code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' super().__init__(*lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = {} def a__ (self, lowerCamelCase_, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = super().add_tokens(lowerCamelCase_, *lowerCamelCase_, **lowerCamelCase_ ) if num_added_tokens == 0: raise ValueError( f'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ' `placeholder_token` that is not already in the tokenizer.' ) def a__ (self, lowerCamelCase_, *lowerCamelCase_, lowerCamelCase_=1, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = [] if num_vec_per_token == 1: self.try_adding_tokens(lowerCamelCase_, *lowerCamelCase_, **lowerCamelCase_ ) output.append(lowerCamelCase_ ) else: lowerCamelCase__ : List[str] = [] for i in range(lowerCamelCase_ ): lowerCamelCase__ : int = placeholder_token + f'''_{i}''' self.try_adding_tokens(lowerCamelCase_, *lowerCamelCase_, **lowerCamelCase_ ) output.append(lowerCamelCase_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'''The tokenizer already has placeholder token {token} that can get confused with''' f''' {placeholder_token}keep placeholder tokens independent''' ) lowerCamelCase__ : Optional[Any] = output def a__ (self, lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=1.0 ): '''simple docstring''' if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Dict = [] for i in range(len(lowerCamelCase_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=lowerCamelCase_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowerCamelCase__ : Optional[Any] = self.token_map[placeholder_token] lowerCamelCase__ : Optional[int] = tokens[: 1 + int(len(lowerCamelCase_ ) * prop_tokens_to_load )] if vector_shuffle: lowerCamelCase__ : str = copy.copy(lowerCamelCase_ ) random.shuffle(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = text.replace(lowerCamelCase_, ' '.join(lowerCamelCase_ ) ) return text def __call__(self, lowerCamelCase_, *lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=1.0, **lowerCamelCase_ ): '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( lowerCamelCase_, vector_shuffle=lowerCamelCase_, prop_tokens_to_load=lowerCamelCase_ ), *lowerCamelCase_, **lowerCamelCase_, ) def a__ (self, lowerCamelCase_, *lowerCamelCase_, lowerCamelCase_=False, lowerCamelCase_=1.0, **lowerCamelCase_ ): '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( lowerCamelCase_, vector_shuffle=lowerCamelCase_, prop_tokens_to_load=lowerCamelCase_ ), *lowerCamelCase_, **lowerCamelCase_, )
316
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
1
"""simple docstring""" from __future__ import annotations from math import pi def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if inductance < 0: raise ValueError('Inductance cannot be negative' ) if frequency < 0: raise ValueError('Frequency cannot be negative' ) if reactance < 0: raise ValueError('Inductive reactance cannot be negative' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
1
"""simple docstring""" from heapq import heappop, heappush import numpy as np def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = grid.shape lowerCamelCase__ : List[str] = [-1, 1, 0, 0] lowerCamelCase__ : Optional[Any] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowerCamelCase__ , lowerCamelCase__ : Any = [(0, source)], set() lowerCamelCase__ : int = np.full((rows, cols) , np.inf ) lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : List[str] = np.empty((rows, cols) , dtype=_lowerCamelCase ) lowerCamelCase__ : List[str] = None while queue: ((lowerCamelCase__) , (lowerCamelCase__)) : Union[str, Any] = heappop(_lowerCamelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowerCamelCase__ : Optional[int] = [] while (x, y) != source: path.append((x, y) ) lowerCamelCase__ , lowerCamelCase__ : Any = predecessors[x, y] path.append(_lowerCamelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_lowerCamelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Tuple = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowerCamelCase__ : Optional[int] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_lowerCamelCase , (dist + 1, (nx, ny)) ) lowerCamelCase__ : Optional[Any] = dist + 1 lowerCamelCase__ : List[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
1
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return int((input_a, input_a).count(0 ) == 0 ) def lowerCamelCase_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
316
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class a_ : '''simple docstring''' lowerCamelCase__ : Any = PegasusConfig lowerCamelCase__ : Optional[Any] = {} lowerCamelCase__ : int = 'gelu' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=9_9, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=4_0, lowerCamelCase_=2, lowerCamelCase_=1, lowerCamelCase_=0, ): '''simple docstring''' lowerCamelCase__ : Any = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Optional[int] = seq_length lowerCamelCase__ : Tuple = is_training lowerCamelCase__ : Optional[int] = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : Tuple = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : List[str] = eos_token_id lowerCamelCase__ : Dict = pad_token_id lowerCamelCase__ : Optional[Any] = bos_token_id def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) lowerCamelCase__ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) lowerCamelCase__ : Union[str, Any] = tf.concat([input_ids, eos_tensor], axis=1 ) lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Any = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) lowerCamelCase__ : List[str] = prepare_pegasus_inputs_dict(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return config, inputs_dict def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = TFPegasusModel(config=lowerCamelCase_ ).get_decoder() lowerCamelCase__ : Any = inputs_dict['input_ids'] lowerCamelCase__ : Tuple = input_ids[:1, :] lowerCamelCase__ : str = inputs_dict['attention_mask'][:1, :] lowerCamelCase__ : Optional[Any] = inputs_dict['head_mask'] lowerCamelCase__ : str = 1 # first forward pass lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, head_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : int = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and lowerCamelCase__ : Tuple = tf.concat([input_ids, next_tokens], axis=-1 ) lowerCamelCase__ : List[str] = tf.concat([attention_mask, next_attn_mask], axis=-1 ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ )[0] lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice lowerCamelCase__ : List[str] = int(ids_tensor((1,), output_from_past.shape[-1] ) ) lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__ : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase_, lowerCamelCase_, rtol=1e-3 ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ): if attention_mask is None: lowerCamelCase__ : Any = tf.cast(tf.math.not_equal(_lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__ : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () lowerCamelCase__ : int = (TFPegasusForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ : Optional[int] = ( { 'conversational': TFPegasusForConditionalGeneration, 'feature-extraction': TFPegasusModel, 'summarization': TFPegasusForConditionalGeneration, 'text2text-generation': TFPegasusForConditionalGeneration, 'translation': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ : int = True lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Tuple = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFPegasusModelTester(self ) lowerCamelCase__ : Tuple = ConfigTester(self, config_class=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[Any] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] lowerCamelCase__ : str = [ 'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to' ' reduce the risk of wildfires.', 'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.', ] # differs slightly from pytorch, likely due to numerical differences in linear layers lowerCamelCase__ : int = 'google/pegasus-xsum' @cached_property def a__ (self ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.translate_src_text(**lowerCamelCase_ ) assert self.expected_text == generated_words def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.tokenizer(self.src_text, **lowerCamelCase_, padding=lowerCamelCase_, return_tensors='tf' ) lowerCamelCase__ : Tuple = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, use_cache=lowerCamelCase_, ) lowerCamelCase__ : Tuple = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=lowerCamelCase_ ) return generated_words @slow def a__ (self ): '''simple docstring''' self._assert_generated_batch_equal_expected()
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = CycleDiffusionPipeline lowerCamelCase__ : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } lowerCamelCase__ : int = PipelineTesterMixin.required_optional_params - {'latents'} lowerCamelCase__ : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) lowerCamelCase__ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : int = UNetaDConditionModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=3_2, ) lowerCamelCase__ : Tuple = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', num_train_timesteps=1_0_0_0, clip_sample=lowerCamelCase_, set_alpha_to_one=lowerCamelCase_, ) torch.manual_seed(0 ) lowerCamelCase__ : Any = AutoencoderKL( block_out_channels=[3_2, 6_4], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, ) lowerCamelCase__ : Union[str, Any] = CLIPTextModel(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase__ : int = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : Any = floats_tensor((1, 3, 3_2, 3_2), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = image / 2 + 0.5 if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : Optional[int] = self.get_dummy_components() lowerCamelCase__ : int = CycleDiffusionPipeline(**lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = output.images lowerCamelCase__ : str = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) lowerCamelCase__ : Optional[int] = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.get_dummy_components() for name, module in components.items(): if hasattr(lowerCamelCase_, 'half' ): lowerCamelCase__ : Union[str, Any] = module.half() lowerCamelCase__ : Tuple = CycleDiffusionPipeline(**lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.get_dummy_inputs(lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = output.images lowerCamelCase__ : Dict = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) lowerCamelCase__ : Tuple = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def a__ (self ): '''simple docstring''' return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def a__ (self ): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def a__ (self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def a__ (self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def a__ (self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) lowerCamelCase__ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) lowerCamelCase__ : int = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : Optional[Any] = 'CompVis/stable-diffusion-v1-4' lowerCamelCase__ : List[str] = DDIMScheduler.from_pretrained(lowerCamelCase_, subfolder='scheduler' ) lowerCamelCase__ : Dict = CycleDiffusionPipeline.from_pretrained( lowerCamelCase_, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_, torch_dtype=torch.floataa, revision='fp16' ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() lowerCamelCase__ : str = 'A black colored car' lowerCamelCase__ : Tuple = 'A blue colored car' lowerCamelCase__ : Tuple = torch.manual_seed(0 ) lowerCamelCase__ : int = pipe( prompt=lowerCamelCase_, source_prompt=lowerCamelCase_, image=lowerCamelCase_, num_inference_steps=1_0_0, eta=0.1, strength=0.85, guidance_scale=3, source_guidance_scale=1, generator=lowerCamelCase_, output_type='np', ) lowerCamelCase__ : Optional[int] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) lowerCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) lowerCamelCase__ : Optional[Any] = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : Tuple = 'CompVis/stable-diffusion-v1-4' lowerCamelCase__ : Any = DDIMScheduler.from_pretrained(lowerCamelCase_, subfolder='scheduler' ) lowerCamelCase__ : int = CycleDiffusionPipeline.from_pretrained(lowerCamelCase_, scheduler=lowerCamelCase_, safety_checker=lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() lowerCamelCase__ : Optional[int] = 'A black colored car' lowerCamelCase__ : Optional[Any] = 'A blue colored car' lowerCamelCase__ : str = torch.manual_seed(0 ) lowerCamelCase__ : List[str] = pipe( prompt=lowerCamelCase_, source_prompt=lowerCamelCase_, image=lowerCamelCase_, num_inference_steps=1_0_0, eta=0.1, strength=0.85, guidance_scale=3, source_guidance_scale=1, generator=lowerCamelCase_, output_type='np', ) lowerCamelCase__ : Any = output.images assert np.abs(image - expected_image ).max() < 2e-2
316
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
1
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = emb.weight.shape lowerCamelCase__ : int = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = emb.weight.data return lin_layer def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase="facebook/mbart-large-en-ro" , _lowerCamelCase=False , _lowerCamelCase=False ): lowerCamelCase__ : Union[str, Any] = torch.load(_lowerCamelCase , map_location='cpu' )['model'] remove_ignore_keys_(_lowerCamelCase ) lowerCamelCase__ : List[Any] = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase__ : Optional[int] = MBartConfig.from_pretrained(_lowerCamelCase , vocab_size=_lowerCamelCase ) if mbart_aa and finetuned: lowerCamelCase__ : Optional[int] = 'relu' lowerCamelCase__ : List[Any] = state_dict['decoder.embed_tokens.weight'] lowerCamelCase__ : Union[str, Any] = MBartForConditionalGeneration(_lowerCamelCase ) model.model.load_state_dict(_lowerCamelCase ) if finetuned: lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") A_ : Optional[int] = parser.parse_args() A_ : List[Any] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
316
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : List[str] = logging.get_logger(__name__) A_ : List[str] = "▁" A_ : Tuple = {"vocab_file": "sentencepiece.bpe.model"} A_ : Optional[int] = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } A_ : List[Any] = { "xlm-roberta-base": 5_12, "xlm-roberta-large": 5_12, "xlm-roberta-large-finetuned-conll02-dutch": 5_12, "xlm-roberta-large-finetuned-conll02-spanish": 5_12, "xlm-roberta-large-finetuned-conll03-english": 5_12, "xlm-roberta-large-finetuned-conll03-german": 5_12, } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Any = ['input_ids', 'attention_mask'] def __init__(self, lowerCamelCase_, lowerCamelCase_="<s>", lowerCamelCase_="</s>", lowerCamelCase_="</s>", lowerCamelCase_="<s>", lowerCamelCase_="<unk>", lowerCamelCase_="<pad>", lowerCamelCase_="<mask>", lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = AddedToken(lowerCamelCase_, lstrip=lowerCamelCase_, rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_, lowerCamelCase_ ) else mask_token lowerCamelCase__ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase_, eos_token=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, cls_token=lowerCamelCase_, pad_token=lowerCamelCase_, mask_token=lowerCamelCase_, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase__ : Optional[int] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase__ : Optional[Any] = 1 lowerCamelCase__ : Tuple = len(self.sp_model ) + self.fairseq_offset lowerCamelCase__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ): '''simple docstring''' lowerCamelCase__ : int = self.__dict__.copy() lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): lowerCamelCase__ : List[str] = {} lowerCamelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] lowerCamelCase__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_, token_ids_a=lowerCamelCase_, already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : List[str] = [self.sep_token_id] lowerCamelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__ (self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase_, out_type=lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__ : Tuple = self.sp_model.PieceToId(lowerCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__ (self, lowerCamelCase_ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = ''.join(lowerCamelCase_ ).replace(lowerCamelCase_, ' ' ).strip() return out_string def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : Optional[Any] = os.path.join( lowerCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_, 'wb' ) as fi: lowerCamelCase__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,)
316
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
1
"""simple docstring""" from math import pi, sqrt def lowerCamelCase_ ( _lowerCamelCase ): if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(_lowerCamelCase ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(_lowerCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowerCamelCase_ ( ): assert gamma(0.5 ) == sqrt(_lowerCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() A_ : Any = 1.0 while num: A_ : Tuple = float(input("Gamma of: ")) print(f"gamma({num}) = {gamma(num)}") print("\nEnter 0 to exit...")
