperCamelCase : Tuple=6 , UpperCamelCase : Optional[Any]=1_024 , UpperCamelCase : int=8 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : Any=True , UpperCamelCase : int="relu" , UpperCamelCase : Tuple=256 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Any=0.02 , UpperCamelCase : Any=1.0 , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Dict=False , UpperCamelCase : Tuple="sine" , UpperCamelCase : Union[str, Any]="resnet50" , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[int]=False , UpperCamelCase : int=4 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : int=4 , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Union[str, Any]=300 , UpperCamelCase : Dict=False , UpperCamelCase : int=1 , UpperCamelCase : Optional[Any]=5 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Dict=1 , UpperCamelCase : Any=1 , UpperCamelCase : Optional[int]=5 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : str=0.25 , UpperCamelCase : int=False , **UpperCamelCase : int , ):
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
__UpperCAmelCase : Optional[int] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(UpperCamelCase , UpperCamelCase ):
__UpperCAmelCase : List[str] = backbone_config.get("""model_type""" )
__UpperCAmelCase : Tuple = CONFIG_MAPPING[backbone_model_type]
__UpperCAmelCase : str = config_class.from_dict(UpperCamelCase )
__UpperCAmelCase : int = use_timm_backbone
__UpperCAmelCase : Dict = backbone_config
__UpperCAmelCase : Union[str, Any] = num_channels
__UpperCAmelCase : int = num_queries
__UpperCAmelCase : Any = max_position_embeddings
__UpperCAmelCase : Tuple = d_model
__UpperCAmelCase : Any = encoder_ffn_dim
__UpperCAmelCase : List[Any] = encoder_layers
__UpperCAmelCase : List[str] = encoder_attention_heads
__UpperCAmelCase : Tuple = decoder_ffn_dim
__UpperCAmelCase : Optional[int] = decoder_layers
__UpperCAmelCase : Union[str, Any] = decoder_attention_heads
__UpperCAmelCase : List[Any] = dropout
__UpperCAmelCase : Optional[Any] = attention_dropout
__UpperCAmelCase : str = activation_dropout
__UpperCAmelCase : int = activation_function
__UpperCAmelCase : Optional[Any] = init_std
__UpperCAmelCase : Any = init_xavier_std
__UpperCAmelCase : Optional[Any] = encoder_layerdrop
__UpperCAmelCase : Tuple = auxiliary_loss
__UpperCAmelCase : Union[str, Any] = position_embedding_type
__UpperCAmelCase : List[Any] = backbone
__UpperCAmelCase : int = use_pretrained_backbone
__UpperCAmelCase : str = dilation
# deformable attributes
__UpperCAmelCase : Dict = num_feature_levels
__UpperCAmelCase : int = encoder_n_points
__UpperCAmelCase : Any = decoder_n_points
__UpperCAmelCase : Dict = two_stage
__UpperCAmelCase : Optional[Any] = two_stage_num_proposals
__UpperCAmelCase : Optional[Any] = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError("""If two_stage is True, with_box_refine must be True.""" )
# Hungarian matcher
__UpperCAmelCase : Any = class_cost
__UpperCAmelCase : str = bbox_cost
__UpperCAmelCase : str = giou_cost
# Loss coefficients
__UpperCAmelCase : str = mask_loss_coefficient
__UpperCAmelCase : Optional[int] = dice_loss_coefficient
__UpperCAmelCase : List[Any] = bbox_loss_coefficient
__UpperCAmelCase : Dict = giou_loss_coefficient
__UpperCAmelCase : str = eos_coefficient
__UpperCAmelCase : Optional[Any] = focal_alpha
__UpperCAmelCase : Optional[Any] = disable_custom_kernels
super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase )
@property
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
return self.d_model
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
__UpperCAmelCase : List[str] = self.backbone_config.to_dict()
__UpperCAmelCase : Optional[int] = self.__class__.model_type
return output
| 320
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
if is_vision_available():
import PIL
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = ["""pixel_values"""]
def __init__( self : Tuple , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 255 , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = True , **UpperCamelCase : str , ):
'''simple docstring'''
super().__init__(**UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 224}
__UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase )
__UpperCAmelCase : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase , param_name="""crop_size""" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : Tuple = size
__UpperCAmelCase : Optional[Any] = resample
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : int = crop_size
__UpperCAmelCase : Optional[int] = do_rescale
__UpperCAmelCase : List[Any] = rescale_factor
__UpperCAmelCase : Tuple = do_normalize
__UpperCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__UpperCAmelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD
__UpperCAmelCase : List[Any] = do_convert_rgb
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : List[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
__UpperCAmelCase : int = get_resize_output_image_size(UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase )
return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Dict , ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = get_size_dict(UpperCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, float] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ):
'''simple docstring'''
return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ):
'''simple docstring'''
return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : int = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : Any , ):
'''simple docstring'''
__UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : Dict = size if size is not None else self.size
__UpperCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase , param_name="""size""" , default_to_square=UpperCamelCase )
__UpperCAmelCase : Dict = resample if resample is not None else self.resample
__UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , param_name="""crop_size""" , default_to_square=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : Any = image_std if image_std is not None else self.image_std
__UpperCAmelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__UpperCAmelCase : List[str] = make_list_of_images(UpperCamelCase )
if not valid_images(UpperCamelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__UpperCAmelCase : int = [convert_to_rgb(UpperCamelCase ) for image in images]
# All transformations expect numpy arrays.
__UpperCAmelCase : Tuple = [to_numpy_array(UpperCamelCase ) for image in images]
if do_resize:
__UpperCAmelCase : Optional[int] = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images]
if do_center_crop:
__UpperCAmelCase : int = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images]
if do_rescale:
__UpperCAmelCase : Dict = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images]
if do_normalize:
__UpperCAmelCase : Optional[Any] = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images]
__UpperCAmelCase : Any = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images]
__UpperCAmelCase : Any = {"""pixel_values""": images}
return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
import requests
UpperCAmelCase : Optional[int] = 'YOUR API KEY'
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : str = giphy_api_key ) -> list:
'''simple docstring'''
__UpperCAmelCase : List[Any] = """+""".join(query.split() )
__UpperCAmelCase : Union[str, Any] = f'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
__UpperCAmelCase : str = requests.get(_UpperCamelCase ).json()["""data"""]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 320
|
"""simple docstring"""
from collections.abc import Sequence
def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) )
def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float:
'''simple docstring'''
__UpperCAmelCase : Dict = 0.0
for coeff in reversed(_UpperCamelCase ):
__UpperCAmelCase : Any = result * x + coeff
return result
if __name__ == "__main__":
UpperCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0)
UpperCAmelCase : str = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 320
| 1
|
"""simple docstring"""
from functools import reduce
UpperCAmelCase : str = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def lowerCamelCase ( _UpperCamelCase : str = N ) -> int:
'''simple docstring'''
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _UpperCamelCase , _UpperCamelCase : str(int(_UpperCamelCase ) * int(_UpperCamelCase ) ) , n[i : i + 1_3] ) )
for i in range(len(_UpperCamelCase ) - 1_2 ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 320
|
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase : Optional[int] = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class lowerCamelCase__ :
"""simple docstring"""
__a = PegasusConfig
__a = {}
__a = """gelu"""
def __init__( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Dict=True , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : Union[str, Any]=5 , UpperCamelCase : Any=4 , UpperCamelCase : Tuple=37 , UpperCamelCase : Any=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=20 , UpperCamelCase : List[str]=2 , UpperCamelCase : int=1 , UpperCamelCase : Optional[Any]=0 , ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : str = batch_size
__UpperCAmelCase : Optional[Any] = seq_length
__UpperCAmelCase : Dict = is_training
__UpperCAmelCase : Dict = use_labels
__UpperCAmelCase : List[Any] = vocab_size
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : Optional[Any] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : List[Any] = intermediate_size
__UpperCAmelCase : Union[str, Any] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : List[Any] = max_position_embeddings
__UpperCAmelCase : Any = eos_token_id
__UpperCAmelCase : Optional[int] = pad_token_id
__UpperCAmelCase : List[str] = bos_token_id
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
__UpperCAmelCase : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCAmelCase : Union[str, Any] = np.concatenate([input_ids, eos_tensor] , axis=1 )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Any = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCAmelCase : Any = prepare_pegasus_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase )
return config, inputs_dict
def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = 20
__UpperCAmelCase : Tuple = model_class_name(UpperCamelCase )
__UpperCAmelCase : List[Any] = model.encode(inputs_dict["""input_ids"""] )
__UpperCAmelCase ,__UpperCAmelCase : int = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
__UpperCAmelCase : Optional[int] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCAmelCase : Union[str, Any] = model.decode(
decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCAmelCase : Tuple = model.decode(
decoder_input_ids[:, -1:] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Dict = model.decode(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = 20
__UpperCAmelCase : int = model_class_name(UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] )
__UpperCAmelCase ,__UpperCAmelCase : Dict = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCAmelCase : int = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : List[Any] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCAmelCase : List[str] = model.decode(
decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCAmelCase : Optional[int] = model.decode(
decoder_input_ids[:, -1:] , UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Union[str, Any] = model.decode(UpperCamelCase , UpperCamelCase , decoder_attention_mask=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=None , _UpperCamelCase : Any=None , ) -> Dict:
'''simple docstring'''
if attention_mask is None:
__UpperCAmelCase : Optional[int] = np.not_equal(_UpperCamelCase , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
__UpperCAmelCase : Dict = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__a = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__a = True
__a = False
__a = False
__a = False
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = FlaxPegasusModelTester(self )
__UpperCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCAmelCase : Tuple = self._prepare_for_class(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Dict = model_class(UpperCamelCase )
@jax.jit
def encode_jitted(UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any]=None , **UpperCamelCase : List[str] ):
return model.encode(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )
with self.subTest("""JIT Enabled""" ):
__UpperCAmelCase : Tuple = encode_jitted(**UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCAmelCase : Optional[int] = encode_jitted(**UpperCamelCase ).to_tuple()
self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) )
for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCAmelCase : int = model_class(UpperCamelCase )
__UpperCAmelCase : int = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
__UpperCAmelCase : Any = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ):
return model.decode(
decoder_input_ids=UpperCamelCase , decoder_attention_mask=UpperCamelCase , encoder_outputs=UpperCamelCase , )
with self.subTest("""JIT Enabled""" ):
__UpperCAmelCase : Union[str, Any] = decode_jitted(**UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCAmelCase : str = decode_jitted(**UpperCamelCase ).to_tuple()
self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) )
for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCamelCase )
__UpperCAmelCase : Optional[int] = np.ones((1, 1) )
__UpperCAmelCase : List[str] = model(UpperCamelCase )
self.assertIsNotNone(UpperCamelCase )
@slow
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
__UpperCAmelCase : Union[str, Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
__UpperCAmelCase : List[Any] = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
__UpperCAmelCase : List[str] = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
__UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""np""" , truncation=UpperCamelCase , max_length=512 , padding=UpperCamelCase )
__UpperCAmelCase : int = model.generate(**UpperCamelCase , num_beams=2 ).sequences
__UpperCAmelCase : str = tokenizer.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase )
assert tgt_text == decoded
| 320
| 1
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""transformers""", """torch""", """note_seq"""]
def __init__( self : Tuple , *UpperCamelCase : List[Any] , **UpperCamelCase : List[Any] ):
'''simple docstring'''
requires_backends(self , ["""transformers""", """torch""", """note_seq"""] )
@classmethod
def lowerCamelCase__ ( cls : Optional[int] , *UpperCamelCase : Dict , **UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
@classmethod
def lowerCamelCase__ ( cls : Tuple , *UpperCamelCase : List[str] , **UpperCamelCase : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
| 320
|
"""simple docstring"""
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase : List[str] = logging.get_logger(__name__)
UpperCAmelCase : List[str] = {
'b0': efficientnet.EfficientNetBa,
'b1': efficientnet.EfficientNetBa,
'b2': efficientnet.EfficientNetBa,
'b3': efficientnet.EfficientNetBa,
'b4': efficientnet.EfficientNetBa,
'b5': efficientnet.EfficientNetBa,
'b6': efficientnet.EfficientNetBa,
'b7': efficientnet.EfficientNetBa,
}
UpperCAmelCase : List[str] = {
'b0': {
'hidden_dim': 1280,
'width_coef': 1.0,
'depth_coef': 1.0,
'image_size': 224,
'dropout_rate': 0.2,
'dw_padding': [],
},
'b1': {
'hidden_dim': 1280,
'width_coef': 1.0,
'depth_coef': 1.1,
'image_size': 240,
'dropout_rate': 0.2,
'dw_padding': [16],
},
'b2': {
'hidden_dim': 1408,
'width_coef': 1.1,
'depth_coef': 1.2,
'image_size': 260,
'dropout_rate': 0.3,
'dw_padding': [5, 8, 16],
},
'b3': {
'hidden_dim': 1536,
'width_coef': 1.2,
'depth_coef': 1.4,
'image_size': 300,
'dropout_rate': 0.3,
'dw_padding': [5, 18],
},
'b4': {
'hidden_dim': 1792,
'width_coef': 1.4,
'depth_coef': 1.8,
'image_size': 380,
'dropout_rate': 0.4,
'dw_padding': [6],
},
'b5': {
'hidden_dim': 2048,
'width_coef': 1.6,
'depth_coef': 2.2,
'image_size': 456,
'dropout_rate': 0.4,
'dw_padding': [13, 27],
},
'b6': {
'hidden_dim': 2304,
'width_coef': 1.8,
'depth_coef': 2.6,
'image_size': 528,
'dropout_rate': 0.5,
'dw_padding': [31],
},
'b7': {
'hidden_dim': 2560,
'width_coef': 2.0,
'depth_coef': 3.1,
'image_size': 600,
'dropout_rate': 0.5,
'dw_padding': [18],
},
}
def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = EfficientNetConfig()
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""hidden_dim"""]
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""width_coef"""]
__UpperCAmelCase : str = CONFIG_MAP[model_name]["""depth_coef"""]
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""]
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""dropout_rate"""]
__UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""]
__UpperCAmelCase : int = """huggingface/label-files"""
__UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json"""
__UpperCAmelCase : str = 1_0_0_0
__UpperCAmelCase : Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) )
__UpperCAmelCase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()}
__UpperCAmelCase : Dict = idalabel
__UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
return config
def lowerCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw )
return im
def lowerCamelCase ( _UpperCamelCase : Any ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = CONFIG_MAP[model_name]["""image_size"""]
__UpperCAmelCase : List[str] = EfficientNetImageProcessor(
size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_UpperCamelCase , )
return preprocessor
def lowerCamelCase ( _UpperCamelCase : Dict ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )]
__UpperCAmelCase : str = sorted(set(_UpperCamelCase ) )
__UpperCAmelCase : Optional[int] = len(_UpperCamelCase )
__UpperCAmelCase : Any = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )}
__UpperCAmelCase : Any = []
rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") )
rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") )
rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") )
rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") )
rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") )
for b in block_names:
__UpperCAmelCase : List[str] = block_name_mapping[b]
rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') )
rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') )
rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') )
rename_keys.append(
(f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') )
rename_keys.append(
(f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') )
rename_keys.append(
(f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') )
rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') )
rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') )
rename_keys.append(
(f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') )
rename_keys.append(
(f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') )
rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') )
rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') )
rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') )
rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') )
rename_keys.append(
(f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') )
rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') )
rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') )
rename_keys.append(
(f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') )
rename_keys.append(
(f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') )
rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") )
rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") )
rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") )
rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") )
rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") )
__UpperCAmelCase : Optional[int] = {}
for item in rename_keys:
if item[0] in original_param_names:
__UpperCAmelCase : Optional[Any] = """efficientnet.""" + item[1]
__UpperCAmelCase : Tuple = """classifier.weight"""
__UpperCAmelCase : Optional[int] = """classifier.bias"""
return key_mapping
def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Tuple:
'''simple docstring'''
for key, value in tf_params.items():
if "normalization" in key:
continue
__UpperCAmelCase : List[Any] = key_mapping[key]
if "_conv" in key and "kernel" in key:
__UpperCAmelCase : int = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
__UpperCAmelCase : Optional[Any] = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
__UpperCAmelCase : List[str] = torch.from_numpy(np.transpose(_UpperCamelCase ) )
else:
__UpperCAmelCase : Tuple = torch.from_numpy(_UpperCamelCase )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(_UpperCamelCase )
@torch.no_grad()
def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = model_classes[model_name](
include_top=_UpperCamelCase , weights="""imagenet""" , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , )
__UpperCAmelCase : List[str] = original_model.trainable_variables
__UpperCAmelCase : List[Any] = original_model.non_trainable_variables
__UpperCAmelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
__UpperCAmelCase : int = param.numpy()
__UpperCAmelCase : Dict = list(tf_params.keys() )
# Load HuggingFace model
__UpperCAmelCase : Optional[Any] = get_efficientnet_config(_UpperCamelCase )
__UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(_UpperCamelCase ).eval()
__UpperCAmelCase : Any = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print("""Converting parameters...""" )
__UpperCAmelCase : Tuple = rename_keys(_UpperCamelCase )
replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
# Initialize preprocessor and preprocess input image
__UpperCAmelCase : List[Any] = convert_image_processor(_UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors="""pt""" )
# HF model inference
hf_model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[int] = hf_model(**_UpperCamelCase )
__UpperCAmelCase : Any = outputs.logits.detach().numpy()
# Original model inference
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""]
__UpperCAmelCase : str = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
__UpperCAmelCase : Optional[Any] = image.img_to_array(_UpperCamelCase )
__UpperCAmelCase : Tuple = np.expand_dims(_UpperCamelCase , axis=0 )
__UpperCAmelCase : str = original_model.predict(_UpperCamelCase )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same."
