code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A_ : Dict = logging.getLogger(__name__) A_ : List[str] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) A_ : Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a_ : '''simple docstring''' lowerCamelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) lowerCamelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(lowerCAmelCase__ )} , ) lowerCamelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class a_ : '''simple docstring''' lowerCamelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={'help': 'The input training data file (a text file).'} ) lowerCamelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) lowerCamelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) lowerCamelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) lowerCamelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) lowerCamelCase__ : bool = field( default=lowerCAmelCase__ , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) lowerCamelCase__ : bool = field( default=lowerCAmelCase__ , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) lowerCamelCase__ : bool = field(default=lowerCAmelCase__ , metadata={'help': 'Whether ot not to use whole word mask.'} ) lowerCamelCase__ : float = field( default=0.1_5 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) lowerCamelCase__ : float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) lowerCamelCase__ : int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) lowerCamelCase__ : int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) lowerCamelCase__ : bool = field( default=lowerCAmelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = None , ): def _dataset(_lowerCamelCase , _lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=_A , file_path=_A , block_size=args.block_size , ref_path=_A , ) return LineByLineTextDataset(tokenizer=_A , file_path=_A , block_size=args.block_size ) else: return TextDataset( tokenizer=_A , file_path=_A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowerCamelCase__ : int = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCamelCase__ : List[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowerCamelCase__ : Optional[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCamelCase__ : Optional[int] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: lowerCamelCase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) lowerCamelCase__ : List[str] = AutoModelWithLMHead.from_config(_A ) model.resize_token_embeddings(len(_A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: lowerCamelCase__ : Union[str, Any] = tokenizer.max_len # Our input block size will be the max possible for the model else: lowerCamelCase__ : int = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowerCamelCase__ : Union[str, Any] = ( get_dataset(_A , tokenizer=_A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowerCamelCase__ : Any = ( get_dataset(_A , tokenizer=_A , evaluate=_A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowerCamelCase__ : Optional[int] = DataCollatorForPermutationLanguageModeling( tokenizer=_A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowerCamelCase__ : Optional[Any] = DataCollatorForWholeWordMask( tokenizer=_A , mlm_probability=data_args.mlm_probability ) else: lowerCamelCase__ : Tuple = DataCollatorForLanguageModeling( tokenizer=_A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCamelCase__ : Dict = Trainer( model=_A , args=_A , data_collator=_A , train_dataset=_A , eval_dataset=_A , prediction_loss_only=_A , ) # Training if training_args.do_train: lowerCamelCase__ : Dict = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCamelCase__ : int = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCamelCase__ : Union[str, Any] = trainer.evaluate() lowerCamelCase__ : Dict = math.exp(eval_output['eval_loss'] ) lowerCamelCase__ : int = {'perplexity': perplexity} lowerCamelCase__ : Tuple = os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(_A , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _A , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(_A ) return results def lowerCamelCase_ ( _lowerCamelCase ): main() if __name__ == "__main__": main()
355
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
0
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP A_ : Dict = False try: A_ : Any = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ = None, lowerCamelCase_ = [] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : List[str] = choices lowerCamelCase__ : List[Any] = prompt if sys.platform == "win32": lowerCamelCase__ : Optional[int] = '*' else: lowerCamelCase__ : Union[str, Any] = '➔ ' def a__ (self, lowerCamelCase_, lowerCamelCase_ = "" ): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 3_2, lowerCamelCase_ ) else: forceWrite(self.choices[index], lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if index == self.position: forceWrite(f''' {self.arrow_char} ''' ) self.write_choice(lowerCamelCase_ ) else: forceWrite(f''' {self.choices[index]}''' ) reset_cursor() def a__ (self, lowerCamelCase_, lowerCamelCase_ = 1 ): '''simple docstring''' lowerCamelCase__ : Dict = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(lowerCamelCase_ ) move_cursor(lowerCamelCase_, direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def a__ (self ): '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def a__ (self ): '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def a__ (self ): '''simple docstring''' move_cursor(len(self.choices ) - self.position, 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def a__ (self ): '''simple docstring''' move_cursor(len(self.choices ) - self.position, 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(lowerCamelCase_ )] for number in range(1_0 )] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = int(chr(self.current_selection ) ) lowerCamelCase__ : Optional[Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP, -movement ) elif self.position < index: self.move_direction(Direction.DOWN, lowerCamelCase_ ) else: return else: return def a__ (self, lowerCamelCase_ = 0 ): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter', '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter', '\n' ) lowerCamelCase__ : List[str] = default_choice for i in range(len(self.choices ) ): self.print_choice(lowerCamelCase_ ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position, 'UP' ) with cursor.hide(): while True: if in_colab: try: lowerCamelCase__ : Tuple = int(builtins.input() ) except ValueError: lowerCamelCase__ : List[str] = default_choice else: lowerCamelCase__ : Optional[int] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1, 'UP' ) clear_line() self.write_choice(lowerCamelCase_, '\n' ) return choice
356
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a_ ( __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = "naver-clova-ix/donut-base-finetuned-docvqa" lowerCamelCase__ : Optional[int] = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) lowerCamelCase__ : Tuple = "document_qa" lowerCamelCase__ : Optional[int] = AutoProcessor lowerCamelCase__ : List[str] = VisionEncoderDecoderModel lowerCamelCase__ : Union[str, Any] = ["image", "text"] lowerCamelCase__ : List[Any] = ["text"] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*lowerCamelCase__, **lowerCamelCase__ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' lowerCamelCase__ : str = task_prompt.replace('{user_input}', lowerCamelCase__ ) lowerCamelCase__ : Any = self.pre_processor.tokenizer( lowerCamelCase__, add_special_tokens=lowerCamelCase__, return_tensors='pt' ).input_ids lowerCamelCase__ : List[Any] = self.pre_processor(lowerCamelCase__, return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.model.generate( inputs['pixel_values'].to(self.device ), decoder_input_ids=inputs['decoder_input_ids'].to(self.device ), max_length=self.model.decoder.config.max_position_embeddings, early_stopping=lowerCamelCase__, pad_token_id=self.pre_processor.tokenizer.pad_token_id, eos_token_id=self.pre_processor.tokenizer.eos_token_id, use_cache=lowerCamelCase__, num_beams=1, bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]], return_dict_in_generate=lowerCamelCase__, ).sequences def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.pre_processor.batch_decode(lowerCamelCase__ )[0] lowerCamelCase__ : Dict = sequence.replace(self.pre_processor.tokenizer.eos_token, '' ) lowerCamelCase__ : Dict = sequence.replace(self.pre_processor.tokenizer.pad_token, '' ) lowerCamelCase__ : Dict = re.sub(r'<.*?>', '', lowerCamelCase__, count=1 ).strip() # remove first task start token lowerCamelCase__ : Tuple = self.pre_processor.tokenajson(lowerCamelCase__ ) return sequence["answer"]
357
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
0
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = emb.weight.shape lowerCamelCase__ : Optional[int] = nn.Linear(A__ , A__ , bias=A__ ) lowerCamelCase__ : List[str] = emb.weight.data return lin_layer def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=None ): lowerCamelCase__ : List[str] = {} for old_key in state_dict.keys(): lowerCamelCase__ : List[Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase__ : Optional[int] = key.replace('moe_layer.experts.0' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase__ : Union[str, Any] = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: lowerCamelCase__ : str = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: lowerCamelCase__ : List[Any] = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: lowerCamelCase__ : int = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: lowerCamelCase__ : Tuple = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: lowerCamelCase__ : Optional[int] = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: lowerCamelCase__ : Tuple = key.replace('final_layer_norm' , 'ff_layer_norm' ) lowerCamelCase__ : Tuple = state_dict[old_key] return new_dict def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = 0 os.makedirs(A__ , exist_ok=A__ ) for expert in range(A__ ): lowerCamelCase__ : str = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(A__ ): lowerCamelCase__ : Dict = torch.load(A__ )['model'] remove_ignore_keys_(A__ ) lowerCamelCase__ : Tuple = rename_fairseq_keys(A__ , A__ ) lowerCamelCase__ : List[Any] = os.path.join( A__ , weights_name.replace('.bin' , f'''-{len(A__ )+1:05d}-of-???.bin''' ) ) torch.save(A__ , A__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A__ )[0]].dtype ) # Add the last block lowerCamelCase__ : Union[str, Any] = os.path.join(A__ , weights_name.replace('.bin' , f'''-{len(A__ )+1:05d}-of-???.bin''' ) ) lowerCamelCase__ : Optional[Any] = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(A__ ) lowerCamelCase__ : str = rename_fairseq_keys(A__ , A__ ) lowerCamelCase__ : Any = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A__ ) == 1: lowerCamelCase__ : int = os.path.join(A__ , A__ ) torch.save(A__ , A__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A__ , A__ ) # Otherwise, let's build the index lowerCamelCase__ : List[str] = {} for idx, shard in enumerate(A__ ): lowerCamelCase__ : Any = weights_name.replace('.bin' , f'''-{idx+1:05d}-of-{len(A__ ):05d}.bin''' ) lowerCamelCase__ : List[Any] = os.path.join(A__ , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(A__ , os.path.join(A__ , A__ ) ) for key in shard: lowerCamelCase__ : str = shard_file # Add the metadata lowerCamelCase__ : Optional[int] = {'total_size': total_size} lowerCamelCase__ : str = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(A__ , A__ ) , 'w' , encoding='utf-8' ) as f: lowerCamelCase__ : Dict = json.dumps(A__ , indent=2 , sort_keys=A__ ) + '\n' f.write(A__ ) return metadata, index if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) A_ : List[str] = parser.parse_args() A_, A_ : Any = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) A_ : List[str] = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) A_ : Optional[int] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
358
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
0
"""simple docstring""" import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = pipeline( task='zero-shot-audio-classification', model='hf-internal-testing/tiny-clap-htsat-unfused' ) lowerCamelCase__ : List[str] = load_dataset('ashraq/esc50' ) lowerCamelCase__ : str = dataset['train']['audio'][-1]['array'] lowerCamelCase__ : int = audio_classifier(lowerCamelCase_, candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(lowerCamelCase_ ), [{'score': 0.501, 'label': 'Sound of a dog'}, {'score': 0.499, 'label': 'Sound of vaccum cleaner'}], ) @unittest.skip('No models are available in TF' ) def a__ (self ): '''simple docstring''' pass @slow @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = pipeline( task='zero-shot-audio-classification', model='laion/clap-htsat-unfused', ) # This is an audio of a dog lowerCamelCase__ : Tuple = load_dataset('ashraq/esc50' ) lowerCamelCase__ : Tuple = dataset['train']['audio'][-1]['array'] lowerCamelCase__ : int = audio_classifier(lowerCamelCase_, candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(lowerCamelCase_ ), [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ) lowerCamelCase__ : Optional[Any] = audio_classifier([audio] * 5, candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(lowerCamelCase_ ), [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5, ) lowerCamelCase__ : int = audio_classifier( [audio] * 5, candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'], batch_size=5 ) self.assertEqual( nested_simplify(lowerCamelCase_ ), [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5, ) @unittest.skip('No models are available in TF' ) def a__ (self ): '''simple docstring''' pass
359
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
0
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = math.inf , _lowerCamelCase = -math.inf , _lowerCamelCase = math.inf , _lowerCamelCase = -math.inf , _lowerCamelCase = False , _lowerCamelCase = 100 , _lowerCamelCase = 0.01 , _lowerCamelCase = 1 , ): lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = search_prob lowerCamelCase__ : Any = start_temperate lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : Tuple = None while not search_end: lowerCamelCase__ : Dict = current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase__ : Union[str, Any] = current_state scores.append(a__ ) iterations += 1 lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Tuple = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase__ : int = random.randint(0 , len(a__ ) - 1 ) # picking a random neighbor lowerCamelCase__ : Optional[Any] = neighbors.pop(a__ ) lowerCamelCase__ : int = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase__ : Tuple = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase__ : Tuple = picked_neighbor else: lowerCamelCase__ : List[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase__ : Union[str, Any] = picked_neighbor lowerCamelCase__ : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase__ : Union[str, Any] = True else: lowerCamelCase__ : List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a__ ) , a__ ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) A_ : Tuple = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) A_ : Tuple = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) # starting the problem with initial coordinates (12, 47) A_ : Union[str, Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) A_ : List[Any] = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return (3 * x**2) - (6 * y) A_ : int = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) A_ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f"{local_min.score()}" ) A_ : Any = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) A_ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f"{local_min.score()}" )
360
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
0
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCamelCase_ ( _lowerCamelCase ): return (data["data"], data["target"]) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = XGBClassifier() classifier.fit(_lowerCamelCase , _lowerCamelCase ) return classifier def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[int] = load_iris() lowerCamelCase__ , lowerCamelCase__ : List[str] = data_handling(_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = train_test_split( _lowerCamelCase , _lowerCamelCase , test_size=0.25 ) lowerCamelCase__ : Optional[Any] = iris['target_names'] # Create an XGBoost Classifier from the training data lowerCamelCase__ : List[str] = xgboost(_lowerCamelCase , _lowerCamelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , display_labels=_lowerCamelCase , cmap='Blues' , normalize='true' , ) plt.title('Normalized Confusion Matrix - IRIS Dataset' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
361
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
0
"""simple docstring""" import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests A_ : Optional[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
362
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = prime_factors(lowercase__ ) if is_square_free(lowercase__ ): return -1 if len(lowercase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
0
"""simple docstring""" A_ : Tuple = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
364
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
0
"""simple docstring""" import csv import tweepy # Twitter API credentials A_ : List[str] = "" A_ : Dict = "" A_ : List[Any] = "" A_ : str = "" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = tweepy.OAuthHandler(_a , _a ) auth.set_access_token(_a , _a ) lowerCamelCase__ : List[str] = tweepy.API(_a ) # initialize a list to hold all the tweepy Tweets lowerCamelCase__ : int = [] # make initial request for most recent tweets (200 is the maximum allowed count) lowerCamelCase__ : Tuple = api.user_timeline(screen_name=_a , count=200 ) # save most recent tweets alltweets.extend(_a ) # save the id of the oldest tweet less one lowerCamelCase__ : Tuple = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_a ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates lowerCamelCase__ : List[str] = api.user_timeline( screen_name=_a , count=200 , max_id=_a ) # save most recent tweets alltweets.extend(_a ) # update the id of the oldest tweet less one lowerCamelCase__ : Tuple = alltweets[-1].id - 1 print(f'''...{len(_a )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv lowerCamelCase__ : Dict = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' , 'w' ) as f: lowerCamelCase__ : Tuple = csv.writer(_a ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(_a ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("FirePing32")
365
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
0
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class a_ : '''simple docstring''' def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : int = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = UNetaDConditionModel( sample_size=3_2, layers_per_block=1, block_out_channels=[3_2, 6_4], down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ], mid_block_type='UNetMidBlock2DSimpleCrossAttn', up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'], in_channels=3, out_channels=6, cross_attention_dim=3_2, encoder_hid_dim=3_2, attention_head_dim=8, addition_embed_type='text', addition_embed_type_num_heads=2, cross_attention_norm='group_norm', resnet_time_scale_shift='scale_shift', act_fn='gelu', ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCamelCase__ : int = DDPMScheduler( num_train_timesteps=1_0_0_0, beta_schedule='squaredcos_cap_v2', beta_start=0.0_001, beta_end=0.02, thresholding=_lowercase, dynamic_thresholding_ratio=0.95, sample_max_value=1.0, prediction_type='epsilon', variance_type='learned_range', ) torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : int = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = UNetaDConditionModel( sample_size=3_2, layers_per_block=[1, 2], block_out_channels=[3_2, 6_4], down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ], mid_block_type='UNetMidBlock2DSimpleCrossAttn', up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'], in_channels=6, out_channels=6, cross_attention_dim=3_2, encoder_hid_dim=3_2, attention_head_dim=8, addition_embed_type='text', addition_embed_type_num_heads=2, cross_attention_norm='group_norm', resnet_time_scale_shift='scale_shift', act_fn='gelu', class_embed_type='timestep', mid_block_scale_factor=1.414, time_embedding_act_fn='gelu', time_embedding_dim=3_2, ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCamelCase__ : Dict = DDPMScheduler( num_train_timesteps=1_0_0_0, beta_schedule='squaredcos_cap_v2', beta_start=0.0_001, beta_end=0.02, thresholding=_lowercase, dynamic_thresholding_ratio=0.95, sample_max_value=1.0, prediction_type='epsilon', variance_type='learned_range', ) torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = DDPMScheduler( num_train_timesteps=1_0_0_0, beta_schedule='squaredcos_cap_v2', beta_start=0.0_001, beta_end=0.02, ) torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.get_dummy_components() lowerCamelCase__ : int = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowerCamelCase__ : List[str] = self.get_dummy_inputs(_lowercase ) lowerCamelCase__ : Any = inputs['prompt'] lowerCamelCase__ : str = inputs['generator'] lowerCamelCase__ : Optional[Any] = inputs['num_inference_steps'] lowerCamelCase__ : Optional[Any] = inputs['output_type'] if "image" in inputs: lowerCamelCase__ : Union[str, Any] = inputs['image'] else: lowerCamelCase__ : List[str] = None if "mask_image" in inputs: lowerCamelCase__ : Optional[Any] = inputs['mask_image'] else: lowerCamelCase__ : List[Any] = None if "original_image" in inputs: lowerCamelCase__ : Optional[int] = inputs['original_image'] else: lowerCamelCase__ : Optional[int] = None lowerCamelCase__ , lowerCamelCase__ : List[Any] = pipe.encode_prompt(_lowercase ) # inputs with prompt converted to embeddings lowerCamelCase__ : Optional[int] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: lowerCamelCase__ : Optional[Any] = image if mask_image is not None: lowerCamelCase__ : Any = mask_image if original_image is not None: lowerCamelCase__ : Dict = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_lowercase, _lowercase, _lowercase ) lowerCamelCase__ : Union[str, Any] = pipe(**_lowercase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowercase ) lowerCamelCase__ : Union[str, Any] = self.pipeline_class.from_pretrained(_lowercase ) pipe_loaded.to(_lowercase ) pipe_loaded.set_progress_bar_config(disable=_lowercase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_lowercase, _lowercase ) is None, f'''`{optional_component}` did not stay set to None after loading.''', ) lowerCamelCase__ : str = self.get_dummy_inputs(_lowercase ) lowerCamelCase__ : Dict = inputs['generator'] lowerCamelCase__ : List[Any] = inputs['num_inference_steps'] lowerCamelCase__ : Dict = inputs['output_type'] # inputs with prompt converted to embeddings lowerCamelCase__ : Dict = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: lowerCamelCase__ : Dict = image if mask_image is not None: lowerCamelCase__ : List[str] = mask_image if original_image is not None: lowerCamelCase__ : Tuple = original_image lowerCamelCase__ : Tuple = pipe_loaded(**_lowercase )[0] lowerCamelCase__ : str = np.abs(to_np(_lowercase ) - to_np(_lowercase ) ).max() self.assertLess(_lowercase, 1e-4 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowerCamelCase__ : Optional[Any] = self.get_dummy_inputs(_lowercase ) lowerCamelCase__ : str = pipe(**_lowercase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowercase ) lowerCamelCase__ : Dict = self.pipeline_class.from_pretrained(_lowercase ) pipe_loaded.to(_lowercase ) pipe_loaded.set_progress_bar_config(disable=_lowercase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowerCamelCase__ : Dict = self.get_dummy_inputs(_lowercase ) lowerCamelCase__ : List[str] = pipe_loaded(**_lowercase )[0] lowerCamelCase__ : Union[str, Any] = np.abs(to_np(_lowercase ) - to_np(_lowercase ) ).max() self.assertLess(_lowercase, 1e-4 )
366
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import string from math import logaa def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) lowerCamelCase__ : Tuple = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCamelCase__ : Tuple = corpus_without_punctuation.split('\n' ) lowerCamelCase__ : Dict = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ )) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return round(tf * idf , 3 )
367
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
368
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class a_ ( metaclass=snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = ['torch', 'scipy'] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['torch', 'scipy'] ) @classmethod def a__ (cls, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(cls, ['torch', 'scipy'] ) @classmethod def a__ (cls, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(cls, ['torch', 'scipy'] )
369
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
0