316
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : str = word.split() def justify(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: lowerCamelCase__ : Optional[Any] = max_width - width lowerCamelCase__ : str = len(_lowerCamelCase ) if len(_lowerCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCamelCase__ : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCamelCase__ : Union[str, Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCamelCase__ : Optional[Any] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_lowerCamelCase ): num_spaces_between_words_list[i] += 1 lowerCamelCase__ : Dict = [] for i in range(_lowerCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : list[str] = [] lowerCamelCase__ : Optional[int] = 0 for word in words: if width + len(_lowerCamelCase ) + len(_lowerCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_lowerCamelCase ) width += len(_lowerCamelCase ) else: # justify the line and add it to result answer.append(justify(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) # reset new line and new width lowerCamelCase__ , lowerCamelCase__ : Dict = [word], len(_lowerCamelCase ) lowerCamelCase__ : Dict = max_width - width - len(_lowerCamelCase ) answer.append(' '.join(_lowerCamelCase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
316
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = GPTaTokenizer lowerCamelCase__ : Optional[int] = GPTaTokenizerFast lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : str = {'add_prefix_space': True} lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] lowerCamelCase__ : List[str] = dict(zip(lowerCamelCase_, range(len(lowerCamelCase_ ) ) ) ) lowerCamelCase__ : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} lowerCamelCase__ : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : List[str] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase_ ) ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = 'lower newer' lowerCamelCase__ : int = 'lower newer' return input_text, output_text def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = GPTaTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowerCamelCase__ : str = 'lower newer' lowerCamelCase__ : List[str] = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowerCamelCase__ : List[str] = tokenizer.tokenize(lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = tokens + [tokenizer.unk_token] lowerCamelCase__ : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ), lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = 'lower newer' # Testing tokenization lowerCamelCase__ : int = tokenizer.tokenize(lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : str = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) # Testing conversion to ids without special tokens lowerCamelCase__ : Optional[int] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : Dict = rust_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) # Testing conversion to ids with special tokens lowerCamelCase__ : Tuple = self.get_rust_tokenizer(add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer.encode(lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) # Testing the unknown token lowerCamelCase__ : int = tokens + [rust_tokenizer.unk_token] lowerCamelCase__ : Tuple = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCamelCase_ ), lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' pass def a__ (self, lowerCamelCase_=1_5 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_, **lowerCamelCase_ ) # Simple input lowerCamelCase__ : Optional[Any] = 'This is a simple input' lowerCamelCase__ : Optional[int] = ['This is a simple input 1', 'This is a simple input 2'] lowerCamelCase__ : Any = ('This is a simple input', 'This is a pair') lowerCamelCase__ : Dict = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowerCamelCase_, tokenizer_r.encode, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length' ) # Simple input self.assertRaises(lowerCamelCase_, tokenizer_r.encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length' ) # Simple input self.assertRaises( lowerCamelCase_, tokenizer_r.batch_encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length', ) # Pair input self.assertRaises(lowerCamelCase_, tokenizer_r.encode, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length' ) # Pair input self.assertRaises(lowerCamelCase_, tokenizer_r.encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length' ) # Pair input self.assertRaises( lowerCamelCase_, tokenizer_r.batch_encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length', ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = GPTaTokenizer.from_pretrained(self.tmpdirname, pad_token='<pad>' ) # Simple input lowerCamelCase__ : Tuple = 'This is a simple input' lowerCamelCase__ : str = ['This is a simple input looooooooong', 'This is a simple input'] lowerCamelCase__ : int = ('This is a simple input', 'This is a pair') lowerCamelCase__ : Dict = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] lowerCamelCase__ : Optional[int] = tokenizer.pad_token_id lowerCamelCase__ : Any = tokenizer(lowerCamelCase_, padding='max_length', max_length=3_0, return_tensors='np' ) lowerCamelCase__ : Union[str, Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, truncate=lowerCamelCase_, return_tensors='np' ) lowerCamelCase__ : str = tokenizer(*lowerCamelCase_, padding='max_length', max_length=6_0, return_tensors='np' ) lowerCamelCase__ : int = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, truncate=lowerCamelCase_, return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1], 3_0 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1], 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1], 6_0 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1], 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = '$$$' lowerCamelCase__ : List[str] = GPTaTokenizer.from_pretrained(self.tmpdirname, bos_token=lowerCamelCase_, add_bos_token=lowerCamelCase_ ) lowerCamelCase__ : str = 'This is a simple input' lowerCamelCase__ : int = ['This is a simple input 1', 'This is a simple input 2'] lowerCamelCase__ : List[str] = tokenizer.bos_token_id lowerCamelCase__ : List[str] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) self.assertEqual(out_s.input_ids[0], lowerCamelCase_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCamelCase__ : int = tokenizer.decode(out_s.input_ids ) lowerCamelCase__ : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0], lowerCamelCase_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [self.get_tokenizer(do_lower_case=lowerCamelCase_, add_bos_token=lowerCamelCase_ )] for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Optional[Any] = 'Encode this.' lowerCamelCase__ : Optional[Any] = 'This one too please.' lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) encoded_sequence += tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer.encode_plus( lowerCamelCase_, lowerCamelCase_, add_special_tokens=lowerCamelCase_, return_special_tokens_mask=lowerCamelCase_, ) lowerCamelCase__ : str = encoded_sequence_dict['input_ids'] lowerCamelCase__ : Any = encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) lowerCamelCase__ : Any = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(lowerCamelCase_ ) ] lowerCamelCase__ : List[str] = [x for x in filtered_sequence if x is not None] self.assertEqual(lowerCamelCase_, lowerCamelCase_ ) @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = AutoTokenizer.from_pretrained('facebook/opt-350m', from_slow=lowerCamelCase_ ) lowerCamelCase__ : Tuple = 'A photo of a cat' lowerCamelCase__ : Tuple = tokenizer.encode( lowerCamelCase_, ) self.assertEqual(lowerCamelCase_, [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('test_opt' ) lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('./test_opt' ) lowerCamelCase__ : Any = tokenizer.encode( lowerCamelCase_, ) self.assertEqual(lowerCamelCase_, [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = AutoTokenizer.from_pretrained('facebook/opt-350m', use_slow=lowerCamelCase_ ) lowerCamelCase__ : int = 'A photo of a cat' lowerCamelCase__ : Optional[Any] = tokenizer.encode( lowerCamelCase_, ) # Same as above self.assertEqual(lowerCamelCase_, [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = AutoTokenizer.from_pretrained('facebook/opt-350m', from_slow=lowerCamelCase_ ) lowerCamelCase__ : Dict = 'bos' lowerCamelCase__ : List[Any] = tokenizer.get_vocab()['bos'] lowerCamelCase__ : List[Any] = 'A photo of a cat' lowerCamelCase__ : Dict = tokenizer.encode( lowerCamelCase_, ) # We changed the bos token self.assertEqual(lowerCamelCase_, [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('./tok' ) lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) lowerCamelCase__ : Dict = tokenizer.encode( lowerCamelCase_, ) self.assertEqual(lowerCamelCase_, [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = (UnCLIPScheduler,) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = { 'num_train_timesteps': 1_0_0_0, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowerCamelCase_ ) return config def a__ (self ): '''simple docstring''' for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCamelCase_, prev_timestep=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.scheduler_classes[0] lowerCamelCase__ : Optional[Any] = self.get_scheduler_config(variance_type='fixed_small_log' ) lowerCamelCase__ : str = scheduler_class(**lowerCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_994_987 ) ) < 1e-5 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.scheduler_classes[0] lowerCamelCase__ : Any = self.get_scheduler_config(variance_type='learned_range' ) lowerCamelCase__ : Dict = scheduler_class(**lowerCamelCase_ ) lowerCamelCase__ : List[Any] = 0.5 assert scheduler._get_variance(1, predicted_variance=lowerCamelCase_ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(4_8_7, predicted_variance=lowerCamelCase_ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(9_9_9, predicted_variance=lowerCamelCase_ ) - -0.0_010_011 < 1e-5 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.scheduler_classes[0] lowerCamelCase__ : Tuple = self.get_scheduler_config() lowerCamelCase__ : Optional[int] = scheduler_class(**lowerCamelCase_ ) lowerCamelCase__ : Tuple = scheduler.timesteps lowerCamelCase__ : Dict = self.dummy_model() lowerCamelCase__ : Tuple = self.dummy_sample_deter lowerCamelCase__ : Any = torch.manual_seed(0 ) for i, t in enumerate(lowerCamelCase_ ): # 1. predict noise residual lowerCamelCase__ : Any = model(lowerCamelCase_, lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCamelCase__ : int = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, generator=lowerCamelCase_ ).prev_sample lowerCamelCase__ : str = pred_prev_sample lowerCamelCase__ : List[Any] = torch.sum(torch.abs(lowerCamelCase_ ) ) lowerCamelCase__ : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.scheduler_classes[0] lowerCamelCase__ : List[str] = self.get_scheduler_config() lowerCamelCase__ : List[str] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(2_5 ) lowerCamelCase__ : Dict = scheduler.timesteps lowerCamelCase__ : Union[str, Any] = self.dummy_model() lowerCamelCase__ : Any = self.dummy_sample_deter lowerCamelCase__ : Dict = torch.manual_seed(0 ) for i, t in enumerate(lowerCamelCase_ ): # 1. predict noise residual lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, lowerCamelCase_ ) if i + 1 == timesteps.shape[0]: lowerCamelCase__ : Tuple = None else: lowerCamelCase__ : Tuple = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCamelCase__ : Any = scheduler.step( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, prev_timestep=lowerCamelCase_, generator=lowerCamelCase_ ).prev_sample lowerCamelCase__ : Dict = pred_prev_sample lowerCamelCase__ : Tuple = torch.sum(torch.abs(lowerCamelCase_ ) ) lowerCamelCase__ : Optional[Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass
316
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
1
"""simple docstring""" from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] lowerCamelCase__ : Union[str, Any] = (low + high) // 2 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any = max_subarray(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = max_subarray(_lowerCamelCase , mid + 1 , _lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = max_cross_sum(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : str = float('-inf' ), -1 lowerCamelCase__ , lowerCamelCase__ : List[str] = float('-inf' ), -1 lowerCamelCase__ : int | float = 0 for i in range(_lowerCamelCase , low - 1 , -1 ): summ += arr[i] if summ > left_sum: lowerCamelCase__ : Any = summ lowerCamelCase__ : List[str] = i lowerCamelCase__ : str = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: lowerCamelCase__ : Tuple = summ lowerCamelCase__ : Union[str, Any] = i return max_left, max_right, (left_sum + right_sum) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = [randint(1 , _lowerCamelCase ) for _ in range(_lowerCamelCase )] lowerCamelCase__ : str = time.time() max_subarray(_lowerCamelCase , 0 , input_size - 1 ) lowerCamelCase__ : Union[str, Any] = time.time() return end - start def lowerCamelCase_ ( ): lowerCamelCase__ : List[str] = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] lowerCamelCase__ : Tuple = [time_max_subarray(_lowerCamelCase ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(_lowerCamelCase , _lowerCamelCase ): print(_lowerCamelCase , '\t\t' , _lowerCamelCase ) plt.plot(_lowerCamelCase , _lowerCamelCase ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
316
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
1
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=0.0, lowerCamelCase_ = None, lowerCamelCase_ = "geglu", lowerCamelCase_ = None, lowerCamelCase_ = False, lowerCamelCase_ = False, lowerCamelCase_ = False, lowerCamelCase_ = False, lowerCamelCase_ = True, lowerCamelCase_ = "layer_norm", lowerCamelCase_ = False, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Union[str, Any] = only_cross_attention lowerCamelCase__ : Dict = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' lowerCamelCase__ : Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: lowerCamelCase__ : Optional[int] = AdaLayerNorm(lowerCamelCase_, lowerCamelCase_ ) elif self.use_ada_layer_norm_zero: lowerCamelCase__ : Optional[int] = AdaLayerNormZero(lowerCamelCase_, lowerCamelCase_ ) else: lowerCamelCase__ : List[Any] = nn.LayerNorm(lowerCamelCase_, elementwise_affine=lowerCamelCase_ ) lowerCamelCase__ : List[str] = Attention( query_dim=lowerCamelCase_, heads=lowerCamelCase_, dim_head=lowerCamelCase_, dropout=lowerCamelCase_, bias=lowerCamelCase_, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=lowerCamelCase_, ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. lowerCamelCase__ : Optional[int] = ( AdaLayerNorm(lowerCamelCase_, lowerCamelCase_ ) if self.use_ada_layer_norm else nn.LayerNorm(lowerCamelCase_, elementwise_affine=lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = Attention( query_dim=lowerCamelCase_, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=lowerCamelCase_, dim_head=lowerCamelCase_, dropout=lowerCamelCase_, bias=lowerCamelCase_, upcast_attention=lowerCamelCase_, ) # is self-attn if encoder_hidden_states is none else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Dict = None # 3. Feed-forward lowerCamelCase__ : str = nn.LayerNorm(lowerCamelCase_, elementwise_affine=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = FeedForward(lowerCamelCase_, dropout=lowerCamelCase_, activation_fn=lowerCamelCase_, final_dropout=lowerCamelCase_ ) # let chunk size default to None lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : str = 0 def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = chunk_size lowerCamelCase__ : Optional[Any] = dim def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, ): '''simple docstring''' if self.use_ada_layer_norm: lowerCamelCase__ : Optional[int] = self.norma(lowerCamelCase_, lowerCamelCase_ ) elif self.use_ada_layer_norm_zero: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = self.norma( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, hidden_dtype=hidden_states.dtype ) else: lowerCamelCase__ : int = self.norma(lowerCamelCase_ ) lowerCamelCase__ : Any = cross_attention_kwargs if cross_attention_kwargs is not None else {} lowerCamelCase__ : str = self.attna( lowerCamelCase_, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=lowerCamelCase_, **lowerCamelCase_, ) if self.use_ada_layer_norm_zero: lowerCamelCase__ : int = gate_msa.unsqueeze(1 ) * attn_output lowerCamelCase__ : Union[str, Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: lowerCamelCase__ : Tuple = ( self.norma(lowerCamelCase_, lowerCamelCase_ ) if self.use_ada_layer_norm else self.norma(lowerCamelCase_ ) ) lowerCamelCase__ : Dict = self.attna( lowerCamelCase_, encoder_hidden_states=lowerCamelCase_, attention_mask=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : str = attn_output + hidden_states # 3. Feed-forward lowerCamelCase__ : Optional[int] = self.norma(lowerCamelCase_ ) if self.use_ada_layer_norm_zero: lowerCamelCase__ : Optional[Any] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) lowerCamelCase__ : int = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size lowerCamelCase__ : Optional[Any] = torch.cat( [self.ff(lowerCamelCase_ ) for hid_slice in norm_hidden_states.chunk(lowerCamelCase_, dim=self._chunk_dim )], dim=self._chunk_dim, ) else: lowerCamelCase__ : List[str] = self.ff(lowerCamelCase_ ) if self.use_ada_layer_norm_zero: lowerCamelCase__ : Optional[Any] = gate_mlp.unsqueeze(1 ) * ff_output lowerCamelCase__ : int = ff_output + hidden_states return hidden_states class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = 4, lowerCamelCase_ = 0.0, lowerCamelCase_ = "geglu", lowerCamelCase_ = False, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Tuple = int(dim * mult ) lowerCamelCase__ : List[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": lowerCamelCase__ : Optional[Any] = GELU(lowerCamelCase_, lowerCamelCase_ ) if activation_fn == "gelu-approximate": lowerCamelCase__ : Dict = GELU(lowerCamelCase_, lowerCamelCase_, approximate='tanh' ) elif activation_fn == "geglu": lowerCamelCase__ : str = GEGLU(lowerCamelCase_, lowerCamelCase_ ) elif activation_fn == "geglu-approximate": lowerCamelCase__ : Dict = ApproximateGELU(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = nn.ModuleList([] ) # project in self.net.append(lowerCamelCase_ ) # project dropout self.net.append(nn.Dropout(lowerCamelCase_ ) ) # project out self.net.append(nn.Linear(lowerCamelCase_, lowerCamelCase_ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(lowerCamelCase_ ) ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' for module in self.net: lowerCamelCase__ : Optional[Any] = module(lowerCamelCase_ ) return hidden_states class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = "none" ): '''simple docstring''' super().