print("""Model outputs match!""" )
if save_model:
# Create folder to save model
if not os.path.isdir(_UpperCamelCase ):
os.mkdir(_UpperCamelCase )
# Save converted model and image processor
hf_model.save_pretrained(_UpperCamelCase )
preprocessor.save_pretrained(_UpperCamelCase )
if push_to_hub:
# Push model and image processor to hub
print(f'''Pushing converted {model_name} to the hub...''' )
__UpperCAmelCase : List[str] = f'''efficientnet-{model_name}'''
preprocessor.push_to_hub(_UpperCamelCase )
hf_model.push_to_hub(_UpperCamelCase )
if __name__ == "__main__":
UpperCAmelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='b0',
type=str,
help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='hf_model',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--save_model', action='store_true', help='Save model to local')
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
UpperCAmelCase : Any = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 320
| 1
|
"""simple docstring"""
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"""files""" , [
["""full:README.md""", """dataset_infos.json"""],
["""empty:README.md""", """dataset_infos.json"""],
["""dataset_infos.json"""],
["""full:README.md"""],
] , )
def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = tmp_path_factory.mktemp("""dset_infos_dir""" )
if "full:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""---\ndataset_info:\n dataset_size: 42\n---""" )
if "empty:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""""" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f:
f.write("""{\"default\": {\"dataset_size\": 42}}""" )
__UpperCAmelCase : int = DatasetInfosDict.from_directory(_UpperCamelCase )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 4_2
@pytest.mark.parametrize(
"""dataset_info""" , [
DatasetInfo(),
DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ),
] , )
def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : DatasetInfo ) -> Any:
'''simple docstring'''
__UpperCAmelCase : str = str(_UpperCamelCase )
dataset_info.write_to_directory(_UpperCamelCase )
__UpperCAmelCase : int = DatasetInfo.from_directory(_UpperCamelCase )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(_UpperCamelCase , """dataset_info.json""" ) )
def lowerCamelCase ( ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = DatasetInfo(
description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , )
__UpperCAmelCase : int = dataset_info._to_yaml_dict()
assert sorted(_UpperCamelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) )
__UpperCAmelCase : Union[str, Any] = yaml.safe_dump(_UpperCamelCase )
__UpperCAmelCase : int = yaml.safe_load(_UpperCamelCase )
assert dataset_info_yaml_dict == reloaded
def lowerCamelCase ( ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = DatasetInfo()
__UpperCAmelCase : List[Any] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"""dataset_infos_dict""" , [
DatasetInfosDict(),
DatasetInfosDict({"""default""": DatasetInfo()} ),
DatasetInfosDict({"""my_config_name""": DatasetInfo()} ),
DatasetInfosDict(
{
"""default""": DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , )
} ),
DatasetInfosDict(
{
"""v1""": DatasetInfo(dataset_size=4_2 ),
"""v2""": DatasetInfo(dataset_size=1_3_3_7 ),
} ),
] , )
def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : DatasetInfosDict ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = str(_UpperCamelCase )
dataset_infos_dict.write_to_directory(_UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(_UpperCamelCase )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
__UpperCAmelCase : List[Any] = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
__UpperCAmelCase : str = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(_UpperCamelCase , """README.md""" ) )
| 320
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""keras_nlp"""]
def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
requires_backends(self , ["""keras_nlp"""] )
| 320
| 1
|
"""simple docstring"""
UpperCAmelCase : Optional[Any] = {
'Pillow': 'Pillow<10.0.0',
'accelerate': 'accelerate>=0.20.3',
'av': 'av==9.2.0',
'beautifulsoup4': 'beautifulsoup4',
'black': 'black~=23.1',
'codecarbon': 'codecarbon==1.2.0',
'cookiecutter': 'cookiecutter==1.7.3',
'dataclasses': 'dataclasses',
'datasets': 'datasets!=2.5.0',
'decord': 'decord==0.6.0',
'deepspeed': 'deepspeed>=0.9.3',
'diffusers': 'diffusers',
'dill': 'dill<0.3.5',
'evaluate': 'evaluate>=0.2.0',
'fairscale': 'fairscale>0.3',
'faiss-cpu': 'faiss-cpu',
'fastapi': 'fastapi',
'filelock': 'filelock',
'flax': 'flax>=0.4.1,<=0.7.0',
'ftfy': 'ftfy',
'fugashi': 'fugashi>=1.0',
'GitPython': 'GitPython<3.1.19',
'hf-doc-builder': 'hf-doc-builder>=0.3.0',
'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0',
'importlib_metadata': 'importlib_metadata',
'ipadic': 'ipadic>=1.0.0,<2.0',
'isort': 'isort>=5.5.4',
'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13',
'jaxlib': 'jaxlib>=0.1.65,<=0.4.13',
'jieba': 'jieba',
'kenlm': 'kenlm',
'keras-nlp': 'keras-nlp>=0.3.1',
'librosa': 'librosa',
'nltk': 'nltk',
'natten': 'natten>=0.14.6',
'numpy': 'numpy>=1.17',
'onnxconverter-common': 'onnxconverter-common',
'onnxruntime-tools': 'onnxruntime-tools>=1.4.2',
'onnxruntime': 'onnxruntime>=1.4.0',
'opencv-python': 'opencv-python',
'optuna': 'optuna',
'optax': 'optax>=0.0.8,<=0.1.4',
'packaging': 'packaging>=20.0',
'parameterized': 'parameterized',
'phonemizer': 'phonemizer',
'protobuf': 'protobuf',
'psutil': 'psutil',
'pyyaml': 'pyyaml>=5.1',
'pydantic': 'pydantic<2',
'pytest': 'pytest>=7.2.0',
'pytest-timeout': 'pytest-timeout',
'pytest-xdist': 'pytest-xdist',
'python': 'python>=3.8.0',
'ray[tune]': 'ray[tune]',
'regex': 'regex!=2019.12.17',
'requests': 'requests',
'rhoknp': 'rhoknp>=1.1.0,<1.3.1',
'rjieba': 'rjieba',
'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1',
'ruff': 'ruff>=0.0.241,<=0.0.259',
'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0',
'sacremoses': 'sacremoses',
'safetensors': 'safetensors>=0.3.1',
'sagemaker': 'sagemaker>=2.31.0',
'scikit-learn': 'scikit-learn',
'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92',
'sigopt': 'sigopt',
'starlette': 'starlette',
'sudachipy': 'sudachipy>=0.6.6',
'sudachidict_core': 'sudachidict_core>=20220729',
'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14',
'tensorflow': 'tensorflow>=2.6,<2.14',
'tensorflow-text': 'tensorflow-text<2.14',
'tf2onnx': 'tf2onnx',
'timeout-decorator': 'timeout-decorator',
'timm': 'timm',
'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14',
'torch': 'torch>=1.9,!=1.12.0',
'torchaudio': 'torchaudio',
'torchvision': 'torchvision',
'pyctcdecode': 'pyctcdecode>=0.4.0',
'tqdm': 'tqdm>=4.27',
'unidic': 'unidic>=1.0.2',
'unidic_lite': 'unidic_lite>=1.0.7',
'urllib3': 'urllib3<2.0.0',
'uvicorn': 'uvicorn',
}
| 320
|
"""simple docstring"""
UpperCAmelCase : Dict = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
def lowerCamelCase ( _UpperCamelCase : bytes ) -> bytes:
'''simple docstring'''
if not isinstance(_UpperCamelCase , _UpperCamelCase ):
__UpperCAmelCase : Any = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(_UpperCamelCase )
__UpperCAmelCase : str = """""".join(bin(_UpperCamelCase )[2:].zfill(8 ) for byte in data )
__UpperCAmelCase : int = len(_UpperCamelCase ) % 6 != 0
if padding_needed:
# The padding that will be added later
__UpperCAmelCase : Dict = b"""=""" * ((6 - len(_UpperCamelCase ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_UpperCamelCase ) % 6)
else:
__UpperCAmelCase : List[str] = b""""""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(_UpperCamelCase ) , 6 ) ).encode()
+ padding
)
def lowerCamelCase ( _UpperCamelCase : str ) -> bytes:
'''simple docstring'''
if not isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ):
__UpperCAmelCase : Tuple = (
"""argument should be a bytes-like object or ASCII string, """
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(_UpperCamelCase )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_UpperCamelCase , _UpperCamelCase ):
try:
__UpperCAmelCase : Optional[Any] = encoded_data.decode("""utf-8""" )
except UnicodeDecodeError:
raise ValueError("""base64 encoded data should only contain ASCII characters""" )
__UpperCAmelCase : str = encoded_data.count("""=""" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
__UpperCAmelCase : List[str] = encoded_data[:-padding]
__UpperCAmelCase : int = """""".join(
bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
__UpperCAmelCase : Optional[Any] = """""".join(
bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )
__UpperCAmelCase : List[Any] = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(_UpperCamelCase ) , 8 )
]
return bytes(_UpperCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320
| 1
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
UpperCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
UpperCAmelCase : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n'
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any]=8 ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__UpperCAmelCase : Optional[int] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=5_1_2 , _UpperCamelCase : List[str]=5_1_2 ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
__UpperCAmelCase : str = np.array(pil_image.convert("""RGB""" ) )
__UpperCAmelCase : Optional[Any] = arr.astype(np.floataa ) / 127.5 - 1
__UpperCAmelCase : List[Any] = np.transpose(_UpperCamelCase , [2, 0, 1] )
__UpperCAmelCase : Union[str, Any] = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 )
return image
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : Tuple , UpperCamelCase : UNetaDConditionModel , UpperCamelCase : DDPMScheduler , UpperCamelCase : VQModel , ):
'''simple docstring'''
super().__init__()
self.register_modules(
unet=UpperCamelCase , scheduler=UpperCamelCase , movq=UpperCamelCase , )
__UpperCAmelCase : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : List[str] = min(int(num_inference_steps * strength ) , UpperCamelCase )
__UpperCAmelCase : int = max(num_inference_steps - init_timestep , 0 )
__UpperCAmelCase : List[str] = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def lowerCamelCase__ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : Tuple=None ):
'''simple docstring'''
if not isinstance(UpperCamelCase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCamelCase )}''' )
__UpperCAmelCase : Optional[Any] = image.to(device=UpperCamelCase , dtype=UpperCamelCase )
__UpperCAmelCase : List[str] = batch_size * num_images_per_prompt
if image.shape[1] == 4:
__UpperCAmelCase : Tuple = image
else:
if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(UpperCamelCase )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
elif isinstance(UpperCamelCase , UpperCamelCase ):
__UpperCAmelCase : List[Any] = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCamelCase )
]
__UpperCAmelCase : Any = torch.cat(UpperCamelCase , dim=0 )
else:
__UpperCAmelCase : List[str] = self.movq.encode(UpperCamelCase ).latent_dist.sample(UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = self.movq.config.scaling_factor * init_latents
__UpperCAmelCase : Any = torch.cat([init_latents] , dim=0 )
__UpperCAmelCase : Any = init_latents.shape
__UpperCAmelCase : str = randn_tensor(UpperCamelCase , generator=UpperCamelCase , device=UpperCamelCase , dtype=UpperCamelCase )
# get latents
__UpperCAmelCase : Union[str, Any] = self.scheduler.add_noise(UpperCamelCase , UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Any = init_latents
return latents
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : int=0 ):
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
__UpperCAmelCase : List[str] = torch.device(f'''cuda:{gpu_id}''' )
__UpperCAmelCase : Any = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[int]=0 ):
'''simple docstring'''
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
__UpperCAmelCase : List[Any] = torch.device(f'''cuda:{gpu_id}''' )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__UpperCAmelCase : str = None
for cpu_offloaded_model in [self.unet, self.movq]:
__UpperCAmelCase ,__UpperCAmelCase : Tuple = cpu_offload_with_hook(UpperCamelCase , UpperCamelCase , prev_module_hook=UpperCamelCase )
# We'll offload the last model manually.
__UpperCAmelCase : List[Any] = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(UpperCamelCase , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(UpperCamelCase )
def __call__( self : List[Any] , UpperCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , UpperCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase : int = 512 , UpperCamelCase : int = 512 , UpperCamelCase : int = 100 , UpperCamelCase : float = 4.0 , UpperCamelCase : float = 0.3 , UpperCamelCase : int = 1 , UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self._execution_device
__UpperCAmelCase : List[Any] = guidance_scale > 1.0
if isinstance(UpperCamelCase , UpperCamelCase ):
__UpperCAmelCase : Any = torch.cat(UpperCamelCase , dim=0 )
__UpperCAmelCase : int = image_embeds.shape[0]
if isinstance(UpperCamelCase , UpperCamelCase ):
__UpperCAmelCase : int = torch.cat(UpperCamelCase , dim=0 )
if do_classifier_free_guidance:
__UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(UpperCamelCase , dim=0 )
__UpperCAmelCase : Union[str, Any] = negative_image_embeds.repeat_interleave(UpperCamelCase , dim=0 )
__UpperCAmelCase : List[str] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase )
if not isinstance(UpperCamelCase , UpperCamelCase ):
__UpperCAmelCase : List[str] = [image]
if not all(isinstance(UpperCamelCase , (PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
f'''Input is in incorrect format: {[type(UpperCamelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' )
__UpperCAmelCase : List[Any] = torch.cat([prepare_image(UpperCamelCase , UpperCamelCase , UpperCamelCase ) for i in image] , dim=0 )
__UpperCAmelCase : Optional[int] = image.to(dtype=image_embeds.dtype , device=UpperCamelCase )
__UpperCAmelCase : int = self.movq.encode(UpperCamelCase )["""latents"""]
__UpperCAmelCase : Tuple = latents.repeat_interleave(UpperCamelCase , dim=0 )
self.scheduler.set_timesteps(UpperCamelCase , device=UpperCamelCase )
__UpperCAmelCase ,__UpperCAmelCase : List[str] = self.get_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt )
__UpperCAmelCase ,__UpperCAmelCase : int = downscale_height_and_width(UpperCamelCase , UpperCamelCase , self.movq_scale_factor )
__UpperCAmelCase : int = self.prepare_latents(
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , image_embeds.dtype , UpperCamelCase , UpperCamelCase )
for i, t in enumerate(self.progress_bar(UpperCamelCase ) ):
# expand the latents if we are doing classifier free guidance
__UpperCAmelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__UpperCAmelCase : Any = {"""image_embeds""": image_embeds}
__UpperCAmelCase : List[str] = self.unet(
sample=UpperCamelCase , timestep=UpperCamelCase , encoder_hidden_states=UpperCamelCase , added_cond_kwargs=UpperCamelCase , return_dict=UpperCamelCase , )[0]
if do_classifier_free_guidance:
__UpperCAmelCase ,__UpperCAmelCase : List[Any] = noise_pred.split(latents.shape[1] , dim=1 )
__UpperCAmelCase ,__UpperCAmelCase : Any = noise_pred.chunk(2 )
__UpperCAmelCase ,__UpperCAmelCase : Any = variance_pred.chunk(2 )
__UpperCAmelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__UpperCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
__UpperCAmelCase : List[Any] = self.scheduler.step(
UpperCamelCase , UpperCamelCase , UpperCamelCase , generator=UpperCamelCase , )[0]
# post-processing
__UpperCAmelCase : List[str] = self.movq.decode(UpperCamelCase , force_not_quantize=UpperCamelCase )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' )
if output_type in ["np", "pil"]:
__UpperCAmelCase : int = image * 0.5 + 0.5
__UpperCAmelCase : List[Any] = image.clamp(0 , 1 )
__UpperCAmelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
__UpperCAmelCase : List[Any] = self.numpy_to_pil(UpperCamelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase )
| 320
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
UpperCAmelCase : str = logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ):
'''simple docstring'''
warnings.warn(
"""The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , )
super().__init__(*UpperCamelCase , **UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
import mpmath # for roots of unity
import numpy as np
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : Union[str, Any] , UpperCamelCase : List[str]=None , UpperCamelCase : int=None ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = list(poly_a or [0] )[:]
__UpperCAmelCase : Optional[Any] = list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
__UpperCAmelCase : int = len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
__UpperCAmelCase : Dict = len(self.polyB )
# Add 0 to make lengths equal a power of 2
__UpperCAmelCase : List[Any] = int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
__UpperCAmelCase : Union[str, Any] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
__UpperCAmelCase : Dict = self.__multiply()
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Dict = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB]
# Corner case
if len(UpperCamelCase ) <= 1:
return dft[0]
#
__UpperCAmelCase : Dict = self.c_max_length // 2
while next_ncol > 0:
__UpperCAmelCase : List[str] = [[] for i in range(UpperCamelCase )]
__UpperCAmelCase : Optional[Any] = self.root**next_ncol
# First half of next step
__UpperCAmelCase : Dict = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(UpperCamelCase ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
__UpperCAmelCase : Union[str, Any] = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(UpperCamelCase ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
__UpperCAmelCase : int = new_dft
__UpperCAmelCase : Tuple = next_ncol // 2
return dft[0]
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.__dft("""A""" )
__UpperCAmelCase : Any = self.__dft("""B""" )
__UpperCAmelCase : Optional[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
__UpperCAmelCase : Tuple = 2
while next_ncol <= self.c_max_length:
__UpperCAmelCase : Dict = [[] for i in range(UpperCamelCase )]
__UpperCAmelCase : str = self.root ** (next_ncol // 2)
__UpperCAmelCase : int = 1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
__UpperCAmelCase : List[str] = new_inverse_c
next_ncol *= 2
# Unpack
__UpperCAmelCase : int = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Any = """A = """ + """ + """.join(
f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) )
__UpperCAmelCase : List[Any] = """B = """ + """ + """.join(
f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) )
__UpperCAmelCase : str = """A*B = """ + """ + """.join(
f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) )
return f'''{a}\n{b}\n{c}'''
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320
|
"""simple docstring"""
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = LEDTokenizer
__a = LEDTokenizerFast
__a = True
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
super().setUp()
__UpperCAmelCase : Tuple = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
__UpperCAmelCase : str = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) )
__UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
__UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""}
__UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(UpperCamelCase ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(UpperCamelCase ) )
def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : int ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase )
def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : List[str] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase )
def lowerCamelCase__ ( self : str , UpperCamelCase : Any ):
'''simple docstring'''
return "lower newer", "lower newer"
@cached_property
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" )
@cached_property
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" )
@require_torch
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
__UpperCAmelCase : Union[str, Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Any = tokenizer(UpperCamelCase , max_length=len(UpperCamelCase ) , padding=UpperCamelCase , return_tensors="""pt""" )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
__UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0]
self.assertListEqual(UpperCamelCase , UpperCamelCase )
@require_torch
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors="""pt""" )
self.assertIn("""input_ids""" , UpperCamelCase )
self.assertIn("""attention_mask""" , UpperCamelCase )
self.assertNotIn("""labels""" , UpperCamelCase )
self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase )
@require_torch
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = [
"""Summary of the text.""",
"""Another summary.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Optional[Any] = tokenizer(text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
@require_torch
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : str = tokenizer(
["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""pt""" )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
self.assertEqual(batch.input_ids.shape , (2, 5_122) )
@require_torch
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization."""]
__UpperCAmelCase : int = [
"""Summary of the text.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""pt""" )
__UpperCAmelCase : Tuple = tokenizer(text_target=UpperCamelCase , return_tensors="""pt""" )
__UpperCAmelCase : Optional[Any] = inputs["""input_ids"""]
__UpperCAmelCase : List[str] = targets["""input_ids"""]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Any = ["""Summary of the text.""", """Another summary."""]
__UpperCAmelCase : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
__UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , padding=UpperCamelCase )
__UpperCAmelCase : str = [[0] * len(UpperCamelCase ) for x in encoded_output["""input_ids"""]]
__UpperCAmelCase : List[Any] = tokenizer.pad(UpperCamelCase )
self.assertSequenceEqual(outputs["""global_attention_mask"""] , UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase )
__UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase )
__UpperCAmelCase : Any = """A, <mask> AllenNLP sentence."""
__UpperCAmelCase : Dict = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase )
__UpperCAmelCase : List[Any] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase )
self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) )
self.assertEqual(
sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , )
__UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] )
__UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] )
self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
self.assertSequenceEqual(
UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
| 320
| 1
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : str=3 , UpperCamelCase : Any=18 , UpperCamelCase : Optional[Any]=30 , UpperCamelCase : str=400 , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : List[str]=None , UpperCamelCase : List[str]=True , UpperCamelCase : Tuple=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
__UpperCAmelCase : Any = size if size is not None else {"""height""": 18, """width""": 18}
__UpperCAmelCase : Any = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : Dict = image_size
__UpperCAmelCase : List[Any] = min_resolution
__UpperCAmelCase : Dict = max_resolution
__UpperCAmelCase : Tuple = do_resize
__UpperCAmelCase : str = size
__UpperCAmelCase : List[Any] = do_normalize
__UpperCAmelCase : Optional[int] = image_mean
__UpperCAmelCase : int = image_std
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = DPTImageProcessor if is_vision_available() else None
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = DPTImageProcessingTester(self )
@property
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCamelCase , """image_mean""" ) )
self.assertTrue(hasattr(UpperCamelCase , """image_std""" ) )
self.assertTrue(hasattr(UpperCamelCase , """do_normalize""" ) )
self.assertTrue(hasattr(UpperCamelCase , """do_resize""" ) )
self.assertTrue(hasattr(UpperCamelCase , """size""" ) )
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
__UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase , Image.Image )
# Test not batched input
__UpperCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__UpperCAmelCase : Any = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase , np.ndarray )
# Test not batched input
__UpperCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__UpperCAmelCase : int = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase , torch.Tensor )
# Test not batched input
__UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__UpperCAmelCase : Tuple = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 320
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : List[Any]=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : int=99 , UpperCamelCase : Any=[1, 1, 2] , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Union[str, Any]=8 , UpperCamelCase : int=37 , UpperCamelCase : Optional[Any]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : int=0.0 , UpperCamelCase : Union[str, Any]=512 , UpperCamelCase : Any=3 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : str=None , UpperCamelCase : Tuple=False , ):
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : int = batch_size
__UpperCAmelCase : str = seq_length
__UpperCAmelCase : Optional[Any] = is_training
__UpperCAmelCase : Optional[Any] = use_input_mask
__UpperCAmelCase : Tuple = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Tuple = vocab_size
__UpperCAmelCase : Optional[int] = block_sizes
__UpperCAmelCase : Optional[Any] = num_decoder_layers
__UpperCAmelCase : Union[str, Any] = d_model
__UpperCAmelCase : Dict = n_head
__UpperCAmelCase : Optional[Any] = d_head
__UpperCAmelCase : Dict = d_inner
__UpperCAmelCase : Any = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout
__UpperCAmelCase : List[Any] = attention_dropout
__UpperCAmelCase : str = activation_dropout
__UpperCAmelCase : Union[str, Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : str = 2
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : List[Any] = num_choices
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Dict = initializer_std
# Used in the tests to check the size of the first attention layer
__UpperCAmelCase : Dict = n_head
# Used in the tests to check the size of the first hidden state
__UpperCAmelCase : Dict = self.d_model
# Used in the tests to check the number of output hidden states/attentions
__UpperCAmelCase : Dict = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
__UpperCAmelCase : List[Any] = self.num_hidden_layers + 2
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[str] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Dict = None
__UpperCAmelCase : Optional[Any] = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : str = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCamelCase__ ( self : Any , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = TFFunnelModel(config=UpperCamelCase )
__UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : List[str] = model(UpperCamelCase )
__UpperCAmelCase : List[Any] = [input_ids, input_mask]
__UpperCAmelCase : Dict = model(UpperCamelCase )
__UpperCAmelCase : Tuple = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
__UpperCAmelCase : int = False
__UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
__UpperCAmelCase : Any = False
__UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase )
__UpperCAmelCase : List[str] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Any , ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = TFFunnelBaseModel(config=UpperCamelCase )
__UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Optional[Any] = model(UpperCamelCase )
__UpperCAmelCase : int = [input_ids, input_mask]
__UpperCAmelCase : int = model(UpperCamelCase )
__UpperCAmelCase : List[Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
__UpperCAmelCase : List[Any] = False
__UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) )
__UpperCAmelCase : int = False
__UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase )
__UpperCAmelCase : str = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Tuple = TFFunnelForPreTraining(config=UpperCamelCase )
__UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : int = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : int , ):
'''simple docstring'''
__UpperCAmelCase : int = TFFunnelForMaskedLM(config=UpperCamelCase )
__UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Optional[Any] = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_labels
__UpperCAmelCase : Optional[Any] = TFFunnelForSequenceClassification(config=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Tuple = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int , ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : str = TFFunnelForMultipleChoice(config=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : str = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : int = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : List[str] = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
__UpperCAmelCase : int = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Any , ):
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : str = TFFunnelForTokenClassification(config=UpperCamelCase )
__UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : int = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase__ ( self : str , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Any = TFFunnelForQuestionAnswering(config=UpperCamelCase )
__UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Any = model(UpperCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,
) : Dict = config_and_inputs
__UpperCAmelCase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( A , A , unittest.TestCase ):
"""simple docstring"""
__a = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
__a = (
{
"""feature-extraction""": (TFFunnelBaseModel, TFFunnelModel),
"""fill-mask""": TFFunnelForMaskedLM,
"""question-answering""": TFFunnelForQuestionAnswering,
"""text-classification""": TFFunnelForSequenceClassification,
"""token-classification""": TFFunnelForTokenClassification,
"""zero-shot""": TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
__a = False
__a = False
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = TFFunnelModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCamelCase )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCamelCase )
@require_tf
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
__a = False
__a = False
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : List[str] = TFFunnelModelTester(self , base=UpperCamelCase )
__UpperCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*UpperCamelCase )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
from typing import Any
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : Tuple , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : List[str] = data
__UpperCAmelCase : List[str] = None
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = None
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : Tuple = self.head
while temp is not None:
print(temp.data , end=""" """ )
__UpperCAmelCase : Optional[int] = temp.next
print()
def lowerCamelCase__ ( self : int , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = Node(UpperCamelCase )
__UpperCAmelCase : Optional[int] = self.head
__UpperCAmelCase : List[Any] = new_node
def lowerCamelCase__ ( self : Any , UpperCamelCase : Tuple , UpperCamelCase : List[str] ):
'''simple docstring'''
if node_data_a == node_data_a:
return
else:
__UpperCAmelCase : Any = self.head
while node_a is not None and node_a.data != node_data_a:
__UpperCAmelCase : Optional[Any] = node_a.next
__UpperCAmelCase : Optional[Any] = self.head
while node_a is not None and node_a.data != node_data_a:
__UpperCAmelCase : Dict = node_a.next
if node_a is None or node_a is None:
return
__UpperCAmelCase ,__UpperCAmelCase : Dict = node_a.data, node_a.data
if __name__ == "__main__":
UpperCAmelCase : Optional[int] = LinkedList()
for i in range(5, 0, -1):
ll.push(i)
ll.print_list()
ll.swap_nodes(1, 4)
print('After swapping')
ll.print_list()
| 320
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = 0
while b > 0:
if b & 1:
__UpperCAmelCase : int = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 320
| 1
|
"""simple docstring"""
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
UpperCAmelCase : Optional[Any] = HfApi()
UpperCAmelCase : Tuple = {}
# fmt: off
UpperCAmelCase : Tuple = torch.tensor([
-0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467,
1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189,
-1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839,
0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557
])
UpperCAmelCase : List[Any] = torch.tensor([
-2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436,
1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208,
-2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948,
2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365
])
UpperCAmelCase : List[str] = torch.tensor([
-0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869,
-0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304,
-0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925,
0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943
])
UpperCAmelCase : Union[str, Any] = torch.tensor([
0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172,
-0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309,
0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805,
-0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505
])
UpperCAmelCase : List[str] = torch.tensor([
0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133,
-0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395,
0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559,
-0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386
])
UpperCAmelCase : List[str] = torch.tensor([
0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078,
-0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330,
0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683,
-0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431
])
UpperCAmelCase : Tuple = torch.tensor([
0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042,
-0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398,
0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574,
-0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390
])
UpperCAmelCase : List[str] = torch.tensor([
0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042,
-0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290,
0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746,
-0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473
])
UpperCAmelCase : Dict = torch.tensor([
-1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330,
1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243,
-2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810,
1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251])
UpperCAmelCase : int = torch.tensor([
-1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324,
0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181,
-2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259,
1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266
])
UpperCAmelCase : Tuple = torch.tensor([
-1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212,
0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027,
-2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131,
1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355
])
UpperCAmelCase : List[Any] = torch.tensor([
-2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959,
1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351,
-3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341,
3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066
])
UpperCAmelCase : Union[str, Any] = torch.tensor([
-2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740,
1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398,
-2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395,
2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243
])
UpperCAmelCase : Optional[int] = torch.tensor([
-2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336,
1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908,
-3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560,
3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343
])
UpperCAmelCase : Optional[Any] = torch.tensor([
-1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344,
1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391,
-2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439,
1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219
])
# fmt: on
UpperCAmelCase : Any = api.list_models(filter='diffusers')
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
UpperCAmelCase : Any = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1]
print(F"Started running {mod.modelId}!!!")