"""simple docstring""" A_ : Dict = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = [False] * len(_lowerCamelCase ) lowerCamelCase__ : Any = [s] lowerCamelCase__ : Dict = True while queue: lowerCamelCase__ : List[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : List[str] = u return visited[t] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = [-1] * (len(_lowerCamelCase )) lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : List[Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = float('Inf' ) lowerCamelCase__ : List[str] = sink while s != source: # Find the minimum value in select path lowerCamelCase__ : int = min(_lowerCamelCase , graph[parent[s]][s] ) lowerCamelCase__ : Tuple = parent[s] max_flow += path_flow lowerCamelCase__ : Optional[int] = sink while v != source: lowerCamelCase__ : str = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCamelCase__ : Tuple = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger A_ : str = get_logger(__name__) A_ : Any = r"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class a_ : '''simple docstring''' @add_start_docstrings(_SCREAMING_SNAKE_CASE ) def __call__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class a_ : '''simple docstring''' @add_start_docstrings(_SCREAMING_SNAKE_CASE ) def __call__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class a_ ( snake_case_ ): '''simple docstring''' @add_start_docstrings(_SCREAMING_SNAKE_CASE ) def __call__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' for processor in self: lowerCamelCase__ : Any = inspect.signature(processor.__call__ ).parameters if len(_SCREAMING_SNAKE_CASE ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) lowerCamelCase__ : Any = processor(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE ) else: lowerCamelCase__ : Union[str, Any] = processor(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) return scores class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) lowerCamelCase__ : Optional[int] = temperature def __call__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = scores / self.temperature return scores class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ = -float('Inf' ), lowerCamelCase_ = 1 ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) lowerCamelCase__ : int = top_p lowerCamelCase__ : Any = filter_value lowerCamelCase__ : str = min_tokens_to_keep def __call__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = lax.top_k(_SCREAMING_SNAKE_CASE, scores.shape[-1] ) lowerCamelCase__ : int = jnp.full_like(_SCREAMING_SNAKE_CASE, self.filter_value ) lowerCamelCase__ : str = jax.nn.softmax(_SCREAMING_SNAKE_CASE, axis=-1 ).cumsum(axis=-1 ) lowerCamelCase__ : Optional[int] = cumulative_probs < self.top_p # include the token that is higher than top_p as well lowerCamelCase__ : Tuple = jnp.roll(_SCREAMING_SNAKE_CASE, 1 ) score_mask |= score_mask.at[:, 0].set(_SCREAMING_SNAKE_CASE ) # min tokens to keep lowerCamelCase__ : Union[str, Any] = score_mask.at[:, : self.min_tokens_to_keep].set(_SCREAMING_SNAKE_CASE ) lowerCamelCase__ : Tuple = jnp.where(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) lowerCamelCase__ : int = jax.lax.sort_key_val(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE )[-1] return next_scores class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ = -float('Inf' ), lowerCamelCase_ = 1 ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) lowerCamelCase__ : Tuple = max(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) lowerCamelCase__ : Any = filter_value def __call__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = scores.shape lowerCamelCase__ : int = jnp.full(batch_size * vocab_size, self.filter_value ) lowerCamelCase__ : Optional[int] = min(self.top_k, scores.shape[-1] ) # Safety check lowerCamelCase__ : Union[str, Any] = lax.top_k(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) lowerCamelCase__ : List[Any] = jnp.broadcast_to((jnp.arange(_SCREAMING_SNAKE_CASE ) * vocab_size)[:, None], (batch_size, topk) ).flatten() lowerCamelCase__ : Tuple = topk_scores.flatten() lowerCamelCase__ : List[str] = topk_indices.flatten() + shift lowerCamelCase__ : Optional[int] = next_scores_flat.at[topk_indices_flat].set(_SCREAMING_SNAKE_CASE ) lowerCamelCase__ : List[str] = next_scores_flat.reshape(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) return next_scores class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = bos_token_id def __call__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = jnp.full(scores.shape, -float('inf' ) ) lowerCamelCase__ : Dict = 1 - jnp.bool_(cur_len - 1 ) lowerCamelCase__ : Tuple = jnp.where(_SCREAMING_SNAKE_CASE, new_scores.at[:, self.bos_token_id].set(0 ), _SCREAMING_SNAKE_CASE ) return scores class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = max_length lowerCamelCase__ : Any = eos_token_id def __call__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = jnp.full(scores.shape, -float('inf' ) ) lowerCamelCase__ : Dict = 1 - jnp.bool_(cur_len - self.max_length + 1 ) lowerCamelCase__ : Tuple = jnp.where(_SCREAMING_SNAKE_CASE, new_scores.at[:, self.eos_token_id].set(0 ), _SCREAMING_SNAKE_CASE ) return scores class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) lowerCamelCase__ : str = min_length lowerCamelCase__ : int = eos_token_id def __call__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = 1 - jnp.clip(cur_len - self.min_length, 0, 1 ) lowerCamelCase__ : Dict = jnp.where(_SCREAMING_SNAKE_CASE, scores.at[:, self.eos_token_id].set(-float('inf' ) ), _SCREAMING_SNAKE_CASE ) return scores class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = list(_SCREAMING_SNAKE_CASE ) lowerCamelCase__ : Optional[int] = begin_index def __call__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = 1 - jnp.bool_(cur_len - self.begin_index ) lowerCamelCase__ : Any = jnp.where(_SCREAMING_SNAKE_CASE, scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ), _SCREAMING_SNAKE_CASE ) return scores class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(_SCREAMING_SNAKE_CASE ) def __call__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = dict(_SCREAMING_SNAKE_CASE ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. lowerCamelCase__ : List[str] = jnp.ones((max(force_token_map.keys() ) + 1), dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: lowerCamelCase__ : List[Any] = force_token_array.at[index].set(_SCREAMING_SNAKE_CASE ) lowerCamelCase__ : List[Any] = jnp.intaa(_SCREAMING_SNAKE_CASE ) def __call__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' def _force_token(lowerCamelCase_ ): lowerCamelCase__ : str = scores.shape[0] lowerCamelCase__ : Tuple = self.force_token_array[generation_idx] lowerCamelCase__ : Optional[int] = jnp.ones_like(_SCREAMING_SNAKE_CASE, dtype=scores.dtype ) * -float('inf' ) lowerCamelCase__ : Dict = jnp.zeros((batch_size, 1), dtype=scores.dtype ) lowerCamelCase__ : Dict = lax.dynamic_update_slice(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, (0, current_token) ) return new_scores lowerCamelCase__ : Optional[Any] = lax.cond( cur_len >= self.force_token_array.shape[0], lambda: scores, lambda: lax.cond( self.force_token_array[cur_len] >= 0, lambda: _force_token(_SCREAMING_SNAKE_CASE ), lambda: scores, ), ) return scores class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = generate_config.eos_token_id lowerCamelCase__ : Optional[int] = generate_config.no_timestamps_token_id lowerCamelCase__ : List[Any] = generate_config.no_timestamps_token_id + 1 lowerCamelCase__ : List[str] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_SCREAMING_SNAKE_CASE, 'max_initial_timestamp_index' ): lowerCamelCase__ : List[Any] = generate_config.max_initial_timestamp_index else: lowerCamelCase__ : List[Any] = model_config.vocab_size if self.max_initial_timestamp_index is None: lowerCamelCase__ : int = model_config.vocab_size def __call__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : List[Any] = jnp.where((cur_len - self.begin_index) >= 1, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) lowerCamelCase__ : Optional[int] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin, True and last_was_timestamp, _SCREAMING_SNAKE_CASE, ) lowerCamelCase__ : Union[str, Any] = jnp.where((cur_len - self.begin_index) < 2, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) lowerCamelCase__ : List[Any] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, ) return jnp.where( _SCREAMING_SNAKE_CASE, jnp.where( penultimate_was_timestamp > 0, scores_k.at[self.timestamp_begin :].set(-float('inf' ) ), scores_k.at[: self.eos_token_id].set(-float('inf' ) ), ), _SCREAMING_SNAKE_CASE, ) lowerCamelCase__ : Any = jax.vmap(_SCREAMING_SNAKE_CASE )(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) lowerCamelCase__ : List[str] = jnp.where(cur_len == self.begin_index, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) lowerCamelCase__ : Optional[Any] = jnp.where( self.max_initial_timestamp_index is not None, True and apply_max_initial_timestamp, _SCREAMING_SNAKE_CASE, ) lowerCamelCase__ : Any = self.timestamp_begin + self.max_initial_timestamp_index lowerCamelCase__ : Tuple = jnp.where( _SCREAMING_SNAKE_CASE, scores.at[:, last_allowed + 1 :].set(-float('inf' ) ), _SCREAMING_SNAKE_CASE, ) # if sum of probability over timestamps is above any other token, sample timestamp lowerCamelCase__ : Optional[int] = jax.nn.log_softmax(_SCREAMING_SNAKE_CASE, axis=-1 ) def handle_cumulative_probs(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : int = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :], axis=-1 ) lowerCamelCase__ : Optional[int] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob, scores_k.at[: self.timestamp_begin].set(-float('inf' ) ), _SCREAMING_SNAKE_CASE, ) lowerCamelCase__ : str = jax.vmap(_SCREAMING_SNAKE_CASE )(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) return scores
371
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : Union[str, Any] = { "configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"], "tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ["BertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ "BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "BertForMaskedLM", "BertForMultipleChoice", "BertForNextSentencePrediction", "BertForPreTraining", "BertForQuestionAnswering", "BertForSequenceClassification", "BertForTokenClassification", "BertLayer", "BertLMHeadModel", "BertModel", "BertPreTrainedModel", "load_tf_weights_in_bert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBertEmbeddings", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertLMHeadModel", "TFBertMainLayer", "TFBertModel", "TFBertPreTrainedModel", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFBertTokenizer"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ "FlaxBertForCausalLM", "FlaxBertForMaskedLM", "FlaxBertForMultipleChoice", "FlaxBertForNextSentencePrediction", "FlaxBertForPreTraining", "FlaxBertForQuestionAnswering", "FlaxBertForSequenceClassification", "FlaxBertForTokenClassification", "FlaxBertModel", "FlaxBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
350
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : Union[str, Any] = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
351
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" from __future__ import annotations from typing import Any def lowerCamelCase_ ( _lowerCamelCase ): create_state_space_tree(UpperCamelCase__ , [] , 0 ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if index == len(UpperCamelCase__ ): print(UpperCamelCase__ ) return create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": A_ : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
352
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : List[Any] = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class a_ ( _lowerCamelCase ): '''simple docstring''' lowerCamelCase__ : Tuple = 'gpt_bigcode' lowerCamelCase__ : Optional[Any] = ['past_key_values'] lowerCamelCase__ : str = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self, lowerCamelCase_=5_0_2_5_7, lowerCamelCase_=1_0_2_4, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=None, lowerCamelCase_="gelu_pytorch_tanh", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1e-5, lowerCamelCase_=0.02, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=5_0_2_5_6, lowerCamelCase_=5_0_2_5_6, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Optional[Any] = n_positions lowerCamelCase__ : List[Any] = n_embd lowerCamelCase__ : Optional[int] = n_layer lowerCamelCase__ : Dict = n_head lowerCamelCase__ : Optional[Any] = n_inner lowerCamelCase__ : str = activation_function lowerCamelCase__ : List[str] = resid_pdrop lowerCamelCase__ : str = embd_pdrop lowerCamelCase__ : str = attn_pdrop lowerCamelCase__ : List[Any] = layer_norm_epsilon lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Dict = scale_attn_weights lowerCamelCase__ : Optional[Any] = use_cache lowerCamelCase__ : Union[str, Any] = attention_softmax_in_fpaa lowerCamelCase__ : Optional[int] = scale_attention_softmax_in_fpaa lowerCamelCase__ : Optional[Any] = multi_query lowerCamelCase__ : List[Any] = bos_token_id lowerCamelCase__ : List[Any] = eos_token_id super().__init__(bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ )
353
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" from __future__ import annotations A_ : Optional[Any] = list[tuple[int, int]] A_ : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A_ : List[Any] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : str = pos_x lowerCamelCase__ : Optional[Any] = pos_y lowerCamelCase__ : Tuple = (pos_y, pos_x) lowerCamelCase__ : List[Any] = goal_x lowerCamelCase__ : List[str] = goal_y lowerCamelCase__ : List[str] = g_cost lowerCamelCase__ : str = parent lowerCamelCase__ : Union[str, Any] = self.calculate_heuristic() def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = abs(self.pos_x - self.goal_x ) lowerCamelCase__ : List[str] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__(self, lowerCamelCase_ ): '''simple docstring''' return self.f_cost < other.f_cost class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = Node(start[1], start[0], goal[1], goal[0], 0, lowerCamelCase_ ) lowerCamelCase__ : str = Node(goal[1], goal[0], goal[1], goal[0], 9_9_9_9_9, lowerCamelCase_ ) lowerCamelCase__ : str = [self.start] lowerCamelCase__ : list[Node] = [] lowerCamelCase__ : Optional[int] = False def a__ (self ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCamelCase__ : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase__ : str = True return self.retrace_path(lowerCamelCase_ ) self.closed_nodes.append(lowerCamelCase_ ) lowerCamelCase__ : Tuple = self.get_successors(lowerCamelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCamelCase_ ) else: # retrieve the best current path lowerCamelCase__ : int = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCamelCase_ ) else: self.open_nodes.append(lowerCamelCase_ ) if not self.reached: return [self.start.pos] return None def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = [] for action in delta: lowerCamelCase__ : str = parent.pos_x + action[1] lowerCamelCase__ : Any = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCamelCase_, lowerCamelCase_, self.target.pos_y, self.target.pos_x, parent.g_cost + 1, lowerCamelCase_, ) ) return successors def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = node lowerCamelCase__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase__ : Tuple = current_node.parent path.reverse() return path if __name__ == "__main__": A_ : Optional[Any] = (0, 0) A_ : int = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") A_ : Any = GreedyBestFirst(init, goal) A_ : int = greedy_bf.search() if path: for pos_x, pos_y in path: A_ : Optional[Any] = 2 for elem in grid: print(elem)
354
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
0
"""simple docstring""" import re from filelock import FileLock try: import nltk A_ : Optional[int] = True except (ImportError, ModuleNotFoundError): A_ : List[str] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def lowerCamelCase_ ( _lowerCamelCase ): re.sub('<n>' , '' , _lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCamelCase ) )
355
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
0
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger A_ : Any = get_logger(__name__) A_ : Union[str, Any] = Path(__file__).parent / 'model_card_template.md' A_ : List[Any] = uuida().hex A_ : List[str] = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES A_ : str = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES A_ : Optional[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def lowerCamelCase_ ( _lowerCamelCase = None ): lowerCamelCase__ : Any = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCAmelCase , __UpperCAmelCase ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): ua += "; " + user_agent return ua def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ): if token is None: lowerCamelCase__ : List[str] = HfFolder.get_token() if organization is None: lowerCamelCase__ : Optional[int] = whoami(__UpperCAmelCase )['name'] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(__UpperCAmelCase , 'local_rank' ) and args.local_rank not in [-1, 0]: return lowerCamelCase__ : int = args.hub_token if hasattr(__UpperCAmelCase , 'hub_token' ) else None lowerCamelCase__ : Optional[int] = get_full_repo_name(__UpperCAmelCase , token=__UpperCAmelCase ) lowerCamelCase__ : List[Any] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__UpperCAmelCase , model_name=__UpperCAmelCase , repo_name=__UpperCAmelCase , dataset_name=args.dataset_name if hasattr(__UpperCAmelCase , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCAmelCase , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__UpperCAmelCase , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(__UpperCAmelCase , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCAmelCase , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__UpperCAmelCase , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__UpperCAmelCase , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCAmelCase , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCAmelCase , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(__UpperCAmelCase , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__UpperCAmelCase , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) lowerCamelCase__ : Tuple = os.path.join(args.output_dir , 'README.md' ) model_card.save(__UpperCAmelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = None ): if resolved_file is None or commit_hash is not None: return commit_hash lowerCamelCase__ : List[str] = str(Path(__UpperCAmelCase ).as_posix() ) lowerCamelCase__ : Any = re.search(r'snapshots/([^/]+)/' , __UpperCAmelCase ) if search is None: return None lowerCamelCase__ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCAmelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. A_ : str = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) A_ : Optional[Any] = os.path.join(hf_cache_home, "diffusers") def lowerCamelCase_ ( _lowerCamelCase = None , _lowerCamelCase = None ): if new_cache_dir is None: lowerCamelCase__ : List[Any] = DIFFUSERS_CACHE if old_cache_dir is None: lowerCamelCase__ : str = old_diffusers_cache lowerCamelCase__ : List[str] = Path(__UpperCAmelCase ).expanduser() lowerCamelCase__ : Any = Path(__UpperCAmelCase ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowerCamelCase__ : str = new_cache_dir / old_blob_path.relative_to(__UpperCAmelCase ) new_blob_path.parent.mkdir(parents=__UpperCAmelCase , exist_ok=__UpperCAmelCase ) os.replace(__UpperCAmelCase , __UpperCAmelCase ) try: os.symlink(__UpperCAmelCase , __UpperCAmelCase ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). A_ : Tuple = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): A_ : Tuple = 0 else: with open(cache_version_file) as f: try: A_ : Optional[Any] = int(f.read()) except ValueError: A_ : List[str] = 0 if cache_version < 1: A_ : Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: A_ : str = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " "the directory exists and can be written to." ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = None ): if variant is not None: lowerCamelCase__ : int = weights_name.split('.' ) lowerCamelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] lowerCamelCase__ : str = '.'.join(__UpperCAmelCase ) return weights_name def lowerCamelCase_ ( _lowerCamelCase , *, _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , ): lowerCamelCase__ : Optional[Any] = str(__UpperCAmelCase ) if os.path.isfile(__UpperCAmelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCAmelCase ): if os.path.isfile(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ): # Load from a PyTorch checkpoint lowerCamelCase__ : List[str] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ): lowerCamelCase__ : Optional[Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCAmelCase ).base_version ) >= version.parse('0.20.0' ) ): try: lowerCamelCase__ : Any = hf_hub_download( __UpperCAmelCase , filename=_add_variant(__UpperCAmelCase , __UpperCAmelCase ) , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , user_agent=__UpperCAmelCase , subfolder=__UpperCAmelCase , revision=revision or commit_hash , ) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , __UpperCAmelCase , ) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCAmelCase , __UpperCAmelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCAmelCase , __UpperCAmelCase )}\' so that the correct variant file can be added.''' , __UpperCAmelCase , ) try: # 2. Load model file as usual lowerCamelCase__ : Union[str, Any] = hf_hub_download( __UpperCAmelCase , filename=__UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , user_agent=__UpperCAmelCase , subfolder=__UpperCAmelCase , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' 'this model name. Check the model page at ' f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
356
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
0
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): assert isinstance(lowercase_ , lowercase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = tmp_path / 'cache' lowerCamelCase__ : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__ : int = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = tmp_path / 'cache' lowerCamelCase__ : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase__ : Tuple = features.copy() if features else default_expected_features lowerCamelCase__ : Union[str, Any] = ( Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__ : List[str] = ParquetDatasetReader(lowercase_ , features=lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = tmp_path / 'cache' lowerCamelCase__ : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase__ : List[str] = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ , split=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if issubclass(lowercase_ , lowercase_ ): lowerCamelCase__ : List[Any] = parquet_path elif issubclass(lowercase_ , lowercase_ ): lowerCamelCase__ : Optional[Any] = [parquet_path] lowerCamelCase__ : str = tmp_path / 'cache' lowerCamelCase__ : Union[str, Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase__ : Dict = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_dataset(lowercase_ , lowercase_ ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=("train",) ): assert isinstance(lowercase_ , lowercase_ ) for split in splits: lowerCamelCase__ : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[str] = tmp_path / 'cache' lowerCamelCase__ : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__ : Any = ParquetDatasetReader( {'train': parquet_path} , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read() _check_parquet_datasetdict(lowercase_ , lowercase_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : str = tmp_path / 'cache' lowerCamelCase__ : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase__ : List[Any] = features.copy() if features else default_expected_features lowerCamelCase__ : Optional[int] = ( Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__ : Union[str, Any] = ParquetDatasetReader({'train': parquet_path} , features=lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_datasetdict(lowercase_ , lowercase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if split: lowerCamelCase__ : List[Any] = {split: parquet_path} else: lowerCamelCase__ : int = 'train' lowerCamelCase__ : Optional[int] = {'train': parquet_path, 'test': parquet_path} lowerCamelCase__ : int = tmp_path / 'cache' lowerCamelCase__ : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase__ : Optional[int] = ParquetDatasetReader(lowercase_ , cache_dir=lowercase_ ).read() _check_parquet_datasetdict(lowercase_ , lowercase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = ParquetDatasetWriter(lowercase_ , tmp_path / 'foo.parquet' ) assert writer.write() > 0 lowerCamelCase__ : List[str] = pq.ParquetFile(tmp_path / 'foo.parquet' ) lowerCamelCase__ : str = pf.read() assert dataset.data.table == output_table def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = str(shared_datadir / 'test_image_rgb.jpg' ) lowerCamelCase__ : int = {'image': [image_path]} lowerCamelCase__ : List[Any] = Features({'image': Image()} ) lowerCamelCase__ : List[Any] = Dataset.from_dict(lowercase_ , features=lowercase_ ) lowerCamelCase__ : Optional[Any] = ParquetDatasetWriter(lowercase_ , tmp_path / 'foo.parquet' ) assert writer.write() > 0 lowerCamelCase__ : List[Any] = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__ : str = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowercase_ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): assert get_writer_batch_size(lowercase_ ) == expected
357