__init__() lowerCamelCase__ : Optional[int] = nn.Linear(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : str = approximate def a__ (self, lowerCamelCase_ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(lowerCamelCase_, approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ), approximate=self.approximate ).to(dtype=gate.dtype ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.proj(lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.gelu(lowerCamelCase_ ) return hidden_states class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() lowerCamelCase__ : Union[str, Any] = nn.Linear(lowerCamelCase_, dim_out * 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(lowerCamelCase_ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[str] = self.proj(lowerCamelCase_ ).chunk(2, dim=-1 ) return hidden_states * self.gelu(lowerCamelCase_ ) class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() lowerCamelCase__ : Any = nn.Linear(lowerCamelCase_, lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.proj(lowerCamelCase_ ) return x * torch.sigmoid(1.702 * x ) class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() lowerCamelCase__ : Optional[int] = nn.Embedding(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : str = nn.SiLU() lowerCamelCase__ : int = nn.Linear(lowerCamelCase_, embedding_dim * 2 ) lowerCamelCase__ : Tuple = nn.LayerNorm(lowerCamelCase_, elementwise_affine=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.linear(self.silu(self.emb(lowerCamelCase_ ) ) ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = torch.chunk(lowerCamelCase_, 2 ) lowerCamelCase__ : Optional[int] = self.norm(lowerCamelCase_ ) * (1 + scale) + shift return x class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() lowerCamelCase__ : Tuple = CombinedTimestepLabelEmbeddings(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[Any] = nn.SiLU() lowerCamelCase__ : List[Any] = nn.Linear(lowerCamelCase_, 6 * embedding_dim, bias=lowerCamelCase_ ) lowerCamelCase__ : int = nn.LayerNorm(lowerCamelCase_, elementwise_affine=lowerCamelCase_, eps=1e-6 ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' lowerCamelCase__ : Tuple = self.linear(self.silu(self.emb(lowerCamelCase_, lowerCamelCase_, hidden_dtype=lowerCamelCase_ ) ) ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = emb.chunk(6, dim=1 ) lowerCamelCase__ : List[str] = self.norm(lowerCamelCase_ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = 1e-5 ): '''simple docstring''' super().__init__() lowerCamelCase__ : Optional[Any] = num_groups lowerCamelCase__ : List[Any] = eps if act_fn is None: lowerCamelCase__ : int = None else: lowerCamelCase__ : Optional[int] = get_activation(lowerCamelCase_ ) lowerCamelCase__ : List[str] = nn.Linear(lowerCamelCase_, out_dim * 2 ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self.act: lowerCamelCase__ : List[Any] = self.act(lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.linear(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = emb[:, :, None, None] lowerCamelCase__ , lowerCamelCase__ : List[str] = emb.chunk(2, dim=1 ) lowerCamelCase__ : int = F.group_norm(lowerCamelCase_, self.num_groups, eps=self.eps ) lowerCamelCase__ : Optional[int] = x * (1 + scale) + shift return x
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class a_ ( unittest.TestCase , snake_case_ ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = load_tool('text-classification' ) self.tool.setup() lowerCamelCase__ : Dict = load_tool('text-classification', remote=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.tool('That\'s quite cool', ['positive', 'negative'] ) self.assertEqual(lowerCamelCase_, 'positive' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.remote_tool('That\'s quite cool', ['positive', 'negative'] ) self.assertEqual(lowerCamelCase_, 'positive' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.tool(text='That\'s quite cool', labels=['positive', 'negative'] ) self.assertEqual(lowerCamelCase_, 'positive' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.remote_tool(text='That\'s quite cool', labels=['positive', 'negative'] ) self.assertEqual(lowerCamelCase_, 'positive' )
316
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError('Input value must be a \'int\' type' ) return bin(_lowerCamelCase ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version A_ : Optional[int] = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(_lowerCamelCase ) , version.parse(_lowerCamelCase ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = None ): lowerCamelCase__ : Optional[Any] = f'''\n{hint}''' if hint is not None else '' # non-versioned check if re.match(r'^[\w_\-\d]+$' , _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = requirement, None, None else: lowerCamelCase__ : Optional[int] = re.findall(r'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , _lowerCamelCase ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' f''' got {requirement}''' ) lowerCamelCase__ , lowerCamelCase__ : Tuple = match[0] lowerCamelCase__ : Tuple = want_full.split(',' ) # there could be multiple requirements lowerCamelCase__ : Optional[int] = {} for w in want_range: lowerCamelCase__ : List[Any] = re.findall(r'^([\s!=<>]{1,2})(.+)' , _lowerCamelCase ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' f''' but got {requirement}''' ) lowerCamelCase__ , lowerCamelCase__ : Any = match[0] lowerCamelCase__ : Optional[Any] = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": lowerCamelCase__ : Union[str, Any] = '.'.join([str(_lowerCamelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return # check if any version is installed try: lowerCamelCase__ : Dict = importlib.metadata.version(_lowerCamelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(_lowerCamelCase , _lowerCamelCase )
316
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values A_ : List[str] = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") A_, A_ : List[Any] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") A_ : Optional[Any] = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: A_ : str = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) A_ : List[str] = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
316
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
1
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def lowerCamelCase_ ( _lowerCamelCase=None , _lowerCamelCase=None ): return field(default_factory=lambda: default , metadata=_lowerCamelCase ) @dataclass class a_ : '''simple docstring''' lowerCamelCase__ : str = field( metadata={'help': 'The csv file to plot.'} , ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) lowerCamelCase__ : Optional[str] = field( default=snake_case_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) lowerCamelCase__ : Optional[List[str]] = list_field( default=snake_case_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def lowerCamelCase_ ( _lowerCamelCase ): try: int(_lowerCamelCase ) return True except ValueError: return False def lowerCamelCase_ ( _lowerCamelCase ): try: float(_lowerCamelCase ) return True except ValueError: return False class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = args lowerCamelCase__ : Optional[int] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file, newline='' ) as csv_file: lowerCamelCase__ : Any = csv.DictReader(lowerCamelCase_ ) for row in reader: lowerCamelCase__ : Any = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None lowerCamelCase__ : Optional[Any] = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None lowerCamelCase__ : Tuple = float(row['result'] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = plt.subplots() lowerCamelCase__ : Dict = 'Time usage' if self.args.is_time else 'Memory usage' lowerCamelCase__ : Optional[Any] = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowerCamelCase__ : Dict = sorted(set(self.result_dict[model_name]['bsz'] ) ) lowerCamelCase__ : Any = sorted(set(self.result_dict[model_name]['seq_len'] ) ) lowerCamelCase__ : int = self.result_dict[model_name]['result'] ((lowerCamelCase__) , (lowerCamelCase__)) : Optional[int] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowerCamelCase__ : int = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowerCamelCase__ : Tuple = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results], dtype=lowerCamelCase_, ) else: lowerCamelCase__ : Tuple = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results], dtype=np.floataa, ) ((lowerCamelCase__) , (lowerCamelCase__)) : Union[str, Any] = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) lowerCamelCase__ : int = np.asarray(lowerCamelCase_, lowerCamelCase_ )[: len(lowerCamelCase_ )] plt.scatter( lowerCamelCase_, lowerCamelCase_, label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(lowerCamelCase_, lowerCamelCase_, '--' ) title_str += f''' {label_model_name} vs.''' lowerCamelCase__ : Any = title_str[:-4] lowerCamelCase__ : List[str] = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(lowerCamelCase_ ) plt.xlabel(lowerCamelCase_ ) plt.ylabel(lowerCamelCase_ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def lowerCamelCase_ ( ): lowerCamelCase__ : Tuple = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = parser.parse_args_into_dataclasses()[0] lowerCamelCase__ : Dict = Plot(args=_lowerCamelCase ) plot.plot() if __name__ == "__main__": main()
316
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
1
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class a_ ( unittest.TestCase ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=7, lowerCamelCase_=3, lowerCamelCase_=1_8, lowerCamelCase_=3_0, lowerCamelCase_=4_0_0, lowerCamelCase_=True, lowerCamelCase_=None, lowerCamelCase_=True, lowerCamelCase_=None, lowerCamelCase_=True, lowerCamelCase_=[0.5, 0.5, 0.5], lowerCamelCase_=[0.5, 0.5, 0.5], lowerCamelCase_=False, ): '''simple docstring''' lowerCamelCase__ : List[Any] = size if size is not None else {'height': 2_0, 'width': 2_0} lowerCamelCase__ : Optional[Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowerCamelCase__ : Any = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : List[str] = image_size lowerCamelCase__ : Union[str, Any] = min_resolution lowerCamelCase__ : str = max_resolution lowerCamelCase__ : int = do_resize lowerCamelCase__ : List[Any] = size lowerCamelCase__ : Optional[int] = do_center_crop lowerCamelCase__ : Optional[int] = crop_size lowerCamelCase__ : Optional[Any] = do_normalize lowerCamelCase__ : Any = image_mean lowerCamelCase__ : str = image_std lowerCamelCase__ : Dict = do_reduce_labels def a__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCamelCase_ ( ): lowerCamelCase__ : Any = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) lowerCamelCase__ : str = Image.open(dataset[0]['file'] ) lowerCamelCase__ : Optional[Any] = Image.open(dataset[1]['file'] ) return image, map def lowerCamelCase_ ( ): lowerCamelCase__ : Any = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) lowerCamelCase__ : int = Image.open(ds[0]['file'] ) lowerCamelCase__ : Tuple = Image.open(ds[1]['file'] ) lowerCamelCase__ : Optional[Any] = Image.open(ds[2]['file'] ) lowerCamelCase__ : Optional[Any] = Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BeitImageProcessor if is_vision_available() else None def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BeitImageProcessingTester(self ) @property def a__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_, 'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'size' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'image_std' ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'height': 2_0, 'width': 2_0} ) self.assertEqual(image_processor.crop_size, {'height': 1_8, 'width': 1_8} ) self.assertEqual(image_processor.do_reduce_labels, lowerCamelCase_ ) lowerCamelCase__ : int = self.image_processing_class.from_dict( self.image_processor_dict, size=4_2, crop_size=8_4, reduce_labels=lowerCamelCase_ ) self.assertEqual(image_processor.size, {'height': 4_2, 'width': 4_2} ) self.assertEqual(image_processor.crop_size, {'height': 8_4, 'width': 8_4} ) self.assertEqual(image_processor.do_reduce_labels, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, Image.Image ) # Test not batched input lowerCamelCase__ : Optional[int] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched lowerCamelCase__ : List[Any] = image_processing(lowerCamelCase_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_, numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, np.ndarray ) # Test not batched input lowerCamelCase__ : Any = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched lowerCamelCase__ : Dict = image_processing(lowerCamelCase_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_, torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, torch.Tensor ) # Test not batched input lowerCamelCase__ : str = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched lowerCamelCase__ : str = image_processing(lowerCamelCase_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : str = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_, torchify=lowerCamelCase_ ) lowerCamelCase__ : Tuple = [] for image in image_inputs: self.assertIsInstance(lowerCamelCase_, torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input lowerCamelCase__ : Tuple = image_processing(image_inputs[0], maps[0], return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual( encoding['labels'].shape, ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual(encoding['labels'].dtype, torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) # Test batched lowerCamelCase__ : Union[str, Any] = image_processing(lowerCamelCase_, lowerCamelCase_, return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual( encoding['labels'].shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual(encoding['labels'].dtype, torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) # Test not batched input (PIL images) lowerCamelCase__ , lowerCamelCase__ : int = prepare_semantic_single_inputs() lowerCamelCase__ : Optional[Any] = image_processing(lowerCamelCase_, lowerCamelCase_, return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual( encoding['labels'].shape, ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual(encoding['labels'].dtype, torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) # Test batched input (PIL images) lowerCamelCase__ , lowerCamelCase__ : int = prepare_semantic_batch_inputs() lowerCamelCase__ : Optional[int] = image_processing(lowerCamelCase_, lowerCamelCase_, return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape, ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual( encoding['labels'].shape, ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) self.assertEqual(encoding['labels'].dtype, torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 lowerCamelCase__ , lowerCamelCase__ : str = prepare_semantic_single_inputs() lowerCamelCase__ : List[str] = image_processing(lowerCamelCase_, lowerCamelCase_, return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 1_5_0 ) lowerCamelCase__ : List[Any] = True lowerCamelCase__ : int = image_processing(lowerCamelCase_, lowerCamelCase_, return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 )
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if len(_lowerCamelCase ) == 0: return False lowerCamelCase__ : Union[str, Any] = len(_lowerCamelCase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _lowerCamelCase ) else: return binary_search(a_list[midpoint + 1 :] , _lowerCamelCase ) if __name__ == "__main__": A_ : Tuple = input("Enter numbers separated by comma:\n").strip() A_ : Dict = [int(item.strip()) for item in user_input.split(",")] A_ : Dict = int(input("Enter the number to be found in the list:\n").strip()) A_ : Any = "" if binary_search(sequence, target) else "not " print(f"{target} was {not_str}found in {sequence}")
316