if mod.modelId.startswith('CompVis'):
UpperCAmelCase : str = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet')
else:
UpperCAmelCase : str = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
UpperCAmelCase : List[str] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
UpperCAmelCase : List[Any] = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
UpperCAmelCase : List[Any] = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1E-3
)
print(F"{mod.modelId} has passed successfully!!!")
| 320
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = ["""image_processor""", """tokenizer"""]
__a = """AutoImageProcessor"""
__a = """AutoTokenizer"""
def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ):
'''simple docstring'''
super().__init__(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : str = self.image_processor
def __call__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=None , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
__UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )
if images is not None:
__UpperCAmelCase : Optional[Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )
if text is not None and images is not None:
__UpperCAmelCase : str = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase )
def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ):
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : int , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase )
@property
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 320
| 1
|
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
UpperCAmelCase : Optional[int] = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Path , UpperCamelCase : Union[str, None] = None , UpperCamelCase : Union[List[str], None] = None , UpperCamelCase : Union[str, List[str], None] = None , UpperCamelCase : bool = True , ):
'''simple docstring'''
__UpperCAmelCase : List[str] = [file for file in os.listdir(UpperCamelCase ) if os.path.isfile(os.path.join(UpperCamelCase , UpperCamelCase ) )]
if identifier is not None:
__UpperCAmelCase : List[str] = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(UpperCamelCase , UpperCamelCase ):
for n_ in n_identifier:
__UpperCAmelCase : Optional[int] = [file for file in files if n_ not in file]
else:
__UpperCAmelCase : int = [file for file in files if n_identifier not in file]
__UpperCAmelCase : str = ignore_files or []
ignore_files.append("""__init__.py""" )
__UpperCAmelCase : str = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("""Testing""" , UpperCamelCase )
if only_modules:
__UpperCAmelCase : List[Any] = file.split(""".""" )[0]
try:
__UpperCAmelCase : str = getattr(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : int = doctest.DocTestSuite(UpperCamelCase )
__UpperCAmelCase : int = unittest.TextTestRunner().run(UpperCamelCase )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(f'''{module_identifier} is not a module.''' )
else:
__UpperCAmelCase : Optional[Any] = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : Dict = Path("""src/transformers""" )
__UpperCAmelCase : Tuple = """modeling"""
__UpperCAmelCase : Any = [
"""modeling_ctrl.py""",
"""modeling_tf_ctrl.py""",
]
self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase , ignore_files=UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Dict = Path("""src/transformers""" )
__UpperCAmelCase : Tuple = """tokenization"""
self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : str = Path("""src/transformers""" )
__UpperCAmelCase : List[str] = """configuration"""
self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = Path("""src/transformers""" )
__UpperCAmelCase : Union[str, Any] = ["""configuration""", """modeling""", """tokenization"""]
self.analyze_directory(UpperCamelCase , n_identifier=UpperCamelCase )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = Path("""docs/source""" )
__UpperCAmelCase : str = ["""favicon.ico"""]
self.analyze_directory(UpperCamelCase , ignore_files=UpperCamelCase , only_modules=UpperCamelCase )
| 320
|
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase ( _UpperCamelCase : list[float] , _UpperCamelCase : list[float] ) -> float:
'''simple docstring'''
__UpperCAmelCase : Tuple = sorted(numsa + numsa )
__UpperCAmelCase ,__UpperCAmelCase : Dict = divmod(len(_UpperCamelCase ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase : List[Any] = [float(x) for x in input('Enter the elements of first array: ').split()]
UpperCAmelCase : Optional[int] = [float(x) for x in input('Enter the elements of second array: ').split()]
print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
| 320
| 1
|
"""simple docstring"""
import os
def lowerCamelCase ( ) -> Optional[int]:
'''simple docstring'''
with open(os.path.dirname(_UpperCamelCase ) + """/p022_names.txt""" ) as file:
__UpperCAmelCase : List[str] = str(file.readlines()[0] )
__UpperCAmelCase : int = names.replace("""\"""" , """""" ).split(""",""" )
names.sort()
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : Optional[int] = 0
for i, name in enumerate(_UpperCamelCase ):
for letter in name:
name_score += ord(_UpperCamelCase ) - 6_4
total_score += (i + 1) * name_score
__UpperCAmelCase : Optional[Any] = 0
return total_score
if __name__ == "__main__":
print(solution())
| 320
|
"""simple docstring"""
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = """hf-internal-testing/tiny-random-t5"""
__UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Optional[int] = tokenizer("""This is me""" , return_tensors="""pt""" )
__UpperCAmelCase : int = model.to_bettertransformer()
self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
__UpperCAmelCase : Tuple = model.generate(**UpperCamelCase )
__UpperCAmelCase : Tuple = model.reverse_bettertransformer()
self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCamelCase )
__UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase )
self.assertFalse(
any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
__UpperCAmelCase : Tuple = model_reloaded.generate(**UpperCamelCase )
self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase ) )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Any = """hf-internal-testing/tiny-random-t5"""
__UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Tuple = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(UpperCamelCase ):
model.save_pretrained(UpperCamelCase )
__UpperCAmelCase : Tuple = model.reverse_bettertransformer()
model.save_pretrained(UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
import inspect
import unittest
import warnings
from transformers import DeiTConfig
from transformers.models.auto import get_values
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
)
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : int , UpperCamelCase : List[str] , UpperCamelCase : List[str]=13 , UpperCamelCase : Union[str, Any]=30 , UpperCamelCase : str=2 , UpperCamelCase : List[Any]=3 , UpperCamelCase : Tuple=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=32 , UpperCamelCase : Any=5 , UpperCamelCase : Tuple=4 , UpperCamelCase : int=37 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : List[str]=10 , UpperCamelCase : List[str]=0.02 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=2 , ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : str = batch_size
__UpperCAmelCase : Optional[Any] = image_size
__UpperCAmelCase : Optional[Any] = patch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : int = is_training
__UpperCAmelCase : Union[str, Any] = use_labels
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : List[Any] = num_hidden_layers
__UpperCAmelCase : Tuple = num_attention_heads
__UpperCAmelCase : Dict = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = type_sequence_label_size
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Optional[int] = scope
__UpperCAmelCase : Tuple = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__UpperCAmelCase : Tuple = (image_size // patch_size) ** 2
__UpperCAmelCase : int = num_patches + 2
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : int = None
if self.use_labels:
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Dict = self.get_config()
return config, pixel_values, labels
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : int , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = DeiTModel(config=UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase__ ( self : str , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Dict = DeiTForMaskedImageModeling(config=UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
__UpperCAmelCase : Optional[Any] = model(UpperCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCAmelCase : Tuple = 1
__UpperCAmelCase : Optional[Any] = DeiTForMaskedImageModeling(UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
__UpperCAmelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : Any = model(UpperCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict ):
'''simple docstring'''
__UpperCAmelCase : List[str] = self.type_sequence_label_size
__UpperCAmelCase : int = DeiTForImageClassification(UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase , labels=UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__UpperCAmelCase : str = 1
__UpperCAmelCase : str = DeiTForImageClassification(UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
__UpperCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : Dict = model(UpperCamelCase , labels=UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : str = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,
) : Optional[Any] = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( A , A , unittest.TestCase ):
"""simple docstring"""
__a = (
(
DeiTModel,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
__a = (
{
"""feature-extraction""": DeiTModel,
"""image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
__a = False
__a = False
__a = False
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = DeiTModelTester(self )
__UpperCAmelCase : Any = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""DeiT does not use inputs_embeds""" )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : int = model_class(UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase : int = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCamelCase , nn.Linear ) )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : str = model_class(UpperCamelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : Optional[int] = [*signature.parameters.keys()]
__UpperCAmelCase : Optional[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCamelCase )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Dict , UpperCamelCase : int , UpperCamelCase : List[str]=False ):
'''simple docstring'''
__UpperCAmelCase : Any = super()._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase )
if return_labels:
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
if not self.model_tester.is_training:
return
__UpperCAmelCase ,__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Union[str, Any] = True
for model_class in self.all_model_classes:
# DeiTForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(UpperCamelCase )
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
__UpperCAmelCase : Union[str, Any] = model_class(UpperCamelCase )
model.to(UpperCamelCase )
model.train()
__UpperCAmelCase : Tuple = self._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase )
__UpperCAmelCase : str = model(**UpperCamelCase ).loss
loss.backward()
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
__UpperCAmelCase : Dict = False
__UpperCAmelCase : Optional[int] = True
for model_class in self.all_model_classes:
if model_class in get_values(UpperCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# DeiTForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
continue
__UpperCAmelCase : List[Any] = model_class(UpperCamelCase )
model.gradient_checkpointing_enable()
model.to(UpperCamelCase )
model.train()
__UpperCAmelCase : Optional[Any] = self._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase )
__UpperCAmelCase : int = model(**UpperCamelCase ).loss
loss.backward()
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[str] = [
{"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float},
{"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long},
{"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(UpperCamelCase ),
*get_values(UpperCamelCase ),
]
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ):
__UpperCAmelCase : int = problem_type["""title"""]
__UpperCAmelCase : Any = problem_type["""num_labels"""]
__UpperCAmelCase : List[str] = model_class(UpperCamelCase )
model.to(UpperCamelCase )
model.train()
__UpperCAmelCase : Union[str, Any] = self._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase )
if problem_type["num_labels"] > 1:
__UpperCAmelCase : Any = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] )
__UpperCAmelCase : Union[str, Any] = inputs["""labels"""].to(problem_type["""dtype"""] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=UpperCamelCase ) as warning_list:
__UpperCAmelCase : Union[str, Any] = model(**UpperCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
f'''Something is going wrong in the regression problem: intercepted {w.message}''' )
loss.backward()
@slow
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Any = DeiTModel.from_pretrained(UpperCamelCase )
self.assertIsNotNone(UpperCamelCase )
def lowerCamelCase ( ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
return (
DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
if is_vision_available()
else None
)
@slow
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to(
UpperCamelCase )
__UpperCAmelCase : List[str] = self.default_image_processor
__UpperCAmelCase : str = prepare_img()
__UpperCAmelCase : Dict = image_processor(images=UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Dict = model(**UpperCamelCase )
# verify the logits
__UpperCAmelCase : Tuple = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCamelCase )
__UpperCAmelCase : Optional[int] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = DeiTModel.from_pretrained(
"""facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" )
__UpperCAmelCase : Union[str, Any] = self.default_image_processor
__UpperCAmelCase : Dict = prepare_img()
__UpperCAmelCase : int = image_processor(images=UpperCamelCase , return_tensors="""pt""" )
__UpperCAmelCase : str = inputs.pixel_values.to(UpperCamelCase )
# forward pass to make sure inference works in fp16
with torch.no_grad():
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase )
| 320
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
UpperCAmelCase : Dict = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
| 1
|
"""simple docstring"""
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : int , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any=13 , UpperCamelCase : str=30 , UpperCamelCase : List[Any]=2 , UpperCamelCase : Tuple=3 , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=32 , UpperCamelCase : Dict=2 , UpperCamelCase : Tuple=4 , UpperCamelCase : Optional[Any]=37 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Tuple=0.1 , UpperCamelCase : str=0.1 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : Union[str, Any]=0.02 , UpperCamelCase : Tuple=3 , UpperCamelCase : Tuple=0.6 , UpperCamelCase : List[Any]=None , ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : Optional[Any] = batch_size
__UpperCAmelCase : str = image_size
__UpperCAmelCase : List[str] = patch_size
__UpperCAmelCase : int = num_channels
__UpperCAmelCase : Union[str, Any] = is_training
__UpperCAmelCase : Union[str, Any] = use_labels
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : Any = num_hidden_layers
__UpperCAmelCase : Tuple = num_attention_heads
__UpperCAmelCase : Optional[int] = intermediate_size
__UpperCAmelCase : Any = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : Tuple = attention_probs_dropout_prob
__UpperCAmelCase : Union[str, Any] = type_sequence_label_size
__UpperCAmelCase : Tuple = initializer_range
__UpperCAmelCase : Tuple = mask_ratio
__UpperCAmelCase : Tuple = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
__UpperCAmelCase : Optional[int] = (image_size // patch_size) ** 2
__UpperCAmelCase : Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Any = None
if self.use_labels:
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def lowerCamelCase__ ( self : int , UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : int ):
'''simple docstring'''
__UpperCAmelCase : List[str] = TFViTMAEModel(config=UpperCamelCase )
__UpperCAmelCase : str = model(UpperCamelCase , training=UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase__ ( self : str , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : Tuple = TFViTMAEForPreTraining(UpperCamelCase )
__UpperCAmelCase : Optional[Any] = model(UpperCamelCase , training=UpperCamelCase )
# expected sequence length = num_patches
__UpperCAmelCase : Optional[int] = (self.image_size // self.patch_size) ** 2
__UpperCAmelCase : Dict = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
__UpperCAmelCase : Union[str, Any] = 1
__UpperCAmelCase : Optional[int] = TFViTMAEForPreTraining(UpperCamelCase )
__UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : Dict = model(UpperCamelCase , training=UpperCamelCase )
__UpperCAmelCase : int = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
((__UpperCAmelCase) ,(__UpperCAmelCase) ,(__UpperCAmelCase)) : Any = config_and_inputs
__UpperCAmelCase : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( A , A , unittest.TestCase ):
"""simple docstring"""
__a = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
__a = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {}
__a = False
__a = False
__a = False
__a = False
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = TFViTMAEModelTester(self )
__UpperCAmelCase : Any = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 )
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
__UpperCAmelCase : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCamelCase , tf.keras.layers.Layer ) )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Dict = model_class(UpperCamelCase )
__UpperCAmelCase : Tuple = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : Optional[int] = [*signature.parameters.keys()]
__UpperCAmelCase : Union[str, Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase )
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
np.random.seed(2 )
__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 )
__UpperCAmelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = self._prepare_for_class(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : List[Any] = model(UpperCamelCase , noise=UpperCamelCase )
__UpperCAmelCase : Tuple = copy.deepcopy(self._prepare_for_class(UpperCamelCase , UpperCamelCase ) )
__UpperCAmelCase : int = model(**UpperCamelCase , noise=UpperCamelCase )
__UpperCAmelCase : str = outputs_dict[0].numpy()
__UpperCAmelCase : str = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
np.random.seed(2 )
__UpperCAmelCase ,__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = int((config.image_size // config.patch_size) ** 2 )
__UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(UpperCamelCase : Any ):
__UpperCAmelCase : Any = {}
for k, v in inputs_dict.items():
if tf.is_tensor(UpperCamelCase ):
__UpperCAmelCase : List[Any] = v.numpy()
else:
__UpperCAmelCase : Optional[int] = np.array(UpperCamelCase )
return inputs_np_dict
for model_class in self.all_model_classes:
__UpperCAmelCase : str = model_class(UpperCamelCase )
__UpperCAmelCase : int = self._prepare_for_class(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Optional[Any] = prepare_numpy_arrays(UpperCamelCase )
__UpperCAmelCase : Any = model(UpperCamelCase , noise=UpperCamelCase )
__UpperCAmelCase : Tuple = model(**UpperCamelCase , noise=UpperCamelCase )
self.assert_outputs_same(UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] ):
'''simple docstring'''
np.random.seed(2 )
__UpperCAmelCase : List[str] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
__UpperCAmelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
__UpperCAmelCase : int = tf.constant(UpperCamelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
__UpperCAmelCase : List[str] = tf_noise
super().check_pt_tf_models(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
np.random.seed(2 )
__UpperCAmelCase ,__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Union[str, Any] = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(UpperCamelCase )
if module_member_name.endswith("""MainLayer""" )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )]
for module_member in (getattr(UpperCamelCase , UpperCamelCase ),)
if isinstance(UpperCamelCase , UpperCamelCase )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(UpperCamelCase , """_keras_serializable""" , UpperCamelCase )
}
__UpperCAmelCase : str = int((config.image_size // config.patch_size) ** 2 )
__UpperCAmelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
__UpperCAmelCase : List[Any] = tf.convert_to_tensor(UpperCamelCase )
inputs_dict.update({"""noise""": noise} )
for main_layer_class in tf_main_layer_classes:
__UpperCAmelCase : Tuple = main_layer_class(UpperCamelCase )
__UpperCAmelCase : Tuple = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
__UpperCAmelCase : Optional[int] = tf.keras.Model(UpperCamelCase , outputs=main_layer(UpperCamelCase ) )
__UpperCAmelCase : Optional[int] = model(UpperCamelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCAmelCase : Any = os.path.join(UpperCamelCase , """keras_model.h5""" )
model.save(UpperCamelCase )
__UpperCAmelCase : Tuple = tf.keras.models.load_model(
UpperCamelCase , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(UpperCamelCase , tf.keras.Model )
__UpperCAmelCase : Optional[Any] = model(UpperCamelCase )
self.assert_outputs_same(UpperCamelCase , UpperCamelCase )
@slow
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
np.random.seed(2 )
__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 )
__UpperCAmelCase : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
__UpperCAmelCase : Any = model_class(UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = self._prepare_for_class(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Optional[int] = model(UpperCamelCase , noise=UpperCamelCase )
if model_class.__name__ == "TFViTMAEModel":
__UpperCAmelCase : Optional[int] = outputs.last_hidden_state.numpy()
__UpperCAmelCase : Dict = 0
else:
__UpperCAmelCase : Dict = outputs.logits.numpy()
__UpperCAmelCase : Dict = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCamelCase , saved_model=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = model_class.from_pretrained(UpperCamelCase )
__UpperCAmelCase : List[str] = model(UpperCamelCase , noise=UpperCamelCase )
if model_class.__name__ == "TFViTMAEModel":
__UpperCAmelCase : Tuple = after_outputs["""last_hidden_state"""].numpy()
__UpperCAmelCase : List[Any] = 0
else:
__UpperCAmelCase : str = after_outputs["""logits"""].numpy()
__UpperCAmelCase : str = 0
__UpperCAmelCase : Dict = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(UpperCamelCase , 1e-5 )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
np.random.seed(2 )
__UpperCAmelCase ,__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : int = int((config.image_size // config.patch_size) ** 2 )
__UpperCAmelCase : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
__UpperCAmelCase : Optional[Any] = model_class(UpperCamelCase )
__UpperCAmelCase : int = self._prepare_for_class(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase , noise=UpperCamelCase )
__UpperCAmelCase : Dict = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(UpperCamelCase )
__UpperCAmelCase : List[Any] = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
__UpperCAmelCase : List[str] = model_class.from_config(model.config )
__UpperCAmelCase : Any = new_model(UpperCamelCase ) # Build model
new_model.set_weights(model.get_weights() )
__UpperCAmelCase : str = new_model(UpperCamelCase , noise=UpperCamelCase )
self.assert_outputs_same(UpperCamelCase , UpperCamelCase )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
pass
@slow
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : Any = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" )
self.assertIsNotNone(UpperCamelCase )
def lowerCamelCase ( ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
np.random.seed(2 )
__UpperCAmelCase : Dict = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" )
__UpperCAmelCase : Optional[int] = self.default_image_processor
__UpperCAmelCase : List[Any] = prepare_img()
__UpperCAmelCase : Dict = image_processor(images=UpperCamelCase , return_tensors="""tf""" )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
__UpperCAmelCase : int = ViTMAEConfig()
__UpperCAmelCase : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
__UpperCAmelCase : Any = np.random.uniform(size=(1, num_patches) )
# forward pass
__UpperCAmelCase : Optional[int] = model(**UpperCamelCase , noise=UpperCamelCase )
# verify the logits
__UpperCAmelCase : Tuple = tf.convert_to_tensor([1, 196, 768] )
self.assertEqual(outputs.logits.shape , UpperCamelCase )
__UpperCAmelCase : Optional[Any] = tf.convert_to_tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase , atol=1e-4 )
| 320
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase : List[str] = {
'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'],
'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Tuple = [
'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'AdaptiveEmbedding',
'TransfoXLForSequenceClassification',
'TransfoXLLMHeadModel',
'TransfoXLModel',
'TransfoXLPreTrainedModel',
'load_tf_weights_in_transfo_xl',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Dict = [
'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFAdaptiveEmbedding',
'TFTransfoXLForSequenceClassification',
'TFTransfoXLLMHeadModel',
'TFTransfoXLMainLayer',
'TFTransfoXLModel',
'TFTransfoXLPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_transfo_xl import (
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
AdaptiveEmbedding,
TransfoXLForSequenceClassification,
TransfoXLLMHeadModel,
TransfoXLModel,
TransfoXLPreTrainedModel,
load_tf_weights_in_transfo_xl,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_transfo_xl import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAdaptiveEmbedding,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLMainLayer,
TFTransfoXLModel,
TFTransfoXLPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
| 1
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Dict ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = [1]
for i in range(2 , _UpperCamelCase ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : Optional[Any] = list(range(_UpperCamelCase ) )
# Find permutation
while factorials:
__UpperCAmelCase : List[Any] = factorials.pop()
__UpperCAmelCase ,__UpperCAmelCase : str = divmod(_UpperCamelCase , _UpperCamelCase )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320
|