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Dict = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class a_ ( a_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'informer' lowerCamelCase__ : Any = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__(self, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = "student_t", lowerCamelCase_ = "nll", lowerCamelCase_ = 1, lowerCamelCase_ = None, lowerCamelCase_ = "mean", lowerCamelCase_ = 0, lowerCamelCase_ = 0, lowerCamelCase_ = 0, lowerCamelCase_ = 0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = 6_4, lowerCamelCase_ = 3_2, lowerCamelCase_ = 3_2, lowerCamelCase_ = 2, lowerCamelCase_ = 2, lowerCamelCase_ = 2, lowerCamelCase_ = 2, lowerCamelCase_ = True, lowerCamelCase_ = "gelu", lowerCamelCase_ = 0.05, lowerCamelCase_ = 0.1, lowerCamelCase_ = 0.1, lowerCamelCase_ = 0.1, lowerCamelCase_ = 0.1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = 0.02, lowerCamelCase_=True, lowerCamelCase_ = "prob", lowerCamelCase_ = 5, lowerCamelCase_ = True, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = prediction_length lowerCamelCase__ : str = context_length or prediction_length lowerCamelCase__ : Any = distribution_output lowerCamelCase__ : Optional[int] = loss lowerCamelCase__ : Optional[int] = input_size lowerCamelCase__ : str = num_time_features lowerCamelCase__ : Dict = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCamelCase__ : Dict = scaling lowerCamelCase__ : str = num_dynamic_real_features lowerCamelCase__ : List[str] = num_static_real_features lowerCamelCase__ : List[str] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) lowerCamelCase__ : List[Any] = cardinality else: lowerCamelCase__ : str = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) lowerCamelCase__ : List[str] = embedding_dimension else: lowerCamelCase__ : Any = [min(5_0, (cat + 1) // 2 ) for cat in self.cardinality] lowerCamelCase__ : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCamelCase__ : int = input_size * len(self.lags_sequence ) + self._number_of_features lowerCamelCase__ : List[Any] = d_model lowerCamelCase__ : int = encoder_attention_heads lowerCamelCase__ : Union[str, Any] = decoder_attention_heads lowerCamelCase__ : int = encoder_ffn_dim lowerCamelCase__ : Tuple = decoder_ffn_dim lowerCamelCase__ : Optional[int] = encoder_layers lowerCamelCase__ : Optional[int] = decoder_layers lowerCamelCase__ : Any = dropout lowerCamelCase__ : List[Any] = attention_dropout lowerCamelCase__ : List[Any] = activation_dropout lowerCamelCase__ : List[Any] = encoder_layerdrop lowerCamelCase__ : List[str] = decoder_layerdrop lowerCamelCase__ : Union[str, Any] = activation_function lowerCamelCase__ : int = init_std lowerCamelCase__ : List[Any] = use_cache # Informer lowerCamelCase__ : Any = attention_type lowerCamelCase__ : int = sampling_factor lowerCamelCase__ : Dict = distil super().__init__(is_encoder_decoder=lowercase_, **lowercase_ ) @property def a__ (self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
358
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
0
"""simple docstring""" import math def lowerCamelCase_ ( _lowerCamelCase ): return math.sqrt(_lowercase ) * math.sqrt(_lowercase ) == num def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : int = n while left <= right: lowerCamelCase__ : List[str] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCamelCase__ : Optional[int] = mid - 1 else: lowerCamelCase__ : List[str] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
0
import os def lowerCamelCase_ ( ): with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: lowerCamelCase__ : str = str(file.readlines()[0] ) lowerCamelCase__ : Optional[int] = names.replace('\"' , '' ).split(',' ) names.sort() lowerCamelCase__ : Any = 0 lowerCamelCase__ : List[Any] = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : str = 0 return total_score if __name__ == "__main__": print(solution())
360
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
0
from __future__ import annotations from random import choice def lowerCamelCase_ ( _lowerCamelCase ): return choice(_a ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = random_pivot(_a ) # partition based on pivot # linear time lowerCamelCase__ : Union[str, Any] = [e for e in lst if e < pivot] lowerCamelCase__ : Optional[Any] = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_a ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_a ) < k - 1: return kth_number(_a , k - len(_a ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_a , _a ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) A_ : str = logging.get_logger(__name__) A_ : Tuple = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) A_ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCamelCase_ ( _lowerCamelCase ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase__ : Optional[int] = model_type_to_module_name(__lowerCAmelCase ) lowerCamelCase__ : int = importlib.import_module(f'''.{module_name}''' , 'transformers.models' ) try: return getattr(__lowerCAmelCase , __lowerCAmelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__lowerCAmelCase , '__name__' , __lowerCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase__ : List[Any] = importlib.import_module('transformers' ) if hasattr(__lowerCAmelCase , __lowerCAmelCase ): return getattr(__lowerCAmelCase , __lowerCAmelCase ) return None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , **_lowerCamelCase , ): lowerCamelCase__ : Union[str, Any] = get_file_from_repo( __lowerCAmelCase , __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , resume_download=__lowerCAmelCase , proxies=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , revision=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(__lowerCAmelCase , encoding='utf-8' ) as reader: return json.load(__lowerCAmelCase ) class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(snake_case__ ) def a__ (cls, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = kwargs.pop('config', snake_case__ ) lowerCamelCase__ : List[Any] = kwargs.pop('trust_remote_code', snake_case__ ) lowerCamelCase__ : int = True lowerCamelCase__ : str = ImageProcessingMixin.get_image_processor_dict(snake_case__, **snake_case__ ) lowerCamelCase__ : int = config_dict.get('image_processor_type', snake_case__ ) lowerCamelCase__ : List[str] = None if "AutoImageProcessor" in config_dict.get('auto_map', {} ): lowerCamelCase__ : Optional[int] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: lowerCamelCase__ : str = config_dict.pop('feature_extractor_type', snake_case__ ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) lowerCamelCase__ : List[str] = feature_extractor_class.replace('FeatureExtractor', 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map', {} ): lowerCamelCase__ : Union[str, Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] lowerCamelCase__ : Union[str, Any] = feature_extractor_auto_map.replace('FeatureExtractor', 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(snake_case__, snake_case__ ): lowerCamelCase__ : int = AutoConfig.from_pretrained(snake_case__, **snake_case__ ) # It could be in `config.image_processor_type`` lowerCamelCase__ : Optional[Any] = getattr(snake_case__, 'image_processor_type', snake_case__ ) if hasattr(snake_case__, 'auto_map' ) and "AutoImageProcessor" in config.auto_map: lowerCamelCase__ : Union[str, Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: lowerCamelCase__ : List[Any] = image_processor_class_from_name(snake_case__ ) lowerCamelCase__ : Optional[int] = image_processor_auto_map is not None lowerCamelCase__ : Union[str, Any] = image_processor_class is not None or type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING lowerCamelCase__ : Any = resolve_trust_remote_code( snake_case__, snake_case__, snake_case__, snake_case__ ) if has_remote_code and trust_remote_code: lowerCamelCase__ : Optional[Any] = get_class_from_dynamic_module( snake_case__, snake_case__, **snake_case__ ) lowerCamelCase__ : int = kwargs.pop('code_revision', snake_case__ ) if os.path.isdir(snake_case__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(snake_case__, **snake_case__ ) elif image_processor_class is not None: return image_processor_class.from_dict(snake_case__, **snake_case__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING: lowerCamelCase__ : List[str] = IMAGE_PROCESSOR_MAPPING[type(snake_case__ )] return image_processor_class.from_dict(snake_case__, **snake_case__ ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(snake_case__, snake_case__ )
362
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
0
import math def lowerCamelCase_ ( ): lowerCamelCase__ : str = input('Enter message: ' ) lowerCamelCase__ : Dict = int(input(f'''Enter key [2-{len(_lowercase ) - 1}]: ''' ) ) lowerCamelCase__ : Union[str, Any] = input('Encryption/Decryption [e/d]: ' ) if mode.lower().startswith('e' ): lowerCamelCase__ : int = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith('d' ): lowerCamelCase__ : Union[str, Any] = decrypt_message(_lowercase , _lowercase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f'''Output:\n{text + '|'}''' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = [""] * key for col in range(_lowercase ): lowerCamelCase__ : Optional[Any] = col while pointer < len(_lowercase ): cipher_text[col] += message[pointer] pointer += key return "".join(_lowercase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = math.ceil(len(_lowercase ) / key ) lowerCamelCase__ : List[Any] = key lowerCamelCase__ : int = (num_cols * num_rows) - len(_lowercase ) lowerCamelCase__ : Dict = [""] * num_cols lowerCamelCase__ : Any = 0 lowerCamelCase__ : str = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): lowerCamelCase__ : int = 0 row += 1 return "".join(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
363
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ : int = logging.get_logger(__name__) A_ : Tuple = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class a_ ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase__ : int = "deta" lowerCamelCase__ : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__(self, lowerCamelCase_=None, lowerCamelCase_=9_0_0, lowerCamelCase_=2_0_4_8, lowerCamelCase_=6, lowerCamelCase_=2_0_4_8, lowerCamelCase_=8, lowerCamelCase_=6, lowerCamelCase_=1_0_2_4, lowerCamelCase_=8, lowerCamelCase_=0.0, lowerCamelCase_=True, lowerCamelCase_="relu", lowerCamelCase_=2_5_6, lowerCamelCase_=0.1, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=0.02, lowerCamelCase_=1.0, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_="sine", lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=4, lowerCamelCase_=True, lowerCamelCase_=3_0_0, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=1, lowerCamelCase_=5, lowerCamelCase_=2, lowerCamelCase_=1, lowerCamelCase_=1, lowerCamelCase_=5, lowerCamelCase_=2, lowerCamelCase_=0.1, lowerCamelCase_=0.25, **lowerCamelCase_, ): '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCamelCase__ : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(a__, a__ ): lowerCamelCase__ : int = backbone_config.pop('model_type' ) lowerCamelCase__ : int = CONFIG_MAPPING[backbone_model_type] lowerCamelCase__ : Optional[Any] = config_class.from_dict(a__ ) lowerCamelCase__ : Any = backbone_config lowerCamelCase__ : Optional[Any] = num_queries lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Union[str, Any] = d_model lowerCamelCase__ : Optional[Any] = encoder_ffn_dim lowerCamelCase__ : int = encoder_layers lowerCamelCase__ : Dict = encoder_attention_heads lowerCamelCase__ : List[str] = decoder_ffn_dim lowerCamelCase__ : Optional[int] = decoder_layers lowerCamelCase__ : Dict = decoder_attention_heads lowerCamelCase__ : Dict = dropout lowerCamelCase__ : Optional[int] = attention_dropout lowerCamelCase__ : Tuple = activation_dropout lowerCamelCase__ : Optional[Any] = activation_function lowerCamelCase__ : Optional[Any] = init_std lowerCamelCase__ : int = init_xavier_std lowerCamelCase__ : List[Any] = encoder_layerdrop lowerCamelCase__ : List[Any] = auxiliary_loss lowerCamelCase__ : List[Any] = position_embedding_type # deformable attributes lowerCamelCase__ : Tuple = num_feature_levels lowerCamelCase__ : str = encoder_n_points lowerCamelCase__ : List[str] = decoder_n_points lowerCamelCase__ : Any = two_stage lowerCamelCase__ : Any = two_stage_num_proposals lowerCamelCase__ : Tuple = with_box_refine lowerCamelCase__ : Tuple = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCamelCase__ : Optional[Any] = class_cost lowerCamelCase__ : Optional[Any] = bbox_cost lowerCamelCase__ : Dict = giou_cost # Loss coefficients lowerCamelCase__ : Any = mask_loss_coefficient lowerCamelCase__ : Optional[Any] = dice_loss_coefficient lowerCamelCase__ : Optional[Any] = bbox_loss_coefficient lowerCamelCase__ : Optional[int] = giou_loss_coefficient lowerCamelCase__ : Optional[int] = eos_coefficient lowerCamelCase__ : Union[str, Any] = focal_alpha super().__init__(is_encoder_decoder=a__, **a__ ) @property def a__ (self ): '''simple docstring''' return self.encoder_attention_heads @property def a__ (self ): '''simple docstring''' return self.d_model def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Optional[Any] = self.backbone_config.to_dict() lowerCamelCase__ : List[Any] = self.__class__.model_type return output
364
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
365
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
0
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging A_ : Any = logging.get_logger(__name__) class a_ ( _lowerCAmelCase ): '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' super().__init__() lowerCamelCase__ : List[str] = nn.ModuleList(SCREAMING_SNAKE_CASE_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = False, lowerCamelCase_ = True, ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, self.nets ) ): lowerCamelCase__ : Any = controlnet( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) # merge samples if i == 0: lowerCamelCase__ : Optional[int] = down_samples, mid_sample else: lowerCamelCase__ : Union[str, Any] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def a__ (self, lowerCamelCase_, lowerCamelCase_ = True, lowerCamelCase_ = None, lowerCamelCase_ = False, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Union[str, Any] = save_directory for controlnet in self.nets: controlnet.save_pretrained( SCREAMING_SNAKE_CASE_, is_main_process=SCREAMING_SNAKE_CASE_, save_function=SCREAMING_SNAKE_CASE_, safe_serialization=SCREAMING_SNAKE_CASE_, variant=SCREAMING_SNAKE_CASE_, ) idx += 1 lowerCamelCase__ : Dict = model_path_to_save + f'''_{idx}''' @classmethod def a__ (cls, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowerCamelCase__ : Optional[int] = pretrained_model_path while os.path.isdir(SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ : str = ControlNetModel.from_pretrained(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) controlnets.append(SCREAMING_SNAKE_CASE_ ) idx += 1 lowerCamelCase__ : Optional[int] = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(SCREAMING_SNAKE_CASE_ )} controlnets loaded from {pretrained_model_path}.''' ) if len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(SCREAMING_SNAKE_CASE_ )}. Expected at least {pretrained_model_path + '_0'}.''' ) return cls(SCREAMING_SNAKE_CASE_ )
366
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[str] = logging.get_logger(__name__) A_ : Any = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class a_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : str = 'visual_bert' def __init__(self, lowerCamelCase_=3_0_5_2_2, lowerCamelCase_=7_6_8, lowerCamelCase_=5_1_2, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=False, lowerCamelCase_=True, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : int = visual_embedding_dim lowerCamelCase__ : Dict = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : int = initializer_range lowerCamelCase__ : int = type_vocab_size lowerCamelCase__ : List[str] = layer_norm_eps lowerCamelCase__ : int = bypass_transformer lowerCamelCase__ : List[str] = special_visual_initialize
367
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a_ ( _a ): '''simple docstring''' lowerCamelCase__ : List[Any] = """Salesforce/blip-image-captioning-base""" lowerCamelCase__ : Any = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) lowerCamelCase__ : str = """image_captioner""" lowerCamelCase__ : str = AutoModelForVisionaSeq lowerCamelCase__ : Tuple = ["""image"""] lowerCamelCase__ : Optional[Any] = ["""text"""] def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' requires_backends(self, ['vision'] ) super().__init__(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.pre_processor(images=lowerCamelCase_, return_tensors='pt' ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.model.generate(**lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase_, skip_special_tokens=lowerCamelCase_ )[0].strip()
368
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
0
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_="resnet50", lowerCamelCase_=3, lowerCamelCase_=3_2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, ): '''simple docstring''' lowerCamelCase__ : str = parent lowerCamelCase__ : Tuple = out_indices if out_indices is not None else [4] lowerCamelCase__ : int = stage_names lowerCamelCase__ : Optional[Any] = out_features lowerCamelCase__ : str = backbone lowerCamelCase__ : int = batch_size lowerCamelCase__ : Optional[Any] = image_size lowerCamelCase__ : Any = num_channels lowerCamelCase__ : List[Any] = use_pretrained_backbone lowerCamelCase__ : Optional[Any] = is_training def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : int = self.get_config() return config, pixel_values def a__ (self ): '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size, num_channels=self.num_channels, out_features=self.out_features, out_indices=self.out_indices, stage_names=self.stage_names, use_pretrained_backbone=self.use_pretrained_backbone, backbone=self.backbone, ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = TimmBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Any = model(_lowercase ) self.parent.assertEqual( result.feature_map[-1].shape, (self.batch_size, model.channels[-1], 1_4, 1_4), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class a_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[Any] = (TimmBackbone,) if is_torch_available() else () lowerCamelCase__ : List[Any] = {"feature-extraction": TimmBackbone} if is_torch_available() else {} lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TimmBackboneModelTester(self ) lowerCamelCase__ : Dict = ConfigTester(self, config_class=_lowercase, has_text_modality=_lowercase ) def a__ (self ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = 'resnet18' lowerCamelCase__ : int = 'microsoft/resnet-18' lowerCamelCase__ : List[Any] = AutoBackbone.from_pretrained(_lowercase, use_timm_backbone=_lowercase ) lowerCamelCase__ : List[str] = AutoBackbone.from_pretrained(_lowercase ) self.assertEqual(len(timm_model.out_features ), len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ), len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels, transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices, (-1,) ) self.assertEqual(transformers_model.out_indices, [len(timm_model.stage_names ) - 1] ) lowerCamelCase__ : List[str] = AutoBackbone.from_pretrained(_lowercase, use_timm_backbone=_lowercase, out_indices=[1, 2, 3] ) lowerCamelCase__ : Optional[Any] = AutoBackbone.from_pretrained(_lowercase, out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices, transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ), len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels, transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('Safetensors is not supported by timm.' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] = model_class(_lowercase ) lowerCamelCase__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : int = [*signature.parameters.keys()] lowerCamelCase__ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1], _lowercase ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Optional[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCamelCase__ : Optional[Any] = self.all_model_classes[0] lowerCamelCase__ : Tuple = model_class(_lowercase ) model.to(_lowercase ) lowerCamelCase__ : Union[str, Any] = self._prepare_for_class(_lowercase, _lowercase ) lowerCamelCase__ : List[Any] = model(**_lowercase ) lowerCamelCase__ : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models lowerCamelCase__ : Dict = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCamelCase__ : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_lowercase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : int = model_class(_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase__ : int = model(**_lowercase ) self.assertEqual(len(result.feature_maps ), len(config.out_indices ) ) self.assertEqual(len(model.channels ), len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCamelCase__ : Tuple = copy.deepcopy(_lowercase ) lowerCamelCase__ : str = None lowerCamelCase__ : Optional[Any] = model_class(_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase__ : str = model(**_lowercase ) self.assertEqual(len(result.feature_maps ), 1 ) self.assertEqual(len(model.channels ), 1 ) # Check backbone can be initialized with fresh weights lowerCamelCase__ : Tuple = copy.deepcopy(_lowercase ) lowerCamelCase__ : Dict = False lowerCamelCase__ : List[Any] = model_class(_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase__ : List[Any] = model(**_lowercase )
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowerCamelCase_ ( _lowerCamelCase = "" ): lowerCamelCase__ : List[str] = url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' lowerCamelCase__ : Any = BeautifulSoup(requests.get(a__ ).text , 'html.parser' ) lowerCamelCase__ : Tuple = soup.find_all('td' , attrs='titleColumn' ) lowerCamelCase__ : List[str] = soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(a__ , a__ ) } def lowerCamelCase_ ( _lowerCamelCase = "IMDb_Top_250_Movies.csv" ): lowerCamelCase__ : Optional[Any] = get_imdb_top_aaa_movies() with open(a__ , 'w' , newline='' ) as out_file: lowerCamelCase__ : str = csv.writer(a__ ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
371