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Any = [1] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = 0, 0, 0 lowerCamelCase__ : Optional[Any] = ugly_nums[ia] * 2 lowerCamelCase__ : Any = ugly_nums[ia] * 3 lowerCamelCase__ : int = ugly_nums[ia] * 5 for _ in range(1 , _lowerCamelCase ): lowerCamelCase__ : List[str] = min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ugly_nums.append(_lowerCamelCase ) if next_num == next_a: ia += 1 lowerCamelCase__ : Optional[Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowerCamelCase__ : List[str] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowerCamelCase__ : Optional[int] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"{ugly_numbers(2_00) = }")
316
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class a_ ( unittest.TestCase ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=7, lowerCamelCase_=3, lowerCamelCase_=3_0, lowerCamelCase_=4_0_0, lowerCamelCase_=True, lowerCamelCase_=None, lowerCamelCase_=True, lowerCamelCase_=[0.5, 0.5, 0.5], lowerCamelCase_=[0.5, 0.5, 0.5], lowerCamelCase_=True, lowerCamelCase_=1 / 2_5_5, lowerCamelCase_=True, ): '''simple docstring''' lowerCamelCase__ : Any = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} lowerCamelCase__ : Dict = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Any = num_channels lowerCamelCase__ : Union[str, Any] = min_resolution lowerCamelCase__ : str = max_resolution lowerCamelCase__ : int = do_resize lowerCamelCase__ : Optional[int] = size lowerCamelCase__ : int = do_normalize lowerCamelCase__ : Optional[Any] = image_mean lowerCamelCase__ : Any = image_std lowerCamelCase__ : Dict = do_rescale lowerCamelCase__ : Any = rescale_factor lowerCamelCase__ : Optional[Any] = do_pad def a__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def a__ (self, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' if not batched: lowerCamelCase__ : int = image_inputs[0] if isinstance(lowerCamelCase_, Image.Image ): lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = image.size else: lowerCamelCase__ , lowerCamelCase__ : List[str] = image.shape[1], image.shape[2] if w < h: lowerCamelCase__ : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) lowerCamelCase__ : Any = self.size['shortest_edge'] elif w > h: lowerCamelCase__ : Optional[Any] = self.size['shortest_edge'] lowerCamelCase__ : List[str] = int(self.size['shortest_edge'] * w / h ) else: lowerCamelCase__ : Optional[Any] = self.size['shortest_edge'] lowerCamelCase__ : int = self.size['shortest_edge'] else: lowerCamelCase__ : Optional[int] = [] for image in image_inputs: lowerCamelCase__ , lowerCamelCase__ : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase__ : Union[str, Any] = max(lowerCamelCase_, key=lambda lowerCamelCase_ : item[0] )[0] lowerCamelCase__ : Dict = max(lowerCamelCase_, key=lambda lowerCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = DeformableDetrImageProcessor if is_vision_available() else None def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = DeformableDetrImageProcessingTester(self ) @property def a__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_, 'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'image_std' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'do_rescale' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'do_pad' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'size' ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} ) self.assertEqual(image_processor.do_pad, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict, size=4_2, max_size=8_4, pad_and_return_pixel_mask=lowerCamelCase_ ) self.assertEqual(image_processor.size, {'shortest_edge': 4_2, 'longest_edge': 8_4} ) self.assertEqual(image_processor.do_pad, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, Image.Image ) # Test not batched input lowerCamelCase__ : Optional[int] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCamelCase__ , lowerCamelCase__ : Dict = self.image_processor_tester.get_expected_values(lowerCamelCase_, batched=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = image_processing(lowerCamelCase_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_, numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, np.ndarray ) # Test not batched input lowerCamelCase__ : Optional[int] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Dict = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCamelCase__ : Union[str, Any] = image_processing(lowerCamelCase_, return_tensors='pt' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : int = self.image_processor_tester.get_expected_values(lowerCamelCase_, batched=lowerCamelCase_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_, torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, torch.Tensor ) # Test not batched input lowerCamelCase__ : str = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Tuple = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCamelCase__ : Optional[int] = image_processing(lowerCamelCase_, return_tensors='pt' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Any = self.image_processor_tester.get_expected_values(lowerCamelCase_, batched=lowerCamelCase_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f: lowerCamelCase__ : Tuple = json.loads(f.read() ) lowerCamelCase__ : Dict = {'image_id': 3_9_7_6_9, 'annotations': target} # encode them lowerCamelCase__ : Any = DeformableDetrImageProcessor() lowerCamelCase__ : List[Any] = image_processing(images=lowerCamelCase_, annotations=lowerCamelCase_, return_tensors='pt' ) # verify pixel values lowerCamelCase__ : Tuple = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape, lowerCamelCase_ ) lowerCamelCase__ : str = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], lowerCamelCase_, atol=1e-4 ) ) # verify area lowerCamelCase__ : Tuple = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], lowerCamelCase_ ) ) # verify boxes lowerCamelCase__ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], lowerCamelCase_, atol=1e-3 ) ) # verify image_id lowerCamelCase__ : Dict = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], lowerCamelCase_ ) ) # verify is_crowd lowerCamelCase__ : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], lowerCamelCase_ ) ) # verify class_labels lowerCamelCase__ : Any = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], lowerCamelCase_ ) ) # verify orig_size lowerCamelCase__ : Optional[int] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], lowerCamelCase_ ) ) # verify size lowerCamelCase__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], lowerCamelCase_ ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f: lowerCamelCase__ : Any = json.loads(f.read() ) lowerCamelCase__ : List[str] = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} lowerCamelCase__ : Any = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowerCamelCase__ : Union[str, Any] = DeformableDetrImageProcessor(format='coco_panoptic' ) lowerCamelCase__ : str = image_processing(images=lowerCamelCase_, annotations=lowerCamelCase_, masks_path=lowerCamelCase_, return_tensors='pt' ) # verify pixel values lowerCamelCase__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], lowerCamelCase_, atol=1e-4 ) ) # verify area lowerCamelCase__ : Dict = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], lowerCamelCase_ ) ) # verify boxes lowerCamelCase__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], lowerCamelCase_, atol=1e-3 ) ) # verify image_id lowerCamelCase__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], lowerCamelCase_ ) ) # verify is_crowd lowerCamelCase__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], lowerCamelCase_ ) ) # verify class_labels lowerCamelCase__ : str = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], lowerCamelCase_ ) ) # verify masks lowerCamelCase__ : int = 8_2_2_8_7_3 self.assertEqual(encoding['labels'][0]['masks'].sum().item(), lowerCamelCase_ ) # verify orig_size lowerCamelCase__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], lowerCamelCase_ ) ) # verify size lowerCamelCase__ : str = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], lowerCamelCase_ ) )
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
1
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Any = ['vqvae'] def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_, mel=lowerCamelCase_, vqvae=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' return 5_0 if isinstance(self.scheduler, lowerCamelCase_ ) else 1_0_0_0 @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = 0, lowerCamelCase_ = 0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = 0, lowerCamelCase_ = 0, lowerCamelCase_ = None, lowerCamelCase_ = 0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_=True, ): '''simple docstring''' lowerCamelCase__ : Optional[int] = steps or self.get_default_steps() self.scheduler.set_timesteps(lowerCamelCase_ ) lowerCamelCase__ : List[str] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCamelCase__ : Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCamelCase__ : Optional[int] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ), generator=lowerCamelCase_, device=self.device, ) lowerCamelCase__ : Optional[int] = noise lowerCamelCase__ : List[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = self.mel.audio_slice_to_image(lowerCamelCase_ ) lowerCamelCase__ : Any = np.frombuffer(input_image.tobytes(), dtype='uint8' ).reshape( (input_image.height, input_image.width) ) lowerCamelCase__ : int = (input_image / 2_5_5) * 2 - 1 lowerCamelCase__ : int = torch.tensor(input_image[np.newaxis, :, :], dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCamelCase__ : Any = self.vqvae.encode(torch.unsqueeze(lowerCamelCase_, 0 ) ).latent_dist.sample( generator=lowerCamelCase_ )[0] lowerCamelCase__ : str = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCamelCase__ : Dict = self.scheduler.add_noise(lowerCamelCase_, lowerCamelCase_, self.scheduler.timesteps[start_step - 1] ) lowerCamelCase__ : Union[str, Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCamelCase__ : Dict = int(mask_start_secs * pixels_per_second ) lowerCamelCase__ : Any = int(mask_end_secs * pixels_per_second ) lowerCamelCase__ : str = self.scheduler.add_noise(lowerCamelCase_, lowerCamelCase_, torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet, lowerCamelCase_ ): lowerCamelCase__ : str = self.unet(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ )['sample'] else: lowerCamelCase__ : int = self.unet(lowerCamelCase_, lowerCamelCase_ )['sample'] if isinstance(self.scheduler, lowerCamelCase_ ): lowerCamelCase__ : Any = self.scheduler.step( model_output=lowerCamelCase_, timestep=lowerCamelCase_, sample=lowerCamelCase_, eta=lowerCamelCase_, generator=lowerCamelCase_, )['prev_sample'] else: lowerCamelCase__ : Union[str, Any] = self.scheduler.step( model_output=lowerCamelCase_, timestep=lowerCamelCase_, sample=lowerCamelCase_, generator=lowerCamelCase_, )['prev_sample'] if mask is not None: if mask_start > 0: lowerCamelCase__ : int = mask[:, step, :, :mask_start] if mask_end > 0: lowerCamelCase__ : Tuple = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCamelCase__ : Dict = 1 / self.vqvae.config.scaling_factor * images lowerCamelCase__ : List[Any] = self.vqvae.decode(lowerCamelCase_ )['sample'] lowerCamelCase__ : List[str] = (images / 2 + 0.5).clamp(0, 1 ) lowerCamelCase__ : Optional[int] = images.cpu().permute(0, 2, 3, 1 ).numpy() lowerCamelCase__ : Optional[Any] = (images * 2_5_5).round().astype('uint8' ) lowerCamelCase__ : Optional[int] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowerCamelCase_, mode='RGB' ).convert('L' ) for _ in images) ) lowerCamelCase__ : Tuple = [self.mel.image_to_audio(lowerCamelCase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowerCamelCase_ )[:, np.newaxis, :] ), **ImagePipelineOutput(lowerCamelCase_ ) ) @torch.no_grad() def a__ (self, lowerCamelCase_, lowerCamelCase_ = 5_0 ): '''simple docstring''' assert isinstance(self.scheduler, lowerCamelCase_ ) self.scheduler.set_timesteps(lowerCamelCase_ ) lowerCamelCase__ : Any = np.array( [np.frombuffer(image.tobytes(), dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) lowerCamelCase__ : Union[str, Any] = (sample / 2_5_5) * 2 - 1 lowerCamelCase__ : str = torch.Tensor(lowerCamelCase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps, (0,) ) ): lowerCamelCase__ : List[Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCamelCase__ : Optional[Any] = self.scheduler.alphas_cumprod[t] lowerCamelCase__ : Union[str, Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCamelCase__ : Optional[Any] = 1 - alpha_prod_t lowerCamelCase__ : Tuple = self.unet(lowerCamelCase_, lowerCamelCase_ )['sample'] lowerCamelCase__ : Optional[Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCamelCase__ : Dict = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCamelCase__ : Optional[int] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = acos(torch.dot(torch.flatten(lowerCamelCase_ ), torch.flatten(lowerCamelCase_ ) ) / torch.norm(lowerCamelCase_ ) / torch.norm(lowerCamelCase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowerCamelCase_ ) + sin(alpha * theta ) * xa / sin(lowerCamelCase_ )
316
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [[float('inf' ) for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): lowerCamelCase__ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_lowerCamelCase ): # looping through rows of graph array for i in range(_lowerCamelCase ): # looping through columns of graph array for j in range(_lowerCamelCase ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowerCamelCase__ : Union[str, Any] = dist[i][k] + dist[k][j] _print_dist(_lowerCamelCase , _lowerCamelCase ) return dist, v if __name__ == "__main__": A_ : Optional[Any] = int(input("Enter number of vertices: ")) A_ : Optional[Any] = int(input("Enter number of edges: ")) A_ : Union[str, Any] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): A_ : Optional[int] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) A_ : Any = int(input("Enter source:")) A_ : Dict = int(input("Enter destination:")) A_ : List[str] = float(input("Enter weight:")) A_ : Optional[int] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
316
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCamelCase__ : List[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements lowerCamelCase__ : Tuple = [[0.0, 0.0], [0.0, 0.0]] lowerCamelCase__ , lowerCamelCase__ : int = matrix[1][1], matrix[0][0] lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_lowerCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCamelCase__ : List[Any] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix lowerCamelCase__ : Tuple = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCamelCase__ : List[str] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCamelCase__ : str = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCamelCase__ : Tuple = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCamelCase__ : Union[str, Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCamelCase__ : Union[str, Any] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCamelCase__ : List[Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCamelCase__ : Union[str, Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCamelCase__ : Dict = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCamelCase__ : List[str] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCamelCase__ : Any = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): lowerCamelCase__ : Optional[int] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCamelCase__ : List[str] = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_lowerCamelCase ) # Calculate the inverse of the matrix return [[float(d(_lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
316
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
1