"""simple docstring"""
def lowerCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : List[str] = 1
while len(_UpperCamelCase ) < 1E6:
constant.append(str(_UpperCamelCase ) )
i += 1
__UpperCAmelCase : List[str] = """""".join(_UpperCamelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[9_9] )
* int(constant[9_9_9] )
* int(constant[9_9_9_9] )
* int(constant[9_9_9_9_9] )
* int(constant[9_9_9_9_9_9] )
)
if __name__ == "__main__":
print(solution())
| 320
| 1
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float ) -> float:
'''simple docstring'''
if mass < 0:
raise ValueError("""The mass of a body cannot be negative""" )
return 0.5 * mass * abs(_UpperCamelCase ) * abs(_UpperCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 320
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase : Tuple = {
'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'],
'tokenization_electra': ['ElectraTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : List[Any] = ['ElectraTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Any = [
'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'ElectraForCausalLM',
'ElectraForMaskedLM',
'ElectraForMultipleChoice',
'ElectraForPreTraining',
'ElectraForQuestionAnswering',
'ElectraForSequenceClassification',
'ElectraForTokenClassification',
'ElectraModel',
'ElectraPreTrainedModel',
'load_tf_weights_in_electra',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[Any] = [
'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFElectraForMaskedLM',
'TFElectraForMultipleChoice',
'TFElectraForPreTraining',
'TFElectraForQuestionAnswering',
'TFElectraForSequenceClassification',
'TFElectraForTokenClassification',
'TFElectraModel',
'TFElectraPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str = [
'FlaxElectraForCausalLM',
'FlaxElectraForMaskedLM',
'FlaxElectraForMultipleChoice',
'FlaxElectraForPreTraining',
'FlaxElectraForQuestionAnswering',
'FlaxElectraForSequenceClassification',
'FlaxElectraForTokenClassification',
'FlaxElectraModel',
'FlaxElectraPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
| 1
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : int ) -> str:
'''simple docstring'''
if isinstance(_UpperCamelCase , _UpperCamelCase ):
raise TypeError("""'float' object cannot be interpreted as an integer""" )
if isinstance(_UpperCamelCase , _UpperCamelCase ):
raise TypeError("""'str' object cannot be interpreted as an integer""" )
if num == 0:
return "0b0"
__UpperCAmelCase : Optional[Any] = False
if num < 0:
__UpperCAmelCase : int = True
__UpperCAmelCase : Optional[int] = -num
__UpperCAmelCase : list[int] = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(_UpperCamelCase ) for e in binary )
return "0b" + "".join(str(_UpperCamelCase ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320
|
"""simple docstring"""
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
UpperCAmelCase : Optional[Any] = 'scheduler_config.json'
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = 1
__a = 2
__a = 3
__a = 4
__a = 5
__a = 6
__a = 7
__a = 8
__a = 9
__a = 10
__a = 11
__a = 12
__a = 13
__a = 14
@dataclass
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = 42
class lowerCamelCase__ :
"""simple docstring"""
__a = SCHEDULER_CONFIG_NAME
__a = []
__a = True
@classmethod
def lowerCamelCase__ ( cls : Any , UpperCamelCase : Dict[str, Any] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : int , ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = cls.load_config(
pretrained_model_name_or_path=UpperCamelCase , subfolder=UpperCamelCase , return_unused_kwargs=UpperCamelCase , return_commit_hash=UpperCamelCase , **UpperCamelCase , )
return cls.from_config(UpperCamelCase , return_unused_kwargs=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, os.PathLike] , UpperCamelCase : bool = False , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
self.save_config(save_directory=UpperCamelCase , push_to_hub=UpperCamelCase , **UpperCamelCase )
@property
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
return self._get_compatibles()
@classmethod
def lowerCamelCase__ ( cls : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = list(set([cls.__name__] + cls._compatibles ) )
__UpperCAmelCase : List[str] = importlib.import_module(__name__.split(""".""" )[0] )
__UpperCAmelCase : List[str] = [
getattr(UpperCamelCase , UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase , UpperCamelCase )
]
return compatible_classes
| 320
| 1
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase : Dict = logging.get_logger(__name__)
UpperCAmelCase : List[Any] = {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json',
'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json',
'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json',
}
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = """roberta"""
def __init__( self : List[Any] , UpperCamelCase : List[str]=50_265 , UpperCamelCase : Optional[Any]=768 , UpperCamelCase : List[Any]=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : Tuple=3_072 , UpperCamelCase : List[str]="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Optional[Any]=512 , UpperCamelCase : Optional[int]=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : int=1e-1_2 , UpperCamelCase : List[Any]=1 , UpperCamelCase : Tuple=0 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : int="absolute" , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict , ):
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase )
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : str = hidden_size
__UpperCAmelCase : Any = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : Tuple = hidden_act
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : Any = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : int = type_vocab_size
__UpperCAmelCase : str = initializer_range
__UpperCAmelCase : Tuple = layer_norm_eps
__UpperCAmelCase : int = position_embedding_type
__UpperCAmelCase : str = use_cache
__UpperCAmelCase : Optional[int] = classifier_dropout
class lowerCamelCase__ ( A ):
"""simple docstring"""
@property
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCAmelCase : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 320
|
"""simple docstring"""
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowerCamelCase__ :
"""simple docstring"""
@staticmethod
def lowerCamelCase__ ( *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
pass
def lowerCamelCase ( _UpperCamelCase : Image ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() )
return m.hexdigest()[:1_0]
def lowerCamelCase ( _UpperCamelCase : Image ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.array(_UpperCamelCase )
__UpperCAmelCase : List[Any] = npimg.shape
return {"hash": hashimage(_UpperCamelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
__a = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
__a = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ):
'''simple docstring'''
pass
@require_tf
@unittest.skip("""Image segmentation not implemented in TF""" )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
pass
@slow
@require_torch
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" )
__UpperCAmelCase : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 )
# Shortening by hashing
__UpperCAmelCase : int = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(UpperCamelCase , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053},
{"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967},
{"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993},
{"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909},
{"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879},
{"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834},
{"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716},
{"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612},
{"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599},
{"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552},
{"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532},
{"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516},
{"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499},
{"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483},
{"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464},
{"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943},
{"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943},
{"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408},
{"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335},
{"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326},
{"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262},
{"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999},
{"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986},
{"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984},
{"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873},
{"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871}
] , )
# fmt: on
@require_torch
@slow
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = """facebook/sam-vit-huge"""
__UpperCAmelCase : str = pipeline("""mask-generation""" , model=UpperCamelCase )
__UpperCAmelCase : int = image_segmenter(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
__UpperCAmelCase : Dict = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(UpperCamelCase , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053},
] , )
| 320
| 1
|
"""simple docstring"""
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
UpperCAmelCase : List[Any] = {
# 1536-bit
5: {
'prime': int(
'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'
+ '29024E088A67CC74020BBEA63B139B22514A08798E3404DD'
+ 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'
+ 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'
+ 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'
+ 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'
+ '83655D23DCA3AD961C62F356208552BB9ED529077096966D'
+ '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF',
base=16,
),
'generator': 2,
},
# 2048-bit
14: {
'prime': int(
'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'
+ '29024E088A67CC74020BBEA63B139B22514A08798E3404DD'
+ 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'
+ 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'
+ 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'
+ 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'
+ '83655D23DCA3AD961C62F356208552BB9ED529077096966D'
+ '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'
+ 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'
+ 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510'
+ '15728E5A8AACAA68FFFFFFFFFFFFFFFF',
base=16,
),
'generator': 2,
},
# 3072-bit
15: {
'prime': int(
'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'
+ '29024E088A67CC74020BBEA63B139B22514A08798E3404DD'
+ 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'
+ 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'
+ 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'
+ 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'
+ '83655D23DCA3AD961C62F356208552BB9ED529077096966D'
+ '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'
+ 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'
+ 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510'
+ '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'
+ 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'
+ 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'
+ 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'
+ 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'
+ '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF',
base=16,
),
'generator': 2,
},
# 4096-bit
16: {
'prime': int(
'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'
+ '29024E088A67CC74020BBEA63B139B22514A08798E3404DD'
+ 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'
+ 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'
+ 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'
+ 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'
+ '83655D23DCA3AD961C62F356208552BB9ED529077096966D'
+ '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'
+ 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'
+ 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510'
+ '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'
+ 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'
+ 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'
+ 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'
+ 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'
+ '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7'
+ '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA'
+ '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6'
+ '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED'
+ '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9'
+ '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199'
+ 'FFFFFFFFFFFFFFFF',
base=16,
),
'generator': 2,
},
# 6144-bit
17: {
'prime': int(
'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08'
+ '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B'
+ '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9'
+ 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6'
+ '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8'
+ 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D'
+ '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C'
+ '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718'
+ '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D'
+ '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D'
+ 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226'
+ '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C'
+ 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC'
+ 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26'
+ '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB'
+ '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2'
+ '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127'
+ 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492'
+ '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406'
+ 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918'
+ 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151'
+ '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03'
+ 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F'
+ 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA'
+ 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B'
+ 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632'
+ '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E'
+ '6DCC4024FFFFFFFFFFFFFFFF',
base=16,
),
'generator': 2,
},
# 8192-bit
18: {
'prime': int(
'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'
+ '29024E088A67CC74020BBEA63B139B22514A08798E3404DD'
+ 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'
+ 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'
+ 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'
+ 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'
+ '83655D23DCA3AD961C62F356208552BB9ED529077096966D'
+ '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'
+ 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'
+ 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510'
+ '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'
+ 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'
+ 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'
+ 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'
+ 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'
+ '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7'
+ '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA'
+ '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6'
+ '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED'
+ '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9'
+ '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492'
+ '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD'
+ 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831'
+ '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B'
+ 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF'
+ '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6'
+ 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3'
+ '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA'
+ 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328'
+ '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C'
+ 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE'
+ '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4'
+ '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300'
+ '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568'
+ '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9'
+ '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B'
+ '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A'
+ '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36'
+ '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1'
+ 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92'
+ '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47'
+ '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71'
+ '60C980DD98EDD3DFFFFFFFFFFFFFFFFF',
base=16,
),
'generator': 2,
},
}
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : str , UpperCamelCase : int = 14 ):
'''simple docstring'''
if group not in primes:
raise ValueError("""Unsupported Group""" )
__UpperCAmelCase : Union[str, Any] = primes[group]["""prime"""]
__UpperCAmelCase : Union[str, Any] = primes[group]["""generator"""]
__UpperCAmelCase : Tuple = int(hexlify(urandom(32 ) ) , base=16 )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
return hex(self.__private_key )[2:]
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : Tuple = pow(self.generator , self.__private_key , self.prime )
return hex(UpperCamelCase )[2:]
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : int ):
'''simple docstring'''
return (
2 <= key <= self.prime - 2
and pow(UpperCamelCase , (self.prime - 1) // 2 , self.prime ) == 1
)
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = int(UpperCamelCase , base=16 )
if not self.is_valid_public_key(UpperCamelCase ):
raise ValueError("""Invalid public key""" )
__UpperCAmelCase : Dict = pow(UpperCamelCase , self.__private_key , self.prime )
return shaaaa(str(UpperCamelCase ).encode() ).hexdigest()
@staticmethod
def lowerCamelCase__ ( UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
return (
2 <= remote_public_key_str <= prime - 2
and pow(UpperCamelCase , (prime - 1) // 2 , UpperCamelCase ) == 1
)
@staticmethod
def lowerCamelCase__ ( UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : int = 14 ):
'''simple docstring'''
__UpperCAmelCase : List[str] = int(UpperCamelCase , base=16 )
__UpperCAmelCase : Tuple = int(UpperCamelCase , base=16 )
__UpperCAmelCase : Any = primes[group]["""prime"""]
if not DiffieHellman.is_valid_public_key_static(UpperCamelCase , UpperCamelCase ):
raise ValueError("""Invalid public key""" )
__UpperCAmelCase : Tuple = pow(UpperCamelCase , UpperCamelCase , UpperCamelCase )
return shaaaa(str(UpperCamelCase ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320
|
"""simple docstring"""
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class lowerCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , UpperCamelCase : str ):
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase )
__UpperCAmelCase : int = list(model.children() )[:-2]
__UpperCAmelCase : List[Any] = nn.Sequential(*UpperCamelCase )
__UpperCAmelCase : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] )
def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.pool(self.model(UpperCamelCase ) )
__UpperCAmelCase : List[Any] = torch.flatten(UpperCamelCase , start_dim=2 )
__UpperCAmelCase : Any = out.transpose(1 , 2 ).contiguous()
return out # BxNx2048
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )]
__UpperCAmelCase : Any = os.path.dirname(UpperCamelCase )
__UpperCAmelCase : List[str] = tokenizer
__UpperCAmelCase : str = labels
__UpperCAmelCase : Optional[int] = len(UpperCamelCase )
__UpperCAmelCase : int = max_seq_length
__UpperCAmelCase : int = transforms
def __len__( self : List[str] ):
'''simple docstring'''
return len(self.data )
def __getitem__( self : List[str] , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) )
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1]
__UpperCAmelCase : Any = sentence[: self.max_seq_length]
__UpperCAmelCase : Tuple = torch.zeros(self.n_classes )
__UpperCAmelCase : str = 1
__UpperCAmelCase : Any = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" )
__UpperCAmelCase : Optional[int] = self.transforms(UpperCamelCase )
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = Counter()
for row in self.data:
label_freqs.update(row["""label"""] )
return label_freqs
def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = [len(row["""sentence"""] ) for row in batch]
__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase )
__UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long )
__UpperCAmelCase : str = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long )
for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ):
__UpperCAmelCase : List[str] = input_row["""sentence"""]
__UpperCAmelCase : Tuple = 1
__UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] )
__UpperCAmelCase : Optional[Any] = torch.stack([row["""label"""] for row in batch] )
__UpperCAmelCase : str = torch.stack([row["""image_start_token"""] for row in batch] )
__UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] )
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def lowerCamelCase ( ) -> int:
'''simple docstring'''
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def lowerCamelCase ( ) -> Optional[Any]:
'''simple docstring'''
return transforms.Compose(
[
transforms.Resize(2_5_6 ),
transforms.CenterCrop(2_2_4 ),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ),
] )
| 320
| 1
|
"""simple docstring"""
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
UpperCAmelCase : List[Any] = {
'facebook/maskformer-swin-base-ade': (
'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json'
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
UpperCAmelCase : Any = logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = """maskformer"""
__a = {"""hidden_size""": """mask_feature_size"""}
__a = ["""resnet""", """swin"""]
__a = ["""detr"""]
def __init__( self : Tuple , UpperCamelCase : int = 256 , UpperCamelCase : int = 256 , UpperCamelCase : float = 0.1 , UpperCamelCase : bool = False , UpperCamelCase : Optional[Dict] = None , UpperCamelCase : Optional[Dict] = None , UpperCamelCase : float = 0.02 , UpperCamelCase : float = 1.0 , UpperCamelCase : float = 1.0 , UpperCamelCase : float = 1.0 , UpperCamelCase : float = 20.0 , UpperCamelCase : Optional[bool] = None , **UpperCamelCase : List[str] , ):
'''simple docstring'''
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
__UpperCAmelCase : List[Any] = SwinConfig(
image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
if isinstance(UpperCamelCase , UpperCamelCase ):
__UpperCAmelCase : Any = backbone_config.pop("""model_type""" )
__UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type]
__UpperCAmelCase : Any = config_class.from_dict(UpperCamelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. '''
f'''Supported model types: {",".join(self.backbones_supported )}''' )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
__UpperCAmelCase : Any = DetrConfig()
else:
# verify that the decoder is supported
__UpperCAmelCase : Optional[int] = (
decoder_config.pop("""model_type""" ) if isinstance(UpperCamelCase , UpperCamelCase ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
f'''Transformer Decoder {decoder_type} not supported, please use one of'''
f''' {",".join(self.decoders_supported )}''' )
if isinstance(UpperCamelCase , UpperCamelCase ):
__UpperCAmelCase : List[Any] = CONFIG_MAPPING[decoder_type]
__UpperCAmelCase : List[Any] = config_class.from_dict(UpperCamelCase )
__UpperCAmelCase : Any = backbone_config
__UpperCAmelCase : Dict = decoder_config
# main feature dimension for the model
__UpperCAmelCase : List[str] = fpn_feature_size
__UpperCAmelCase : List[str] = mask_feature_size
# initializer
__UpperCAmelCase : List[str] = init_std
__UpperCAmelCase : str = init_xavier_std
# Hungarian matcher && loss
__UpperCAmelCase : Optional[int] = cross_entropy_weight
__UpperCAmelCase : str = dice_weight
__UpperCAmelCase : List[str] = mask_weight
__UpperCAmelCase : Tuple = use_auxiliary_loss
__UpperCAmelCase : Union[str, Any] = no_object_weight
__UpperCAmelCase : Optional[int] = output_auxiliary_logits
__UpperCAmelCase : Optional[int] = self.decoder_config.encoder_attention_heads
__UpperCAmelCase : List[Any] = self.decoder_config.num_hidden_layers
super().__init__(**UpperCamelCase )
@classmethod
def lowerCamelCase__ ( cls : Optional[Any] , UpperCamelCase : PretrainedConfig , UpperCamelCase : PretrainedConfig , **UpperCamelCase : Any ):
'''simple docstring'''
return cls(
backbone_config=UpperCamelCase , decoder_config=UpperCamelCase , **UpperCamelCase , )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ )
__UpperCAmelCase : List[str] = self.backbone_config.to_dict()
__UpperCAmelCase : Dict = self.decoder_config.to_dict()
__UpperCAmelCase : List[Any] = self.__class__.model_type
return output
| 320
|
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 320
| 1
|
"""simple docstring"""
import argparse
import json
import subprocess
def lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : int ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : str = []
__UpperCAmelCase : Any = (
f'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"'''
""" https://api.github.com/repos/huggingface/transformers/actions/runners"""
)
__UpperCAmelCase : List[Any] = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE )
__UpperCAmelCase : Optional[int] = output.stdout.decode("""utf-8""" )
__UpperCAmelCase : Dict = json.loads(_UpperCamelCase )
__UpperCAmelCase : int = status["""runners"""]
for runner in runners:
if runner["name"] in target_runners:
if runner["status"] == "offline":
offline_runners.append(_UpperCamelCase )
# save the result so we can report them on Slack
with open("""offline_runners.txt""" , """w""" ) as fp:
fp.write(json.dumps(_UpperCamelCase ) )
if len(_UpperCamelCase ) > 0:
__UpperCAmelCase : Tuple = """\n""".join([x["""name"""] for x in offline_runners] )
raise ValueError(f'''The following runners are offline:\n{failed}''' )
if __name__ == "__main__":
def lowerCamelCase ( _UpperCamelCase : List[str] ) -> Optional[int]:
'''simple docstring'''
return values.split(""",""" )
UpperCAmelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--target_runners',
default=None,
type=list_str,
required=True,
help='Comma-separated list of runners to check status.',
)
parser.add_argument(
'--token', default=None, type=str, required=True, help='A token that has actions:read permission.'