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class a_ ( snake_case_ ): '''simple docstring''' def __get__(self, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute' ) lowerCamelCase__ : Optional[Any] = '__cached_' + self.fget.__name__ lowerCamelCase__ : List[Any] = getattr(_A, _A, _A ) if cached is None: lowerCamelCase__ : int = self.fget(_A ) setattr(_A, _A, _A ) return cached def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def lowerCamelCase_ ( _lowerCamelCase ): if is_torch_fx_proxy(__a ): return True if is_torch_available(): import torch if isinstance(__a , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__a , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__a , (jnp.ndarray, Tracer) ): return True return isinstance(__a , np.ndarray ) def lowerCamelCase_ ( _lowerCamelCase ): return isinstance(__a , np.ndarray ) def lowerCamelCase_ ( _lowerCamelCase ): return _is_numpy(__a ) def lowerCamelCase_ ( _lowerCamelCase ): import torch return isinstance(__a , torch.Tensor ) def lowerCamelCase_ ( _lowerCamelCase ): return False if not is_torch_available() else _is_torch(__a ) def lowerCamelCase_ ( _lowerCamelCase ): import torch return isinstance(__a , torch.device ) def lowerCamelCase_ ( _lowerCamelCase ): return False if not is_torch_available() else _is_torch_device(__a ) def lowerCamelCase_ ( _lowerCamelCase ): import torch if isinstance(__a , __a ): if hasattr(__a , __a ): lowerCamelCase__ : str = getattr(__a , __a ) else: return False return isinstance(__a , torch.dtype ) def lowerCamelCase_ ( _lowerCamelCase ): return False if not is_torch_available() else _is_torch_dtype(__a ) def lowerCamelCase_ ( _lowerCamelCase ): import tensorflow as tf return isinstance(__a , tf.Tensor ) def lowerCamelCase_ ( _lowerCamelCase ): return False if not is_tf_available() else _is_tensorflow(__a ) def lowerCamelCase_ ( _lowerCamelCase ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__a , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(__a ) return type(__a ) == tf.Tensor def lowerCamelCase_ ( _lowerCamelCase ): return False if not is_tf_available() else _is_tf_symbolic_tensor(__a ) def lowerCamelCase_ ( _lowerCamelCase ): import jax.numpy as jnp # noqa: F811 return isinstance(__a , jnp.ndarray ) def lowerCamelCase_ ( _lowerCamelCase ): return False if not is_flax_available() else _is_jax(__a ) def lowerCamelCase_ ( _lowerCamelCase ): if isinstance(__a , (dict, UserDict) ): return {k: to_py_obj(__a ) for k, v in obj.items()} elif isinstance(__a , (list, tuple) ): return [to_py_obj(__a ) for o in obj] elif is_tf_tensor(__a ): return obj.numpy().tolist() elif is_torch_tensor(__a ): return obj.detach().cpu().tolist() elif is_jax_tensor(__a ): return np.asarray(__a ).tolist() elif isinstance(__a , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowerCamelCase_ ( _lowerCamelCase ): if isinstance(__a , (dict, UserDict) ): return {k: to_numpy(__a ) for k, v in obj.items()} elif isinstance(__a , (list, tuple) ): return np.array(__a ) elif is_tf_tensor(__a ): return obj.numpy() elif is_torch_tensor(__a ): return obj.detach().cpu().numpy() elif is_jax_tensor(__a ): return np.asarray(__a ) else: return obj class a_ ( snake_case_ ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = fields(self ) # Safety and consistency checks if not len(_A ): raise ValueError(f'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' ) lowerCamelCase__ : Any = getattr(self, class_fields[0].name ) lowerCamelCase__ : Optional[int] = all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_A ): if isinstance(_A, _A ): lowerCamelCase__ : Optional[int] = first_field.items() lowerCamelCase__ : Dict = True else: try: lowerCamelCase__ : Optional[Any] = iter(_A ) lowerCamelCase__ : Tuple = True except TypeError: lowerCamelCase__ : Union[str, Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_A ): if ( not isinstance(_A, (list, tuple) ) or not len(_A ) == 2 or not isinstance(element[0], _A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCamelCase__ : Optional[Any] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: lowerCamelCase__ : Tuple = element[1] elif first_field is not None: lowerCamelCase__ : List[Any] = first_field else: for field in class_fields: lowerCamelCase__ : Union[str, Any] = getattr(self, field.name ) if v is not None: lowerCamelCase__ : Dict = v def __delitem__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' if isinstance(_A, _A ): lowerCamelCase__ : Dict = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_A, _A ) super().__setattr__(_A, _A ) def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__setitem__(_A, _A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_A, _A ) def a__ (self ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class a_ ( snake_case_ , snake_case_ ): '''simple docstring''' @classmethod def a__ (cls, lowerCamelCase_ ): '''simple docstring''' raise ValueError( f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = "longest" lowerCamelCase__ : Union[str, Any] = "max_length" lowerCamelCase__ : Tuple = "do_not_pad" class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = "pt" lowerCamelCase__ : int = "tf" lowerCamelCase__ : Any = "np" lowerCamelCase__ : int = "jax" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = context_managers lowerCamelCase__ : Optional[Any] = ExitStack() def __enter__(self ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(_A ) def __exit__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' self.stack.__exit__(*_A, **_A ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = infer_framework(__a ) if framework == "tf": lowerCamelCase__ : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__ : str = inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__ : Dict = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = model_class.__name__ lowerCamelCase__ : Optional[int] = infer_framework(__a ) if framework == "tf": lowerCamelCase__ : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__ : Union[str, Any] = inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__ : Dict = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = "" , _lowerCamelCase = "." ): def _flatten_dict(_lowerCamelCase , _lowerCamelCase="" , _lowerCamelCase="." ): for k, v in d.items(): lowerCamelCase__ : Any = str(__a ) + delimiter + str(__a ) if parent_key else k if v and isinstance(__a , __a ): yield from flatten_dict(__a , __a , delimiter=__a ).items() else: yield key, v return dict(_flatten_dict(__a , __a , __a ) ) @contextmanager def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=None ): if is_numpy_array(__a ): return np.transpose(__a , axes=__a ) elif is_torch_tensor(__a ): return array.T if axes is None else array.permute(*__a ) elif is_tf_tensor(__a ): import tensorflow as tf return tf.transpose(__a , perm=__a ) elif is_jax_tensor(__a ): return jnp.transpose(__a , axes=__a ) else: raise ValueError(f'''Type not supported for transpose: {type(__a )}.''' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if is_numpy_array(__a ): return np.reshape(__a , __a ) elif is_torch_tensor(__a ): return array.reshape(*__a ) elif is_tf_tensor(__a ): import tensorflow as tf return tf.reshape(__a , __a ) elif is_jax_tensor(__a ): return jnp.reshape(__a , __a ) else: raise ValueError(f'''Type not supported for reshape: {type(__a )}.''' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=None ): if is_numpy_array(__a ): return np.squeeze(__a , axis=__a ) elif is_torch_tensor(__a ): return array.squeeze() if axis is None else array.squeeze(dim=__a ) elif is_tf_tensor(__a ): import tensorflow as tf return tf.squeeze(__a , axis=__a ) elif is_jax_tensor(__a ): return jnp.squeeze(__a , axis=__a ) else: raise ValueError(f'''Type not supported for squeeze: {type(__a )}.''' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if is_numpy_array(__a ): return np.expand_dims(__a , __a ) elif is_torch_tensor(__a ): return array.unsqueeze(dim=__a ) elif is_tf_tensor(__a ): import tensorflow as tf return tf.expand_dims(__a , axis=__a ) elif is_jax_tensor(__a ): return jnp.expand_dims(__a , axis=__a ) else: raise ValueError(f'''Type not supported for expand_dims: {type(__a )}.''' ) def lowerCamelCase_ ( _lowerCamelCase ): if is_numpy_array(__a ): return np.size(__a ) elif is_torch_tensor(__a ): return array.numel() elif is_tf_tensor(__a ): import tensorflow as tf return tf.size(__a ) elif is_jax_tensor(__a ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(__a )}.''' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for key, value in auto_map.items(): if isinstance(__a , (tuple, list) ): lowerCamelCase__ : Any = [f'''{repo_id}--{v}''' if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: lowerCamelCase__ : Dict = f'''{repo_id}--{value}''' return auto_map def lowerCamelCase_ ( _lowerCamelCase ): for base_class in inspect.getmro(__a ): lowerCamelCase__ : Tuple = base_class.__module__ lowerCamelCase__ : List[Any] = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
350
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin A_ : Optional[int] = False @skip_mps class a_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[str] = StableDiffusionAttendAndExcitePipeline lowerCamelCase__ : int = False lowerCamelCase__ : int = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) lowerCamelCase__ : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def a__ (cls ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(3_2, 6_4), layers_per_block=1, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=3_2, attention_head_dim=(2, 4), use_linear_projection=lowerCamelCase_, ) lowerCamelCase__ : Optional[Any] = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowerCamelCase_, set_alpha_to_one=lowerCamelCase_, ) torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=1_2_8, ) torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, hidden_act='gelu', projection_dim=5_1_2, ) lowerCamelCase__ : List[str] = CLIPTextModel(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase__ : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : List[str] = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : List[str] = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = """cpu""" lowerCamelCase__ : Optional[int] = self.get_dummy_components() lowerCamelCase__ : List[str] = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Dict = self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**lowerCamelCase_ ).images lowerCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 6_4, 6_4, 3) ) lowerCamelCase__ : int = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) lowerCamelCase__ : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase_, 1e-3 ) def a__ (self ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def a__ (self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2, expected_max_diff=7e-4 ) def a__ (self ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def a__ (self ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def a__ (self ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5e-4 ) def a__ (self ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = torch.manual_seed(5_1 ) lowerCamelCase__ : str = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', safety_checker=lowerCamelCase_, torch_dtype=torch.floataa ) pipe.to('cuda' ) lowerCamelCase__ : List[Any] = """a painting of an elephant with glasses""" lowerCamelCase__ : str = [5, 7] lowerCamelCase__ : int = pipe( prompt=lowerCamelCase_, token_indices=lowerCamelCase_, guidance_scale=7.5, generator=lowerCamelCase_, num_inference_steps=5, max_iter_to_alter=5, output_type='numpy', ).images[0] lowerCamelCase__ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5e-1
351
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" import math def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = 0 lowerCamelCase__ : Union[str, Any] = 0 while num > 0: lowerCamelCase__ : Dict = num % 8 lowerCamelCase__ : Optional[Any] = octal + (remainder * math.floor(math.pow(10 , lowerCAmelCase__ ) )) counter += 1 lowerCamelCase__ : Any = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f'''0o{int(lowerCAmelCase__ )}''' def lowerCamelCase_ ( ): print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(65 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(216 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(512 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
352
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
0
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available A_ : List[Any] = logging.getLogger(__name__) @dataclass class a_ : '''simple docstring''' lowerCamelCase__ : str lowerCamelCase__ : List[str] lowerCamelCase__ : Optional[List[str]] @dataclass class a_ : '''simple docstring''' lowerCamelCase__ : List[int] lowerCamelCase__ : List[int] lowerCamelCase__ : Optional[List[int]] = None lowerCamelCase__ : Optional[List[int]] = None class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = "train" lowerCamelCase__ : Any = "dev" lowerCamelCase__ : Any = "test" class a_ : '''simple docstring''' @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError @staticmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_="[CLS]", lowerCamelCase_=1, lowerCamelCase_="[SEP]", lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=0, lowerCamelCase_=0, lowerCamelCase_=-1_0_0, lowerCamelCase_=0, lowerCamelCase_=True, ): '''simple docstring''' lowerCamelCase__ : Tuple = {label: i for i, label in enumerate(lowerCamelCase_ )} lowerCamelCase__ : int = [] for ex_index, example in enumerate(lowerCamelCase_ ): if ex_index % 1_0_0_0_0 == 0: logger.info('Writing example %d of %d', lowerCamelCase_, len(lowerCamelCase_ ) ) lowerCamelCase__ : Dict = [] lowerCamelCase__ : List[Any] = [] for word, label in zip(example.words, example.labels ): lowerCamelCase__ : int = tokenizer.tokenize(lowerCamelCase_ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(lowerCamelCase_ ) > 0: tokens.extend(lowerCamelCase_ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(lowerCamelCase_ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. lowerCamelCase__ : Optional[Any] = tokenizer.num_special_tokens_to_add() if len(lowerCamelCase_ ) > max_seq_length - special_tokens_count: lowerCamelCase__ : Union[str, Any] = tokens[: (max_seq_length - special_tokens_count)] lowerCamelCase__ : Optional[Any] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] lowerCamelCase__ : Union[str, Any] = [sequence_a_segment_id] * len(lowerCamelCase_ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: lowerCamelCase__ : Any = [cls_token] + tokens lowerCamelCase__ : Dict = [pad_token_label_id] + label_ids lowerCamelCase__ : int = [cls_token_segment_id] + segment_ids lowerCamelCase__ : str = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. lowerCamelCase__ : Tuple = [1 if mask_padding_with_zero else 0] * len(lowerCamelCase_ ) # Zero-pad up to the sequence length. lowerCamelCase__ : List[str] = max_seq_length - len(lowerCamelCase_ ) if pad_on_left: lowerCamelCase__ : Union[str, Any] = ([pad_token] * padding_length) + input_ids lowerCamelCase__ : Union[str, Any] = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask lowerCamelCase__ : List[str] = ([pad_token_segment_id] * padding_length) + segment_ids lowerCamelCase__ : Union[str, Any] = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(lowerCamelCase_ ) == max_seq_length assert len(lowerCamelCase_ ) == max_seq_length assert len(lowerCamelCase_ ) == max_seq_length assert len(lowerCamelCase_ ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s', example.guid ) logger.info('tokens: %s', ' '.join([str(lowerCamelCase_ ) for x in tokens] ) ) logger.info('input_ids: %s', ' '.join([str(lowerCamelCase_ ) for x in input_ids] ) ) logger.info('input_mask: %s', ' '.join([str(lowerCamelCase_ ) for x in input_mask] ) ) logger.info('segment_ids: %s', ' '.join([str(lowerCamelCase_ ) for x in segment_ids] ) ) logger.info('label_ids: %s', ' '.join([str(lowerCamelCase_ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: lowerCamelCase__ : str = None features.append( InputFeatures( input_ids=lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, label_ids=lowerCamelCase_ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[InputFeatures] lowerCamelCase__ : int = nn.CrossEntropyLoss().ignore_index def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_=False, lowerCamelCase_ = Split.train, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = os.path.join( lowerCamelCase_, 'cached_{}_{}_{}'.format(mode.value, tokenizer.__class__.__name__, str(lowerCamelCase_ ) ), ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : Union[str, Any] = cached_features_file + '.lock' with FileLock(lowerCamelCase_ ): if os.path.exists(lowerCamelCase_ ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) lowerCamelCase__ : str = torch.load(lowerCamelCase_ ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) lowerCamelCase__ : List[str] = token_classification_task.read_examples_from_file(lowerCamelCase_, lowerCamelCase_ ) # TODO clean up all this to leverage built-in features of tokenizers lowerCamelCase__ : Union[str, Any] = token_classification_task.convert_examples_to_features( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, cls_token_at_end=bool(model_type in ['xlnet'] ), cls_token=tokenizer.cls_token, cls_token_segment_id=2 if model_type in ['xlnet'] else 0, sep_token=tokenizer.sep_token, sep_token_extra=lowerCamelCase_, pad_on_left=bool(tokenizer.padding_side == 'left' ), pad_token=tokenizer.pad_token_id, pad_token_segment_id=tokenizer.pad_token_type_id, pad_token_label_id=self.pad_token_label_id, ) logger.info(f'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features, lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' return self.features[i] if is_tf_available(): import tensorflow as tf class a_ : '''simple docstring''' lowerCamelCase__ : List[InputFeatures] lowerCamelCase__ : int = -100 def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_=False, lowerCamelCase_ = Split.train, ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = token_classification_task.read_examples_from_file(lowerCamelCase_, lowerCamelCase_ ) # TODO clean up all this to leverage built-in features of tokenizers lowerCamelCase__ : Union[str, Any] = token_classification_task.convert_examples_to_features( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, cls_token_at_end=bool(model_type in ['xlnet'] ), cls_token=tokenizer.cls_token, cls_token_segment_id=2 if model_type in ['xlnet'] else 0, sep_token=tokenizer.sep_token, sep_token_extra=lowerCamelCase_, pad_on_left=bool(tokenizer.padding_side == 'left' ), pad_token=tokenizer.pad_token_id, pad_token_segment_id=tokenizer.pad_token_type_id, pad_token_label_id=self.pad_token_label_id, ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: lowerCamelCase__ : Dict = tf.data.Dataset.from_generator( lowerCamelCase_, ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa), ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ), ) else: lowerCamelCase__ : int = tf.data.Dataset.from_generator( lowerCamelCase_, ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa), ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' return self.features[i]
353
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") A_ : str = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") A_ : str = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: A_ : Any = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) A_ : int = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
354
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
0
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Any = {"vocab_file": "vocab.txt"} A_ : Tuple = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } A_ : List[Any] = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def lowerCamelCase_ ( _lowerCamelCase ): with open(_lowerCamelCase , 'r' ) as f: lowerCamelCase__ : Tuple = f.read().splitlines() return [l.strip() for l in lines] class a_ ( UpperCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = VOCAB_FILES_NAMES lowerCamelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__(self, lowerCamelCase_, lowerCamelCase_="<unk>", lowerCamelCase_="<cls>", lowerCamelCase_="<pad>", lowerCamelCase_="<mask>", lowerCamelCase_="<eos>", **lowerCamelCase_, ): '''simple docstring''' super().__init__(**UpperCamelCase_ ) lowerCamelCase__ : int = load_vocab_file(UpperCamelCase_ ) lowerCamelCase__ : Dict = dict(enumerate(self.all_tokens ) ) lowerCamelCase__ : Tuple = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowerCamelCase__ : Optional[Any] = unk_token lowerCamelCase__ : Any = cls_token lowerCamelCase__ : Any = pad_token lowerCamelCase__ : List[Any] = mask_token lowerCamelCase__ : Dict = eos_token lowerCamelCase__ : Optional[int] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self._id_to_token.get(UpperCamelCase_, self.unk_token ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self._token_to_id.get(UpperCamelCase_, self._token_to_id.get(self.unk_token ) ) def a__ (self, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return text.split() def a__ (self, lowerCamelCase_=False ): '''simple docstring''' return len(self._id_to_token ) def a__ (self ): '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self._token_to_id.get(UpperCamelCase_, self._token_to_id.get(self.unk_token ) ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self._id_to_token.get(UpperCamelCase_, self.unk_token ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Any = [self.cls_token_id] lowerCamelCase__ : Tuple = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowerCamelCase__ : Optional[int] = [1] + ([0] * len(UpperCamelCase_ )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCamelCase_ ) + [1] return mask def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = os.path.join(UpperCamelCase_, (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(UpperCamelCase_, 'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def a__ (self ): '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = False ): '''simple docstring''' return super()._add_tokens(UpperCamelCase_, special_tokens=UpperCamelCase_ )
355
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
0
"""simple docstring""" import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets A_ : Tuple = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' A_ : str = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' A_ : Tuple = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return float((preds == labels).mean() ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : Any = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = np.array(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = np.array(lowerCamelCase_ ) lowerCamelCase__ : Any = en_sentvecs.shape[0] # mean centering lowerCamelCase__ : Tuple = en_sentvecs - np.mean(lowerCamelCase_ , axis=0 ) lowerCamelCase__ : Optional[int] = in_sentvecs - np.mean(lowerCamelCase_ , axis=0 ) lowerCamelCase__ : Any = cdist(lowerCamelCase_ , lowerCamelCase_ , 'cosine' ) lowerCamelCase__ : Tuple = np.array(range(lowerCamelCase_ ) ) lowerCamelCase__ : List[str] = sim.argsort(axis=1 )[:, :10] lowerCamelCase__ : Optional[int] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def a__ (self ): '''simple docstring''' if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), 'references': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), } ), codebase_urls=[], reference_urls=[], format='numpy' if self.config_name != 'cvit-mkb-clsr' else None, ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__lowerCamelCase, __lowerCamelCase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__lowerCamelCase, __lowerCamelCase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__lowerCamelCase, __lowerCamelCase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' )
356
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Optional[Any] = "▁" A_ : Optional[int] = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } A_ : Optional[Any] = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } A_ : Dict = { "facebook/m2m100_418M": 10_24, } # fmt: off A_ : Union[str, Any] = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = VOCAB_FILES_NAMES lowerCamelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : List[Any] = ["""input_ids""", """attention_mask"""] lowerCamelCase__ : List[int] = [] lowerCamelCase__ : List[int] = [] def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_="<s>", lowerCamelCase_="</s>", lowerCamelCase_="</s>", lowerCamelCase_="<pad>", lowerCamelCase_="<unk>", lowerCamelCase_="m2m100", lowerCamelCase_ = None, lowerCamelCase_=8, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase__ : Optional[int] = language_codes lowerCamelCase__ : Dict = FAIRSEQ_LANGUAGE_CODES[language_codes] lowerCamelCase__ : Union[str, Any] = {lang_code: f'''__{lang_code}__''' for lang_code in fairseq_language_code} lowerCamelCase__ : Dict = kwargs.get('additional_special_tokens', [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_A ) for lang_code in fairseq_language_code if self.get_lang_token(_A ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_A, tgt_lang=_A, bos_token=_A, eos_token=_A, sep_token=_A, unk_token=_A, pad_token=_A, language_codes=_A, sp_model_kwargs=self.sp_model_kwargs, num_madeup_words=_A, **_A, ) lowerCamelCase__ : Optional[int] = vocab_file lowerCamelCase__ : Dict = load_json(_A ) lowerCamelCase__ : Tuple = {v: k for k, v in self.encoder.items()} lowerCamelCase__ : str = spm_file lowerCamelCase__ : List[Any] = load_spm(_A, self.sp_model_kwargs ) lowerCamelCase__ : Dict = len(self.encoder ) lowerCamelCase__ : List[Any] = { self.get_lang_token(_A ): self.encoder_size + i for i, lang_code in enumerate(_A ) } lowerCamelCase__ : str = {lang_code: self.encoder_size + i for i, lang_code in enumerate(_A )} lowerCamelCase__ : Tuple = {v: k for k, v in self.lang_token_to_id.items()} lowerCamelCase__ : Optional[Any] = src_lang if src_lang is not None else 'en' lowerCamelCase__ : List[Any] = tgt_lang lowerCamelCase__ : Optional[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowerCamelCase__ : Optional[Any] = num_madeup_words @property def a__ (self ): '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def a__ (self ): '''simple docstring''' return self._src_lang @src_lang.setter def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.sp_model.encode(_A, out_type=_A ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_A, self.encoder[self.unk_token] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_A, self.unk_token ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : Union[str, Any] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_A ) + token lowerCamelCase__ : str = [] else: current_sub_tokens.append(_A ) out_string += self.sp_model.decode(_A ) return out_string.strip() def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A, token_ids_a=_A, already_has_special_tokens=_A ) lowerCamelCase__ : int = [1] * len(self.prefix_tokens ) lowerCamelCase__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.__dict__.copy() lowerCamelCase__ : Optional[int] = None return state def __setstate__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): lowerCamelCase__ : int = {} lowerCamelCase__ : Union[str, Any] = load_spm(self.spm_file, self.sp_model_kwargs ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = Path(_A ) if not save_dir.is_dir(): raise OSError(f'''{save_directory} should be a directory''' ) lowerCamelCase__ : str = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) lowerCamelCase__ : str = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder, _A ) if os.path.abspath(self.spm_file ) != os.path.abspath(_A ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file, _A ) elif not os.path.isfile(self.spm_file ): with open(_A, 'wb' ) as fi: lowerCamelCase__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (str(_A ), str(_A )) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "en", lowerCamelCase_ = None, lowerCamelCase_ = "ro", **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : int = src_lang lowerCamelCase__ : Tuple = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_A, _A, **_A ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : List[str] = src_lang lowerCamelCase__ : Union[str, Any] = self(_A, add_special_tokens=_A, **_A ) lowerCamelCase__ : int = self.get_lang_id(_A ) lowerCamelCase__ : Union[str, Any] = tgt_lang_id return inputs def a__ (self ): '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def a__ (self ): '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.get_lang_token(_A ) lowerCamelCase__ : Union[str, Any] = self.lang_token_to_id[lang_token] lowerCamelCase__ : Dict = [self.cur_lang_id] lowerCamelCase__ : int = [self.eos_token_id] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_lang_token(_A ) lowerCamelCase__ : Optional[Any] = self.lang_token_to_id[lang_token] lowerCamelCase__ : Optional[int] = [self.cur_lang_id] lowerCamelCase__ : int = [self.eos_token_id] def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.lang_code_to_token[lang] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_lang_token(_A ) return self.lang_token_to_id[lang_token] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = sentencepiece.SentencePieceProcessor(**UpperCAmelCase_ ) spm.Load(str(UpperCAmelCase_ ) ) return spm def lowerCamelCase_ ( _lowerCamelCase ): with open(UpperCAmelCase_ , 'r' ) as f: return json.load(UpperCAmelCase_ ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): with open(UpperCAmelCase_ , 'w' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ , indent=2 )