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_0_0, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=4, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=[0, 1, 2, 3], ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Dict = 1_0_0 lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Union[str, Any] = image_size lowerCamelCase__ : str = patch_size lowerCamelCase__ : Dict = num_channels lowerCamelCase__ : Dict = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Dict = type_sequence_label_size lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : str = scope lowerCamelCase__ : Optional[int] = out_indices lowerCamelCase__ : Union[str, Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : str = num_patches + 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : str = None lowerCamelCase__ : Optional[int] = None if self.use_labels: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def a__ (self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = BeitModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = BeitForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Union[str, Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : List[str] = BeitForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Any = BeitForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : int = BeitForSemanticSegmentation(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = config_and_inputs lowerCamelCase__ : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase__ : Dict = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ : Tuple = False lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Tuple = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = BeitModelTester(self ) lowerCamelCase__ : Optional[int] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, nn.Linear ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[Any] = model_class(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Tuple = [*signature.parameters.keys()] lowerCamelCase__ : str = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if not self.model_tester.is_training: return lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Union[str, Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCamelCase_ ), BeitForMaskedImageModeling]: continue lowerCamelCase__ : int = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.train() lowerCamelCase__ : List[str] = self._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) lowerCamelCase__ : str = model(**lowerCamelCase_ ).loss loss.backward() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCamelCase__ : Tuple = False lowerCamelCase__ : Dict = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCamelCase_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase_ ) model.train() lowerCamelCase__ : str = self._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(**lowerCamelCase_ ).loss loss.backward() def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : int = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: lowerCamelCase__ : Tuple = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f'''Parameter {name} of model {model_class} seems not properly initialized''', ) @slow def a__ (self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Union[str, Any] = BeitModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(lowerCamelCase_ ) lowerCamelCase__ : Any = self.default_image_processor lowerCamelCase__ : List[Any] = prepare_img() lowerCamelCase__ : int = image_processor(images=lowerCamelCase_, return_tensors='pt' ).pixel_values.to(lowerCamelCase_ ) # prepare bool_masked_pos lowerCamelCase__ : Any = torch.ones((1, 1_9_6), dtype=torch.bool ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : List[str] = model(pixel_values=lowerCamelCase_, bool_masked_pos=lowerCamelCase_ ) lowerCamelCase__ : List[str] = outputs.logits # verify the logits lowerCamelCase__ : str = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], lowerCamelCase_, atol=1e-2 ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(lowerCamelCase_ ) lowerCamelCase__ : str = self.default_image_processor lowerCamelCase__ : int = prepare_img() lowerCamelCase__ : Any = image_processor(images=lowerCamelCase_, return_tensors='pt' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : str = model(**lowerCamelCase_ ) lowerCamelCase__ : Any = outputs.logits # verify the logits lowerCamelCase__ : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(logits[0, :3], lowerCamelCase_, atol=1e-4 ) ) lowerCamelCase__ : str = 2_8_1 self.assertEqual(logits.argmax(-1 ).item(), lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( lowerCamelCase_ ) lowerCamelCase__ : str = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : List[str] = image_processor(images=lowerCamelCase_, return_tensors='pt' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Any = model(**lowerCamelCase_ ) lowerCamelCase__ : int = outputs.logits # verify the logits lowerCamelCase__ : Union[str, Any] = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape, lowerCamelCase_ ) lowerCamelCase__ : int = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(logits[0, :3], lowerCamelCase_, atol=1e-4 ) ) lowerCamelCase__ : Tuple = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item(), lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) lowerCamelCase__ : Optional[int] = model.to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = BeitImageProcessor(do_resize=lowerCamelCase_, size=6_4_0, do_center_crop=lowerCamelCase_ ) lowerCamelCase__ : List[str] = load_dataset('hf-internal-testing/fixtures_ade20k', split='test' ) lowerCamelCase__ : Optional[Any] = Image.open(ds[0]['file'] ) lowerCamelCase__ : Optional[Any] = image_processor(images=lowerCamelCase_, return_tensors='pt' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Dict = model(**lowerCamelCase_ ) lowerCamelCase__ : Dict = outputs.logits # verify the logits lowerCamelCase__ : List[str] = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Dict = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: lowerCamelCase__ : List[str] = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ], device=lowerCamelCase_, ) else: lowerCamelCase__ : Tuple = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ], device=lowerCamelCase_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCamelCase_, atol=1e-4 ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) lowerCamelCase__ : List[Any] = model.to(lowerCamelCase_ ) lowerCamelCase__ : Any = BeitImageProcessor(do_resize=lowerCamelCase_, size=6_4_0, do_center_crop=lowerCamelCase_ ) lowerCamelCase__ : str = load_dataset('hf-internal-testing/fixtures_ade20k', split='test' ) lowerCamelCase__ : List[str] = Image.open(ds[0]['file'] ) lowerCamelCase__ : Tuple = image_processor(images=lowerCamelCase_, return_tensors='pt' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : List[str] = model(**lowerCamelCase_ ) lowerCamelCase__ : List[Any] = outputs.logits.detach().cpu() lowerCamelCase__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase_, target_sizes=[(5_0_0, 3_0_0)] ) lowerCamelCase__ : int = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape, lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape, lowerCamelCase_ )
316
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
1
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ : Tuple = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[str] = PegasusTokenizer lowerCamelCase__ : Dict = PegasusTokenizerFast lowerCamelCase__ : Tuple = True lowerCamelCase__ : Optional[Any] = True def a__ (self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : Union[str, Any] = PegasusTokenizer(lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ("This is a test", "This is a test") def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = '</s>' lowerCamelCase__ : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ), lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ), lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '<pad>' ) self.assertEqual(vocab_keys[1], '</s>' ) self.assertEqual(vocab_keys[-1], 'v' ) self.assertEqual(len(lowerCamelCase_ ), 1_1_0_3 ) def a__ (self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1_1_0_3 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase__ : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCamelCase__ : Any = rust_tokenizer([raw_input_str], return_tensors=lowerCamelCase_, add_special_tokens=lowerCamelCase_ ).input_ids[0] lowerCamelCase__ : Any = py_tokenizer([raw_input_str], return_tensors=lowerCamelCase_, add_special_tokens=lowerCamelCase_ ).input_ids[0] self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase__ : Optional[Any] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCamelCase__ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase__ : Union[str, Any] = tokenizer([raw_input_str], return_tensors=lowerCamelCase_ ).input_ids[0] self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCamelCase__ : List[str] = 'To ensure a smooth flow of bank resolutions.' lowerCamelCase__ : int = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase__ : List[Any] = tokenizer([raw_input_str], return_tensors=lowerCamelCase_ ).input_ids[0] self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['This is going to be way too long.' * 1_5_0, 'short example'] lowerCamelCase__ : Optional[Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCamelCase__ : Optional[int] = self._large_tokenizer(lowerCamelCase_, padding=lowerCamelCase_, truncation=lowerCamelCase_, return_tensors='pt' ) lowerCamelCase__ : Any = self._large_tokenizer( text_target=lowerCamelCase_, max_length=5, padding=lowerCamelCase_, truncation=lowerCamelCase_, return_tensors='pt' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase_ ) == 2 # input_ids, attention_mask. @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = {'input_ids': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_, model_name='google/bigbird-pegasus-large-arxiv', revision='ba85d0851d708441f91440d509690f1ab6353415', ) @require_sentencepiece @require_tokenizers class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[str] = PegasusTokenizer lowerCamelCase__ : List[str] = PegasusTokenizerFast lowerCamelCase__ : Dict = True lowerCamelCase__ : str = True def a__ (self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : Optional[Any] = PegasusTokenizer(lowerCamelCase_, offset=0, mask_token_sent=lowerCamelCase_, mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ("This is a test", "This is a test") def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase__ : str = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase__ : Optional[int] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCamelCase__ : List[str] = rust_tokenizer([raw_input_str], return_tensors=lowerCamelCase_, add_special_tokens=lowerCamelCase_ ).input_ids[0] lowerCamelCase__ : Optional[int] = py_tokenizer([raw_input_str], return_tensors=lowerCamelCase_, add_special_tokens=lowerCamelCase_ ).input_ids[0] self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ['This is going to be way too long.' * 1_0_0_0, 'short example'] lowerCamelCase__ : Tuple = ['not super long but more than 5 tokens', 'tiny'] lowerCamelCase__ : Optional[Any] = self._large_tokenizer(lowerCamelCase_, padding=lowerCamelCase_, truncation=lowerCamelCase_, return_tensors='pt' ) lowerCamelCase__ : Any = self._large_tokenizer( text_target=lowerCamelCase_, max_length=5, padding=lowerCamelCase_, truncation=lowerCamelCase_, return_tensors='pt' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase_ ) == 2 # input_ids, attention_mask. def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCamelCase__ : List[Any] = self._large_tokenizer(lowerCamelCase_ ).input_ids self.assertListEqual( lowerCamelCase_, [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1], )
316
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
1
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = flatten_dict(_lowerCamelCase ) return flax_params def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = {} lowerCamelCase__ : Optional[Any] = { 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } lowerCamelCase__ : Union[str, Any] = { 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowerCamelCase__ : Union[str, Any] = '.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowerCamelCase__ : int = new_key.replace(_lowerCamelCase , _lowerCamelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowerCamelCase__ : Optional[Any] = new_key.replace(_lowerCamelCase , _lowerCamelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowerCamelCase__ : List[Any] = re.sub(r'layers_(\d+)' , r'layer.\1' , _lowerCamelCase ) lowerCamelCase__ : Optional[Any] = new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowerCamelCase__ : int = re.sub(r'layers_(\d+)' , r'layer.\1' , _lowerCamelCase ) lowerCamelCase__ : Any = flax_dict[key] lowerCamelCase__ : List[str] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowerCamelCase__ : Dict = torch.from_numpy(converted_dict[key].T ) else: lowerCamelCase__ : Union[str, Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False ): lowerCamelCase__ : List[Any] = get_flax_param(_lowerCamelCase ) if not use_large: lowerCamelCase__ : Optional[Any] = PixaStructVisionConfig() lowerCamelCase__ : Dict = PixaStructTextConfig() else: lowerCamelCase__ : Optional[Any] = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowerCamelCase__ : Union[str, Any] = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowerCamelCase__ : Optional[Any] = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_lowerCamelCase ) lowerCamelCase__ : Any = PixaStructForConditionalGeneration(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = rename_and_convert_flax_params(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) lowerCamelCase__ : Tuple = PixaStructImageProcessor() lowerCamelCase__ : Tuple = PixaStructProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) if use_large: lowerCamelCase__ : Union[str, Any] = 4096 lowerCamelCase__ : int = True # mkdir if needed os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) print('Model saved in {}'.format(_lowerCamelCase ) ) if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") A_ : List[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
316
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
1
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if len(_lowerCamelCase ) != 2 or len(a[0] ) != 2 or len(_lowerCamelCase ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) lowerCamelCase__ : Optional[int] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_lowerCamelCase ) ) ] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_lowerCamelCase ) ) ] def lowerCamelCase_ ( _lowerCamelCase ): if len(_lowerCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) lowerCamelCase__ : Union[str, Any] = len(_lowerCamelCase ) lowerCamelCase__ : Any = matrix_length // 2 lowerCamelCase__ : Tuple = [[a[i][j] for j in range(_lowerCamelCase , _lowerCamelCase )] for i in range(_lowerCamelCase )] lowerCamelCase__ : str = [ [a[i][j] for j in range(_lowerCamelCase , _lowerCamelCase )] for i in range(_lowerCamelCase , _lowerCamelCase ) ] lowerCamelCase__ : Dict = [[a[i][j] for j in range(_lowerCamelCase )] for i in range(_lowerCamelCase )] lowerCamelCase__ : List[str] = [[a[i][j] for j in range(_lowerCamelCase )] for i in range(_lowerCamelCase , _lowerCamelCase )] return top_left, top_right, bot_left, bot_right def lowerCamelCase_ ( _lowerCamelCase ): return len(_lowerCamelCase ), len(matrix[0] ) def lowerCamelCase_ ( _lowerCamelCase ): print('\n'.join(str(_lowerCamelCase ) for line in matrix ) ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if matrix_dimensions(_lowerCamelCase ) == (2, 2): return default_matrix_multiplication(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = split_matrix(_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = split_matrix(_lowerCamelCase ) lowerCamelCase__ : Dict = actual_strassen(_lowerCamelCase , matrix_subtraction(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ : Tuple = actual_strassen(matrix_addition(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) lowerCamelCase__ : Optional[int] = actual_strassen(matrix_addition(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) lowerCamelCase__ : int = actual_strassen(_lowerCamelCase , matrix_subtraction(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ : Any = actual_strassen(matrix_addition(_lowerCamelCase , _lowerCamelCase ) , matrix_addition(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ : Any = actual_strassen(matrix_subtraction(_lowerCamelCase , _lowerCamelCase ) , matrix_addition(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ : List[str] = actual_strassen(matrix_subtraction(_lowerCamelCase , _lowerCamelCase ) , matrix_addition(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ : int = matrix_addition(matrix_subtraction(matrix_addition(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) , _lowerCamelCase ) lowerCamelCase__ : Dict = matrix_addition(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : List[Any] = matrix_addition(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Dict = matrix_subtraction(matrix_subtraction(matrix_addition(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) , _lowerCamelCase ) # construct the new matrix from our 4 quadrants lowerCamelCase__ : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(_lowerCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if matrix_dimensions(_lowerCamelCase )[1] != matrix_dimensions(_lowerCamelCase )[0]: lowerCamelCase__ : List[Any] = ( 'Unable to multiply these matrices, please check the dimensions.\n' f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = matrix_dimensions(_lowerCamelCase ) lowerCamelCase__ : Dict = matrix_dimensions(_lowerCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowerCamelCase__ : int = max(*_lowerCamelCase , *_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = int(math.pow(2 , math.ceil(math.loga(_lowerCamelCase ) ) ) ) lowerCamelCase__ : Union[str, Any] = matrixa lowerCamelCase__ : Union[str, Any] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , _lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , _lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowerCamelCase__ : List[str] = actual_strassen(_lowerCamelCase , _lowerCamelCase ) # Removing the additional zeros for i in range(0 , _lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _lowerCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A_ : Dict = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A_ : Union[str, Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
316