)
UpperCAmelCase : Union[str, Any] = parser.parse_args()
get_runner_status(args.target_runners, args.token)
| 320
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : Optional[int] ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase )
__UpperCAmelCase : List[Any] = sum(_UpperCamelCase )
__UpperCAmelCase : Optional[int] = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
__UpperCAmelCase : Any = True
for i in range(1 , s + 1 ):
__UpperCAmelCase : List[Any] = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
__UpperCAmelCase : Optional[int] = dp[i][j - 1]
if arr[i - 1] <= j:
__UpperCAmelCase : Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
__UpperCAmelCase : Optional[int] = s - 2 * j
break
return diff
| 320
| 1
|
"""simple docstring"""
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = """M-CLIP"""
def __init__( self : Tuple , UpperCamelCase : str=1_024 , UpperCamelCase : Any=768 , **UpperCamelCase : str ):
'''simple docstring'''
__UpperCAmelCase : str = transformerDimSize
__UpperCAmelCase : List[str] = imageDimSize
super().__init__(**UpperCamelCase )
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = MCLIPConfig
def __init__( self : Any , UpperCamelCase : List[str] , *UpperCamelCase : Tuple , **UpperCamelCase : List[str] ):
'''simple docstring'''
super().__init__(UpperCamelCase , *UpperCamelCase , **UpperCamelCase )
__UpperCAmelCase : str = XLMRobertaModel(UpperCamelCase )
__UpperCAmelCase : Optional[int] = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.transformer(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )[0]
__UpperCAmelCase : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(UpperCamelCase ), embs
| 320
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
if is_vision_available():
import PIL
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = ["""pixel_values"""]
def __init__( self : Tuple , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 255 , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = True , **UpperCamelCase : str , ):
'''simple docstring'''
super().__init__(**UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 224}
__UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase )
__UpperCAmelCase : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase , param_name="""crop_size""" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : Tuple = size
__UpperCAmelCase : Optional[Any] = resample
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : int = crop_size
__UpperCAmelCase : Optional[int] = do_rescale
__UpperCAmelCase : List[Any] = rescale_factor
__UpperCAmelCase : Tuple = do_normalize
__UpperCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__UpperCAmelCase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD
__UpperCAmelCase : List[Any] = do_convert_rgb
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : List[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
__UpperCAmelCase : int = get_resize_output_image_size(UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase )
return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Dict , ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = get_size_dict(UpperCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, float] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ):
'''simple docstring'''
return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Any , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Any , ):
'''simple docstring'''
return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : int = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : Any , ):
'''simple docstring'''
__UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : Dict = size if size is not None else self.size
__UpperCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase , param_name="""size""" , default_to_square=UpperCamelCase )
__UpperCAmelCase : Dict = resample if resample is not None else self.resample
__UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : Dict = get_size_dict(UpperCamelCase , param_name="""crop_size""" , default_to_square=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : Any = image_std if image_std is not None else self.image_std
__UpperCAmelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__UpperCAmelCase : List[str] = make_list_of_images(UpperCamelCase )
if not valid_images(UpperCamelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__UpperCAmelCase : int = [convert_to_rgb(UpperCamelCase ) for image in images]
# All transformations expect numpy arrays.
__UpperCAmelCase : Tuple = [to_numpy_array(UpperCamelCase ) for image in images]
if do_resize:
__UpperCAmelCase : Optional[int] = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images]
if do_center_crop:
__UpperCAmelCase : int = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images]
if do_rescale:
__UpperCAmelCase : Dict = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images]
if do_normalize:
__UpperCAmelCase : Optional[Any] = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images]
__UpperCAmelCase : Any = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images]
__UpperCAmelCase : Any = {"""pixel_values""": images}
return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
UpperCAmelCase : Tuple = {
'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json',
'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json',
'junnyu/roformer_chinese_char_small': (
'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'
),
'junnyu/roformer_chinese_char_base': (
'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'
),
'junnyu/roformer_small_discriminator': (
'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'
),
'junnyu/roformer_small_generator': (
'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = """roformer"""
def __init__( self : Tuple , UpperCamelCase : Any=50_000 , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=768 , UpperCamelCase : Tuple=12 , UpperCamelCase : int=12 , UpperCamelCase : Dict=3_072 , UpperCamelCase : str="gelu" , UpperCamelCase : Tuple=0.1 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[int]=1_536 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : Optional[int]=0 , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Any=True , **UpperCamelCase : Dict , ):
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase )
__UpperCAmelCase : Any = vocab_size
__UpperCAmelCase : List[str] = hidden_size if embedding_size is None else embedding_size
__UpperCAmelCase : str = hidden_size
__UpperCAmelCase : List[str] = num_hidden_layers
__UpperCAmelCase : List[Any] = num_attention_heads
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : Optional[int] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : List[Any] = max_position_embeddings
__UpperCAmelCase : List[str] = type_vocab_size
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : Tuple = layer_norm_eps
__UpperCAmelCase : int = rotary_value
__UpperCAmelCase : Optional[Any] = use_cache
class lowerCamelCase__ ( A ):
"""simple docstring"""
@property
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCAmelCase : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """sequence"""}
__UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 320
|
"""simple docstring"""
from collections.abc import Sequence
def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) )
def lowerCamelCase ( _UpperCamelCase : Sequence[float] , _UpperCamelCase : float ) -> float:
'''simple docstring'''
__UpperCAmelCase : Dict = 0.0
for coeff in reversed(_UpperCamelCase ):
__UpperCAmelCase : Any = result * x + coeff
return result
if __name__ == "__main__":
UpperCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0)
UpperCAmelCase : str = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 320
| 1
|
"""simple docstring"""
import argparse
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCAmelCase : int = 16
UpperCAmelCase : Union[str, Any] = 32
def lowerCamelCase ( _UpperCamelCase : Accelerator , _UpperCamelCase : int = 1_6 ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__UpperCAmelCase : List[Any] = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(_UpperCamelCase : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCAmelCase : Tuple = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_UpperCamelCase , max_length=_UpperCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__UpperCAmelCase : List[str] = datasets.map(
_UpperCamelCase , batched=_UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCAmelCase : str = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(_UpperCamelCase : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__UpperCAmelCase : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__UpperCAmelCase : List[Any] = 1_6
elif accelerator.mixed_precision != "no":
__UpperCAmelCase : Dict = 8
else:
__UpperCAmelCase : Optional[int] = None
return tokenizer.pad(
_UpperCamelCase , padding="""longest""" , max_length=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_tensors="""pt""" , )
# Instantiate dataloaders.
__UpperCAmelCase : Optional[Any] = DataLoader(
tokenized_datasets["""train"""] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase , drop_last=_UpperCamelCase )
__UpperCAmelCase : Optional[int] = DataLoader(
tokenized_datasets["""validation"""] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase , drop_last=(accelerator.mixed_precision == """fp8""") , )
return train_dataloader, eval_dataloader
def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Any ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCAmelCase : Tuple = config["""lr"""]
__UpperCAmelCase : int = int(config["""num_epochs"""] )
__UpperCAmelCase : List[Any] = int(config["""seed"""] )
__UpperCAmelCase : Any = int(config["""batch_size"""] )
__UpperCAmelCase : List[Any] = evaluate.load("""glue""" , """mrpc""" )
# If the batch size is too big we use gradient accumulation
__UpperCAmelCase : int = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
__UpperCAmelCase : Tuple = batch_size // MAX_GPU_BATCH_SIZE
__UpperCAmelCase : Optional[Any] = MAX_GPU_BATCH_SIZE
set_seed(_UpperCamelCase )
__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = get_dataloaders(_UpperCamelCase , _UpperCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_UpperCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__UpperCAmelCase : Optional[int] = model.to(accelerator.device )
# Instantiate optimizer
__UpperCAmelCase : List[str] = AdamW(params=model.parameters() , lr=_UpperCamelCase )
# Instantiate scheduler
__UpperCAmelCase : Optional[int] = get_linear_schedule_with_warmup(
optimizer=_UpperCamelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(_UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = accelerator.prepare(
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
# Now we train the model
for epoch in range(_UpperCamelCase ):
model.train()
for step, batch in enumerate(_UpperCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
__UpperCAmelCase : Tuple = model(**_UpperCamelCase )
__UpperCAmelCase : str = outputs.loss
__UpperCAmelCase : int = loss / gradient_accumulation_steps
accelerator.backward(_UpperCamelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(_UpperCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__UpperCAmelCase : str = model(**_UpperCamelCase )
__UpperCAmelCase : int = outputs.logits.argmax(dim=-1 )
__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=_UpperCamelCase , references=_UpperCamelCase , )
__UpperCAmelCase : Union[str, Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , _UpperCamelCase )
def lowerCamelCase ( ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=_UpperCamelCase , default=_UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
__UpperCAmelCase : Optional[int] = parser.parse_args()
__UpperCAmelCase : Union[str, Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6}
training_function(_UpperCamelCase , _UpperCamelCase )
if __name__ == "__main__":
main()
| 320
|
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase : Optional[int] = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class lowerCamelCase__ :
"""simple docstring"""
__a = PegasusConfig
__a = {}
__a = """gelu"""
def __init__( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Dict=True , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : Union[str, Any]=5 , UpperCamelCase : Any=4 , UpperCamelCase : Tuple=37 , UpperCamelCase : Any=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=20 , UpperCamelCase : List[str]=2 , UpperCamelCase : int=1 , UpperCamelCase : Optional[Any]=0 , ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : str = batch_size
__UpperCAmelCase : Optional[Any] = seq_length
__UpperCAmelCase : Dict = is_training
__UpperCAmelCase : Dict = use_labels
__UpperCAmelCase : List[Any] = vocab_size
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : Optional[Any] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : List[Any] = intermediate_size
__UpperCAmelCase : Union[str, Any] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : List[Any] = max_position_embeddings
__UpperCAmelCase : Any = eos_token_id
__UpperCAmelCase : Optional[int] = pad_token_id
__UpperCAmelCase : List[str] = bos_token_id
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
__UpperCAmelCase : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCAmelCase : Union[str, Any] = np.concatenate([input_ids, eos_tensor] , axis=1 )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Any = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCAmelCase : Any = prepare_pegasus_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase )
return config, inputs_dict
def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = 20
__UpperCAmelCase : Tuple = model_class_name(UpperCamelCase )
__UpperCAmelCase : List[Any] = model.encode(inputs_dict["""input_ids"""] )
__UpperCAmelCase ,__UpperCAmelCase : int = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
__UpperCAmelCase : Optional[int] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCAmelCase : Union[str, Any] = model.decode(
decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCAmelCase : Tuple = model.decode(
decoder_input_ids[:, -1:] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Dict = model.decode(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = 20
__UpperCAmelCase : int = model_class_name(UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] )
__UpperCAmelCase ,__UpperCAmelCase : Dict = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCAmelCase : int = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : List[Any] = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCAmelCase : List[str] = model.decode(
decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCAmelCase : Optional[int] = model.decode(
decoder_input_ids[:, -1:] , UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase , decoder_position_ids=UpperCamelCase , )
__UpperCAmelCase : Union[str, Any] = model.decode(UpperCamelCase , UpperCamelCase , decoder_attention_mask=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=None , _UpperCamelCase : Any=None , ) -> Dict:
'''simple docstring'''
if attention_mask is None:
__UpperCAmelCase : Optional[int] = np.not_equal(_UpperCamelCase , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
__UpperCAmelCase : Dict = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__a = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__a = True
__a = False
__a = False
__a = False
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = FlaxPegasusModelTester(self )
__UpperCAmelCase : List[str] = ConfigTester(self , config_class=UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCAmelCase : Tuple = self._prepare_for_class(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Dict = model_class(UpperCamelCase )
@jax.jit
def encode_jitted(UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any]=None , **UpperCamelCase : List[str] ):
return model.encode(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )
with self.subTest("""JIT Enabled""" ):
__UpperCAmelCase : Tuple = encode_jitted(**UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCAmelCase : Optional[int] = encode_jitted(**UpperCamelCase ).to_tuple()
self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) )
for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCAmelCase : int = model_class(UpperCamelCase )
__UpperCAmelCase : int = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
__UpperCAmelCase : Any = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ):
return model.decode(
decoder_input_ids=UpperCamelCase , decoder_attention_mask=UpperCamelCase , encoder_outputs=UpperCamelCase , )
with self.subTest("""JIT Enabled""" ):
__UpperCAmelCase : Union[str, Any] = decode_jitted(**UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCAmelCase : str = decode_jitted(**UpperCamelCase ).to_tuple()
self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) )
for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCamelCase )
__UpperCAmelCase : Optional[int] = np.ones((1, 1) )
__UpperCAmelCase : List[str] = model(UpperCamelCase )
self.assertIsNotNone(UpperCamelCase )
@slow
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
__UpperCAmelCase : Union[str, Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
__UpperCAmelCase : List[Any] = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
__UpperCAmelCase : List[str] = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
__UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""np""" , truncation=UpperCamelCase , max_length=512 , padding=UpperCamelCase )
__UpperCAmelCase : int = model.generate(**UpperCamelCase , num_beams=2 ).sequences
__UpperCAmelCase : str = tokenizer.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase )
assert tgt_text == decoded
| 320
| 1
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
def lowerCamelCase ( _UpperCamelCase : Tuple ) -> List[List[ImageInput]]:
'''simple docstring'''
if isinstance(_UpperCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(_UpperCamelCase , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(_UpperCamelCase ):
return [[videos]]
raise ValueError(f'''Could not make batched video from {videos}''' )
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = ["""pixel_values"""]
def __init__( self : Dict , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 255 , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , **UpperCamelCase : Tuple , ):
'''simple docstring'''
super().__init__(**UpperCamelCase )
__UpperCAmelCase : Dict = size if size is not None else {"""shortest_edge""": 224}
__UpperCAmelCase : List[Any] = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase )
__UpperCAmelCase : Dict = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase : Union[str, Any] = get_size_dict(UpperCamelCase , param_name="""crop_size""" )
__UpperCAmelCase : Any = do_resize
__UpperCAmelCase : int = size
__UpperCAmelCase : int = do_center_crop
__UpperCAmelCase : Optional[int] = crop_size
__UpperCAmelCase : Any = resample
__UpperCAmelCase : List[str] = do_rescale
__UpperCAmelCase : Dict = rescale_factor
__UpperCAmelCase : List[Any] = do_normalize
__UpperCAmelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCamelCase__ ( self : str , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : List[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Tuple = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase )
if "shortest_edge" in size:
__UpperCAmelCase : List[str] = get_resize_output_image_size(UpperCamelCase , size["""shortest_edge"""] , default_to_square=UpperCamelCase )
elif "height" in size and "width" in size:
__UpperCAmelCase : List[str] = (size["""height"""], size["""width"""])
else:
raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' )
return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Tuple , ):
'''simple docstring'''
__UpperCAmelCase : int = get_size_dict(UpperCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' )
return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, float] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Optional[int] , ):
'''simple docstring'''
return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : np.ndarray , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Union[float, List[float]] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : str , ):
'''simple docstring'''
return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Any , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase : Optional[int] = to_numpy_array(UpperCamelCase )
if do_resize:
__UpperCAmelCase : List[str] = self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase )
if do_center_crop:
__UpperCAmelCase : int = self.center_crop(UpperCamelCase , size=UpperCamelCase )
if do_rescale:
__UpperCAmelCase : Tuple = self.rescale(image=UpperCamelCase , scale=UpperCamelCase )
if do_normalize:
__UpperCAmelCase : Optional[int] = self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase )
__UpperCAmelCase : List[str] = to_channel_dimension_format(UpperCamelCase , UpperCamelCase )
return image
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[float, List[float]]] = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase : Optional[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : Any = resample if resample is not None else self.resample
__UpperCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std
__UpperCAmelCase : str = size if size is not None else self.size
__UpperCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : Tuple = get_size_dict(UpperCamelCase , param_name="""crop_size""" )
if not valid_images(UpperCamelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__UpperCAmelCase : Optional[Any] = make_batched(UpperCamelCase )
__UpperCAmelCase : str = [
[
self._preprocess_image(
image=UpperCamelCase , do_resize=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , do_center_crop=UpperCamelCase , crop_size=UpperCamelCase , do_rescale=UpperCamelCase , rescale_factor=UpperCamelCase , do_normalize=UpperCamelCase , image_mean=UpperCamelCase , image_std=UpperCamelCase , data_format=UpperCamelCase , )
for img in video
]
for video in videos
]
__UpperCAmelCase : Optional[int] = {"""pixel_values""": videos}
return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
| 320
|
"""simple docstring"""
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase : List[str] = logging.get_logger(__name__)
UpperCAmelCase : List[str] = {
'b0': efficientnet.EfficientNetBa,
'b1': efficientnet.EfficientNetBa,
'b2': efficientnet.EfficientNetBa,
'b3': efficientnet.EfficientNetBa,
'b4': efficientnet.EfficientNetBa,
'b5': efficientnet.EfficientNetBa,
'b6': efficientnet.EfficientNetBa,
'b7': efficientnet.EfficientNetBa,
}
UpperCAmelCase : List[str] = {
'b0': {
'hidden_dim': 1280,
'width_coef': 1.0,
'depth_coef': 1.0,
'image_size': 224,
'dropout_rate': 0.2,
'dw_padding': [],
},
'b1': {
'hidden_dim': 1280,
'width_coef': 1.0,
'depth_coef': 1.1,
'image_size': 240,
'dropout_rate': 0.2,
'dw_padding': [16],
},
'b2': {
'hidden_dim': 1408,
'width_coef': 1.1,
'depth_coef': 1.2,
'image_size': 260,
'dropout_rate': 0.3,
'dw_padding': [5, 8, 16],
},
'b3': {
'hidden_dim': 1536,
'width_coef': 1.2,
'depth_coef': 1.4,
'image_size': 300,
'dropout_rate': 0.3,
'dw_padding': [5, 18],
},
'b4': {
'hidden_dim': 1792,
'width_coef': 1.4,
'depth_coef': 1.8,
'image_size': 380,
'dropout_rate': 0.4,
'dw_padding': [6],
},
'b5': {
'hidden_dim': 2048,
'width_coef': 1.6,
'depth_coef': 2.2,
'image_size': 456,
'dropout_rate': 0.4,
'dw_padding': [13, 27],
},
'b6': {
'hidden_dim': 2304,
'width_coef': 1.8,
'depth_coef': 2.6,
'image_size': 528,
'dropout_rate': 0.5,
'dw_padding': [31],
},
'b7': {
'hidden_dim': 2560,
'width_coef': 2.0,
'depth_coef': 3.1,
'image_size': 600,
'dropout_rate': 0.5,
'dw_padding': [18],
},
}
def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = EfficientNetConfig()
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""hidden_dim"""]
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""width_coef"""]
__UpperCAmelCase : str = CONFIG_MAP[model_name]["""depth_coef"""]
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""]
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""dropout_rate"""]
__UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""]
__UpperCAmelCase : int = """huggingface/label-files"""
__UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json"""
__UpperCAmelCase : str = 1_0_0_0
__UpperCAmelCase : Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) )
__UpperCAmelCase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()}
__UpperCAmelCase : Dict = idalabel
__UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
return config
def lowerCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw )
return im
def lowerCamelCase ( _UpperCamelCase : Any ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = CONFIG_MAP[model_name]["""image_size"""]
__UpperCAmelCase : List[str] = EfficientNetImageProcessor(
size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_UpperCamelCase , )
return preprocessor
def lowerCamelCase ( _UpperCamelCase : Dict ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )]
__UpperCAmelCase : str = sorted(set(_UpperCamelCase ) )
__UpperCAmelCase : Optional[int] = len(_UpperCamelCase )
__UpperCAmelCase : Any = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )}
__UpperCAmelCase : Any = []
rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") )
rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") )
rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") )
rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") )
rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") )
for b in block_names:
__UpperCAmelCase : List[str] = block_name_mapping[b]
rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') )
rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') )
rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') )
rename_keys.append(
(f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') )
rename_keys.append(
(f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') )
rename_keys.append(
(f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') )
rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') )
rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') )
rename_keys.append(
(f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') )
rename_keys.append(
(f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') )
rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') )
rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') )
rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') )
rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') )
rename_keys.append(
(f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') )
rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') )
rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') )
rename_keys.append(
(f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') )
rename_keys.append(
(f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') )
rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") )
rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") )
rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") )
rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") )
rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") )
__UpperCAmelCase : Optional[int] = {}
for item in rename_keys:
if item[0] in original_param_names:
__UpperCAmelCase : Optional[Any] = """efficientnet.""" + item[1]
__UpperCAmelCase : Tuple = """classifier.weight"""
__UpperCAmelCase : Optional[int] = """classifier.bias"""
return key_mapping
def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Tuple:
'''simple docstring'''
for key, value in tf_params.items():
if "normalization" in key:
continue
__UpperCAmelCase : List[Any] = key_mapping[key]
if "_conv" in key and "kernel" in key:
__UpperCAmelCase : int = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
__UpperCAmelCase : Optional[Any] = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
__UpperCAmelCase : List[str] = torch.from_numpy(np.transpose(_UpperCamelCase ) )
else:
__UpperCAmelCase : Tuple = torch.from_numpy(_UpperCamelCase )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(_UpperCamelCase )
@torch.no_grad()
def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : int = model_classes[model_name](
include_top=_UpperCamelCase , weights="""imagenet""" , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , )
__UpperCAmelCase : List[str] = original_model.trainable_variables
__UpperCAmelCase : List[Any] = original_model.non_trainable_variables
__UpperCAmelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
__UpperCAmelCase : int = param.numpy()
__UpperCAmelCase : Dict = list(tf_params.keys() )
# Load HuggingFace model
__UpperCAmelCase : Optional[Any] = get_efficientnet_config(_UpperCamelCase )
__UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(_UpperCamelCase ).eval()
__UpperCAmelCase : Any = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print("""Converting parameters...""" )
__UpperCAmelCase : Tuple = rename_keys(_UpperCamelCase )
replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
# Initialize preprocessor and preprocess input image
__UpperCAmelCase : List[Any] = convert_image_processor(_UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors="""pt""" )
# HF model inference
hf_model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[int] = hf_model(**_UpperCamelCase )
__UpperCAmelCase : Any = outputs.logits.detach().numpy()
# Original model inference
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""]
__UpperCAmelCase : str = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
__UpperCAmelCase : Optional[Any] = image.img_to_array(_UpperCamelCase )
__UpperCAmelCase : Tuple = np.expand_dims(_UpperCamelCase , axis=0 )
__UpperCAmelCase : str = original_model.predict(_UpperCamelCase )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same."