357
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_A , _A ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_A ) == 0: raise ValueError('Input list must be a non empty list' ) if len(_A ) == 1: return True lowerCamelCase__ : int = series[1] - series[0] for index in range(len(_A ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_A , _A ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_A ) == 0: raise ValueError('Input list must be a non empty list' ) lowerCamelCase__ : Dict = 0 for val in series: answer += val return answer / len(_A ) if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
0
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Optional[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A_ : int = direct_transformers_import(PATH_TO_TRANSFORMERS) A_ : List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING A_ : List[str] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): lowerCamelCase__ : Any = True # Deal with multi-line cases elif ( re.search( rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , lowerCAmelCase__ , ) is not None ): lowerCamelCase__ : str = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowerCamelCase__ : Any = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowerCamelCase__ : int = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] lowerCamelCase__ : str = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed lowerCamelCase__ : Optional[Any] = True if not attribute_used: lowerCamelCase__ : Optional[Any] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowerCamelCase__ : Tuple = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowerCamelCase__ : Optional[Any] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowerCamelCase__ : Dict = True elif attribute.endswith('_token_id' ): lowerCamelCase__ : Dict = True # configuration class specific cases if not case_allowed: lowerCamelCase__ : Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowerCamelCase__ : Tuple = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = dict(inspect.signature(config_class.__init__ ).parameters ) lowerCamelCase__ : Tuple = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] lowerCamelCase__ : Union[str, Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowerCamelCase__ : int = {} if len(config_class.attribute_map ) > 0: lowerCamelCase__ : Any = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowerCamelCase__ : Dict = inspect.getsourcefile(lowerCAmelCase__ ) lowerCamelCase__ : Optional[int] = os.path.dirname(lowerCAmelCase__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowerCamelCase__ : Dict = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for fn in os.listdir(lowerCAmelCase__ ) if fn.startswith('modeling_' )] # Get the source code strings lowerCamelCase__ : Union[str, Any] = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as fp: modeling_sources.append(fp.read() ) lowerCamelCase__ : Dict = [] for config_param, default_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): # `attributes` here is all the variant names for `config_param` lowerCamelCase__ : Optional[int] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase__ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowerCamelCase__ : List[str] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _lowerCamelCase : inspect.isclass(lowerCAmelCase__ ) and issubclass(lowerCAmelCase__ , lowerCAmelCase__ ) and inspect.getmodule(lowerCAmelCase__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowerCamelCase__ : Any = check_config_attributes_being_used(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowerCamelCase__ : str = unused_attributes if len(lowerCAmelCase__ ) > 0: lowerCamelCase__ : Optional[int] = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": check_config_attributes()
359
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : str = logging.get_logger(__name__) A_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} A_ : Tuple = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } A_ : List[str] = { "gpt-neox-20b": 20_48, } class a_ ( __a ): '''simple docstring''' lowerCamelCase__ : Any = VOCAB_FILES_NAMES lowerCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_="<|endoftext|>", lowerCamelCase_="<|endoftext|>", lowerCamelCase_="<|endoftext|>", lowerCamelCase_=False, **lowerCamelCase_, ): '''simple docstring''' super().__init__( a__, a__, tokenizer_file=a__, unk_token=a__, bos_token=a__, eos_token=a__, add_prefix_space=a__, **a__, ) lowerCamelCase__ : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', a__ ) != add_prefix_space: lowerCamelCase__ : str = getattr(a__, pre_tok_state.pop('type' ) ) lowerCamelCase__ : Any = add_prefix_space lowerCamelCase__ : Dict = pre_tok_class(**a__ ) lowerCamelCase__ : int = add_prefix_space def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : List[Any] = self._tokenizer.model.save(a__, name=a__ ) return tuple(a__ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a__, add_special_tokens=a__ ) + [self.eos_token_id] ) if len(a__ ) > self.model_max_length: lowerCamelCase__ : Tuple = input_ids[-self.model_max_length :] return input_ids
360
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
0
import functools def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # Validation if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not all(isinstance(_lowerCamelCase , _lowerCamelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(_lowerCamelCase ) != 3 or not all(isinstance(_lowerCamelCase , _lowerCamelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(_lowerCamelCase ) == 0: return 0 if min(_lowerCamelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(_lowerCamelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) lowerCamelCase__ : List[Any] = set(_lowerCamelCase ) @functools.cache def dynamic_programming(_lowerCamelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
0
"""simple docstring""" from manim import * class a_ ( snake_case_ ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = Rectangle(height=0.5, width=0.5 ) lowerCamelCase__ : str = Rectangle(height=0.25, width=0.25 ) lowerCamelCase__ : Dict = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ : Optional[Any] = [mem.copy() for i in range(6 )] lowerCamelCase__ : Tuple = [mem.copy() for i in range(6 )] lowerCamelCase__ : List[str] = VGroup(*__a ).arrange(__a, buff=0 ) lowerCamelCase__ : str = VGroup(*__a ).arrange(__a, buff=0 ) lowerCamelCase__ : str = VGroup(__a, __a ).arrange(__a, buff=0 ) lowerCamelCase__ : str = Text('CPU', font_size=2_4 ) lowerCamelCase__ : Any = Group(__a, __a ).arrange(__a, buff=0.5, aligned_edge=__a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__a ) lowerCamelCase__ : List[Any] = [mem.copy() for i in range(4 )] lowerCamelCase__ : Dict = VGroup(*__a ).arrange(__a, buff=0 ) lowerCamelCase__ : Optional[Any] = Text('GPU', font_size=2_4 ) lowerCamelCase__ : Optional[int] = Group(__a, __a ).arrange(__a, buff=0.5, aligned_edge=__a ) gpu.move_to([-1, -1, 0] ) self.add(__a ) lowerCamelCase__ : Tuple = [mem.copy() for i in range(6 )] lowerCamelCase__ : int = VGroup(*__a ).arrange(__a, buff=0 ) lowerCamelCase__ : Dict = Text('Model', font_size=2_4 ) lowerCamelCase__ : str = Group(__a, __a ).arrange(__a, buff=0.5, aligned_edge=__a ) model.move_to([3, -1.0, 0] ) self.add(__a ) lowerCamelCase__ : int = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Union[str, Any] = [] for i, rect in enumerate(__a ): rect.set_stroke(__a ) lowerCamelCase__ : Dict = Rectangle(height=0.46 / 4, width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__a, opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=__a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0], direction=__a, buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1], direction=__a, buff=0.0 ) self.add(__a ) model_cpu_arr.append(__a ) self.add(*__a, *__a, *__a ) lowerCamelCase__ : Optional[int] = [mem.copy() for i in range(6 )] lowerCamelCase__ : List[Any] = VGroup(*__a ).arrange(__a, buff=0 ) lowerCamelCase__ : Any = Text('Loaded Checkpoint', font_size=2_4 ) lowerCamelCase__ : Tuple = Group(__a, __a ).arrange(__a, buff=0.5, aligned_edge=__a ) checkpoint.move_to([3, 0.5, 0] ) self.add(__a ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = [] for i, rect in enumerate(__a ): lowerCamelCase__ : Optional[int] = fill.copy().set_fill(__a, opacity=0.7 ) target.move_to(__a ) ckpt_arr.append(__a ) lowerCamelCase__ : List[str] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__a ) self.add(*__a, *__a ) lowerCamelCase__ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ : Dict = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=1_8, ) key_text.move_to([-5, 2.4, 0] ) self.add(__a, __a ) lowerCamelCase__ : Optional[Any] = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''', font_size=1_8, ) blue_text.next_to(__a, DOWN * 2.4, aligned_edge=key_text.get_left() ) self.add(__a ) lowerCamelCase__ : Tuple = MarkupText( f'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''', font_size=2_4, ) step_a.move_to([2, 2, 0] ) lowerCamelCase__ : int = [meta_mem.copy() for i in range(6 )] lowerCamelCase__ : int = [meta_mem.copy() for i in range(6 )] lowerCamelCase__ : Optional[int] = VGroup(*__a ).arrange(__a, buff=0 ) lowerCamelCase__ : Optional[int] = VGroup(*__a ).arrange(__a, buff=0 ) lowerCamelCase__ : List[Any] = VGroup(__a, __a ).arrange(__a, buff=0 ) lowerCamelCase__ : Union[str, Any] = Text('Disk', font_size=2_4 ) lowerCamelCase__ : Tuple = Group(__a, __a ).arrange(__a, buff=0.5, aligned_edge=__a ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__a, run_time=3 ), Write(__a, run_time=1 ), Create(__a, run_time=1 ) ) lowerCamelCase__ : Optional[int] = [] for i, rect in enumerate(__a ): lowerCamelCase__ : Optional[int] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__a, run_time=1.5 ) ) self.play(*__a ) self.play(FadeOut(__a ) ) lowerCamelCase__ : Optional[Any] = MarkupText(f'''Then, the checkpoint is removed from memory\nthrough garbage collection.''', font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(__a, run_time=3 ) ) self.play( FadeOut(__a, __a, *__a, *__a ), ) self.wait()
362
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
0
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels A_ : Optional[Any] = object() # For specifying empty leaf dict `{}` A_ : Optional[int] = object() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) + 1 ): lowerCamelCase__ : Union[str, Any] = [x.match(UpperCAmelCase__ ) for x, y in zip(UpperCAmelCase__ , ks[i:] )] if matches and all(UpperCAmelCase__ ): return True return False def lowerCamelCase_ ( _lowerCamelCase ): def replace(_lowerCamelCase , _lowerCamelCase ): for rule, replacement in rules: if _match(UpperCAmelCase__ , UpperCAmelCase__ ): return replacement return val return replace def lowerCamelCase_ ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , UpperCAmelCase__ )), (("transformer", "wte", "embedding"), P('mp' , UpperCAmelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCAmelCase__ , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , UpperCAmelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCAmelCase__ , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , UpperCAmelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = _get_partition_rules() lowerCamelCase__ : Dict = _replacement_rules(UpperCAmelCase__ ) lowerCamelCase__ : Dict = {k: _unmatched for k in flatten_dict(UpperCAmelCase__ )} lowerCamelCase__ : List[Any] = {k: replace(UpperCAmelCase__ , UpperCAmelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCAmelCase__ ) )
363
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
0
"""simple docstring""" from __future__ import annotations import time import numpy as np A_ : Optional[Any] = [8, 5, 9, 7] A_ : Dict = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A_ : Dict = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Tuple = claim_vector lowerCamelCase__ : Optional[int] = allocated_resources_table lowerCamelCase__ : Dict = maximum_claim_table def a__ (self ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def a__ (self ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def a__ (self ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_A ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def a__ (self ): '''simple docstring''' return {self.__need().index(_A ): i for i in self.__need()} def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.__need() lowerCamelCase__ : Any = self.__allocated_resources_table lowerCamelCase__ : List[str] = self.__available_resources() lowerCamelCase__ : Any = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 5_0 + '\n' ) while need_list: lowerCamelCase__ : Union[str, Any] = False for each_need in need_list: lowerCamelCase__ : str = True for index, need in enumerate(_A ): if need > available_resources[index]: lowerCamelCase__ : Any = False break if execution: lowerCamelCase__ : Union[str, Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCamelCase__ : int = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(_A ) # update available/freed resources stack lowerCamelCase__ : str = np.array(_A ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(_A ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def a__ (self ): '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(_A ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(_A ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(_A ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(_A ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings A_ : Optional[Any] = r"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a__ ) class a_ ( a__ ): '''simple docstring''' lowerCamelCase__ : int = "rag" lowerCamelCase__ : List[Any] = True def __init__(self, lowerCamelCase_=None, lowerCamelCase_=True, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=" / ", lowerCamelCase_=" // ", lowerCamelCase_=5, lowerCamelCase_=3_0_0, lowerCamelCase_=7_6_8, lowerCamelCase_=8, lowerCamelCase_="wiki_dpr", lowerCamelCase_="train", lowerCamelCase_="compressed", lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=0.0, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=True, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__( bos_token_id=SCREAMING_SNAKE_CASE_, pad_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, decoder_start_token_id=SCREAMING_SNAKE_CASE_, forced_eos_token_id=SCREAMING_SNAKE_CASE_, is_encoder_decoder=SCREAMING_SNAKE_CASE_, prefix=SCREAMING_SNAKE_CASE_, vocab_size=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowerCamelCase__ : Union[str, Any] = kwargs.pop('question_encoder' ) lowerCamelCase__ : str = question_encoder_config.pop('model_type' ) lowerCamelCase__ : Optional[Any] = kwargs.pop('generator' ) lowerCamelCase__ : List[Any] = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig lowerCamelCase__ : str = AutoConfig.for_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Tuple = AutoConfig.for_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Optional[Any] = reduce_loss lowerCamelCase__ : Optional[Any] = label_smoothing lowerCamelCase__ : int = exclude_bos_score lowerCamelCase__ : Tuple = do_marginalize lowerCamelCase__ : Optional[Any] = title_sep lowerCamelCase__ : Any = doc_sep lowerCamelCase__ : List[str] = n_docs lowerCamelCase__ : Optional[int] = max_combined_length lowerCamelCase__ : List[Any] = dataset lowerCamelCase__ : Union[str, Any] = dataset_split lowerCamelCase__ : str = index_name lowerCamelCase__ : List[str] = retrieval_vector_size lowerCamelCase__ : Any = retrieval_batch_size lowerCamelCase__ : Optional[Any] = passages_path lowerCamelCase__ : Dict = index_path lowerCamelCase__ : Optional[Any] = use_dummy_dataset lowerCamelCase__ : Any = output_retrieved lowerCamelCase__ : Optional[int] = do_deduplication lowerCamelCase__ : List[str] = use_cache if self.forced_eos_token_id is None: lowerCamelCase__ : int = getattr(self.generator, 'forced_eos_token_id', SCREAMING_SNAKE_CASE_ ) @classmethod def a__ (cls, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **SCREAMING_SNAKE_CASE_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : str = self.question_encoder.to_dict() lowerCamelCase__ : Union[str, Any] = self.generator.to_dict() lowerCamelCase__ : Optional[Any] = self.__class__.model_type return output
365
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable A_ : List[Any] = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
366
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging A_ : Optional[Any] = logging.get_logger(__name__) class a_ ( UpperCAmelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ["""audio_values""", """audio_mask"""] def __init__(self, lowerCamelCase_=2_0_4_8, lowerCamelCase_=1, lowerCamelCase_=[1_6, 1_6], lowerCamelCase_=1_2_8, lowerCamelCase_=4_4_1_0_0, lowerCamelCase_=8_6, lowerCamelCase_=2_0_4_8, lowerCamelCase_=0.0, **lowerCamelCase_, ): '''simple docstring''' super().__init__( feature_size=__lowercase, sampling_rate=__lowercase, padding_value=__lowercase, **__lowercase, ) lowerCamelCase__ : Optional[Any] = spectrogram_length lowerCamelCase__ : Tuple = num_channels lowerCamelCase__ : Optional[int] = patch_size lowerCamelCase__ : List[Any] = feature_size // self.patch_size[1] lowerCamelCase__ : List[Any] = n_fft lowerCamelCase__ : Any = sampling_rate // hop_length_to_sampling_rate lowerCamelCase__ : Any = sampling_rate lowerCamelCase__ : Optional[Any] = padding_value lowerCamelCase__ : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=__lowercase, min_frequency=0.0, max_frequency=2_2_0_5_0.0, sampling_rate=__lowercase, norm='slaney', mel_scale='slaney', ).T def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = spectrogram( __lowercase, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, ) lowerCamelCase__ : Dict = log_spec[:, :-1] lowerCamelCase__ : List[str] = log_spec - 20.0 lowerCamelCase__ : str = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = True, lowerCamelCase_ = None, lowerCamelCase_ = False, lowerCamelCase_ = False, **lowerCamelCase_, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' f''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCamelCase__ : Tuple = isinstance(__lowercase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCamelCase__ : List[Any] = is_batched_numpy or ( isinstance(__lowercase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__lowercase, np.ndarray ): lowerCamelCase__ : int = np.asarray(__lowercase, dtype=np.floataa ) elif isinstance(__lowercase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ : Optional[Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase__ : Dict = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], __lowercase ): lowerCamelCase__ : Dict = [np.asarray(__lowercase, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase__ : Optional[int] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase__ : List[str] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase__ : Union[str, Any] = np.array(__lowercase ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase__ : Dict = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase__ : Tuple = np.ones([len(__lowercase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase__ : List[Any] = padded_audio_features * self.padding_value for i in range(len(__lowercase ) ): lowerCamelCase__ : List[Any] = audio_features[i] lowerCamelCase__ : str = feature # return as BatchFeature if return_attention_mask: lowerCamelCase__ : List[Any] = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: lowerCamelCase__ : Tuple = {'''audio_values''': padded_audio_features} lowerCamelCase__ : Union[str, Any] = BatchFeature(data=__lowercase, tensor_type=__lowercase ) return encoded_inputs
367
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : str = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class a_ ( UpperCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = """camembert""" def __init__(self, lowerCamelCase_=3_0_5_2_2, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_="absolute", lowerCamelCase_=True, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a ) lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : int = hidden_act lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = max_position_embeddings lowerCamelCase__ : List[str] = type_vocab_size lowerCamelCase__ : str = initializer_range lowerCamelCase__ : List[str] = layer_norm_eps lowerCamelCase__ : str = position_embedding_type lowerCamelCase__ : List[str] = use_cache lowerCamelCase__ : Union[str, Any] = classifier_dropout class a_ ( UpperCamelCase__ ): '''simple docstring''' @property def a__ (self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase__ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
368
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( _UpperCamelCase ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
369