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging A_ : Dict = logging.get_logger(__name__) A_ : List[str] = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = 'van' def __init__(self, lowerCamelCase_=2_2_4, lowerCamelCase_=3, lowerCamelCase_=[7, 3, 3, 3], lowerCamelCase_=[4, 2, 2, 2], lowerCamelCase_=[6_4, 1_2_8, 3_2_0, 5_1_2], lowerCamelCase_=[3, 3, 1_2, 3], lowerCamelCase_=[8, 8, 4, 4], lowerCamelCase_="gelu", lowerCamelCase_=0.02, lowerCamelCase_=1e-6, lowerCamelCase_=1e-2, lowerCamelCase_=0.0, lowerCamelCase_=0.0, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = image_size lowerCamelCase__ : Optional[Any] = num_channels lowerCamelCase__ : List[str] = patch_sizes lowerCamelCase__ : int = strides lowerCamelCase__ : Optional[int] = hidden_sizes lowerCamelCase__ : Optional[Any] = depths lowerCamelCase__ : List[str] = mlp_ratios lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Optional[Any] = initializer_range lowerCamelCase__ : List[Any] = layer_norm_eps lowerCamelCase__ : Any = layer_scale_init_value lowerCamelCase__ : Dict = drop_path_rate lowerCamelCase__ : Union[str, Any] = dropout_rate
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = 2 lowerCamelCase__ : List[str] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_lowerCamelCase ) if n > 1: factors.append(_lowerCamelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
1
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) A_ : Optional[Any] = logging.getLogger(__name__) def lowerCamelCase_ ( ): lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_lowerCamelCase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_lowerCamelCase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_lowerCamelCase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_lowerCamelCase , default='data/dump' , help='The dump file prefix.' ) lowerCamelCase__ : Dict = parser.parse_args() logger.info(f'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": lowerCamelCase__ : Any = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase__ : Any = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCamelCase__ : str = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCamelCase__ : List[str] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase__ : Any = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCamelCase__ : Union[str, Any] = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCamelCase__ : str = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase__ : Optional[Any] = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCamelCase__ : Tuple = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(f'''Loading text from {args.file_path}''' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCamelCase__ : str = fp.readlines() logger.info('Start encoding' ) logger.info(f'''{len(_lowerCamelCase )} examples to process.''' ) lowerCamelCase__ : int = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Union[str, Any] = 1_0000 lowerCamelCase__ : Tuple = time.time() for text in data: lowerCamelCase__ : Optional[Any] = f'''{bos} {text.strip()} {sep}''' lowerCamelCase__ : Union[str, Any] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) rslt.append(_lowerCamelCase ) iter += 1 if iter % interval == 0: lowerCamelCase__ : Union[str, Any] = time.time() logger.info(f'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) lowerCamelCase__ : List[Any] = time.time() logger.info('Finished binarization' ) logger.info(f'''{len(_lowerCamelCase )} examples processed.''' ) lowerCamelCase__ : Any = f'''{args.dump_file}.{args.tokenizer_name}.pickle''' lowerCamelCase__ : Dict = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCamelCase__ : List[Any] = [np.uintaa(_lowerCamelCase ) for d in rslt] else: lowerCamelCase__ : str = [np.intaa(_lowerCamelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'''Dump to {dp_file}''' ) with open(_lowerCamelCase , 'wb' ) as handle: pickle.dump(rslt_ , _lowerCamelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
316
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[int] = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCamelCase_ ( _lowerCamelCase ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCamelCase_ ( ): with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" lowerCamelCase__ : Dict = [1, 2, 3] with pytest.raises(_lowerCamelCase ): with parallel_backend('unsupported backend' ): map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=2 ) with pytest.raises(_lowerCamelCase ): with parallel_backend('unsupported backend' ): map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = [1, 2] lowerCamelCase__ : Tuple = {'a': 1, 'b': 2} lowerCamelCase__ : List[Any] = {'a': [1, 2], 'b': [3, 4]} lowerCamelCase__ : Optional[int] = {'a': {'1': 1}, 'b': 2} lowerCamelCase__ : List[Any] = {'a': 1, 'b': 2, 'c': 3, 'd': 4} lowerCamelCase__ : List[str] = [2, 3] lowerCamelCase__ : List[Any] = {'a': 2, 'b': 3} lowerCamelCase__ : Optional[Any] = {'a': [2, 3], 'b': [4, 5]} lowerCamelCase__ : Any = {'a': {'1': 2}, 'b': 3} lowerCamelCase__ : List[Any] = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa
316
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = np.inf def set_batch_size(_lowerCamelCase ) -> None: nonlocal batch_size if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary": lowerCamelCase__ : str = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowerCamelCase , _lowerCamelCase ) return None if batch_size is np.inf else batch_size class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = False, lowerCamelCase_ = False, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' super().__init__( lowerCamelCase_, split=lowerCamelCase_, features=lowerCamelCase_, cache_dir=lowerCamelCase_, keep_in_memory=lowerCamelCase_, streaming=lowerCamelCase_, num_proc=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : str = path_or_paths if isinstance(lowerCamelCase_, lowerCamelCase_ ) else {self.split: path_or_paths} lowerCamelCase__ : Optional[Any] = _PACKAGED_DATASETS_MODULES['parquet'][1] lowerCamelCase__ : List[Any] = Parquet( cache_dir=lowerCamelCase_, data_files=lowerCamelCase_, features=lowerCamelCase_, hash=lowerCamelCase_, **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' if self.streaming: lowerCamelCase__ : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCamelCase__ : str = None lowerCamelCase__ : str = None lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = None self.builder.download_and_prepare( download_config=lowerCamelCase_, download_mode=lowerCamelCase_, verification_mode=lowerCamelCase_, base_path=lowerCamelCase_, num_proc=self.num_proc, ) lowerCamelCase__ : List[str] = self.builder.as_dataset( split=self.split, verification_mode=lowerCamelCase_, in_memory=self.keep_in_memory ) return dataset class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Optional[int] = dataset lowerCamelCase__ : List[Any] = path_or_buf lowerCamelCase__ : Tuple = batch_size or get_writer_batch_size(dataset.features ) lowerCamelCase__ : str = parquet_writer_kwargs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf, (str, bytes, os.PathLike) ): with open(self.path_or_buf, 'wb+' ) as buffer: lowerCamelCase__ : List[str] = self._write(file_obj=lowerCamelCase_, batch_size=lowerCamelCase_, **self.parquet_writer_kwargs ) else: lowerCamelCase__ : int = self._write(file_obj=self.path_or_buf, batch_size=lowerCamelCase_, **self.parquet_writer_kwargs ) return written def a__ (self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = 0 lowerCamelCase__ : List[str] = parquet_writer_kwargs.pop('path_or_buf', lowerCamelCase_ ) lowerCamelCase__ : str = self.dataset.features.arrow_schema lowerCamelCase__ : str = pq.ParquetWriter(lowerCamelCase_, schema=lowerCamelCase_, **lowerCamelCase_ ) for offset in logging.tqdm( range(0, len(self.dataset ), lowerCamelCase_ ), unit='ba', disable=not logging.is_progress_bar_enabled(), desc='Creating parquet from Arrow format', ): lowerCamelCase__ : List[Any] = query_table( table=self.dataset._data, key=slice(lowerCamelCase_, offset + batch_size ), indices=self.dataset._indices if self.dataset._indices is not None else None, ) writer.write_table(lowerCamelCase_ ) written += batch.nbytes writer.close() return written
316
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase = 100_0000 ): lowerCamelCase__ : Optional[int] = 1 lowerCamelCase__ : List[Any] = 1 lowerCamelCase__ : List[Any] = {1: 1} for inputa in range(2 , _lowerCamelCase ): lowerCamelCase__ : int = 0 lowerCamelCase__ : Dict = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCamelCase__ : Union[str, Any] = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCamelCase__ : int = counter if counter > pre_counter: lowerCamelCase__ : List[str] = inputa lowerCamelCase__ : str = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = SwinConfig() lowerCamelCase__ : List[str] = swin_name.split('_' ) lowerCamelCase__ : Tuple = name_split[1] lowerCamelCase__ : List[str] = int(name_split[4] ) lowerCamelCase__ : List[Any] = int(name_split[3][-1] ) if model_size == "tiny": lowerCamelCase__ : Union[str, Any] = 96 lowerCamelCase__ : Any = (2, 2, 6, 2) lowerCamelCase__ : Union[str, Any] = (3, 6, 12, 24) elif model_size == "small": lowerCamelCase__ : List[Any] = 96 lowerCamelCase__ : List[Any] = (2, 2, 18, 2) lowerCamelCase__ : Any = (3, 6, 12, 24) elif model_size == "base": lowerCamelCase__ : Union[str, Any] = 128 lowerCamelCase__ : List[Any] = (2, 2, 18, 2) lowerCamelCase__ : Union[str, Any] = (4, 8, 16, 32) else: lowerCamelCase__ : int = 192 lowerCamelCase__ : List[str] = (2, 2, 18, 2) lowerCamelCase__ : str = (6, 12, 24, 48) if "in22k" in swin_name: lowerCamelCase__ : Tuple = 2_1841 else: lowerCamelCase__ : List[Any] = 1000 lowerCamelCase__ : Optional[Any] = 'huggingface/label-files' lowerCamelCase__ : Dict = 'imagenet-1k-id2label.json' lowerCamelCase__ : Tuple = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : Dict = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Union[str, Any] = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : List[str] = img_size lowerCamelCase__ : Tuple = num_classes lowerCamelCase__ : Optional[Any] = embed_dim lowerCamelCase__ : List[Any] = depths lowerCamelCase__ : Optional[int] = num_heads lowerCamelCase__ : Optional[int] = window_size return config def lowerCamelCase_ ( _lowerCamelCase ): if "patch_embed.proj" in name: lowerCamelCase__ : str = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCamelCase__ : Any = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: lowerCamelCase__ : Any = 'encoder.' + name if "attn.proj" in name: lowerCamelCase__ : Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCamelCase__ : List[Any] = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCamelCase__ : Tuple = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCamelCase__ : str = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCamelCase__ : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase__ : Optional[int] = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": lowerCamelCase__ : Any = 'layernorm.weight' if name == "norm.bias": lowerCamelCase__ : str = 'layernorm.bias' if "head" in name: lowerCamelCase__ : str = name.replace('head' , 'classifier' ) else: lowerCamelCase__ : List[str] = 'swin.' + name return name def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for key in orig_state_dict.copy().keys(): lowerCamelCase__ : int = orig_state_dict.pop(_lowerCamelCase ) if "mask" in key: continue elif "qkv" in key: lowerCamelCase__ : Optional[int] = key.split('.' ) lowerCamelCase__ : Any = int(key_split[1] ) lowerCamelCase__ : List[str] = int(key_split[3] ) lowerCamelCase__ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCamelCase__ : Tuple = val[:dim, :] lowerCamelCase__ : int = val[ dim : dim * 2, : ] lowerCamelCase__ : Optional[Any] = val[-dim:, :] else: lowerCamelCase__ : List[Any] = val[ :dim ] lowerCamelCase__ : List[Any] = val[ dim : dim * 2 ] lowerCamelCase__ : Optional[Any] = val[ -dim: ] else: lowerCamelCase__ : Union[str, Any] = val return orig_state_dict def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() lowerCamelCase__ : int = get_swin_config(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = SwinForImageClassification(_lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = convert_state_dict(timm_model.state_dict() , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Tuple = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) lowerCamelCase__ : Any = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) lowerCamelCase__ : List[str] = image_processor(images=_lowerCamelCase , return_tensors='pt' ) lowerCamelCase__ : Any = timm_model(inputs['pixel_values'] ) lowerCamelCase__ : Optional[Any] = model(**_lowerCamelCase ).logits assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) print(f'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A_ : List[str] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
316
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
1
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = {} def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=1 ): '''simple docstring''' if self.graph.get(lowerCamelCase_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowerCamelCase__ : Union[str, Any] = [[w, v]] if not self.graph.get(lowerCamelCase_ ): lowerCamelCase__ : int = [] def a__ (self ): '''simple docstring''' return list(self.graph ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self.graph.get(lowerCamelCase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCamelCase_ ) def a__ (self, lowerCamelCase_=-2, lowerCamelCase_=-1 ): '''simple docstring''' if s == d: return [] lowerCamelCase__ : str = [] lowerCamelCase__ : List[str] = [] if s == -2: lowerCamelCase__ : Dict = list(self.graph )[0] stack.append(lowerCamelCase_ ) visited.append(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCamelCase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCamelCase_ ) != 0: lowerCamelCase__ : Union[str, Any] = stack[len(lowerCamelCase_ ) - 1] else: lowerCamelCase__ : Tuple = ss # check if se have reached the starting point if len(lowerCamelCase_ ) == 0: return visited def a__ (self, lowerCamelCase_=-1 ): '''simple docstring''' if c == -1: lowerCamelCase__ : int = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(lowerCamelCase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): lowerCamelCase__ : List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCamelCase_, lowerCamelCase_, 1 ) def a__ (self, lowerCamelCase_=-2 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = deque() lowerCamelCase__ : Dict = [] if s == -2: lowerCamelCase__ : Optional[int] = list(self.graph )[0] d.append(lowerCamelCase_ ) visited.append(lowerCamelCase_ ) while d: lowerCamelCase__ : Union[str, Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def a__ (self, lowerCamelCase_ ): '''simple docstring''' return len(self.graph[u] ) def a__ (self, lowerCamelCase_=-2 ): '''simple docstring''' lowerCamelCase__ : Any = [] lowerCamelCase__ : List[str] = [] if s == -2: lowerCamelCase__ : Optional[int] = list(self.graph )[0] stack.append(lowerCamelCase_ ) visited.append(lowerCamelCase_ ) lowerCamelCase__ : Dict = s lowerCamelCase__ : List[str] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : Tuple = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : str = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCamelCase_ ) != 0: lowerCamelCase__ : List[str] = stack[len(lowerCamelCase_ ) - 1] else: lowerCamelCase__ : List[Any] = ss # check if se have reached the starting point if len(lowerCamelCase_ ) == 0: return sorted_nodes def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = [] lowerCamelCase__ : str = [] lowerCamelCase__ : Tuple = list(self.graph )[0] stack.append(lowerCamelCase_ ) visited.append(lowerCamelCase_ ) lowerCamelCase__ : Tuple = -2 lowerCamelCase__ : Any = [] lowerCamelCase__ : List[str] = s lowerCamelCase__ : str = False lowerCamelCase__ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase__ : Optional[int] = len(lowerCamelCase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase__ : Optional[int] = True if len(lowerCamelCase_ ) != 0: lowerCamelCase__ : List[Any] = stack[len(lowerCamelCase_ ) - 1] else: lowerCamelCase__ : Union[str, Any] = False indirect_parents.append(lowerCamelCase_ ) lowerCamelCase__ : str = s lowerCamelCase__ : Any = ss # check if se have reached the starting point if len(lowerCamelCase_ ) == 0: return list(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = [] lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : str = list(self.graph )[0] stack.append(lowerCamelCase_ ) visited.append(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = -2 lowerCamelCase__ : str = [] lowerCamelCase__ : Optional[Any] = s lowerCamelCase__ : Any = False lowerCamelCase__ : str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : List[str] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase__ : Optional[int] = len(lowerCamelCase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase__ : Dict = True if len(lowerCamelCase_ ) != 0: lowerCamelCase__ : Tuple = stack[len(lowerCamelCase_ ) - 1] else: lowerCamelCase__ : Tuple = False indirect_parents.append(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = s lowerCamelCase__ : Any = ss # check if se have reached the starting point if len(lowerCamelCase_ ) == 0: return False def a__ (self, lowerCamelCase_=-2, lowerCamelCase_=-1 ): '''simple docstring''' lowerCamelCase__ : str = time() self.dfs(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = time() return end - begin def a__ (self, lowerCamelCase_=-2 ): '''simple docstring''' lowerCamelCase__ : List[str] = time() self.bfs(lowerCamelCase_ ) lowerCamelCase__ : str = time() return end - begin class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : Tuple = {} def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=1 ): '''simple docstring''' if self.graph.get(lowerCamelCase_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowerCamelCase__ : Optional[int] = [[w, v]] # add the other way if self.graph.get(lowerCamelCase_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowerCamelCase__ : List[Any] = [[w, u]] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self.graph.get(lowerCamelCase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCamelCase_ ) # the other way round if self.graph.get(lowerCamelCase_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCamelCase_ ) def a__ (self, lowerCamelCase_=-2, lowerCamelCase_=-1 ): '''simple docstring''' if s == d: return [] lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : Dict = [] if s == -2: lowerCamelCase__ : List[Any] = list(self.graph )[0] stack.append(lowerCamelCase_ ) visited.append(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCamelCase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCamelCase_ ) != 0: lowerCamelCase__ : str = stack[len(lowerCamelCase_ ) - 1] else: lowerCamelCase__ : Optional[Any] = ss # check if se have reached the starting point if len(lowerCamelCase_ ) == 0: return visited def a__ (self, lowerCamelCase_=-1 ): '''simple docstring''' if c == -1: lowerCamelCase__ : Optional[int] = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(lowerCamelCase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): lowerCamelCase__ : int = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCamelCase_, lowerCamelCase_, 1 ) def a__ (self, lowerCamelCase_=-2 ): '''simple docstring''' lowerCamelCase__ : List[str] = deque() lowerCamelCase__ : Any = [] if s == -2: lowerCamelCase__ : Tuple = list(self.graph )[0] d.append(lowerCamelCase_ ) visited.append(lowerCamelCase_ ) while d: lowerCamelCase__ : Union[str, Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def a__ (self, lowerCamelCase_ ): '''simple docstring''' return len(self.graph[u] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = [] lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[Any] = list(self.graph )[0] stack.append(lowerCamelCase_ ) visited.append(lowerCamelCase_ ) lowerCamelCase__ : Dict = -2 lowerCamelCase__ : str = [] lowerCamelCase__ : List[str] = s lowerCamelCase__ : List[Any] = False lowerCamelCase__ : int = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase__ : int = len(lowerCamelCase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase__ : Tuple = True if len(lowerCamelCase_ ) != 0: lowerCamelCase__ : Any = stack[len(lowerCamelCase_ ) - 1] else: lowerCamelCase__ : List[Any] = False indirect_parents.append(lowerCamelCase_ ) lowerCamelCase__ : Tuple = s lowerCamelCase__ : Union[str, Any] = ss # check if se have reached the starting point if len(lowerCamelCase_ ) == 0: return list(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = [] lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : Dict = list(self.graph )[0] stack.append(lowerCamelCase_ ) visited.append(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = -2 lowerCamelCase__ : int = [] lowerCamelCase__ : List[Any] = s lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase__ : int = len(lowerCamelCase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase__ : Tuple = True if len(lowerCamelCase_ ) != 0: lowerCamelCase__ : Dict = stack[len(lowerCamelCase_ ) - 1] else: lowerCamelCase__ : Any = False indirect_parents.append(lowerCamelCase_ ) lowerCamelCase__ : str = s lowerCamelCase__ : List[Any] = ss # check if se have reached the starting point if len(lowerCamelCase_ ) == 0: return False def a__ (self ): '''simple docstring''' return list(self.graph ) def a__ (self, lowerCamelCase_=-2, lowerCamelCase_=-1 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = time() self.dfs(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Any = time() return end - begin def a__ (self, lowerCamelCase_=-2 ): '''simple docstring''' lowerCamelCase__ : List[Any] = time() self.bfs(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = time() return end - begin
316
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_4, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=3_2, lowerCamelCase_=4, lowerCamelCase_=4, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=0.02, ): '''simple docstring''' lowerCamelCase__ : Tuple = parent lowerCamelCase__ : str = batch_size lowerCamelCase__ : str = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : Any = use_input_mask lowerCamelCase__ : Optional[int] = use_token_type_ids lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Optional[int] = hidden_size lowerCamelCase__ : Union[str, Any] = rotary_dim lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : List[str] = None lowerCamelCase__ : Optional[Any] = vocab_size - 1 lowerCamelCase__ : List[Any] = vocab_size - 1 lowerCamelCase__ : Union[str, Any] = vocab_size - 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Tuple = None if self.use_input_mask: lowerCamelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, use_cache=lowerCamelCase_, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, rotary_dim=self.rotary_dim, ) return (config, input_ids, input_mask) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any = config_and_inputs lowerCamelCase__ : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = 2_0 lowerCamelCase__ : List[str] = model_class_name(lowerCamelCase_ ) lowerCamelCase__ : Tuple = model.init_cache(input_ids.shape[0], lowerCamelCase_ ) lowerCamelCase__ : int = jnp.ones((input_ids.shape[0], max_decoder_length), dtype='i4' ) lowerCamelCase__ : List[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCamelCase__ : List[Any] = model( input_ids[:, :-1], attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, position_ids=lowerCamelCase_, ) lowerCamelCase__ : Optional[int] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype='i4' ) lowerCamelCase__ : Any = model( input_ids[:, -1:], attention_mask=lowerCamelCase_, past_key_values=outputs_cache.past_key_values, position_ids=lowerCamelCase_, ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) lowerCamelCase__ : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=f'''Max diff is {diff}''' ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = 2_0 lowerCamelCase__ : Dict = model_class_name(lowerCamelCase_ ) lowerCamelCase__ : Any = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )], axis=-1, ) lowerCamelCase__ : List[str] = model.init_cache(input_ids.shape[0], lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCamelCase__ : Optional[int] = model( input_ids[:, :-1], attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, position_ids=lowerCamelCase_, ) lowerCamelCase__ : Any = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype='i4' ) lowerCamelCase__ : Any = model( input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=lowerCamelCase_, position_ids=lowerCamelCase_, ) lowerCamelCase__ : List[str] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=f'''Max diff is {diff}''' ) @require_flax class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowerCamelCase__ : List[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = FlaxGPTJModelTester(self ) def a__ (self ): '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) @tooslow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = GPTaTokenizer.from_pretrained('gpt2', pad_token='<|endoftext|>', padding_side='left' ) lowerCamelCase__ : Any = tokenizer(['Hello this is a long string', 'Hey'], return_tensors='np', padding=lowerCamelCase_, truncation=lowerCamelCase_ ) lowerCamelCase__ : str = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) lowerCamelCase__ : Dict = False lowerCamelCase__ : int = model.config.eos_token_id lowerCamelCase__ : str = jax.jit(model.generate ) lowerCamelCase__ : str = jit_generate( inputs['input_ids'], attention_mask=inputs['attention_mask'], pad_token_id=tokenizer.pad_token_id ).sequences lowerCamelCase__ : int = tokenizer.batch_decode(lowerCamelCase_, skip_special_tokens=lowerCamelCase_ ) lowerCamelCase__ : int = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) @is_pt_flax_cross_test def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCamelCase__ : int = self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCamelCase__ : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCamelCase__ : Dict = getattr(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : Dict = pt_inputs['input_ids'].shape lowerCamelCase__ : Union[str, Any] = np.random.randint(0, seq_length - 1, size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : Dict = 1 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = pt_model_class(lowerCamelCase_ ).eval() lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_, dtype=jnp.floataa ) lowerCamelCase__ : Any = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), lowerCamelCase_ ) lowerCamelCase__ : Tuple = fx_state with torch.no_grad(): lowerCamelCase__ : Any = pt_model(**lowerCamelCase_ ).to_tuple() lowerCamelCase__ : Union[str, Any] = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ), 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase_, lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = model_class.from_pretrained(lowerCamelCase_, from_pt=lowerCamelCase_ ) lowerCamelCase__ : Any = fx_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ), len(lowerCamelCase_ ), 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowerCamelCase_, lowerCamelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1], pt_output[:, -1].numpy(), 4e-2 ) @is_pt_flax_cross_test def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCamelCase__ : Tuple = self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : str = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCamelCase__ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCamelCase__ : Optional[int] = getattr(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = pt_model_class(lowerCamelCase_ ).eval() lowerCamelCase__ : Optional[Any] = model_class(lowerCamelCase_, dtype=jnp.floataa ) lowerCamelCase__ : Union[str, Any] = load_flax_weights_in_pytorch_model(lowerCamelCase_, fx_model.params ) lowerCamelCase__ , lowerCamelCase__ : List[str] = pt_inputs['input_ids'].shape lowerCamelCase__ : Any = np.random.randint(0, seq_length - 1, size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): lowerCamelCase__ : str = 0 lowerCamelCase__ : Optional[int] = 1 lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : Dict = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCamelCase__ : Union[str, Any] = pt_model(**lowerCamelCase_ ).to_tuple() lowerCamelCase__ : Optional[Any] = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ), 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase_, lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = pt_model_class.from_pretrained(lowerCamelCase_, from_flax=lowerCamelCase_ ) with torch.no_grad(): lowerCamelCase__ : Any = pt_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ), len(lowerCamelCase_ ), 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase_, lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2 ) @tooslow def a__ (self ): '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__ : int = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) lowerCamelCase__ : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ )
316
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
1
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : int = 0 lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Optional[Any] = {} def a__ (self, lowerCamelCase_ ): '''simple docstring''' if vertex not in self.adjacency: lowerCamelCase__ : Optional[Any] = {} self.num_vertices += 1 def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' self.add_vertex(lowerCamelCase_ ) self.add_vertex(lowerCamelCase_ ) if head == tail: return lowerCamelCase__ : List[Any] = weight lowerCamelCase__ : Optional[int] = weight def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.get_edges() for edge in edges: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = edge edges.remove((tail, head, weight) ) for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[Any] = list(edges[i] ) edges.sort(key=lambda lowerCamelCase_ : e[2] ) for i in range(len(lowerCamelCase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase__ : Optional[int] = edges[i][2] + 1 for edge in edges: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = edge lowerCamelCase__ : Any = weight lowerCamelCase__ : Any = weight def __str__(self ): '''simple docstring''' lowerCamelCase__ : str = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase__ : List[Any] = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip('\n' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ (self ): '''simple docstring''' return self.adjacency.keys() @staticmethod def a__ (lowerCamelCase_=None, lowerCamelCase_=None ): '''simple docstring''' lowerCamelCase__ : List[Any] = Graph() if vertices is None: lowerCamelCase__ : Any = [] if edges is None: lowerCamelCase__ : Any = [] for vertex in vertices: g.add_vertex(lowerCamelCase_ ) for edge in edges: g.add_edge(*lowerCamelCase_ ) return g class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : int = {} lowerCamelCase__ : List[Any] = {} def __len__(self ): '''simple docstring''' return len(self.parent ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if item in self.parent: return self.find(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = item lowerCamelCase__ : Union[str, Any] = 0 return item def a__ (self, lowerCamelCase_ ): '''simple docstring''' if item not in self.parent: return self.make_set(lowerCamelCase_ ) if item != self.parent[item]: lowerCamelCase__ : int = self.find(self.parent[item] ) return self.parent[item] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.find(lowerCamelCase_ ) lowerCamelCase__ : Dict = self.find(lowerCamelCase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase__ : str = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase__ : Union[str, Any] = roota return roota return None @staticmethod def a__ (lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = graph.num_vertices lowerCamelCase__ : Optional[Any] = Graph.UnionFind() lowerCamelCase__ : Optional[Any] = [] while num_components > 1: lowerCamelCase__ : Optional[int] = {} for vertex in graph.get_vertices(): lowerCamelCase__ : Union[str, Any] = -1 lowerCamelCase__ : Tuple = graph.get_edges() for edge in edges: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = edge lowerCamelCase__ : List[str] = union_find.find(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = union_find.find(lowerCamelCase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase__ : Optional[int] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase__ : Union[str, Any] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any = cheap_edge[vertex] if union_find.find(lowerCamelCase_ ) != union_find.find(lowerCamelCase_ ): union_find.union(lowerCamelCase_, lowerCamelCase_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase__ : Union[str, Any] = num_components - 1 lowerCamelCase__ : Union[str, Any] = Graph.build(edges=lowerCamelCase_ ) return mst
316
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
1
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[str] = logging.get_logger(__name__) A_ : Union[str, Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = 'markuplm' def __init__(self, lowerCamelCase_=3_0_5_2_2, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=0, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_=2_5_6, lowerCamelCase_=1_0_2_4, lowerCamelCase_=2_1_6, lowerCamelCase_=1_0_0_1, lowerCamelCase_=3_2, lowerCamelCase_=5_0, lowerCamelCase_="absolute", lowerCamelCase_=True, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Union[str, Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : int = layer_norm_eps lowerCamelCase__ : Dict = position_embedding_type lowerCamelCase__ : Optional[Any] = use_cache lowerCamelCase__ : List[str] = classifier_dropout # additional properties lowerCamelCase__ : Dict = max_depth lowerCamelCase__ : Any = max_xpath_tag_unit_embeddings lowerCamelCase__ : Tuple = max_xpath_subs_unit_embeddings lowerCamelCase__ : int = tag_pad_id lowerCamelCase__ : Optional[Any] = subs_pad_id lowerCamelCase__ : Union[str, Any] = xpath_unit_hidden_size
316