print("""Model outputs match!""" )
if save_model:
# Create folder to save model
if not os.path.isdir(_UpperCamelCase ):
os.mkdir(_UpperCamelCase )
# Save converted model and image processor
hf_model.save_pretrained(_UpperCamelCase )
preprocessor.save_pretrained(_UpperCamelCase )
if push_to_hub:
# Push model and image processor to hub
print(f'''Pushing converted {model_name} to the hub...''' )
__UpperCAmelCase : List[str] = f'''efficientnet-{model_name}'''
preprocessor.push_to_hub(_UpperCamelCase )
hf_model.push_to_hub(_UpperCamelCase )
if __name__ == "__main__":
UpperCAmelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='b0',
type=str,
help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='hf_model',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--save_model', action='store_true', help='Save model to local')
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
UpperCAmelCase : Any = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 320
| 1
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : List[Any]=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : int=99 , UpperCamelCase : Any=[1, 1, 2] , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Union[str, Any]=8 , UpperCamelCase : int=37 , UpperCamelCase : Optional[Any]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : int=0.0 , UpperCamelCase : Union[str, Any]=512 , UpperCamelCase : Any=3 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : str=None , UpperCamelCase : Tuple=False , ):
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : int = batch_size
__UpperCAmelCase : str = seq_length
__UpperCAmelCase : Optional[Any] = is_training
__UpperCAmelCase : Optional[Any] = use_input_mask
__UpperCAmelCase : Tuple = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Tuple = vocab_size
__UpperCAmelCase : Optional[int] = block_sizes
__UpperCAmelCase : Optional[Any] = num_decoder_layers
__UpperCAmelCase : Union[str, Any] = d_model
__UpperCAmelCase : Dict = n_head
__UpperCAmelCase : Optional[Any] = d_head
__UpperCAmelCase : Dict = d_inner
__UpperCAmelCase : Any = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout
__UpperCAmelCase : List[Any] = attention_dropout
__UpperCAmelCase : str = activation_dropout
__UpperCAmelCase : Union[str, Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : str = 2
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : List[Any] = num_choices
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Dict = initializer_std
# Used in the tests to check the size of the first attention layer
__UpperCAmelCase : Dict = n_head
# Used in the tests to check the size of the first hidden state
__UpperCAmelCase : Dict = self.d_model
# Used in the tests to check the number of output hidden states/attentions
__UpperCAmelCase : Dict = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
__UpperCAmelCase : List[Any] = self.num_hidden_layers + 2
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[str] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Dict = None
__UpperCAmelCase : Optional[Any] = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : str = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCamelCase__ ( self : Any , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = TFFunnelModel(config=UpperCamelCase )
__UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : List[str] = model(UpperCamelCase )
__UpperCAmelCase : List[Any] = [input_ids, input_mask]
__UpperCAmelCase : Dict = model(UpperCamelCase )
__UpperCAmelCase : Tuple = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
__UpperCAmelCase : int = False
__UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
__UpperCAmelCase : Any = False
__UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase )
__UpperCAmelCase : List[str] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Any , ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = TFFunnelBaseModel(config=UpperCamelCase )
__UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Optional[Any] = model(UpperCamelCase )
__UpperCAmelCase : int = [input_ids, input_mask]
__UpperCAmelCase : int = model(UpperCamelCase )
__UpperCAmelCase : List[Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
__UpperCAmelCase : List[Any] = False
__UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) )
__UpperCAmelCase : int = False
__UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase )
__UpperCAmelCase : str = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Tuple = TFFunnelForPreTraining(config=UpperCamelCase )
__UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : int = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : int , ):
'''simple docstring'''
__UpperCAmelCase : int = TFFunnelForMaskedLM(config=UpperCamelCase )
__UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Optional[Any] = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_labels
__UpperCAmelCase : Optional[Any] = TFFunnelForSequenceClassification(config=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Tuple = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int , ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : str = TFFunnelForMultipleChoice(config=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : str = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : int = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : List[str] = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
__UpperCAmelCase : int = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Any , ):
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : str = TFFunnelForTokenClassification(config=UpperCamelCase )
__UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : int = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase__ ( self : str , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Any = TFFunnelForQuestionAnswering(config=UpperCamelCase )
__UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Any = model(UpperCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,
) : Dict = config_and_inputs
__UpperCAmelCase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( A , A , unittest.TestCase ):
"""simple docstring"""
__a = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
__a = (
{
"""feature-extraction""": (TFFunnelBaseModel, TFFunnelModel),
"""fill-mask""": TFFunnelForMaskedLM,
"""question-answering""": TFFunnelForQuestionAnswering,
"""text-classification""": TFFunnelForSequenceClassification,
"""token-classification""": TFFunnelForTokenClassification,
"""zero-shot""": TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
__a = False
__a = False
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = TFFunnelModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCamelCase )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCamelCase )
@require_tf
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
__a = False
__a = False
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : List[str] = TFFunnelModelTester(self , base=UpperCamelCase )
__UpperCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*UpperCamelCase )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase )
| 320
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""keras_nlp"""]
def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
requires_backends(self , ["""keras_nlp"""] )
| 320
| 1
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase__ ( A , A , unittest.TestCase ):
"""simple docstring"""
__a = StableDiffusionXLImgaImgPipeline
__a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""}
__a = PipelineTesterMixin.required_optional_params - {"""latents"""}
__a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__a = IMAGE_TO_IMAGE_IMAGE_PARAMS
__a = IMAGE_TO_IMAGE_IMAGE_PARAMS
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , )
__UpperCAmelCase : Optional[Any] = EulerDiscreteScheduler(
beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , )
torch.manual_seed(0 )
__UpperCAmelCase : Tuple = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
__UpperCAmelCase : List[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=32 , )
__UpperCAmelCase : str = CLIPTextModel(UpperCamelCase )
__UpperCAmelCase : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCamelCase )
__UpperCAmelCase : List[str] = CLIPTextModelWithProjection(UpperCamelCase )
__UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""text_encoder_2""": text_encoder_a,
"""tokenizer_2""": tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : Any=0 ):
'''simple docstring'''
__UpperCAmelCase : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase )
__UpperCAmelCase : int = image / 2 + 0.5
if str(UpperCamelCase ).startswith("""mps""" ):
__UpperCAmelCase : Union[str, Any] = torch.manual_seed(UpperCamelCase )
else:
__UpperCAmelCase : Union[str, Any] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase )
__UpperCAmelCase : int = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 5.0,
"""output_type""": """numpy""",
"""strength""": 0.75,
}
return inputs
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : List[str] = self.get_dummy_components()
__UpperCAmelCase : Optional[Any] = StableDiffusionXLImgaImgPipeline(**UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = sd_pipe.to(UpperCamelCase )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase )
__UpperCAmelCase : List[str] = self.get_dummy_inputs(UpperCamelCase )
__UpperCAmelCase : int = sd_pipe(**UpperCamelCase ).images
__UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__UpperCAmelCase : str = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.get_dummy_components()
__UpperCAmelCase : Optional[int] = StableDiffusionXLImgaImgPipeline(**UpperCamelCase )
__UpperCAmelCase : str = sd_pipe.to(UpperCamelCase )
__UpperCAmelCase : List[str] = sd_pipe.to(UpperCamelCase )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase )
# forward without prompt embeds
__UpperCAmelCase : List[str] = self.get_dummy_inputs(UpperCamelCase )
__UpperCAmelCase : Dict = 3 * ["""this is a negative prompt"""]
__UpperCAmelCase : Optional[Any] = negative_prompt
__UpperCAmelCase : str = 3 * [inputs["""prompt"""]]
__UpperCAmelCase : Tuple = sd_pipe(**UpperCamelCase )
__UpperCAmelCase : List[str] = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
__UpperCAmelCase : List[str] = self.get_dummy_inputs(UpperCamelCase )
__UpperCAmelCase : Optional[int] = 3 * ["""this is a negative prompt"""]
__UpperCAmelCase : int = 3 * [inputs.pop("""prompt""" )]
(
(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,
) : List[str] = sd_pipe.encode_prompt(UpperCamelCase , negative_prompt=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = sd_pipe(
**UpperCamelCase , prompt_embeds=UpperCamelCase , negative_prompt_embeds=UpperCamelCase , pooled_prompt_embeds=UpperCamelCase , negative_pooled_prompt_embeds=UpperCamelCase , )
__UpperCAmelCase : Optional[int] = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Tuple="cpu" , UpperCamelCase : Union[str, Any]=torch.floataa , UpperCamelCase : Union[str, Any]=0 ):
'''simple docstring'''
__UpperCAmelCase : str = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase )
__UpperCAmelCase : str = np.random.RandomState(UpperCamelCase ).standard_normal((1, 4, 64, 64) )
__UpperCAmelCase : List[str] = torch.from_numpy(UpperCamelCase ).to(device=UpperCamelCase , dtype=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = {
"""prompt""": """a photograph of an astronaut riding a horse""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" )
pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
__UpperCAmelCase : int = self.get_inputs(UpperCamelCase )
__UpperCAmelCase : Optional[Any] = pipe(**UpperCamelCase ).images
__UpperCAmelCase : Dict = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
__UpperCAmelCase : Optional[int] = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506] )
assert np.abs(image_slice - expected_slice ).max() < 7e-3
| 320
|
"""simple docstring"""
UpperCAmelCase : Dict = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
def lowerCamelCase ( _UpperCamelCase : bytes ) -> bytes:
'''simple docstring'''
if not isinstance(_UpperCamelCase , _UpperCamelCase ):
__UpperCAmelCase : Any = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(_UpperCamelCase )
__UpperCAmelCase : str = """""".join(bin(_UpperCamelCase )[2:].zfill(8 ) for byte in data )
__UpperCAmelCase : int = len(_UpperCamelCase ) % 6 != 0
if padding_needed:
# The padding that will be added later
__UpperCAmelCase : Dict = b"""=""" * ((6 - len(_UpperCamelCase ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_UpperCamelCase ) % 6)
else:
__UpperCAmelCase : List[str] = b""""""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(_UpperCamelCase ) , 6 ) ).encode()
+ padding
)
def lowerCamelCase ( _UpperCamelCase : str ) -> bytes:
'''simple docstring'''
if not isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ):
__UpperCAmelCase : Tuple = (
"""argument should be a bytes-like object or ASCII string, """
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(_UpperCamelCase )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_UpperCamelCase , _UpperCamelCase ):
try:
__UpperCAmelCase : Optional[Any] = encoded_data.decode("""utf-8""" )
except UnicodeDecodeError:
raise ValueError("""base64 encoded data should only contain ASCII characters""" )
__UpperCAmelCase : str = encoded_data.count("""=""" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
__UpperCAmelCase : List[str] = encoded_data[:-padding]
__UpperCAmelCase : int = """""".join(
bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
__UpperCAmelCase : Optional[Any] = """""".join(
bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )
__UpperCAmelCase : List[Any] = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(_UpperCamelCase ) , 8 )
]
return bytes(_UpperCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320
| 1
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""flax"""]
def __init__( self : Tuple , *UpperCamelCase : List[str] , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : List[Any] , *UpperCamelCase : Dict , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : int , *UpperCamelCase : Tuple , **UpperCamelCase : Tuple ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""flax"""]
def __init__( self : str , *UpperCamelCase : Any , **UpperCamelCase : List[Any] ):
'''simple docstring'''
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : str , *UpperCamelCase : str , **UpperCamelCase : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : Dict , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""flax"""]
def __init__( self : Any , *UpperCamelCase : List[Any] , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : Tuple , *UpperCamelCase : Any , **UpperCamelCase : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : List[Any] , *UpperCamelCase : str , **UpperCamelCase : Dict ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""flax"""]
def __init__( self : int , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[str] ):
'''simple docstring'''
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : str , *UpperCamelCase : Any , **UpperCamelCase : List[str] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : int , *UpperCamelCase : Tuple , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""flax"""]
def __init__( self : List[str] , *UpperCamelCase : Tuple , **UpperCamelCase : Tuple ):
'''simple docstring'''
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : List[str] , *UpperCamelCase : int , **UpperCamelCase : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : str , *UpperCamelCase : List[Any] , **UpperCamelCase : List[str] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""flax"""]
def __init__( self : Any , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[Any] ):
'''simple docstring'''
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : List[str] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : List[str] , *UpperCamelCase : int , **UpperCamelCase : Tuple ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""flax"""]
def __init__( self : List[str] , *UpperCamelCase : Any , **UpperCamelCase : Any ):
'''simple docstring'''
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : Optional[int] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : int , *UpperCamelCase : Tuple , **UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""flax"""]
def __init__( self : int , *UpperCamelCase : List[Any] , **UpperCamelCase : List[Any] ):
'''simple docstring'''
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : List[str] , *UpperCamelCase : List[Any] , **UpperCamelCase : List[str] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : List[str] , *UpperCamelCase : Dict , **UpperCamelCase : Any ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""flax"""]
def __init__( self : List[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : int ):
'''simple docstring'''
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : Any , *UpperCamelCase : Dict , **UpperCamelCase : Tuple ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : List[Any] , *UpperCamelCase : int , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""flax"""]
def __init__( self : Tuple , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : List[str] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : Union[str, Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : str ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""flax"""]
def __init__( self : str , *UpperCamelCase : Any , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : Dict , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : int ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : Optional[int] , *UpperCamelCase : Optional[int] , **UpperCamelCase : str ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""flax"""]
def __init__( self : List[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : List[Any] , *UpperCamelCase : int , **UpperCamelCase : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : Optional[Any] , *UpperCamelCase : int , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
class lowerCamelCase__ ( metaclass=A ):
"""simple docstring"""
__a = ["""flax"""]
def __init__( self : Any , *UpperCamelCase : List[str] , **UpperCamelCase : Tuple ):
'''simple docstring'''
requires_backends(self , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : Union[str, Any] , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
@classmethod
def lowerCamelCase__ ( cls : Dict , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["""flax"""] )
| 320
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
UpperCAmelCase : str = logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ):
'''simple docstring'''
warnings.warn(
"""The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , )
super().__init__(*UpperCamelCase , **UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = """EncodecFeatureExtractor"""
__a = ("""T5Tokenizer""", """T5TokenizerFast""")
def __init__( self : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
super().__init__(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Optional[int] = self.feature_extractor
__UpperCAmelCase : List[Any] = False
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : int=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : List[Any]=True ):
'''simple docstring'''
return self.tokenizer.get_decoder_prompt_ids(task=UpperCamelCase , language=UpperCamelCase , no_timestamps=UpperCamelCase )
def __call__( self : Any , *UpperCamelCase : str , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*UpperCamelCase , **UpperCamelCase )
__UpperCAmelCase : Tuple = kwargs.pop("""audio""" , UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = kwargs.pop("""sampling_rate""" , UpperCamelCase )
__UpperCAmelCase : List[Any] = kwargs.pop("""text""" , UpperCamelCase )
if len(UpperCamelCase ) > 0:
__UpperCAmelCase : Dict = args[0]
__UpperCAmelCase : Optional[int] = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if text is not None:
__UpperCAmelCase : Union[str, Any] = self.tokenizer(UpperCamelCase , **UpperCamelCase )
if audio is not None:
__UpperCAmelCase : List[Any] = self.feature_extractor(UpperCamelCase , *UpperCamelCase , sampling_rate=UpperCamelCase , **UpperCamelCase )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
__UpperCAmelCase : str = audio_inputs["""input_values"""]
if "padding_mask" in audio_inputs:
__UpperCAmelCase : List[Any] = audio_inputs["""padding_mask"""]
return inputs
def lowerCamelCase__ ( self : int , *UpperCamelCase : Tuple , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : Any = kwargs.pop("""audio""" , UpperCamelCase )
__UpperCAmelCase : List[str] = kwargs.pop("""padding_mask""" , UpperCamelCase )
if len(UpperCamelCase ) > 0:
__UpperCAmelCase : List[str] = args[0]
__UpperCAmelCase : List[Any] = args[1:]
if audio_values is not None:
return self._decode_audio(UpperCamelCase , padding_mask=UpperCamelCase )
else:
return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : str , *UpperCamelCase : Tuple , **UpperCamelCase : Dict ):
'''simple docstring'''
return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : str , UpperCamelCase : int , UpperCamelCase : Optional = None ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = to_numpy(UpperCamelCase )
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = audio_values.shape
if padding_mask is None:
return list(UpperCamelCase )
__UpperCAmelCase : List[Any] = to_numpy(UpperCamelCase )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
__UpperCAmelCase : List[Any] = seq_len - padding_mask.shape[-1]
__UpperCAmelCase : Optional[int] = 1 - self.feature_extractor.padding_value
__UpperCAmelCase : Optional[Any] = np.pad(UpperCamelCase , ((0, 0), (0, difference)) , """constant""" , constant_values=UpperCamelCase )
__UpperCAmelCase : Tuple = audio_values.tolist()
for i in range(UpperCamelCase ):
__UpperCAmelCase : Dict = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
__UpperCAmelCase : List[Any] = sliced_audio.reshape(UpperCamelCase , -1 )
return audio_values
| 320
|
"""simple docstring"""
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = LEDTokenizer
__a = LEDTokenizerFast
__a = True
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
super().setUp()
__UpperCAmelCase : Tuple = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
__UpperCAmelCase : str = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) )
__UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
__UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""}
__UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(UpperCamelCase ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(UpperCamelCase ) )
def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : int ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase )
def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : List[str] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase )
def lowerCamelCase__ ( self : str , UpperCamelCase : Any ):
'''simple docstring'''
return "lower newer", "lower newer"
@cached_property
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" )
@cached_property
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" )
@require_torch
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
__UpperCAmelCase : Union[str, Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Any = tokenizer(UpperCamelCase , max_length=len(UpperCamelCase ) , padding=UpperCamelCase , return_tensors="""pt""" )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
__UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0]
self.assertListEqual(UpperCamelCase , UpperCamelCase )
@require_torch
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors="""pt""" )
self.assertIn("""input_ids""" , UpperCamelCase )
self.assertIn("""attention_mask""" , UpperCamelCase )
self.assertNotIn("""labels""" , UpperCamelCase )
self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase )
@require_torch
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = [
"""Summary of the text.""",
"""Another summary.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Optional[Any] = tokenizer(text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
@require_torch
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : str = tokenizer(
["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""pt""" )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
self.assertEqual(batch.input_ids.shape , (2, 5_122) )
@require_torch
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization."""]
__UpperCAmelCase : int = [
"""Summary of the text.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , return_tensors="""pt""" )
__UpperCAmelCase : Tuple = tokenizer(text_target=UpperCamelCase , return_tensors="""pt""" )
__UpperCAmelCase : Optional[Any] = inputs["""input_ids"""]
__UpperCAmelCase : List[str] = targets["""input_ids"""]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCAmelCase : Any = ["""Summary of the text.""", """Another summary."""]