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = tempfile.mkdtemp() # fmt: off lowerCamelCase__ : Union[str, Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCamelCase__ : int = dict(zip(UpperCamelCase__, range(len(UpperCamelCase__ ) ) ) ) lowerCamelCase__ : str = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCamelCase__ : Tuple = {"unk_token": "<unk>"} lowerCamelCase__ : str = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase__ ) ) lowerCamelCase__ : List[str] = { "do_resize": True, "size": 2_0, "do_center_crop": True, "crop_size": 1_8, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCamelCase__ : List[str] = os.path.join(self.tmpdirname, UpperCamelCase__ ) with open(self.image_processor_file, 'w', encoding='utf-8' ) as fp: json.dump(UpperCamelCase__, UpperCamelCase__ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def a__ (self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )] lowerCamelCase__ : Any = [Image.fromarray(np.moveaxis(UpperCamelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.get_tokenizer() lowerCamelCase__ : List[Any] = self.get_rust_tokenizer() lowerCamelCase__ : Union[str, Any] = self.get_image_processor() lowerCamelCase__ : Tuple = CLIPProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname, use_fast=UpperCamelCase__ ) lowerCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer, UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor, UpperCamelCase__ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = CLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Union[str, Any] = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) lowerCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCamelCase__, padding_value=1.0 ) lowerCamelCase__ : Optional[Any] = CLIPProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=UpperCamelCase__, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, UpperCamelCase__ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.get_image_processor() lowerCamelCase__ : Dict = self.get_tokenizer() lowerCamelCase__ : Any = CLIPProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCamelCase__ : int = self.prepare_image_inputs() lowerCamelCase__ : Tuple = image_processor(UpperCamelCase__, return_tensors='np' ) lowerCamelCase__ : Union[str, Any] = processor(images=UpperCamelCase__, return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_image_processor() lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : List[str] = CLIPProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCamelCase__ : str = "lower newer" lowerCamelCase__ : Optional[int] = processor(text=UpperCamelCase__ ) lowerCamelCase__ : int = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.get_image_processor() lowerCamelCase__ : List[str] = self.get_tokenizer() lowerCamelCase__ : Any = CLIPProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCamelCase__ : int = "lower newer" lowerCamelCase__ : str = self.prepare_image_inputs() lowerCamelCase__ : int = processor(text=UpperCamelCase__, images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.get_image_processor() lowerCamelCase__ : Dict = self.get_tokenizer() lowerCamelCase__ : Dict = CLIPProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : Optional[Any] = processor.batch_decode(UpperCamelCase__ ) lowerCamelCase__ : int = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.get_image_processor() lowerCamelCase__ : Union[str, Any] = self.get_tokenizer() lowerCamelCase__ : List[str] = CLIPProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCamelCase__ : List[Any] = "lower newer" lowerCamelCase__ : Optional[int] = self.prepare_image_inputs() lowerCamelCase__ : str = processor(text=UpperCamelCase__, images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" A_ : str = [ (10_00, '''M'''), (9_00, '''CM'''), (5_00, '''D'''), (4_00, '''CD'''), (1_00, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Any = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} lowerCamelCase__ : int = 0 lowerCamelCase__ : str = 0 while place < len(__lowerCAmelCase ): if (place + 1 < len(__lowerCAmelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Any = [] for arabic, roman in ROMAN: ((lowerCamelCase__) , (lowerCamelCase__)) : List[Any] = divmod(__lowerCAmelCase , __lowerCAmelCase ) result.append(roman * factor ) if number == 0: break return "".join(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : int = 0 lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Optional[Any] = {} def a__ (self, lowerCamelCase_ ): '''simple docstring''' if vertex not in self.adjacency: lowerCamelCase__ : Optional[Any] = {} self.num_vertices += 1 def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' self.add_vertex(lowerCamelCase_ ) self.add_vertex(lowerCamelCase_ ) if head == tail: return lowerCamelCase__ : List[Any] = weight lowerCamelCase__ : Optional[int] = weight def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.get_edges() for edge in edges: lowerCamelCase__ : Tuple = edge edges.remove((tail, head, weight) ) for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[Any] = list(edges[i] ) edges.sort(key=lambda lowerCamelCase_ : e[2] ) for i in range(len(lowerCamelCase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase__ : Optional[int] = edges[i][2] + 1 for edge in edges: lowerCamelCase__ : int = edge lowerCamelCase__ : Any = weight lowerCamelCase__ : Any = weight def __str__(self ): '''simple docstring''' lowerCamelCase__ : str = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase__ : List[Any] = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip('\n' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ (self ): '''simple docstring''' return self.adjacency.keys() @staticmethod def a__ (lowerCamelCase_=None, lowerCamelCase_=None ): '''simple docstring''' lowerCamelCase__ : List[Any] = Graph() if vertices is None: lowerCamelCase__ : Any = [] if edges is None: lowerCamelCase__ : Any = [] for vertex in vertices: g.add_vertex(lowerCamelCase_ ) for edge in edges: g.add_edge(*lowerCamelCase_ ) return g class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : int = {} lowerCamelCase__ : List[Any] = {} def __len__(self ): '''simple docstring''' return len(self.parent ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if item in self.parent: return self.find(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = item lowerCamelCase__ : Union[str, Any] = 0 return item def a__ (self, lowerCamelCase_ ): '''simple docstring''' if item not in self.parent: return self.make_set(lowerCamelCase_ ) if item != self.parent[item]: lowerCamelCase__ : int = self.find(self.parent[item] ) return self.parent[item] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.find(lowerCamelCase_ ) lowerCamelCase__ : Dict = self.find(lowerCamelCase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase__ : str = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase__ : Union[str, Any] = roota return roota return None @staticmethod def a__ (lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = graph.num_vertices lowerCamelCase__ : Optional[Any] = Graph.UnionFind() lowerCamelCase__ : Optional[Any] = [] while num_components > 1: lowerCamelCase__ : Optional[int] = {} for vertex in graph.get_vertices(): lowerCamelCase__ : Union[str, Any] = -1 lowerCamelCase__ : Tuple = graph.get_edges() for edge in edges: lowerCamelCase__ : Optional[Any] = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase__ : List[str] = edge lowerCamelCase__ : List[str] = union_find.find(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = union_find.find(lowerCamelCase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase__ : Optional[int] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase__ : Union[str, Any] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase__ : Any = cheap_edge[vertex] if union_find.find(lowerCamelCase_ ) != union_find.find(lowerCamelCase_ ): union_find.union(lowerCamelCase_, lowerCamelCase_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase__ : Union[str, Any] = num_components - 1 lowerCamelCase__ : Union[str, Any] = Graph.build(edges=lowerCamelCase_ ) return mst
350
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
0
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=2, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=3_6, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=6, lowerCamelCase_=6, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=None, lowerCamelCase_=1_0_0_0, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Optional[int] = batch_size lowerCamelCase__ : Dict = num_channels lowerCamelCase__ : int = image_size lowerCamelCase__ : Dict = patch_size lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : Any = use_input_mask lowerCamelCase__ : Dict = use_token_type_ids lowerCamelCase__ : List[str] = use_labels lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : List[Any] = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : int = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = type_vocab_size lowerCamelCase__ : Optional[int] = type_sequence_label_size lowerCamelCase__ : str = initializer_range lowerCamelCase__ : str = coordinate_size lowerCamelCase__ : Optional[Any] = shape_size lowerCamelCase__ : Union[str, Any] = num_labels lowerCamelCase__ : Optional[Any] = num_choices lowerCamelCase__ : Dict = scope lowerCamelCase__ : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCamelCase__ : List[Any] = text_seq_length lowerCamelCase__ : Optional[Any] = (image_size // patch_size) ** 2 + 1 lowerCamelCase__ : Optional[int] = self.text_seq_length + self.image_seq_length def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox ) lowerCamelCase__ : int = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase__ : List[str] = bbox[i, j, 3] lowerCamelCase__ : List[Any] = bbox[i, j, 1] lowerCamelCase__ : int = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase__ : Tuple = bbox[i, j, 2] lowerCamelCase__ : Optional[int] = bbox[i, j, 0] lowerCamelCase__ : Tuple = tmp_coordinate lowerCamelCase__ : Tuple = tf.constant(lowerCamelCase_ ) lowerCamelCase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : int = None if self.use_input_mask: lowerCamelCase__ : List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCamelCase__ : Dict = None if self.use_token_type_ids: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size ) lowerCamelCase__ : int = None lowerCamelCase__ : Optional[int] = None if self.use_labels: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels ) lowerCamelCase__ : Dict = LayoutLMvaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFLayoutLMvaModel(config=lowerCamelCase_ ) # text + image lowerCamelCase__ : Dict = model(lowerCamelCase_, pixel_values=lowerCamelCase_, training=lowerCamelCase_ ) lowerCamelCase__ : Any = model( lowerCamelCase_, bbox=lowerCamelCase_, pixel_values=lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, training=lowerCamelCase_, ) lowerCamelCase__ : int = model(lowerCamelCase_, bbox=lowerCamelCase_, pixel_values=lowerCamelCase_, training=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCamelCase__ : str = model(lowerCamelCase_, training=lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCamelCase__ : Tuple = model({'pixel_values': pixel_values}, training=lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.num_labels lowerCamelCase__ : Union[str, Any] = TFLayoutLMvaForSequenceClassification(config=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = model( lowerCamelCase_, bbox=lowerCamelCase_, pixel_values=lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, training=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : Optional[int] = TFLayoutLMvaForTokenClassification(config=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model( lowerCamelCase_, bbox=lowerCamelCase_, pixel_values=lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_, training=lowerCamelCase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = 2 lowerCamelCase__ : List[Any] = TFLayoutLMvaForQuestionAnswering(config=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model( lowerCamelCase_, bbox=lowerCamelCase_, pixel_values=lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, training=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.prepare_config_and_inputs() (lowerCamelCase__) : Optional[Any] = config_and_inputs lowerCamelCase__ : Dict = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase__ : Optional[Any] = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : str = False lowerCamelCase__ : Any = False def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return True def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Tuple = copy.deepcopy(lowerCamelCase_ ) if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : List[str] = { k: tf.tile(tf.expand_dims(lowerCamelCase_, 1 ), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCamelCase_, tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : Dict = tf.ones(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : str = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) lowerCamelCase__ : Any = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : Any = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(lowerCamelCase_ ): lowerCamelCase__ : Dict = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=tf.intaa ) return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = TFLayoutLMvaModelTester(self ) lowerCamelCase__ : Optional[int] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Any = model_class(lowerCamelCase_ ) if getattr(lowerCamelCase_, 'hf_compute_loss', lowerCamelCase_ ): # The number of elements in the loss should be the same as the number of elements in the label lowerCamelCase__ : Dict = self._prepare_for_class(inputs_dict.copy(), lowerCamelCase_, return_labels=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=lowerCamelCase_ )[0] ] lowerCamelCase__ : Union[str, Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs lowerCamelCase__ : int = self._prepare_for_class(inputs_dict.copy(), lowerCamelCase_, return_labels=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = prepared_for_class.pop('input_ids' ) lowerCamelCase__ : str = model(lowerCamelCase_, **lowerCamelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions lowerCamelCase__ : Union[str, Any] = self._prepare_for_class(inputs_dict.copy(), lowerCamelCase_, return_labels=lowerCamelCase_ ) lowerCamelCase__ : Dict = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: lowerCamelCase__ : List[str] = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: lowerCamelCase__ : int = -1_0_0 lowerCamelCase__ : str = tf.convert_to_tensor(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, **lowerCamelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict lowerCamelCase__ : Dict = self._prepare_for_class(inputs_dict.copy(), lowerCamelCase_, return_labels=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple lowerCamelCase__ : Optional[Any] = self._prepare_for_class(inputs_dict.copy(), lowerCamelCase_, return_labels=lowerCamelCase_ ) # Get keys that were added with the _prepare_for_class function lowerCamelCase__ : Any = prepared_for_class.keys() - inputs_dict.keys() lowerCamelCase__ : Union[str, Any] = inspect.signature(model.call ).parameters lowerCamelCase__ : str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple lowerCamelCase__ : Optional[Any] = {0: 'input_ids'} for label_key in label_keys: lowerCamelCase__ : Optional[Any] = signature_names.index(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = label_key lowerCamelCase__ : Dict = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple lowerCamelCase__ : int = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: lowerCamelCase__ : str = prepared_for_class[value] lowerCamelCase__ : str = tuple(lowerCamelCase_ ) # Send to model lowerCamelCase__ : Tuple = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def a__ (self ): '''simple docstring''' ( lowerCamelCase__ ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' ( lowerCamelCase__ ) : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Optional[int] = type self.model_tester.create_and_check_model(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' ( lowerCamelCase__ ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' ( lowerCamelCase__ ) : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' ( lowerCamelCase__ ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Union[str, Any] = TFLayoutLMvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): """simple docstring""" lowerCamelCase__ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase_ ) if is_vision_available() else None @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) lowerCamelCase__ : str = self.default_image_processor lowerCamelCase__ : Tuple = prepare_img() lowerCamelCase__ : Dict = image_processor(images=lowerCamelCase_, return_tensors='tf' ).pixel_values lowerCamelCase__ : List[str] = tf.constant([[1, 2]] ) lowerCamelCase__ : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ), axis=0 ) # forward pass lowerCamelCase__ : List[str] = model(input_ids=lowerCamelCase_, bbox=lowerCamelCase_, pixel_values=lowerCamelCase_, training=lowerCamelCase_ ) # verify the logits lowerCamelCase__ : Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape, lowerCamelCase_ ) lowerCamelCase__ : List[Any] = tf.constant( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], lowerCamelCase_, atol=1e-4 ) )
351
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if exponent == 1: return base if exponent % 2 == 0: lowerCamelCase__ : Any = _modexpt(_lowerCamelCase , exponent // 2 , _lowerCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_lowerCamelCase , exponent - 1 , _lowerCamelCase )) % modulo_value def lowerCamelCase_ ( _lowerCamelCase = 1777 , _lowerCamelCase = 1855 , _lowerCamelCase = 8 ): lowerCamelCase__ : Dict = base for _ in range(1 , _lowerCamelCase ): lowerCamelCase__ : List[str] = _modexpt(_lowerCamelCase , _lowerCamelCase , 10**digits ) return result if __name__ == "__main__": print(f"{solution() = }")
352
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): """simple docstring""" if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence lowerCamelCase__ : Dict = gray_code_sequence_string(_lowerCamelCase ) # # convert them to integers for i in range(len(_lowerCamelCase ) ): lowerCamelCase__ : Union[str, Any] = int(sequence[i] , 2 ) return sequence def lowerCamelCase_ ( _lowerCamelCase ): """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowerCamelCase__ : int = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowerCamelCase__ : str = gray_code_sequence_string(bit_count - 1 ) lowerCamelCase__ : Tuple = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowerCamelCase__ : Tuple = '0' + smaller_sequence[i] sequence.append(_lowerCamelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowerCamelCase__ : int = '1' + smaller_sequence[i] sequence.append(_lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Tuple = logging.get_logger(__name__) A_ : Optional[Any] = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = 'mvp' lowerCamelCase__ : List[Any] = ['past_key_values'] lowerCamelCase__ : Tuple = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self, lowerCamelCase_=5_0_2_6_7, lowerCamelCase_=1_0_2_4, lowerCamelCase_=1_2, lowerCamelCase_=4_0_9_6, lowerCamelCase_=1_6, lowerCamelCase_=1_2, lowerCamelCase_=4_0_9_6, lowerCamelCase_=1_6, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_="gelu", lowerCamelCase_=1_0_2_4, lowerCamelCase_=0.1, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=0.02, lowerCamelCase_=0.0, lowerCamelCase_=False, lowerCamelCase_=True, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_=True, lowerCamelCase_=2, lowerCamelCase_=2, lowerCamelCase_=False, lowerCamelCase_=1_0_0, lowerCamelCase_=8_0_0, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : Tuple = d_model lowerCamelCase__ : Tuple = encoder_ffn_dim lowerCamelCase__ : Dict = encoder_layers lowerCamelCase__ : List[str] = encoder_attention_heads lowerCamelCase__ : Optional[Any] = decoder_ffn_dim lowerCamelCase__ : List[str] = decoder_layers lowerCamelCase__ : int = decoder_attention_heads lowerCamelCase__ : Tuple = dropout lowerCamelCase__ : Optional[Any] = attention_dropout lowerCamelCase__ : Optional[Any] = activation_dropout lowerCamelCase__ : List[Any] = activation_function lowerCamelCase__ : Any = init_std lowerCamelCase__ : Union[str, Any] = encoder_layerdrop lowerCamelCase__ : List[Any] = decoder_layerdrop lowerCamelCase__ : List[Any] = classifier_dropout lowerCamelCase__ : Optional[Any] = use_cache lowerCamelCase__ : List[Any] = encoder_layers lowerCamelCase__ : int = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase__ : Optional[int] = use_prompt lowerCamelCase__ : int = prompt_length lowerCamelCase__ : int = prompt_mid_dim super().__init__( pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, is_encoder_decoder=lowerCamelCase_, decoder_start_token_id=lowerCamelCase_, forced_eos_token_id=lowerCamelCase_, **lowerCamelCase_, ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated', lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' )
354
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
0
"""simple docstring""" import functools def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # Validation if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not all(isinstance(_lowerCamelCase , _lowerCamelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(_lowerCamelCase ) != 3 or not all(isinstance(_lowerCamelCase , _lowerCamelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(_lowerCamelCase ) == 0: return 0 if min(_lowerCamelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(_lowerCamelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) lowerCamelCase__ : Dict = set(_lowerCamelCase ) @functools.cache def dynamic_programming(_lowerCamelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
355
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller A_ : Any = 3 def lowerCamelCase_ ( _lowerCamelCase ): print('Generating primitive root of p' ) while True: lowerCamelCase__ : str = random.randrange(3 , _lowerCamelCase ) if pow(_lowerCamelCase , 2 , _lowerCamelCase ) == 1: continue if pow(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) == 1: continue return g def lowerCamelCase_ ( _lowerCamelCase ): print('Generating prime p...' ) lowerCamelCase__ : Tuple = rabin_miller.generate_large_prime(_lowerCamelCase ) # select large prime number. lowerCamelCase__ : Union[str, Any] = primitive_root(_lowerCamelCase ) # one primitive root on modulo p. lowerCamelCase__ : Dict = random.randrange(3 , _lowerCamelCase ) # private_key -> have to be greater than 2 for safety. lowerCamelCase__ : Optional[Any] = cryptomath.find_mod_inverse(pow(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) lowerCamelCase__ : int = (key_size, e_a, e_a, p) lowerCamelCase__ : List[Any] = (key_size, d) return public_key, private_key def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print('\nWARNING:' ) print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' 'Use a different name or delete these files and re-run this program.' ) sys.exit() lowerCamelCase__ : int = generate_key(_lowerCamelCase ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' , 'w' ) as fo: fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' , 'w' ) as fo: fo.write(f'''{private_key[0]},{private_key[1]}''' ) def lowerCamelCase_ ( ): print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
356
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
0
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = ConsistencyModelPipeline lowerCamelCase__ : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCamelCase__ : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowerCamelCase__ : Tuple = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet', ) return unet @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test', subfolder='test_unet_class_cond', ) return unet def a__ (self, lowerCamelCase_=False ): '''simple docstring''' if class_cond: lowerCamelCase__ : Any = self.dummy_cond_unet else: lowerCamelCase__ : Optional[Any] = self.dummy_uncond_unet # Default to CM multistep sampler lowerCamelCase__ : Dict = CMStochasticIterativeScheduler( num_train_timesteps=4_0, sigma_min=0.002, sigma_max=80.0, ) lowerCamelCase__ : Optional[int] = { 'unet': unet, 'scheduler': scheduler, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : int = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [2_2, 0], 'generator': generator, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : Dict = self.get_dummy_components() lowerCamelCase__ : List[str] = ConsistencyModelPipeline(**lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Tuple = self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : str = pipe(**lowerCamelCase_ ).images assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase__ : str = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : Any = self.get_dummy_components(class_cond=lowerCamelCase_ ) lowerCamelCase__ : Dict = ConsistencyModelPipeline(**lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = pipe(**lowerCamelCase_ ).images assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase__ : str = image[0, -3:, -3:, -1] lowerCamelCase__ : List[Any] = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : Union[str, Any] = self.get_dummy_components() lowerCamelCase__ : int = ConsistencyModelPipeline(**lowerCamelCase_ ) lowerCamelCase__ : List[Any] = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : Optional[Any] = pipe(**lowerCamelCase_ ).images assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase__ : Optional[int] = image[0, -3:, -3:, -1] lowerCamelCase__ : int = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : Optional[int] = self.get_dummy_components(class_cond=lowerCamelCase_ ) lowerCamelCase__ : Tuple = ConsistencyModelPipeline(**lowerCamelCase_ ) lowerCamelCase__ : str = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Dict = self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 1 lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : int = 0 lowerCamelCase__ : List[str] = pipe(**lowerCamelCase_ ).images assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCamelCase__ : Any = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self, lowerCamelCase_=0, lowerCamelCase_=False, lowerCamelCase_="cpu", lowerCamelCase_=torch.floataa, lowerCamelCase_=(1, 3, 6_4, 6_4) ): '''simple docstring''' lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Tuple = { 'num_inference_steps': None, 'timesteps': [2_2, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: lowerCamelCase__ : Tuple = self.get_fixed_latents(seed=lowerCamelCase_, device=lowerCamelCase_, dtype=lowerCamelCase_, shape=lowerCamelCase_ ) lowerCamelCase__ : List[str] = latents return inputs def a__ (self, lowerCamelCase_=0, lowerCamelCase_="cpu", lowerCamelCase_=torch.floataa, lowerCamelCase_=(1, 3, 6_4, 6_4) ): '''simple docstring''' if type(lowerCamelCase_ ) == str: lowerCamelCase__ : int = torch.device(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=lowerCamelCase_, dtype=lowerCamelCase_ ) return latents def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2' ) lowerCamelCase__ : Tuple = CMStochasticIterativeScheduler( num_train_timesteps=4_0, sigma_min=0.002, sigma_max=80.0, ) lowerCamelCase__ : int = ConsistencyModelPipeline(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) pipe.to(torch_device=lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = self.get_inputs() lowerCamelCase__ : str = pipe(**lowerCamelCase_ ).images assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : str = image[0, -3:, -3:, -1] lowerCamelCase__ : Tuple = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2' ) lowerCamelCase__ : int = CMStochasticIterativeScheduler( num_train_timesteps=4_0, sigma_min=0.002, sigma_max=80.0, ) lowerCamelCase__ : List[Any] = ConsistencyModelPipeline(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) pipe.to(torch_device=lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = self.get_inputs() lowerCamelCase__ : Union[str, Any] = 1 lowerCamelCase__ : Any = None lowerCamelCase__ : Any = pipe(**lowerCamelCase_ ).images assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : Any = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2' ) lowerCamelCase__ : Tuple = CMStochasticIterativeScheduler( num_train_timesteps=4_0, sigma_min=0.002, sigma_max=80.0, ) lowerCamelCase__ : Dict = ConsistencyModelPipeline(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) pipe.to(torch_device=lowerCamelCase_, torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Dict = self.get_inputs(get_fixed_latents=lowerCamelCase_, device=lowerCamelCase_ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase_, enable_math=lowerCamelCase_, enable_mem_efficient=lowerCamelCase_ ): lowerCamelCase__ : List[Any] = pipe(**lowerCamelCase_ ).images assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : str = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = UNetaDModel.from_pretrained('diffusers/consistency_models', subfolder='diffusers_cd_imagenet64_l2' ) lowerCamelCase__ : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=4_0, sigma_min=0.002, sigma_max=80.0, ) lowerCamelCase__ : int = ConsistencyModelPipeline(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) pipe.to(torch_device=lowerCamelCase_, torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = self.get_inputs(get_fixed_latents=lowerCamelCase_, device=lowerCamelCase_ ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : str = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase_, enable_math=lowerCamelCase_, enable_mem_efficient=lowerCamelCase_ ): lowerCamelCase__ : List[str] = pipe(**lowerCamelCase_ ).images assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCamelCase__ : List[str] = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
357
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
0
"""simple docstring""" from typing import Any class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = data lowerCamelCase__ : Optional[Any] = None def __repr__(self ): '''simple docstring''' return f'''Node({self.data})''' class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = None def __iter__(self ): '''simple docstring''' lowerCamelCase__ : str = self.head while node: yield node.data lowerCamelCase__ : List[Any] = node.next def __len__(self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__(self ): '''simple docstring''' return "->".join([str(lowerCamelCase_ ) for item in self] ) def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCamelCase__ : Union[str, Any] = self.head for _ in range(lowerCamelCase_ ): lowerCamelCase__ : Tuple = current.next lowerCamelCase__ : str = data def a__ (self, lowerCamelCase_ ): '''simple docstring''' self.insert_nth(len(self ), lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' self.insert_nth(0, lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCamelCase__ : Optional[Any] = Node(lowerCamelCase_ ) if self.head is None: lowerCamelCase__ : List[str] = new_node elif index == 0: lowerCamelCase__ : int = self.head # link new_node to head lowerCamelCase__ : List[Any] = new_node else: lowerCamelCase__ : Optional[int] = self.head for _ in range(index - 1 ): lowerCamelCase__ : Union[str, Any] = temp.next lowerCamelCase__ : List[str] = temp.next lowerCamelCase__ : str = new_node def a__ (self ): # print every node data '''simple docstring''' print(self ) def a__ (self ): '''simple docstring''' return self.delete_nth(0 ) def a__ (self ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def a__ (self, lowerCamelCase_ = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCamelCase__ : str = self.head # default first node if index == 0: lowerCamelCase__ : Any = self.head.next else: lowerCamelCase__ : str = self.head for _ in range(index - 1 ): lowerCamelCase__ : int = temp.next lowerCamelCase__ : List[Any] = temp.next lowerCamelCase__ : int = temp.next.next return delete_node.data def a__ (self ): '''simple docstring''' return self.head is None def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = None lowerCamelCase__ : Union[str, Any] = self.head while current: # Store the current node's next node. lowerCamelCase__ : int = current.next # Make the current node's next point backwards lowerCamelCase__ : Dict = prev # Make the previous node be the current node lowerCamelCase__ : Optional[Any] = current # Make the current node the next node (to progress iteration) lowerCamelCase__ : Dict = next_node # Return prev in order to put the head at the end lowerCamelCase__ : Optional[Any] = prev def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = LinkedList() assert linked_list.is_empty() is True assert str(_lowerCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowerCamelCase ) == i linked_list.insert_nth(_lowerCamelCase , i + 1 ) assert str(_lowerCamelCase ) == "->".join(str(_lowerCamelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowerCamelCase ) == "->".join(str(_lowerCamelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowerCamelCase ) == 9 assert str(_lowerCamelCase ) == "->".join(str(_lowerCamelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCamelCase__ : Union[str, Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowerCamelCase ) == "->".join(str(_lowerCamelCase ) for i in range(-8 , 1 ) ) def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[int] = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.55_555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCamelCase__ : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(_lowerCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowerCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCamelCase__ : Optional[int] = linked_list.delete_head() assert result == -9 assert ( str(_lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCamelCase__ : List[Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(_lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCamelCase__ : str = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_lowerCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowerCamelCase ) assert ( str(_lowerCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowerCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowerCamelCase_ ( ): from doctest import testmod testmod() lowerCamelCase__ : int = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_lowerCamelCase ) print('\nReading/changing Node data using indexing:' ) print(f'''Element at Position 1: {linked_list[1]}''' ) lowerCamelCase__ : Optional[Any] = input('Enter New Value: ' ).strip() print('New list:' ) print(_lowerCamelCase ) print(f'''length of linked_list is : {len(_lowerCamelCase )}''' ) if __name__ == "__main__": main()
358
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
0
"""simple docstring""" A_ : Optional[Any] = 9.80665 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = g ): if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
359
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
0
def lowerCamelCase_ ( _lowerCamelCase ): if not numbers: return 0 if not isinstance(_lowerCamelCase , (list, tuple) ) or not all( isinstance(_lowerCamelCase , _lowerCamelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) lowerCamelCase__ : str = numbers[0] for i in range(1 , len(_lowerCamelCase ) ): # update the maximum and minimum subarray products lowerCamelCase__ : List[Any] = numbers[i] if number < 0: lowerCamelCase__ : Dict = min_till_now, max_till_now lowerCamelCase__ : Tuple = max(_lowerCamelCase , max_till_now * number ) lowerCamelCase__ : int = min(_lowerCamelCase , min_till_now * number ) # update the maximum product found till now lowerCamelCase__ : Dict = max(_lowerCamelCase , _lowerCamelCase ) return max_prod
360
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class a_ ( unittest.TestCase ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=7, lowerCamelCase_=3, lowerCamelCase_=3_0, lowerCamelCase_=4_0_0, lowerCamelCase_=True, lowerCamelCase_=None, lowerCamelCase_=True, lowerCamelCase_=[0.5, 0.5, 0.5], lowerCamelCase_=[0.5, 0.5, 0.5], lowerCamelCase_=True, lowerCamelCase_=1 / 2_5_5, lowerCamelCase_=True, ): '''simple docstring''' lowerCamelCase__ : Any = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} lowerCamelCase__ : Dict = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Any = num_channels lowerCamelCase__ : Union[str, Any] = min_resolution lowerCamelCase__ : str = max_resolution lowerCamelCase__ : int = do_resize lowerCamelCase__ : Optional[int] = size lowerCamelCase__ : int = do_normalize lowerCamelCase__ : Optional[Any] = image_mean lowerCamelCase__ : Any = image_std lowerCamelCase__ : Dict = do_rescale lowerCamelCase__ : Any = rescale_factor lowerCamelCase__ : Optional[Any] = do_pad def a__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def a__ (self, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' if not batched: lowerCamelCase__ : int = image_inputs[0] if isinstance(lowerCamelCase_, Image.Image ): lowerCamelCase__ : Union[str, Any] = image.size else: lowerCamelCase__ : List[str] = image.shape[1], image.shape[2] if w < h: lowerCamelCase__ : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) lowerCamelCase__ : Any = self.size['shortest_edge'] elif w > h: lowerCamelCase__ : Optional[Any] = self.size['shortest_edge'] lowerCamelCase__ : List[str] = int(self.size['shortest_edge'] * w / h ) else: lowerCamelCase__ : Optional[Any] = self.size['shortest_edge'] lowerCamelCase__ : int = self.size['shortest_edge'] else: lowerCamelCase__ : Optional[int] = [] for image in image_inputs: lowerCamelCase__ : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase__ : Union[str, Any] = max(lowerCamelCase_, key=lambda lowerCamelCase_ : item[0] )[0] lowerCamelCase__ : Dict = max(lowerCamelCase_, key=lambda lowerCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = DeformableDetrImageProcessor if is_vision_available() else None def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = DeformableDetrImageProcessingTester(self ) @property def a__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_, 'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'image_std' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'do_rescale' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'do_pad' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'size' ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} ) self.assertEqual(image_processor.do_pad, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict, size=4_2, max_size=8_4, pad_and_return_pixel_mask=lowerCamelCase_ ) self.assertEqual(image_processor.size, {'shortest_edge': 4_2, 'longest_edge': 8_4} ) self.assertEqual(image_processor.do_pad, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, Image.Image ) # Test not batched input lowerCamelCase__ : Optional[int] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values lowerCamelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCamelCase__ : Dict = self.image_processor_tester.get_expected_values(lowerCamelCase_, batched=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = image_processing(lowerCamelCase_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_, numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, np.ndarray ) # Test not batched input lowerCamelCase__ : Optional[int] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values lowerCamelCase__ : Dict = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCamelCase__ : Union[str, Any] = image_processing(lowerCamelCase_, return_tensors='pt' ).pixel_values lowerCamelCase__ : int = self.image_processor_tester.get_expected_values(lowerCamelCase_, batched=lowerCamelCase_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_, torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, torch.Tensor ) # Test not batched input lowerCamelCase__ : str = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values lowerCamelCase__ : Tuple = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCamelCase__ : Optional[int] = image_processing(lowerCamelCase_, return_tensors='pt' ).pixel_values lowerCamelCase__ : Any = self.image_processor_tester.get_expected_values(lowerCamelCase_, batched=lowerCamelCase_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f: lowerCamelCase__ : Tuple = json.loads(f.read() ) lowerCamelCase__ : Dict = {'image_id': 3_9_7_6_9, 'annotations': target} # encode them lowerCamelCase__ : Any = DeformableDetrImageProcessor() lowerCamelCase__ : List[Any] = image_processing(images=lowerCamelCase_, annotations=lowerCamelCase_, return_tensors='pt' ) # verify pixel values lowerCamelCase__ : Tuple = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape, lowerCamelCase_ ) lowerCamelCase__ : str = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], lowerCamelCase_, atol=1e-4 ) ) # verify area lowerCamelCase__ : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], lowerCamelCase_ ) ) # verify boxes lowerCamelCase__ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], lowerCamelCase_, atol=1e-3 ) ) # verify image_id lowerCamelCase__ : Dict = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], lowerCamelCase_ ) ) # verify is_crowd lowerCamelCase__ : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], lowerCamelCase_ ) ) # verify class_labels lowerCamelCase__ : Any = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], lowerCamelCase_ ) ) # verify orig_size lowerCamelCase__ : Optional[int] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], lowerCamelCase_ ) ) # verify size lowerCamelCase__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], lowerCamelCase_ ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f: lowerCamelCase__ : Any = json.loads(f.read() ) lowerCamelCase__ : List[str] = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} lowerCamelCase__ : Any = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowerCamelCase__ : Union[str, Any] = DeformableDetrImageProcessor(format='coco_panoptic' ) lowerCamelCase__ : str = image_processing(images=lowerCamelCase_, annotations=lowerCamelCase_, masks_path=lowerCamelCase_, return_tensors='pt' ) # verify pixel values lowerCamelCase__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], lowerCamelCase_, atol=1e-4 ) ) # verify area lowerCamelCase__ : Dict = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], lowerCamelCase_ ) ) # verify boxes lowerCamelCase__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], lowerCamelCase_, atol=1e-3 ) ) # verify image_id lowerCamelCase__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], lowerCamelCase_ ) ) # verify is_crowd lowerCamelCase__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], lowerCamelCase_ ) ) # verify class_labels lowerCamelCase__ : str = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], lowerCamelCase_ ) ) # verify masks lowerCamelCase__ : int = 8_2_2_8_7_3 self.assertEqual(encoding['labels'][0]['masks'].sum().item(), lowerCamelCase_ ) # verify orig_size lowerCamelCase__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], lowerCamelCase_ ) ) # verify size lowerCamelCase__ : str = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], lowerCamelCase_ ) )
361
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'megatron-bert' def __init__(self, lowerCamelCase_=2_9_0_5_6, lowerCamelCase_=1_0_2_4, lowerCamelCase_=2_4, lowerCamelCase_=1_6, lowerCamelCase_=4_0_9_6, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=0, lowerCamelCase_="absolute", lowerCamelCase_=True, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : Optional[int] = hidden_size lowerCamelCase__ : Union[str, Any] = num_hidden_layers lowerCamelCase__ : Union[str, Any] = num_attention_heads lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : Any = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : Tuple = type_vocab_size lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : List[str] = layer_norm_eps lowerCamelCase__ : Union[str, Any] = position_embedding_type lowerCamelCase__ : List[Any] = use_cache
362
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : List[str] = logging.get_logger(__name__) A_ : List[str] = "▁" A_ : Tuple = {"vocab_file": "sentencepiece.bpe.model"} A_ : Optional[int] = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } A_ : List[Any] = { "xlm-roberta-base": 5_12, "xlm-roberta-large": 5_12, "xlm-roberta-large-finetuned-conll02-dutch": 5_12, "xlm-roberta-large-finetuned-conll02-spanish": 5_12, "xlm-roberta-large-finetuned-conll03-english": 5_12, "xlm-roberta-large-finetuned-conll03-german": 5_12, } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Any = ['input_ids', 'attention_mask'] def __init__(self, lowerCamelCase_, lowerCamelCase_="<s>", lowerCamelCase_="</s>", lowerCamelCase_="</s>", lowerCamelCase_="<s>", lowerCamelCase_="<unk>", lowerCamelCase_="<pad>", lowerCamelCase_="<mask>", lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = AddedToken(lowerCamelCase_, lstrip=lowerCamelCase_, rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_, lowerCamelCase_ ) else mask_token lowerCamelCase__ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase_, eos_token=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, cls_token=lowerCamelCase_, pad_token=lowerCamelCase_, mask_token=lowerCamelCase_, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase__ : Optional[int] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase__ : Optional[Any] = 1 lowerCamelCase__ : Tuple = len(self.sp_model ) + self.fairseq_offset lowerCamelCase__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ): '''simple docstring''' lowerCamelCase__ : int = self.__dict__.copy() lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): lowerCamelCase__ : List[str] = {} lowerCamelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] lowerCamelCase__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_, token_ids_a=lowerCamelCase_, already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : List[str] = [self.sep_token_id] lowerCamelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__ (self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase_, out_type=lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__ : Tuple = self.sp_model.PieceToId(lowerCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__ (self, lowerCamelCase_ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = ''.join(lowerCamelCase_ ).replace(lowerCamelCase_, ' ' ).strip() return out_string def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : Optional[Any] = os.path.join( lowerCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_, 'wb' ) as fi: lowerCamelCase__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,)
363
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
364
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
0
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo A_ : List[Any] = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" A_ : List[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" A_ : Dict = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def a__ (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), id='references' ), } ), ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1, lowerCamelCase_ = 4, ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCamelCase_, hypotheses=lowerCamelCase_, min_len=lowerCamelCase_, max_len=lowerCamelCase_ ) }
365
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
0
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) A_ : Optional[Any] = logging.getLogger(__name__) def lowerCamelCase_ ( ): lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_lowerCamelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_lowerCamelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_lowerCamelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_lowerCamelCase , default='data/dump' , help='The dump file prefix.' ) lowerCamelCase__ : Dict = parser.parse_args() logger.info(f'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": lowerCamelCase__ : Any = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase__ : Any = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCamelCase__ : str = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCamelCase__ : List[str] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase__ : Any = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCamelCase__ : Union[str, Any] = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCamelCase__ : str = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase__ : Optional[Any] = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCamelCase__ : Tuple = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(f'''Loading text from {args.file_path}''' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCamelCase__ : str = fp.readlines() logger.info('Start encoding' ) logger.info(f'''{len(_lowerCamelCase )} examples to process.''' ) lowerCamelCase__ : int = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Union[str, Any] = 1_0000 lowerCamelCase__ : Tuple = time.time() for text in data: lowerCamelCase__ : Optional[Any] = f'''{bos} {text.strip()} {sep}''' lowerCamelCase__ : Union[str, Any] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) rslt.append(_lowerCamelCase ) iter += 1 if iter % interval == 0: lowerCamelCase__ : Union[str, Any] = time.time() logger.info(f'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) lowerCamelCase__ : List[Any] = time.time() logger.info('Finished binarization' ) logger.info(f'''{len(_lowerCamelCase )} examples processed.''' ) lowerCamelCase__ : Any = f'''{args.dump_file}.{args.tokenizer_name}.pickle''' lowerCamelCase__ : Dict = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCamelCase__ : List[Any] = [np.uintaa(_lowerCamelCase ) for d in rslt] else: lowerCamelCase__ : str = [np.intaa(_lowerCamelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'''Dump to {dp_file}''' ) with open(_lowerCamelCase , 'wb' ) as handle: pickle.dump(rslt_ , _lowerCamelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
366
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" from heapq import heappop, heappush import numpy as np def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowerCamelCase__ : Union[str, Any] = grid.shape lowerCamelCase__ : List[str] = [-1, 1, 0, 0] lowerCamelCase__ : Optional[Any] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowerCamelCase__ : Any = [(0, source)], set() lowerCamelCase__ : int = np.full((rows, cols) , np.inf ) lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : List[str] = np.empty((rows, cols) , dtype=_lowerCamelCase ) lowerCamelCase__ : List[str] = None while queue: (lowerCamelCase__) : Union[str, Any] = heappop(_lowerCamelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowerCamelCase__ : Optional[int] = [] while (x, y) != source: path.append((x, y) ) lowerCamelCase__ : Any = predecessors[x, y] path.append(_lowerCamelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_lowerCamelCase ) ): lowerCamelCase__ : Tuple = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowerCamelCase__ : Optional[int] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_lowerCamelCase , (dist + 1, (nx, ny)) ) lowerCamelCase__ : Optional[Any] = dist + 1 lowerCamelCase__ : List[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) A_ : Optional[int] = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 10_00, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } A_ : str = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 10_00, "block_out_channels": [1_92, 1_92 * 2, 1_92 * 3, 1_92 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } A_ : Dict = { "sample_size": 2_56, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [2_56, 2_56, 2_56 * 2, 2_56 * 2, 2_56 * 4, 2_56 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } A_ : List[str] = { "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } A_ : Union[str, Any] = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } A_ : Union[str, Any] = { "num_train_timesteps": 1_51, "sigma_min": 0.002, "sigma_max": 80.0, } def lowerCamelCase_ ( _lowerCamelCase ): if isinstance(_lowerCamelCase , _lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): lowerCamelCase__ : int = checkpoint[f'''{old_prefix}.in_layers.0.weight'''] lowerCamelCase__ : List[Any] = checkpoint[f'''{old_prefix}.in_layers.0.bias'''] lowerCamelCase__ : int = checkpoint[f'''{old_prefix}.in_layers.2.weight'''] lowerCamelCase__ : Optional[Any] = checkpoint[f'''{old_prefix}.in_layers.2.bias'''] lowerCamelCase__ : List[str] = checkpoint[f'''{old_prefix}.emb_layers.1.weight'''] lowerCamelCase__ : Tuple = checkpoint[f'''{old_prefix}.emb_layers.1.bias'''] lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.out_layers.0.weight'''] lowerCamelCase__ : List[str] = checkpoint[f'''{old_prefix}.out_layers.0.bias'''] lowerCamelCase__ : List[Any] = checkpoint[f'''{old_prefix}.out_layers.3.weight'''] lowerCamelCase__ : List[Any] = checkpoint[f'''{old_prefix}.out_layers.3.bias'''] if has_skip: lowerCamelCase__ : Optional[int] = checkpoint[f'''{old_prefix}.skip_connection.weight'''] lowerCamelCase__ : List[Any] = checkpoint[f'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): lowerCamelCase__ : List[str] = checkpoint[f'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) lowerCamelCase__ : Optional[int] = checkpoint[f'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) lowerCamelCase__ : List[str] = checkpoint[f'''{old_prefix}.norm.weight'''] lowerCamelCase__ : List[str] = checkpoint[f'''{old_prefix}.norm.bias'''] lowerCamelCase__ : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Optional[Any] = bias_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Dict = weight_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Optional[int] = bias_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Optional[int] = weight_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Tuple = ( checkpoint[f'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) lowerCamelCase__ : List[str] = checkpoint[f'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase , map_location='cpu' ) lowerCamelCase__ : str = {} lowerCamelCase__ : Any = checkpoint['time_embed.0.weight'] lowerCamelCase__ : Any = checkpoint['time_embed.0.bias'] lowerCamelCase__ : int = checkpoint['time_embed.2.weight'] lowerCamelCase__ : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: lowerCamelCase__ : List[Any] = checkpoint['label_emb.weight'] lowerCamelCase__ : Union[str, Any] = checkpoint['input_blocks.0.0.weight'] lowerCamelCase__ : Tuple = checkpoint['input_blocks.0.0.bias'] lowerCamelCase__ : Tuple = unet_config['down_block_types'] lowerCamelCase__ : Any = unet_config['layers_per_block'] lowerCamelCase__ : int = unet_config['attention_head_dim'] lowerCamelCase__ : str = unet_config['block_out_channels'] lowerCamelCase__ : Dict = 1 lowerCamelCase__ : Union[str, Any] = channels_list[0] for i, layer_type in enumerate(_lowerCamelCase ): lowerCamelCase__ : Dict = channels_list[i] lowerCamelCase__ : int = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_lowerCamelCase ): lowerCamelCase__ : Dict = f'''down_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Optional[int] = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : int = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ : Union[str, Any] = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_lowerCamelCase ): lowerCamelCase__ : Tuple = f'''down_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Optional[Any] = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : str = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ : List[Any] = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) lowerCamelCase__ : str = f'''down_blocks.