__UpperCAmelCase : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
__UpperCAmelCase : List[str] = tokenizer(UpperCamelCase , padding=UpperCamelCase )
__UpperCAmelCase : str = [[0] * len(UpperCamelCase ) for x in encoded_output["""input_ids"""]]
__UpperCAmelCase : List[Any] = tokenizer.pad(UpperCamelCase )
self.assertSequenceEqual(outputs["""global_attention_mask"""] , UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase )
__UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase )
__UpperCAmelCase : Any = """A, <mask> AllenNLP sentence."""
__UpperCAmelCase : Dict = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase )
__UpperCAmelCase : List[Any] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase )
self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) )
self.assertEqual(
sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , )
__UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] )
__UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] )
self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
self.assertSequenceEqual(
UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
| 320
| 1
|
"""simple docstring"""
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
UpperCAmelCase : int = 6378137.0
UpperCAmelCase : Tuple = 6356752.314245
UpperCAmelCase : List[str] = 637_8137
def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> float:
'''simple docstring'''
__UpperCAmelCase : str = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
__UpperCAmelCase : int = atan((1 - flattening) * tan(radians(_UpperCamelCase ) ) )
__UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(_UpperCamelCase ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
__UpperCAmelCase : List[str] = haversine_distance(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
__UpperCAmelCase : List[Any] = (b_lata + b_lata) / 2
__UpperCAmelCase : Optional[int] = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
__UpperCAmelCase : Any = (sin(_UpperCamelCase ) ** 2) * (cos(_UpperCamelCase ) ** 2)
__UpperCAmelCase : List[str] = cos(sigma / 2 ) ** 2
__UpperCAmelCase : Optional[int] = (sigma - sin(_UpperCamelCase )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
__UpperCAmelCase : List[str] = (cos(_UpperCamelCase ) ** 2) * (sin(_UpperCamelCase ) ** 2)
__UpperCAmelCase : List[Any] = sin(sigma / 2 ) ** 2
__UpperCAmelCase : int = (sigma + sin(_UpperCamelCase )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : List[Any]=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : int=99 , UpperCamelCase : Any=[1, 1, 2] , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Union[str, Any]=8 , UpperCamelCase : int=37 , UpperCamelCase : Optional[Any]="gelu_new" , UpperCamelCase : Any=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : int=0.0 , UpperCamelCase : Union[str, Any]=512 , UpperCamelCase : Any=3 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : str=None , UpperCamelCase : Tuple=False , ):
'''simple docstring'''
__UpperCAmelCase : int = parent
__UpperCAmelCase : int = batch_size
__UpperCAmelCase : str = seq_length
__UpperCAmelCase : Optional[Any] = is_training
__UpperCAmelCase : Optional[Any] = use_input_mask
__UpperCAmelCase : Tuple = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Tuple = vocab_size
__UpperCAmelCase : Optional[int] = block_sizes
__UpperCAmelCase : Optional[Any] = num_decoder_layers
__UpperCAmelCase : Union[str, Any] = d_model
__UpperCAmelCase : Dict = n_head
__UpperCAmelCase : Optional[Any] = d_head
__UpperCAmelCase : Dict = d_inner
__UpperCAmelCase : Any = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout
__UpperCAmelCase : List[Any] = attention_dropout
__UpperCAmelCase : str = activation_dropout
__UpperCAmelCase : Union[str, Any] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_size
__UpperCAmelCase : str = 2
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : List[Any] = num_choices
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Dict = initializer_std
# Used in the tests to check the size of the first attention layer
__UpperCAmelCase : Dict = n_head
# Used in the tests to check the size of the first hidden state
__UpperCAmelCase : Dict = self.d_model
# Used in the tests to check the number of output hidden states/attentions
__UpperCAmelCase : Dict = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
__UpperCAmelCase : List[Any] = self.num_hidden_layers + 2
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : List[str] = None
if self.use_input_mask:
__UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Dict = None
__UpperCAmelCase : Optional[Any] = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : str = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCamelCase__ ( self : Any , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = TFFunnelModel(config=UpperCamelCase )
__UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : List[str] = model(UpperCamelCase )
__UpperCAmelCase : List[Any] = [input_ids, input_mask]
__UpperCAmelCase : Dict = model(UpperCamelCase )
__UpperCAmelCase : Tuple = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
__UpperCAmelCase : int = False
__UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
__UpperCAmelCase : Any = False
__UpperCAmelCase : Optional[int] = TFFunnelModel(config=UpperCamelCase )
__UpperCAmelCase : List[str] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Any , ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = TFFunnelBaseModel(config=UpperCamelCase )
__UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Optional[Any] = model(UpperCamelCase )
__UpperCAmelCase : int = [input_ids, input_mask]
__UpperCAmelCase : int = model(UpperCamelCase )
__UpperCAmelCase : List[Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
__UpperCAmelCase : List[Any] = False
__UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) )
__UpperCAmelCase : int = False
__UpperCAmelCase : str = TFFunnelBaseModel(config=UpperCamelCase )
__UpperCAmelCase : str = model(UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Tuple = TFFunnelForPreTraining(config=UpperCamelCase )
__UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : int = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : int , ):
'''simple docstring'''
__UpperCAmelCase : int = TFFunnelForMaskedLM(config=UpperCamelCase )
__UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Optional[Any] = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_labels
__UpperCAmelCase : Optional[Any] = TFFunnelForSequenceClassification(config=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Tuple = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int , ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.num_choices
__UpperCAmelCase : str = TFFunnelForMultipleChoice(config=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : str = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : int = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase : List[str] = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
__UpperCAmelCase : int = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : Any , ):
'''simple docstring'''
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : str = TFFunnelForTokenClassification(config=UpperCamelCase )
__UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : int = model(UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase__ ( self : str , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , ):
'''simple docstring'''
__UpperCAmelCase : Any = TFFunnelForQuestionAnswering(config=UpperCamelCase )
__UpperCAmelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__UpperCAmelCase : Any = model(UpperCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,(
__UpperCAmelCase
) ,
) : Dict = config_and_inputs
__UpperCAmelCase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( A , A , unittest.TestCase ):
"""simple docstring"""
__a = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
__a = (
{
"""feature-extraction""": (TFFunnelBaseModel, TFFunnelModel),
"""fill-mask""": TFFunnelForMaskedLM,
"""question-answering""": TFFunnelForQuestionAnswering,
"""text-classification""": TFFunnelForSequenceClassification,
"""token-classification""": TFFunnelForTokenClassification,
"""zero-shot""": TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
__a = False
__a = False
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = TFFunnelModelTester(self )
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCamelCase )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCamelCase )
@require_tf
class lowerCamelCase__ ( A , unittest.TestCase ):
"""simple docstring"""
__a = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
__a = False
__a = False
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : List[str] = TFFunnelModelTester(self , base=UpperCamelCase )
__UpperCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*UpperCamelCase )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@property
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCAmelCase : Optional[int] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Dict = self.dummy_uncond_unet
__UpperCAmelCase : List[Any] = ScoreSdeVeScheduler()
__UpperCAmelCase : int = ScoreSdeVePipeline(unet=UpperCamelCase , scheduler=UpperCamelCase )
sde_ve.to(UpperCamelCase )
sde_ve.set_progress_bar_config(disable=UpperCamelCase )
__UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
__UpperCAmelCase : Any = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=UpperCamelCase ).images
__UpperCAmelCase : Dict = torch.manual_seed(0 )
__UpperCAmelCase : List[Any] = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=UpperCamelCase , return_dict=UpperCamelCase )[
0
]
__UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
__UpperCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__UpperCAmelCase : int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = """google/ncsnpp-church-256"""
__UpperCAmelCase : str = UNetaDModel.from_pretrained(UpperCamelCase )
__UpperCAmelCase : int = ScoreSdeVeScheduler.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Tuple = ScoreSdeVePipeline(unet=UpperCamelCase , scheduler=UpperCamelCase )
sde_ve.to(UpperCamelCase )
sde_ve.set_progress_bar_config(disable=UpperCamelCase )
__UpperCAmelCase : Tuple = torch.manual_seed(0 )
__UpperCAmelCase : Optional[Any] = sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=UpperCamelCase ).images
__UpperCAmelCase : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
__UpperCAmelCase : Optional[Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 320
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> str:
'''simple docstring'''
__UpperCAmelCase : Dict = 0
while b > 0:
if b & 1:
__UpperCAmelCase : int = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 320
| 1
|
"""simple docstring"""
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = """MCTCTFeatureExtractor"""
__a = """AutoTokenizer"""
def __init__( self : Tuple , UpperCamelCase : List[str] , UpperCamelCase : int ):
'''simple docstring'''
super().__init__(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Tuple = self.feature_extractor
__UpperCAmelCase : List[str] = False
def __call__( self : List[str] , *UpperCamelCase : Tuple , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*UpperCamelCase , **UpperCamelCase )
if "raw_speech" in kwargs:
warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" )
__UpperCAmelCase : List[str] = kwargs.pop("""raw_speech""" )
else:
__UpperCAmelCase : Optional[int] = kwargs.pop("""audio""" , UpperCamelCase )
__UpperCAmelCase : int = kwargs.pop("""sampling_rate""" , UpperCamelCase )
__UpperCAmelCase : Optional[Any] = kwargs.pop("""text""" , UpperCamelCase )
if len(UpperCamelCase ) > 0:
__UpperCAmelCase : int = args[0]
__UpperCAmelCase : Dict = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if audio is not None:
__UpperCAmelCase : Optional[int] = self.feature_extractor(UpperCamelCase , *UpperCamelCase , sampling_rate=UpperCamelCase , **UpperCamelCase )
if text is not None:
__UpperCAmelCase : Optional[Any] = self.tokenizer(UpperCamelCase , **UpperCamelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
__UpperCAmelCase : List[str] = encodings["""input_ids"""]
return inputs
def lowerCamelCase__ ( self : Dict , *UpperCamelCase : Any , **UpperCamelCase : str ):
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Tuple ):
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor.pad(*UpperCamelCase , **UpperCamelCase )
__UpperCAmelCase : Dict = kwargs.pop("""input_features""" , UpperCamelCase )
__UpperCAmelCase : Any = kwargs.pop("""labels""" , UpperCamelCase )
if len(UpperCamelCase ) > 0:
__UpperCAmelCase : Optional[Any] = args[0]
__UpperCAmelCase : str = args[1:]
if input_features is not None:
__UpperCAmelCase : Any = self.feature_extractor.pad(UpperCamelCase , *UpperCamelCase , **UpperCamelCase )
if labels is not None:
__UpperCAmelCase : List[Any] = self.tokenizer.pad(UpperCamelCase , **UpperCamelCase )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
__UpperCAmelCase : Any = labels["""input_ids"""]
return input_features
def lowerCamelCase__ ( self : Dict , *UpperCamelCase : Any , **UpperCamelCase : str ):
'''simple docstring'''
return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase )
@contextmanager
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your audio inputs, or in a separate call.""" )
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : List[Any] = self.tokenizer
yield
__UpperCAmelCase : Tuple = self.feature_extractor
__UpperCAmelCase : int = False
| 320
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = ["""image_processor""", """tokenizer"""]
__a = """AutoImageProcessor"""
__a = """AutoTokenizer"""
def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ):
'''simple docstring'''
super().__init__(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : str = self.image_processor
def __call__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=None , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
__UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )
if images is not None:
__UpperCAmelCase : Optional[Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )
if text is not None and images is not None:
__UpperCAmelCase : str = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase )
def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ):
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : int , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase )
@property
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 320
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Any = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Any = [
'SEW_PRETRAINED_MODEL_ARCHIVE_LIST',
'SEWForCTC',
'SEWForSequenceClassification',
'SEWModel',
'SEWPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_sew import (
SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
SEWForCTC,
SEWForSequenceClassification,
SEWModel,
SEWPreTrainedModel,
)
else:
import sys
UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
|
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase ( _UpperCamelCase : list[float] , _UpperCamelCase : list[float] ) -> float:
'''simple docstring'''
__UpperCAmelCase : Tuple = sorted(numsa + numsa )
__UpperCAmelCase ,__UpperCAmelCase : Dict = divmod(len(_UpperCamelCase ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase : List[Any] = [float(x) for x in input('Enter the elements of first array: ').split()]
UpperCAmelCase : Optional[int] = [float(x) for x in input('Enter the elements of second array: ').split()]
print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
| 320
| 1
|
"""simple docstring"""
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
UpperCAmelCase : Any = logging.getLogger(__name__)
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = """token-classification"""
def __init__( self : Dict , UpperCamelCase : Dict ):
'''simple docstring'''
if type(UpperCamelCase ) == dict:
__UpperCAmelCase : Tuple = Namespace(**UpperCamelCase )
__UpperCAmelCase : int = import_module("""tasks""" )
try:
__UpperCAmelCase : Optional[int] = getattr(UpperCamelCase , hparams.task_type )
__UpperCAmelCase : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
__UpperCAmelCase : List[Any] = self.token_classification_task.get_labels(hparams.labels )
__UpperCAmelCase : Union[str, Any] = CrossEntropyLoss().ignore_index
super().__init__(UpperCamelCase , len(self.labels ) , self.mode )
def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase : Optional[int] ):
'''simple docstring'''
return self.model(**UpperCamelCase )
def lowerCamelCase__ ( self : str , UpperCamelCase : List[Any] , UpperCamelCase : Dict ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type != "distilbert":
__UpperCAmelCase : Union[str, Any] = (
batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None
) # XLM and RoBERTa don"t use token_type_ids
__UpperCAmelCase : Optional[Any] = self(**UpperCamelCase )
__UpperCAmelCase : Optional[int] = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : str = self.hparams
for mode in ["train", "dev", "test"]:
__UpperCAmelCase : Optional[Any] = self._feature_file(UpperCamelCase )
if os.path.exists(UpperCamelCase ) and not args.overwrite_cache:
logger.info("""Loading features from cached file %s""" , UpperCamelCase )
__UpperCAmelCase : Optional[int] = torch.load(UpperCamelCase )
else:
logger.info("""Creating features from dataset file at %s""" , args.data_dir )
__UpperCAmelCase : Optional[int] = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase )
__UpperCAmelCase : str = self.token_classification_task.convert_examples_to_features(
UpperCamelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("""Saving features into cached file %s""" , UpperCamelCase )
torch.save(UpperCamelCase , UpperCamelCase )
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : bool = False ):
'''simple docstring'''
__UpperCAmelCase : str = self._feature_file(UpperCamelCase )
logger.info("""Loading features from cached file %s""" , UpperCamelCase )
__UpperCAmelCase : Optional[int] = torch.load(UpperCamelCase )
__UpperCAmelCase : Optional[int] = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
__UpperCAmelCase : Dict = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
__UpperCAmelCase : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
__UpperCAmelCase : Dict = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
__UpperCAmelCase : str = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , batch_size=UpperCamelCase )
def lowerCamelCase__ ( self : int , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] ):
'''simple docstring'''
"""Compute validation""" ""
__UpperCAmelCase : Union[str, Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type != "distilbert":
__UpperCAmelCase : Union[str, Any] = (
batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None
) # XLM and RoBERTa don"t use token_type_ids
__UpperCAmelCase : int = self(**UpperCamelCase )
__UpperCAmelCase ,__UpperCAmelCase : List[str] = outputs[:2]
__UpperCAmelCase : Optional[int] = logits.detach().cpu().numpy()
__UpperCAmelCase : Any = inputs["""labels"""].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = torch.stack([x["""val_loss"""] for x in outputs] ).mean()
__UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] , axis=0 )
__UpperCAmelCase : int = np.argmax(UpperCamelCase , axis=2 )
__UpperCAmelCase : Optional[Any] = np.concatenate([x["""target"""] for x in outputs] , axis=0 )
__UpperCAmelCase : Tuple = dict(enumerate(self.labels ) )
__UpperCAmelCase : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )]
__UpperCAmelCase : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
__UpperCAmelCase : Union[str, Any] = {
"""val_loss""": val_loss_mean,
"""accuracy_score""": accuracy_score(UpperCamelCase , UpperCamelCase ),
"""precision""": precision_score(UpperCamelCase , UpperCamelCase ),
"""recall""": recall_score(UpperCamelCase , UpperCamelCase ),
"""f1""": fa_score(UpperCamelCase , UpperCamelCase ),
}
__UpperCAmelCase : List[Any] = dict(results.items() )
__UpperCAmelCase : Optional[int] = results
return ret, preds_list, out_label_list
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Tuple ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = self._eval_end(UpperCamelCase )
__UpperCAmelCase : Dict = ret["""log"""]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def lowerCamelCase__ ( self : int , UpperCamelCase : int ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[str] = self._eval_end(UpperCamelCase )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
__UpperCAmelCase : str = ret["""log"""]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def lowerCamelCase__ ( UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
BaseTransformer.add_model_specific_args(UpperCamelCase , UpperCamelCase )
parser.add_argument(
"""--task_type""" , default="""NER""" , type=UpperCamelCase , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" )
parser.add_argument(
"""--max_seq_length""" , default=128 , type=UpperCamelCase , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--labels""" , default="""""" , type=UpperCamelCase , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , )
parser.add_argument(
"""--gpus""" , default=0 , type=UpperCamelCase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , )
parser.add_argument(
"""--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" )
return parser
if __name__ == "__main__":
UpperCAmelCase : Optional[Any] = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
UpperCAmelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd())
UpperCAmelCase : Union[str, Any] = parser.parse_args()
UpperCAmelCase : List[Any] = NERTransformer(args)
UpperCAmelCase : List[str] = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
UpperCAmelCase : Optional[Any] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True))
UpperCAmelCase : str = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 320
|
"""simple docstring"""
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = """hf-internal-testing/tiny-random-t5"""
__UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Optional[int] = tokenizer("""This is me""" , return_tensors="""pt""" )
__UpperCAmelCase : int = model.to_bettertransformer()
self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
__UpperCAmelCase : Tuple = model.generate(**UpperCamelCase )
__UpperCAmelCase : Tuple = model.reverse_bettertransformer()
self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCamelCase )
__UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase )
self.assertFalse(
any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
__UpperCAmelCase : Tuple = model_reloaded.generate(**UpperCamelCase )
self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase ) )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Any = """hf-internal-testing/tiny-random-t5"""
__UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Tuple = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(UpperCamelCase ):
model.save_pretrained(UpperCamelCase )
__UpperCAmelCase : Tuple = model.reverse_bettertransformer()
model.save_pretrained(UpperCamelCase )
| 320
| 1
|
"""simple docstring"""
from __future__ import annotations
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : Optional[Any] , UpperCamelCase : Optional[int]=None ):
'''simple docstring'''
__UpperCAmelCase : Any = data
__UpperCAmelCase : Optional[Any] = None
def __repr__( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : int = []
__UpperCAmelCase : Tuple = self
while temp:
string_rep.append(f'''{temp.data}''' )
__UpperCAmelCase : Union[str, Any] = temp.next
return "->".join(UpperCamelCase )
def lowerCamelCase ( _UpperCamelCase : list ) -> Tuple:
'''simple docstring'''
if not elements_list:
raise Exception("""The Elements List is empty""" )
__UpperCAmelCase : List[Any] = Node(elements_list[0] )
for i in range(1 , len(_UpperCamelCase ) ):
__UpperCAmelCase : List[str] = Node(elements_list[i] )
__UpperCAmelCase : List[Any] = current.next
return head
def lowerCamelCase ( _UpperCamelCase : Node ) -> None:
'''simple docstring'''
if head_node is not None and isinstance(_UpperCamelCase , _UpperCamelCase ):
print_reverse(head_node.next )
print(head_node.data )
def lowerCamelCase ( ) -> Optional[int]:
'''simple docstring'''
from doctest import testmod
testmod()
__UpperCAmelCase : int = make_linked_list([1_4, 5_2, 1_4, 1_2, 4_3] )
print("""Linked List:""" )
print(_UpperCamelCase )
print("""Elements in Reverse:""" )
print_reverse(_UpperCamelCase )
if __name__ == "__main__":
main()
| 320
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
UpperCAmelCase : Dict = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
| 1
|
"""simple docstring"""
from pathlib import Path
import fire
from tqdm import tqdm
def lowerCamelCase ( _UpperCamelCase : Union[str, Any]="ro" , _UpperCamelCase : Dict="en" , _UpperCamelCase : Dict="wmt16" , _UpperCamelCase : Optional[int]=None ) -> None:
'''simple docstring'''
try:
import datasets
except (ModuleNotFoundError, ImportError):
raise ImportError("""run pip install datasets""" )
__UpperCAmelCase : str = f'''{src_lang}-{tgt_lang}'''
print(f'''Converting {dataset}-{pair}''' )
__UpperCAmelCase : Dict = datasets.load_dataset(_UpperCamelCase , _UpperCamelCase )
if save_dir is None:
__UpperCAmelCase : List[Any] = f'''{dataset}-{pair}'''
__UpperCAmelCase : Tuple = Path(_UpperCamelCase )
save_dir.mkdir(exist_ok=_UpperCamelCase )
for split in ds.keys():
print(f'''Splitting {split} with {ds[split].num_rows} records''' )
# to save to val.source, val.target like summary datasets
__UpperCAmelCase : List[str] = """val""" if split == """validation""" else split
__UpperCAmelCase : str = save_dir.joinpath(f'''{fn}.source''' )
__UpperCAmelCase : str = save_dir.joinpath(f'''{fn}.target''' )
__UpperCAmelCase : Any = src_path.open("""w+""" )
__UpperCAmelCase : Dict = tgt_path.open("""w+""" )
# reader is the bottleneck so writing one record at a time doesn't slow things down
for x in tqdm(ds[split] ):
__UpperCAmelCase : Optional[int] = x["""translation"""]
src_fp.write(ex[src_lang] + """\n""" )
tgt_fp.write(ex[tgt_lang] + """\n""" )
print(f'''Saved {dataset} dataset to {save_dir}''' )
if __name__ == "__main__":
fire.Fire(download_wmt_dataset)
| 320
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase : List[str] = {
'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'],
'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Tuple = [
'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'AdaptiveEmbedding',
'TransfoXLForSequenceClassification',
'TransfoXLLMHeadModel',
'TransfoXLModel',
'TransfoXLPreTrainedModel',
'load_tf_weights_in_transfo_xl',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Dict = [
'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFAdaptiveEmbedding',
'TFTransfoXLForSequenceClassification',
'TFTransfoXLLMHeadModel',
'TFTransfoXLMainLayer',
'TFTransfoXLModel',
'TFTransfoXLPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_transfo_xl import (
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
AdaptiveEmbedding,
TransfoXLForSequenceClassification,
TransfoXLLMHeadModel,
TransfoXLModel,
TransfoXLPreTrainedModel,
load_tf_weights_in_transfo_xl,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_transfo_xl import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAdaptiveEmbedding,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLMainLayer,
TFTransfoXLModel,
TFTransfoXLPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
| 1
|
"""simple docstring"""
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler')
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : str , UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : bool = True , UpperCamelCase : bool = False ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = scheduler
__UpperCAmelCase : Any = optimizers if isinstance(UpperCamelCase , (list, tuple) ) else [optimizers]
__UpperCAmelCase : Optional[int] = split_batches
__UpperCAmelCase : int = step_with_optimizer
__UpperCAmelCase : Optional[int] = GradientState()
def lowerCamelCase__ ( self : Dict , *UpperCamelCase : Optional[int] , **UpperCamelCase : int ):
'''simple docstring'''
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*UpperCamelCase , **UpperCamelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*UpperCamelCase , **UpperCamelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
__UpperCAmelCase : Tuple = AcceleratorState().num_processes
for _ in range(UpperCamelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , """total_steps""" ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*UpperCamelCase , **UpperCamelCase )
else:
self.scheduler.step(*UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
return self.scheduler.get_last_lr()
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
return self.scheduler.state_dict()
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[Any] ):
'''simple docstring'''
self.scheduler.load_state_dict(UpperCamelCase )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
return self.scheduler.get_lr()
def lowerCamelCase__ ( self : Union[str, Any] , *UpperCamelCase : Tuple , **UpperCamelCase : int ):
'''simple docstring'''
return self.scheduler.print_lr(*UpperCamelCase , **UpperCamelCase )
| 320
|
"""simple docstring"""
def lowerCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : List[str] = 1
while len(_UpperCamelCase ) < 1E6:
constant.append(str(_UpperCamelCase ) )
i += 1
__UpperCAmelCase : List[str] = """""".join(_UpperCamelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[9_9] )
* int(constant[9_9_9] )
* int(constant[9_9_9_9] )
* int(constant[9_9_9_9_9] )
* int(constant[9_9_9_9_9_9] )
)
if __name__ == "__main__":
print(solution())
| 320
| 1
|
"""simple docstring"""
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict ) -> Any:
'''simple docstring'''
assert isinstance(_UpperCamelCase , _UpperCamelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = tmp_path / """cache"""
__UpperCAmelCase : str = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__UpperCAmelCase : Union[str, Any] = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase ).read()
_check_json_dataset(_UpperCamelCase , _UpperCamelCase )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Any = tmp_path / """cache"""
__UpperCAmelCase : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
__UpperCAmelCase : List[str] = features.copy() if features else default_expected_features
__UpperCAmelCase : List[str] = (
Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase : Optional[int] = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
_check_json_dataset(_UpperCamelCase , _UpperCamelCase )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""},
] , )
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Tuple = tmp_path / """cache"""
__UpperCAmelCase : Any = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}
__UpperCAmelCase : List[Any] = features.copy() if features else default_expected_features
__UpperCAmelCase : Tuple = (
Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase : Tuple = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
assert isinstance(_UpperCamelCase , _UpperCamelCase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : List[Any] ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : List[Any] = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""}
__UpperCAmelCase : str = features.copy()
__UpperCAmelCase : str = (
Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase : Union[str, Any] = tmp_path / """cache"""
__UpperCAmelCase : Tuple = JsonDatasetReader(_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
assert isinstance(_UpperCamelCase , _UpperCamelCase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = tmp_path / """cache"""
__UpperCAmelCase : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
__UpperCAmelCase : Optional[int] = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase , split=_UpperCamelCase ).read()
_check_json_dataset(_UpperCamelCase , _UpperCamelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("""path_type""" , [str, list] )
def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] ) -> Tuple:
'''simple docstring'''
if issubclass(_UpperCamelCase , _UpperCamelCase ):
__UpperCAmelCase : int = jsonl_path
elif issubclass(_UpperCamelCase , _UpperCamelCase ):
__UpperCAmelCase : str = [jsonl_path]
__UpperCAmelCase : Any = tmp_path / """cache"""
__UpperCAmelCase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
__UpperCAmelCase : List[Any] = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
_check_json_dataset(_UpperCamelCase , _UpperCamelCase )
def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str=("train",) ) -> List[Any]:
'''simple docstring'''
assert isinstance(_UpperCamelCase , _UpperCamelCase )
for split in splits:
__UpperCAmelCase : List[Any] = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = tmp_path / """cache"""
__UpperCAmelCase : str = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__UpperCAmelCase : int = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase ).read()
_check_json_datasetdict(_UpperCamelCase , _UpperCamelCase )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = tmp_path / """cache"""
__UpperCAmelCase : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
__UpperCAmelCase : Optional[Any] = features.copy() if features else default_expected_features
__UpperCAmelCase : str = (
Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
__UpperCAmelCase : List[str] = JsonDatasetReader({"""train""": jsonl_path} , features=_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
_check_json_datasetdict(_UpperCamelCase , _UpperCamelCase )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int ) -> Optional[int]:
'''simple docstring'''
if split:
__UpperCAmelCase : Dict = {split: jsonl_path}
else:
__UpperCAmelCase : Dict = """train"""
__UpperCAmelCase : str = {"""train""": jsonl_path, """test""": jsonl_path}
__UpperCAmelCase : Optional[int] = tmp_path / """cache"""
__UpperCAmelCase : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
__UpperCAmelCase : Tuple = JsonDatasetReader(_UpperCamelCase , cache_dir=_UpperCamelCase ).read()
_check_json_datasetdict(_UpperCamelCase , _UpperCamelCase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowerCamelCase ( _UpperCamelCase : Tuple ) -> int:
'''simple docstring'''
return json.load(_UpperCamelCase )
def lowerCamelCase ( _UpperCamelCase : Tuple ) -> int:
'''simple docstring'''
return [json.loads(_UpperCamelCase ) for line in buffer]
class lowerCamelCase__ :
"""simple docstring"""
@pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Any ):
'''simple docstring'''
with io.BytesIO() as buffer:
JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase ).write()
buffer.seek(0 )
__UpperCAmelCase : Optional[Any] = load_json_function(UpperCamelCase )
assert isinstance(UpperCamelCase , UpperCamelCase )
assert isinstance(exported_content[0] , UpperCamelCase )
assert len(UpperCamelCase ) == 10
@pytest.mark.parametrize(
"""orient, container, keys, len_at""" , [
("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None),
("""split""", dict, {"""columns""", """data"""}, """data"""),
("""index""", dict, set("""0123456789""" ), None),
("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""),
("""values""", list, None, None),
("""table""", dict, {"""schema""", """data"""}, """data"""),
] , )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Any ):
'''simple docstring'''
with io.BytesIO() as buffer:
JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase , orient=UpperCamelCase ).write()
buffer.seek(0 )
__UpperCAmelCase : int = load_json(UpperCamelCase )
assert isinstance(UpperCamelCase , UpperCamelCase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(UpperCamelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(UpperCamelCase ) == 10
@pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] )
def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] ):
'''simple docstring'''
with io.BytesIO() as buffer:
JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase , num_proc=2 ).write()
buffer.seek(0 )
__UpperCAmelCase : Optional[Any] = load_json_function(UpperCamelCase )
assert isinstance(UpperCamelCase , UpperCamelCase )
assert isinstance(exported_content[0] , UpperCamelCase )
assert len(UpperCamelCase ) == 10
@pytest.mark.parametrize(
"""orient, container, keys, len_at""" , [
("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None),
("""split""", dict, {"""columns""", """data"""}, """data"""),
("""index""", dict, set("""0123456789""" ), None),
("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""),
("""values""", list, None, None),
("""table""", dict, {"""schema""", """data"""}, """data"""),
] , )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Dict ):
'''simple docstring'''
with io.BytesIO() as buffer:
JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase , orient=UpperCamelCase , num_proc=2 ).write()
buffer.seek(0 )
__UpperCAmelCase : int = load_json(UpperCamelCase )
assert isinstance(UpperCamelCase , UpperCamelCase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(UpperCamelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(UpperCamelCase ) == 10
def lowerCamelCase__ ( self : str , UpperCamelCase : List[Any] ):
'''simple docstring'''
with pytest.raises(UpperCamelCase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(UpperCamelCase , UpperCamelCase , num_proc=0 )
@pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : List[str] ):
'''simple docstring'''
__UpperCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / f'''test.json.{extension}'''
__UpperCAmelCase : Union[str, Any] = str(shared_datadir / f'''test_file.json.{extension}''' )
JsonDatasetWriter(UpperCamelCase , UpperCamelCase , compression=UpperCamelCase ).write()
with fsspec.open(UpperCamelCase , """rb""" , compression="""infer""" ) as f:
__UpperCAmelCase : Tuple = f.read()
with fsspec.open(UpperCamelCase , """rb""" , compression="""infer""" ) as f:
__UpperCAmelCase : List[Any] = f.read()
assert exported_content == original_content
| 320
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase : Tuple = {
'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'],
'tokenization_electra': ['ElectraTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : List[Any] = ['ElectraTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Any = [
'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'ElectraForCausalLM',
'ElectraForMaskedLM',
'ElectraForMultipleChoice',
'ElectraForPreTraining',
'ElectraForQuestionAnswering',
'ElectraForSequenceClassification',
'ElectraForTokenClassification',
'ElectraModel',
'ElectraPreTrainedModel',
'load_tf_weights_in_electra',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[Any] = [
'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFElectraForMaskedLM',
'TFElectraForMultipleChoice',
'TFElectraForPreTraining',
'TFElectraForQuestionAnswering',
'TFElectraForSequenceClassification',
'TFElectraForTokenClassification',
'TFElectraModel',
'TFElectraPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str = [
'FlaxElectraForCausalLM',
'FlaxElectraForMaskedLM',
'FlaxElectraForMultipleChoice',
'FlaxElectraForPreTraining',
'FlaxElectraForQuestionAnswering',
'FlaxElectraForSequenceClassification',
'FlaxElectraForTokenClassification',
'FlaxElectraModel',
'FlaxElectraPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
| 1
|
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple:
'''simple docstring'''
if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1:
raise ValueError("""You cannot supply more or less than 2 values""" )
elif electron_conc < 0:
raise ValueError("""Electron concentration cannot be negative in a semiconductor""" )
elif hole_conc < 0:
raise ValueError("""Hole concentration cannot be negative in a semiconductor""" )
elif intrinsic_conc < 0:
raise ValueError(
"""Intrinsic concentration cannot be negative in a semiconductor""" )
elif electron_conc == 0:
return (
"electron_conc",
intrinsic_conc**2 / hole_conc,
)
elif hole_conc == 0:
return (
"hole_conc",
intrinsic_conc**2 / electron_conc,
)
elif intrinsic_conc == 0:
return (
"intrinsic_conc",
(electron_conc * hole_conc) ** 0.5,
)
else:
return (-1, -1)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320
|
"""simple docstring"""
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
UpperCAmelCase : Optional[Any] = 'scheduler_config.json'
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = 1
__a = 2
__a = 3
__a = 4
__a = 5
__a = 6
__a = 7
__a = 8
__a = 9
__a = 10
__a = 11
__a = 12
__a = 13
__a = 14
@dataclass
class lowerCamelCase__ ( A ):
"""simple docstring"""
__a = 42
class lowerCamelCase__ :
"""simple docstring"""
__a = SCHEDULER_CONFIG_NAME
__a = []
__a = True
@classmethod
def lowerCamelCase__ ( cls : Any , UpperCamelCase : Dict[str, Any] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : int , ):
'''simple docstring'''
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : List[Any] = cls.load_config(
pretrained_model_name_or_path=UpperCamelCase , subfolder=UpperCamelCase , return_unused_kwargs=UpperCamelCase , return_commit_hash=UpperCamelCase , **UpperCamelCase , )
return cls.from_config(UpperCamelCase , return_unused_kwargs=UpperCamelCase , **UpperCamelCase )
def lowerCamelCase__ ( self : int , UpperCamelCase : Union[str, os.PathLike] , UpperCamelCase : bool = False , **UpperCamelCase : Optional[Any] ):
'''simple docstring'''
self.save_config(save_directory=UpperCamelCase , push_to_hub=UpperCamelCase , **UpperCamelCase )
@property
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
return self._get_compatibles()
@classmethod
def lowerCamelCase__ ( cls : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = list(set([cls.__name__] + cls._compatibles ) )
__UpperCAmelCase : List[str] = importlib.import_module(__name__.split(""".""" )[0] )
__UpperCAmelCase : List[str] = [
getattr(UpperCamelCase , UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase , UpperCamelCase )
]
return compatible_classes
| 320
| 1
|
"""simple docstring"""
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
__UpperCAmelCase : Dict = Vector()
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(UpperCamelCase ) , """(0,0,0,0,0,1)""" )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Vector([1, 2, 3, 4] )
self.assertEqual(len(UpperCamelCase ) , 4 )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : int = Vector([1, 2] )
__UpperCAmelCase : Optional[Any] = Vector([1, 2, 3, 4, 5] )
__UpperCAmelCase : Optional[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
__UpperCAmelCase : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Vector([1, 2, 3] )
__UpperCAmelCase : Union[str, Any] = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Dict = Vector([1, 2, 3] )
__UpperCAmelCase : List[str] = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
__UpperCAmelCase : int = Vector([1, 2, 3] )
__UpperCAmelCase : Any = Vector([2, -1, 4] ) # for test of dot product
__UpperCAmelCase : int = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" )
self.assertEqual((a * b) , 0 )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = Vector([1, 2, 3] )
__UpperCAmelCase : Dict = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , UpperCamelCase , UpperCamelCase ) ) , """(3,4,7)""" )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Vector([1, 0, 0, 0, 0, 0] )
__UpperCAmelCase : str = x.copy()
self.assertEqual(str(UpperCamelCase ) , str(UpperCamelCase ) )
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(UpperCamelCase ) , """(0,1,0)""" )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCamelCase ) )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__UpperCAmelCase : Optional[int] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(UpperCamelCase , UpperCamelCase ) )
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__UpperCAmelCase : Any = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(UpperCamelCase , UpperCamelCase ) )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : Tuple = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
__UpperCAmelCase : Optional[Any] = Vector([1, 2, 3] )
self.assertEqual("""(14,32,50)""" , str(a * x ) )
self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) )
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCamelCase ) )
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
__UpperCAmelCase : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__UpperCAmelCase : Tuple = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) )
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__UpperCAmelCase : List[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
self.assertEqual(
"""|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 320
|
"""simple docstring"""
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowerCamelCase__ :
"""simple docstring"""
@staticmethod
def lowerCamelCase__ ( *UpperCamelCase : Optional[Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
pass
def lowerCamelCase ( _UpperCamelCase : Image ) -> str:
'''simple docstring'''
__UpperCAmelCase : Tuple = hashlib.mda(image.tobytes() )
return m.hexdigest()[:1_0]
def lowerCamelCase ( _UpperCamelCase : Image ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Tuple = np.array(_UpperCamelCase )
__UpperCAmelCase : List[Any] = npimg.shape
return {"hash": hashimage(_UpperCamelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
__a = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
__a = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=UpperCamelCase , image_processor=UpperCamelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ):
'''simple docstring'''
pass
@require_tf
@unittest.skip("""Image segmentation not implemented in TF""" )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
pass
@slow
@require_torch
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" )
__UpperCAmelCase : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 )
# Shortening by hashing
__UpperCAmelCase : int = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(UpperCamelCase , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053},
{"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967},
{"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993},
{"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909},
{"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879},
{"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834},
{"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716},
{"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612},
{"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599},
{"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552},
{"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532},
{"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516},
{"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499},
{"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483},
{"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464},
{"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943},
{"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943},
{"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408},
{"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335},
{"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326},
{"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262},
{"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999},
{"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986},
{"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984},
{"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873},
{"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871}
] , )
# fmt: on
@require_torch
@slow
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = """facebook/sam-vit-huge"""
__UpperCAmelCase : str = pipeline("""mask-generation""" , model=UpperCamelCase )
__UpperCAmelCase : int = image_segmenter(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
__UpperCAmelCase : Dict = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(UpperCamelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(UpperCamelCase , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053},
] , )
| 320
| 1
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCAmelCase : Dict = logging.get_logger(__name__)
UpperCAmelCase : int = {
'shi-labs/dinat-mini-in1k-224': 'https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json',
# See all Dinat models at https://huggingface.co/models?filter=dinat
}
class lowerCamelCase__ ( A , A ):
"""simple docstring"""
__a = """dinat"""
__a = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : List[str] , UpperCamelCase : Optional[Any]=4 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : str=64 , UpperCamelCase : List[Any]=[3, 4, 6, 5] , UpperCamelCase : Tuple=[2, 4, 8, 16] , UpperCamelCase : Optional[int]=7 , UpperCamelCase : Union[str, Any]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCamelCase : Dict=3.0 , UpperCamelCase : List[Any]=True , UpperCamelCase : int=0.0 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : str=0.1 , UpperCamelCase : str="gelu" , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : str=1e-5 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Tuple , ):
'''simple docstring'''
super().__init__(**UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = patch_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : Union[str, Any] = embed_dim
__UpperCAmelCase : Optional[Any] = depths
__UpperCAmelCase : Optional[int] = len(UpperCamelCase )
__UpperCAmelCase : Union[str, Any] = num_heads
__UpperCAmelCase : str = kernel_size
__UpperCAmelCase : Optional[Any] = dilations
__UpperCAmelCase : str = mlp_ratio
__UpperCAmelCase : Dict = qkv_bias
__UpperCAmelCase : List[Any] = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : List[str] = drop_path_rate
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Tuple = layer_norm_eps
__UpperCAmelCase : Tuple = initializer_range
# we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase : Any = int(embed_dim * 2 ** (len(UpperCamelCase ) - 1) )
__UpperCAmelCase : Union[str, Any] = layer_scale_init_value
__UpperCAmelCase : Union[str, Any] = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(UpperCamelCase ) + 1 )]
__UpperCAmelCase ,__UpperCAmelCase : List[str] = get_aligned_output_features_output_indices(
out_features=UpperCamelCase , out_indices=UpperCamelCase , stage_names=self.stage_names )
| 320
|
"""simple docstring"""
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class lowerCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , UpperCamelCase : str ):
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase )
__UpperCAmelCase : int = list(model.children() )[:-2]
__UpperCAmelCase : List[Any] = nn.Sequential(*UpperCamelCase )
__UpperCAmelCase : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] )
def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = self.pool(self.model(UpperCamelCase ) )
__UpperCAmelCase : List[Any] = torch.flatten(UpperCamelCase , start_dim=2 )
__UpperCAmelCase : Any = out.transpose(1 , 2 ).contiguous()
return out # BxNx2048
class lowerCamelCase__ ( A ):
"""simple docstring"""
def __init__( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )]
__UpperCAmelCase : Any = os.path.dirname(UpperCamelCase )
__UpperCAmelCase : List[str] = tokenizer
__UpperCAmelCase : str = labels
__UpperCAmelCase : Optional[int] = len(UpperCamelCase )
__UpperCAmelCase : int = max_seq_length
__UpperCAmelCase : int = transforms
def __len__( self : List[str] ):
'''simple docstring'''
return len(self.data )
def __getitem__( self : List[str] , UpperCamelCase : Any ):
'''simple docstring'''
__UpperCAmelCase : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) )
__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1]
__UpperCAmelCase : Any = sentence[: self.max_seq_length]
__UpperCAmelCase : Tuple = torch.zeros(self.n_classes )
__UpperCAmelCase : str = 1
__UpperCAmelCase : Any = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" )
__UpperCAmelCase : Optional[int] = self.transforms(UpperCamelCase )
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = Counter()
for row in self.data:
label_freqs.update(row["""label"""] )
return label_freqs
def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = [len(row["""sentence"""] ) for row in batch]
__UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase )
__UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long )
__UpperCAmelCase : str = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long )
for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ):
__UpperCAmelCase : List[str] = input_row["""sentence"""]
__UpperCAmelCase : Tuple = 1
__UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] )
__UpperCAmelCase : Optional[Any] = torch.stack([row["""label"""] for row in batch] )
__UpperCAmelCase : str = torch.stack([row["""image_start_token"""] for row in batch] )
__UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] )
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def lowerCamelCase ( ) -> int:
'''simple docstring'''
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def lowerCamelCase ( ) -> Optional[Any]:
'''simple docstring'''
return transforms.Compose(
[
transforms.Resize(2_5_6 ),
transforms.CenterCrop(2_2_4 ),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ),
] )
| 320
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase : Tuple = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : List[str] = [
'OPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'OPTForCausalLM',
'OPTModel',
'OPTPreTrainedModel',
'OPTForSequenceClassification',
'OPTForQuestionAnswering',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[int] = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str = [
'FlaxOPTForCausalLM',
'FlaxOPTModel',
'FlaxOPTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 320
|
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 320
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.