{i}.attentions.{j}''' lowerCamelCase__ : int = f'''input_blocks.{current_layer}.1''' lowerCamelCase__ : int = convert_attention( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) current_layer += 1 if i != len(_lowerCamelCase ) - 1: lowerCamelCase__ : int = f'''down_blocks.{i}.downsamplers.0''' lowerCamelCase__ : Dict = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : Optional[Any] = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) current_layer += 1 lowerCamelCase__ : Dict = current_channels # hardcoded the mid-block for now lowerCamelCase__ : Optional[int] = 'mid_block.resnets.0' lowerCamelCase__ : List[str] = 'middle_block.0' lowerCamelCase__ : str = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Optional[Any] = 'mid_block.attentions.0' lowerCamelCase__ : List[Any] = 'middle_block.1' lowerCamelCase__ : Dict = convert_attention(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Optional[int] = 'mid_block.resnets.1' lowerCamelCase__ : int = 'middle_block.2' lowerCamelCase__ : Union[str, Any] = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = unet_config['up_block_types'] for i, layer_type in enumerate(_lowerCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ : List[str] = f'''up_blocks.{i}.resnets.{j}''' lowerCamelCase__ : List[str] = f'''output_blocks.{current_layer}.0''' lowerCamelCase__ : Optional[Any] = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) current_layer += 1 if i != len(_lowerCamelCase ) - 1: lowerCamelCase__ : Optional[Any] = f'''up_blocks.{i}.upsamplers.0''' lowerCamelCase__ : Tuple = f'''output_blocks.{current_layer-1}.1''' lowerCamelCase__ : Any = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ : Any = f'''up_blocks.{i}.resnets.{j}''' lowerCamelCase__ : int = f'''output_blocks.{current_layer}.0''' lowerCamelCase__ : Any = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_skip=_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = f'''up_blocks.{i}.attentions.{j}''' lowerCamelCase__ : List[Any] = f'''output_blocks.{current_layer}.1''' lowerCamelCase__ : List[str] = convert_attention( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) current_layer += 1 if i != len(_lowerCamelCase ) - 1: lowerCamelCase__ : Optional[int] = f'''up_blocks.{i}.upsamplers.0''' lowerCamelCase__ : int = f'''output_blocks.{current_layer-1}.2''' lowerCamelCase__ : str = convert_resnet(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Optional[Any] = checkpoint['out.0.weight'] lowerCamelCase__ : Dict = checkpoint['out.0.bias'] lowerCamelCase__ : List[Any] = checkpoint['out.2.weight'] lowerCamelCase__ : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": A_ : str = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") A_ : Tuple = parser.parse_args() A_ : Optional[Any] = strabool(args.class_cond) A_ : int = os.path.basename(args.unet_path) print(f"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: A_ : Union[str, Any] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): A_ : Optional[Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: A_ : Dict = TEST_UNET_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: A_ : Dict = None A_ : List[Any] = con_pt_to_diffuser(args.unet_path, unet_config) A_ : Optional[int] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: A_ : str = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: A_ : Tuple = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): A_ : Dict = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") A_ : Union[str, Any] = CMStochasticIterativeScheduler(**scheduler_config) A_ : Optional[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
368
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = 2 lowerCamelCase__ : List[str] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_lowerCamelCase ) if n > 1: factors.append(_lowerCamelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
0
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = '' lowerCamelCase__ : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCamelCase__ : str = None # compression type in fsspec. ex: "gzip" lowerCamelCase__ : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__(self, lowerCamelCase_ = "", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_ ): '''simple docstring''' super().__init__(self, **lowerCamelCase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase__ : Optional[Any] = fsspec.open( lowerCamelCase_, mode='rb', protocol=lowerCamelCase_, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) lowerCamelCase__ : int = os.path.basename(self.file.path.split('::' )[0] ) lowerCamelCase__ : str = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) lowerCamelCase__ : List[Any] = None @classmethod def a__ (cls, lowerCamelCase_ ): '''simple docstring''' return super()._strip_protocol(lowerCamelCase_ ).lstrip('/' ) def a__ (self ): '''simple docstring''' if self.dir_cache is None: lowerCamelCase__ : Any = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} lowerCamelCase__ : int = {f['name']: f} def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.file.open().read() def a__ (self, lowerCamelCase_, lowerCamelCase_ = "rb", lowerCamelCase_=None, lowerCamelCase_=True, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Dict = self._strip_protocol(lowerCamelCase_ ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'bz2' lowerCamelCase__ : List[str] = 'bz2' lowerCamelCase__ : int = '.bz2' class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = 'gzip' lowerCamelCase__ : List[str] = 'gzip' lowerCamelCase__ : Union[str, Any] = '.gz' class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = 'lz4' lowerCamelCase__ : int = 'lz4' lowerCamelCase__ : Dict = '.lz4' class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = 'xz' lowerCamelCase__ : Optional[int] = 'xz' lowerCamelCase__ : Dict = '.xz' class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[str] = 'zstd' lowerCamelCase__ : Dict = 'zstd' lowerCamelCase__ : List[Any] = '.zst' def __init__(self, lowerCamelCase_, lowerCamelCase_ = "rb", lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = DEFAULT_BLOCK_SIZE, **lowerCamelCase_, ): '''simple docstring''' super().__init__( fo=lowerCamelCase_, mode=lowerCamelCase_, target_protocol=lowerCamelCase_, target_options=lowerCamelCase_, block_size=lowerCamelCase_, **lowerCamelCase_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase__ : List[str] = self.file.__enter__ class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = file_ def __enter__(self ): '''simple docstring''' self._file.__enter__() return self def __exit__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' self._file.__exit__(*lowerCamelCase_, **lowerCamelCase_ ) def __iter__(self ): '''simple docstring''' return iter(self._file ) def a__ (self ): '''simple docstring''' return next(self._file ) def __getattr__(self, lowerCamelCase_ ): '''simple docstring''' return getattr(self._file, lowerCamelCase_ ) def fixed_enter(*lowerCamelCase_, **lowerCamelCase_ ): return WrappedFile(_enter(*lowerCamelCase_, **lowerCamelCase_ ) ) lowerCamelCase__ : Tuple = fixed_enter
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : int = len(_lowerCamelCase ) # No of vertices in graph lowerCamelCase__ : Optional[int] = [0] * n lowerCamelCase__ : str = [False] * n def dfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = True lowerCamelCase__ : List[str] = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , id_ ) lowerCamelCase__ : Any = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCamelCase__ : Optional[Any] = min(low[at] , low[to] ) lowerCamelCase__ : list[tuple[int, int]] = [] for i in range(_lowerCamelCase ): if not visited[i]: dfs(_lowerCamelCase , -1 , _lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A_ : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A_ : list[int] = [ord(letter) for letter in string.ascii_lowercase] A_ : set[int] = {ord(char) for char in VALID_CHARS} A_ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): """simple docstring""" lowerCamelCase__ : str = "" lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int for keychar, cipherchar in zip(cycle(_lowerCamelCase ) , _lowerCamelCase ): lowerCamelCase__ : str = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_lowerCamelCase ) return decoded def lowerCamelCase_ ( _lowerCamelCase ): """simple docstring""" lowerCamelCase__ : list[str] = [] for key in product(_lowerCamelCase , repeat=3 ): lowerCamelCase__ : Union[str, Any] = try_key(_lowerCamelCase , _lowerCamelCase ) if encoded is not None: possibles.append(_lowerCamelCase ) return possibles def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowerCamelCase_ ( _lowerCamelCase = "p059_cipher.txt" ): """simple docstring""" lowerCamelCase__ : list[int] lowerCamelCase__ : list[str] lowerCamelCase__ : str lowerCamelCase__ : str lowerCamelCase__ : str = Path(_lowerCamelCase ).parent.joinpath(_lowerCamelCase ).read_text(encoding='utf-8' ) lowerCamelCase__ : Optional[Any] = [int(_lowerCamelCase ) for number in data.strip().split(',' )] lowerCamelCase__ : Tuple = filter_valid_chars(_lowerCamelCase ) for common_word in COMMON_WORDS: lowerCamelCase__ : Dict = filter_common_word(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) == 1: break lowerCamelCase__ : List[Any] = possibles[0] return sum(ord(_lowerCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
351
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" import cva import numpy as np class a_ : def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
352
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) lowerCamelCase__ : str = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowerCamelCase ) ) return round(_lowerCamelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" from math import isqrt, loga def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = False return [i for i in range(2 , _lowerCamelCase ) if is_prime[i]] def lowerCamelCase_ ( _lowerCamelCase = 80_0800 , _lowerCamelCase = 80_0800 ): lowerCamelCase__ : Optional[Any] = degree * loga(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = int(_lowerCamelCase ) lowerCamelCase__ : List[Any] = calculate_prime_numbers(_lowerCamelCase ) lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = len(_lowerCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"{solution() = }")
354
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
0
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return 1 / (1 + np.exp(-vector )) def lowerCamelCase_ ( _lowerCamelCase ): return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
355
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
356
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
357
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : str = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = 'convbert' def __init__(self, lowerCamelCase_=3_0_5_2_2, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_=7_6_8, lowerCamelCase_=2, lowerCamelCase_=9, lowerCamelCase_=1, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : List[str] = type_vocab_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : Any = embedding_size lowerCamelCase__ : int = head_ratio lowerCamelCase__ : List[Any] = conv_kernel_size lowerCamelCase__ : Optional[Any] = num_groups lowerCamelCase__ : List[Any] = classifier_dropout class a_ ( snake_case_ ): '''simple docstring''' @property def a__ (self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase__ : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
358
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
359
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
0
from collections import namedtuple import requests from lxml import html # type: ignore A_ : int = namedtuple("covid_data", "cases deaths recovered") def lowerCamelCase_ ( _lowerCamelCase = "https://www.worldometers.info/coronavirus/" ): lowerCamelCase__ : Any = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(_lowerCamelCase ).content ).xpath(_lowerCamelCase ) ) A_ : Dict = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
360
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class a_ ( unittest.TestCase ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=4, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : int = seq_length lowerCamelCase__ : Any = is_training lowerCamelCase__ : Dict = use_attention_mask lowerCamelCase__ : List[str] = use_token_type_ids lowerCamelCase__ : int = use_labels lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : Tuple = num_attention_heads lowerCamelCase__ : List[Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : List[str] = attention_probs_dropout_prob lowerCamelCase__ : str = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[str] = type_sequence_label_size lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : List[str] = num_choices def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Any = None if self.use_attention_mask: lowerCamelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : List[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : str = RobertaPreLayerNormConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[int] = config_and_inputs lowerCamelCase__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.prepare_config_and_inputs() lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : List[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = FlaxRobertaPreLayerNormModelTester(self ) @slow def a__ (self ): '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__ : Dict = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=lowerCamelCase_ ) lowerCamelCase__ : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ ) @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=lowerCamelCase_ ) lowerCamelCase__ : int = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]], dtype=jnp.intaa ) lowerCamelCase__ : List[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Any = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ), lowerCamelCase_ ) # compare the actual values for a slice. lowerCamelCase__ : str = np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], lowerCamelCase_, atol=1e-4 ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]], dtype=jnp.intaa ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ )[0] # compare the actual values for a slice. lowerCamelCase__ : Union[str, Any] = np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], lowerCamelCase_, atol=1e-4 ) )
361
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
0
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class a_ ( unittest.TestCase ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=7, lowerCamelCase_=3, lowerCamelCase_=1_8, lowerCamelCase_=3_0, lowerCamelCase_=4_0_0, lowerCamelCase_=True, lowerCamelCase_=None, lowerCamelCase_=True, lowerCamelCase_=None, lowerCamelCase_=True, lowerCamelCase_=[0.5, 0.5, 0.5], lowerCamelCase_=[0.5, 0.5, 0.5], lowerCamelCase_=False, ): '''simple docstring''' lowerCamelCase__ : List[Any] = size if size is not None else {'height': 2_0, 'width': 2_0} lowerCamelCase__ : Optional[Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowerCamelCase__ : Any = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : List[str] = image_size lowerCamelCase__ : Union[str, Any] = min_resolution lowerCamelCase__ : str = max_resolution lowerCamelCase__ : int = do_resize lowerCamelCase__ : List[Any] = size lowerCamelCase__ : Optional[int] = do_center_crop lowerCamelCase__ : Optional[int] = crop_size lowerCamelCase__ : Optional[Any] = do_normalize lowerCamelCase__ : Any = image_mean lowerCamelCase__ : str = image_std lowerCamelCase__ : Dict = do_reduce_labels def a__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCamelCase_ ( ): lowerCamelCase__ : Any = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) lowerCamelCase__ : str = Image.open(dataset[0]['file'] ) lowerCamelCase__ : Optional[Any] = Image.open(dataset[1]['file'] ) return image, map def lowerCamelCase_ ( ): lowerCamelCase__ : Any = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) lowerCamelCase__ : int = Image.open(ds[0]['file'] ) lowerCamelCase__ : Tuple = Image.open(ds[1]['file'] ) lowerCamelCase__ : Optional[Any] = Image.open(ds[2]['file'] ) lowerCamelCase__ : Optional[Any] = Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BeitImageProcessor if is_vision_available() else None def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BeitImageProcessingTester(self ) @property def a__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_, 'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'size' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'image_std' ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'height': 2_0, 'width': 2_0} ) self.assertEqual(image_processor.crop_size, {'height': 1_8, 'width': 1_8} ) self.assertEqual(image_processor.do_reduce_labels, lowerCamelCase_ ) lowerCamelCase__ : int = self.image_processing_class.from_dict( self.image_processor_dict, size=4_2, crop_size=8_4, reduce_labels=lowerCamelCase_ ) self.assertEqual(image_processor.size, {'height': 4_2, 'width': 4_2} ) self.assertEqual(image_processor.crop_size, {'height': 8_4, 'width': 8_4} ) self.assertEqual(image_processor.do_reduce_labels, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, Image.Image ) # Test not batched input lowerCamelCase__ : Optional[int] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched lowerCamelCase__ : List[Any] = image_processing(lowerCamelCase_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_, numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, np.ndarray ) # Test not batched input lowerCamelCase__ : Any = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched lowerCamelCase__ : Dict = image_processing(lowerCamelCase_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_, torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, torch.Tensor ) # Test not batched input lowerCamelCase__ : str = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched lowerCamelCase__ : str = image_processing(lowerCamelCase_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : str = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_, torchify=lowerCamelCase_ ) lowerCamelCase__ : Tuple = [] for image in image_inputs: self.assertIsInstance(lowerCamelCase_, torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input lowerCamelCase__ : Tuple = image_processing(image_inputs[0], maps[0], return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual( encoding['labels'].shape, ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual(encoding['labels'].dtype, torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) # Test batched lowerCamelCase__ : Union[str, Any] = image_processing(lowerCamelCase_, lowerCamelCase_, return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual( encoding['labels'].shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual(encoding['labels'].dtype, torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) # Test not batched input (PIL images) lowerCamelCase__ : int = prepare_semantic_single_inputs() lowerCamelCase__ : Optional[Any] = image_processing(lowerCamelCase_, lowerCamelCase_, return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual( encoding['labels'].shape, ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual(encoding['labels'].dtype, torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) # Test batched input (PIL images) lowerCamelCase__ : int = prepare_semantic_batch_inputs() lowerCamelCase__ : Optional[int] = image_processing(lowerCamelCase_, lowerCamelCase_, return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape, ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual( encoding['labels'].shape, ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual(encoding['labels'].dtype, torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 lowerCamelCase__ : str = prepare_semantic_single_inputs() lowerCamelCase__ : List[str] = image_processing(lowerCamelCase_, lowerCamelCase_, return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 1_5_0 ) lowerCamelCase__ : List[Any] = True lowerCamelCase__ : int = image_processing(lowerCamelCase_, lowerCamelCase_, return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 )
362
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
0
def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Any = [1] lowerCamelCase__ : List[str] = 0, 0, 0 lowerCamelCase__ : Optional[Any] = ugly_nums[ia] * 2 lowerCamelCase__ : Any = ugly_nums[ia] * 3 lowerCamelCase__ : int = ugly_nums[ia] * 5 for _ in range(1 , _lowerCamelCase ): lowerCamelCase__ : List[str] = min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ugly_nums.append(_lowerCamelCase ) if next_num == next_a: ia += 1 lowerCamelCase__ : Optional[Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowerCamelCase__ : List[str] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowerCamelCase__ : Optional[int] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"{ugly_numbers(2_00) = }")
363
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" ), } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = 'gptsan-japanese' lowerCamelCase__ : Dict = [ 'past_key_values', ] lowerCamelCase__ : List[str] = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self, lowerCamelCase_=3_6_0_0_0, lowerCamelCase_=1_2_8_0, lowerCamelCase_=1_0_2_4, lowerCamelCase_=8_1_9_2, lowerCamelCase_=4_0_9_6, lowerCamelCase_=1_2_8, lowerCamelCase_=1_0, lowerCamelCase_=0, lowerCamelCase_=1_6, lowerCamelCase_=1_6, lowerCamelCase_=1_2_8, lowerCamelCase_=0.0, lowerCamelCase_=1e-5, lowerCamelCase_=False, lowerCamelCase_=0.0, lowerCamelCase_="float32", lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=0.002, lowerCamelCase_=False, lowerCamelCase_=True, lowerCamelCase_=3_5_9_9_8, lowerCamelCase_=3_5_9_9_5, lowerCamelCase_=3_5_9_9_9, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Tuple = vocab_size lowerCamelCase__ : List[Any] = max_position_embeddings lowerCamelCase__ : int = d_model lowerCamelCase__ : List[Any] = d_ff lowerCamelCase__ : str = d_ext lowerCamelCase__ : Optional[Any] = d_spout lowerCamelCase__ : Tuple = num_switch_layers lowerCamelCase__ : List[Any] = num_ext_layers lowerCamelCase__ : List[str] = num_switch_layers + num_ext_layers lowerCamelCase__ : Union[str, Any] = num_heads lowerCamelCase__ : List[Any] = num_experts lowerCamelCase__ : List[Any] = expert_capacity lowerCamelCase__ : Union[str, Any] = dropout_rate lowerCamelCase__ : Optional[int] = layer_norm_epsilon lowerCamelCase__ : List[Any] = router_bias lowerCamelCase__ : Optional[Any] = router_jitter_noise lowerCamelCase__ : Dict = router_dtype lowerCamelCase__ : List[Any] = router_ignore_padding_tokens lowerCamelCase__ : Optional[Any] = output_hidden_states lowerCamelCase__ : List[str] = output_attentions lowerCamelCase__ : Any = initializer_factor lowerCamelCase__ : List[str] = output_router_logits lowerCamelCase__ : List[str] = use_cache super().__init__( separator_token_id=lowerCamelCase_, pad_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_, )
364
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
0
"""simple docstring""" A_ : str = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 10: "a", 11: "b", 12: "c", 13: "d", 14: "e", 15: "f", } def lowerCamelCase_ ( _lowerCamelCase ): assert type(_lowerCamelCase ) in (int, float) and decimal == int(_lowerCamelCase ) lowerCamelCase__ : Any = int(_lowerCamelCase ) lowerCamelCase__ : Any = '' lowerCamelCase__ : int = False if decimal < 0: lowerCamelCase__ : List[str] = True decimal *= -1 while decimal > 0: lowerCamelCase__ : Optional[int] = divmod(_lowerCamelCase , 16 ) lowerCamelCase__ : Union[str, Any] = values[remainder] + hexadecimal lowerCamelCase__ : Dict = '0x' + hexadecimal if negative: lowerCamelCase__ : List[str] = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowerCamelCase__ : Optional[int] = n - k # Calculate C(n,k) for i in range(_lowerCamelCase ): result *= n - i result //= i + 1 return result def lowerCamelCase_ ( _lowerCamelCase ): return binomial_coefficient(2 * node_count , _lowerCamelCase ) // (node_count + 1) def lowerCamelCase_ ( _lowerCamelCase ): if n < 0: raise ValueError('factorial() not defined for negative values' ) lowerCamelCase__ : int = 1 for i in range(1 , n + 1 ): result *= i return result def lowerCamelCase_ ( _lowerCamelCase ): return catalan_number(_lowerCamelCase ) * factorial(_lowerCamelCase ) if __name__ == "__main__": A_ : List[Any] = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f"Given {node_count} nodes, there are {binary_tree_count(node_count)} " f"binary trees and {catalan_number(node_count)} binary search trees." )
366
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
0