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Tuple = {"vocab_file": "spiece.model"} A_ : Tuple = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } A_ : Dict = { "albert-base-v1": 5_12, "albert-large-v1": 5_12, "albert-xlarge-v1": 5_12, "albert-xxlarge-v1": 5_12, "albert-base-v2": 5_12, "albert-large-v2": 5_12, "albert-xlarge-v2": 5_12, "albert-xxlarge-v2": 5_12, } A_ : Optional[Any] = "▁" class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = VOCAB_FILES_NAMES lowerCamelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self, lowerCamelCase_, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_="[CLS]", lowerCamelCase_="[SEP]", lowerCamelCase_="<unk>", lowerCamelCase_="[SEP]", lowerCamelCase_="<pad>", lowerCamelCase_="[CLS]", lowerCamelCase_="[MASK]", lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ( AddedToken(lowerCamelCase_, lstrip=lowerCamelCase_, rstrip=lowerCamelCase_, normalized=lowerCamelCase_ ) if isinstance(lowerCamelCase_, lowerCamelCase_ ) else mask_token ) lowerCamelCase__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_, remove_space=lowerCamelCase_, keep_accents=lowerCamelCase_, bos_token=lowerCamelCase_, eos_token=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, pad_token=lowerCamelCase_, cls_token=lowerCamelCase_, mask_token=lowerCamelCase_, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = do_lower_case lowerCamelCase__ : Optional[int] = remove_space lowerCamelCase__ : Any = keep_accents lowerCamelCase__ : List[str] = vocab_file lowerCamelCase__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.sp_model ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.__dict__.copy() lowerCamelCase__ : Any = None return state def __setstate__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): lowerCamelCase__ : Dict = {} lowerCamelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if self.remove_space: lowerCamelCase__ : List[Any] = ' '.join(inputs.strip().split() ) else: lowerCamelCase__ : int = inputs lowerCamelCase__ : str = outputs.replace('``', '"' ).replace('\'\'', '"' ) if not self.keep_accents: lowerCamelCase__ : Tuple = unicodedata.normalize('NFKD', lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = ''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_ )] ) if self.do_lower_case: lowerCamelCase__ : Union[str, Any] = outputs.lower() return outputs def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.preprocess_text(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.sp_model.encode(lowerCamelCase_, out_type=lowerCamelCase_ ) lowerCamelCase__ : Any = [] for piece in pieces: if len(lowerCamelCase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): lowerCamelCase__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_, '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase__ : Union[str, Any] = cur_pieces[1:] else: lowerCamelCase__ : List[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase_ ) else: new_pieces.append(lowerCamelCase_ ) return new_pieces def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : List[str] = '' lowerCamelCase__ : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase_ ) + token lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[int] = [] else: current_sub_tokens.append(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = False out_string += self.sp_model.decode(lowerCamelCase_ ) return out_string.strip() def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : str = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_, token_ids_a=lowerCamelCase_, already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [self.sep_token_id] lowerCamelCase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : Optional[int] = os.path.join( lowerCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_, 'wb' ) as fi: lowerCamelCase__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,)
316
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
1
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
1
"""simple docstring""" from math import isqrt, loga def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = False return [i for i in range(2 , _lowerCamelCase ) if is_prime[i]] def lowerCamelCase_ ( _lowerCamelCase = 80_0800 , _lowerCamelCase = 80_0800 ): lowerCamelCase__ : Optional[Any] = degree * loga(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = int(_lowerCamelCase ) lowerCamelCase__ : List[Any] = calculate_prime_numbers(_lowerCamelCase ) lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = len(_lowerCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"{solution() = }")
316
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
1
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 A_ : Any = get_tests_dir("fixtures/dummy_feature_extractor_config.json") A_ : Tuple = get_tests_dir("fixtures/vocab.json") A_ : Dict = get_tests_dir("fixtures") class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = 0 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ : str = WavaVecaConfig() lowerCamelCase__ : Dict = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : str = AutoProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowerCamelCase_, os.path.join(lowerCamelCase_, lowerCamelCase_ ) ) copyfile(lowerCamelCase_, os.path.join(lowerCamelCase_, 'vocab.json' ) ) lowerCamelCase__ : str = AutoProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ : int = WavaVecaFeatureExtractor() lowerCamelCase__ : List[Any] = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) lowerCamelCase__ : int = WavaVecaProcessor(lowerCamelCase_, lowerCamelCase_ ) # save in new folder processor.save_pretrained(lowerCamelCase_ ) # drop `processor_class` in tokenizer with open(os.path.join(lowerCamelCase_, lowerCamelCase_ ), 'r' ) as f: lowerCamelCase__ : Any = json.load(lowerCamelCase_ ) config_dict.pop('processor_class' ) with open(os.path.join(lowerCamelCase_, lowerCamelCase_ ), 'w' ) as f: f.write(json.dumps(lowerCamelCase_ ) ) lowerCamelCase__ : Tuple = AutoProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ : str = WavaVecaFeatureExtractor() lowerCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) lowerCamelCase__ : List[Any] = WavaVecaProcessor(lowerCamelCase_, lowerCamelCase_ ) # save in new folder processor.save_pretrained(lowerCamelCase_ ) # drop `processor_class` in feature extractor with open(os.path.join(lowerCamelCase_, lowerCamelCase_ ), 'r' ) as f: lowerCamelCase__ : Dict = json.load(lowerCamelCase_ ) config_dict.pop('processor_class' ) with open(os.path.join(lowerCamelCase_, lowerCamelCase_ ), 'w' ) as f: f.write(json.dumps(lowerCamelCase_ ) ) lowerCamelCase__ : Any = AutoProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ : Dict = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(lowerCamelCase_ ) # copy relevant files copyfile(lowerCamelCase_, os.path.join(lowerCamelCase_, 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(lowerCamelCase_, lowerCamelCase_ ), 'w' ) as f: f.write('{}' ) lowerCamelCase__ : Union[str, Any] = AutoProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): lowerCamelCase__ : Tuple = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): lowerCamelCase__ : Optional[Any] = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor', trust_remote_code=lowerCamelCase_ ) lowerCamelCase__ : int = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor', trust_remote_code=lowerCamelCase_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__, 'NewProcessor' ) lowerCamelCase__ : str = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) lowerCamelCase__ : Tuple = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizerFast' ) # Test we can also load the slow version lowerCamelCase__ : Optional[int] = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor', trust_remote_code=lowerCamelCase_, use_fast=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__, 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer' ) def a__ (self ): '''simple docstring''' try: AutoConfig.register('custom', lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_, lowerCamelCase_ ) AutoTokenizer.register(lowerCamelCase_, slow_tokenizer_class=lowerCamelCase_ ) AutoProcessor.register(lowerCamelCase_, lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoProcessor.register(lowerCamelCase_, lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase__ : int = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : int = os.path.join(lowerCamelCase_, 'vocab.txt' ) with open(lowerCamelCase_, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) lowerCamelCase__ : List[str] = CustomTokenizer(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = CustomProcessor(lowerCamelCase_, lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int = AutoProcessor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_, lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def a__ (self ): '''simple docstring''' class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = False class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[str] = False class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[str] = 'AutoFeatureExtractor' lowerCamelCase__ : Dict = 'AutoTokenizer' lowerCamelCase__ : str = False try: AutoConfig.register('custom', lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_, lowerCamelCase_ ) AutoTokenizer.register(lowerCamelCase_, slow_tokenizer_class=lowerCamelCase_ ) AutoProcessor.register(lowerCamelCase_, lowerCamelCase_ ) # If remote code is not set, the default is to use local classes. lowerCamelCase__ : Union[str, Any] = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__, 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowerCamelCase__ : int = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor', trust_remote_code=lowerCamelCase_ ) self.assertEqual(processor.__class__.__name__, 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowerCamelCase__ : List[str] = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor', trust_remote_code=lowerCamelCase_ ) self.assertEqual(processor.__class__.__name__, 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__, 'BertTokenizerFast' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__, 'ConvNextImageProcessor' ) @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Optional[int] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-processor' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = WavaVecaProcessor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCamelCase_, 'test-processor' ), push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[str] = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCamelCase_, getattr(new_processor.feature_extractor, lowerCamelCase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab() ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = WavaVecaProcessor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCamelCase_, 'test-processor-org' ), push_to_hub=lowerCamelCase_, use_auth_token=self._token, organization='valid_org', ) lowerCamelCase__ : List[Any] = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCamelCase_, getattr(new_processor.feature_extractor, lowerCamelCase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab() ) def a__ (self ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowerCamelCase__ : Tuple = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : Dict = os.path.join(lowerCamelCase_, 'vocab.txt' ) with open(lowerCamelCase_, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) lowerCamelCase__ : Dict = CustomTokenizer(lowerCamelCase_ ) lowerCamelCase__ : Dict = CustomProcessor(lowerCamelCase_, lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''', token=self._token ) lowerCamelCase__ : Optional[int] = Repository(lowerCamelCase_, clone_from=f'''{USER}/test-dynamic-processor''', token=self._token ) processor.save_pretrained(lowerCamelCase_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map, { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', }, ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowerCamelCase_, 'tokenizer_config.json' ) ) as f: lowerCamelCase__ : Tuple = json.load(lowerCamelCase_ ) self.assertDictEqual( tokenizer_config['auto_map'], { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', }, ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase_, 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase_, 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase_, 'custom_processing.py' ) ) ) repo.push_to_hub() lowerCamelCase__ : Union[str, Any] = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__, 'CustomProcessor' )
316
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase_ ( ): lowerCamelCase__ : Any = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' lowerCamelCase__ : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert('RGB' ) return image def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = dct.pop(_lowerCamelCase ) lowerCamelCase__ : Tuple = val def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCamelCase__ : Optional[int] = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowerCamelCase__ : str = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowerCamelCase__ : Tuple = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) lowerCamelCase__ : List[Any] = qkv_bias def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 364 if 'coco' in model_name else 224 lowerCamelCase__ : List[str] = InstructBlipVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: lowerCamelCase__ : Any = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCamelCase__ : Tuple = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: lowerCamelCase__ : Dict = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=3_2001 ).to_dict() elif "vicuna-13b" in model_name: lowerCamelCase__ : str = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=3_2001 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 lowerCamelCase__ : Optional[Any] = InstructBlipQFormerConfig(vocab_size=3_0523 ).to_dict() lowerCamelCase__ : Any = InstructBlipConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase , qformer_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False ): lowerCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: lowerCamelCase__ : Optional[Any] = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) lowerCamelCase__ : Optional[int] = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) lowerCamelCase__ , lowerCamelCase__ : Any = get_blipa_config(_lowerCamelCase ) lowerCamelCase__ : Dict = InstructBlipForConditionalGeneration(_lowerCamelCase ).eval() lowerCamelCase__ : int = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = model_name_to_original[model_name] # load original model print('Loading original model...' ) lowerCamelCase__ : str = 'cuda:1' if torch.cuda.is_available() else 'cpu' lowerCamelCase__ : Dict = 'cuda:2' if torch.cuda.is_available() else 'cpu' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print('Done!' ) # update state dict keys lowerCamelCase__ : Union[str, Any] = original_model.state_dict() lowerCamelCase__ : Dict = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCamelCase__ : List[Any] = state_dict.pop(_lowerCamelCase ) if key.startswith('Qformer.bert' ): lowerCamelCase__ : List[str] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: lowerCamelCase__ : Optional[Any] = key.replace('self' , 'attention' ) if "llm_proj" in key: lowerCamelCase__ : str = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: lowerCamelCase__ : Any = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): lowerCamelCase__ : int = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): lowerCamelCase__ : Tuple = key.replace('t5' , 'language' ) lowerCamelCase__ : Any = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) lowerCamelCase__ : List[str] = load_demo_image() lowerCamelCase__ : int = 'What is unusual about this image?' # create processor lowerCamelCase__ : str = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) lowerCamelCase__ : int = InstructBlipProcessor( image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase , qformer_tokenizer=_lowerCamelCase , ) lowerCamelCase__ : Tuple = processor(images=_lowerCamelCase , text=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # make sure processor creates exact same pixel values lowerCamelCase__ : Dict = vis_processors['eval'](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) lowerCamelCase__ : str = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "vicuna" in model_name: lowerCamelCase__ : List[str] = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits lowerCamelCase__ : Tuple = hf_model(**_lowerCamelCase ).logits else: lowerCamelCase__ : List[str] = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits lowerCamelCase__ : Dict = tokenizer('\n' , return_tensors='pt' ).input_ids.to(_lowerCamelCase ) lowerCamelCase__ : Tuple = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) lowerCamelCase__ : List[Any] = hf_model(**_lowerCamelCase , labels=_lowerCamelCase ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape lowerCamelCase__ : Union[str, Any] = 1e-4 if 'vicuna' in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , _lowerCamelCase , atol=_lowerCamelCase ) print('Looks ok!' ) print('Generating with original model...' ) lowerCamelCase__ : List[str] = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) lowerCamelCase__ : str = hf_model.generate( **_lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? lowerCamelCase__ : List[Any] = 2 print('Original generation:' , _lowerCamelCase ) lowerCamelCase__ : List[Any] = processor.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = [text.strip() for text in output_text] print('HF generation:' , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'''Salesforce/{model_name}''' ) hf_model.push_to_hub(f'''Salesforce/{model_name}''' ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() A_ : Optional[Any] = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) A_ : Optional[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
316
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
1
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore A_ : int = namedtuple("covid_data", "cases deaths recovered") def lowerCamelCase_ ( _lowerCamelCase = "https://www.worldometers.info/coronavirus/" ): lowerCamelCase__ : Any = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(_lowerCamelCase ).content ).xpath(_lowerCamelCase ) ) A_ : Dict = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
316
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase A_ : int = logging.get_logger(__name__) A_ : Tuple = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = 'longformer' def __init__(self, lowerCamelCase_ = 5_1_2, lowerCamelCase_ = 2, lowerCamelCase_ = 1, lowerCamelCase_ = 0, lowerCamelCase_ = 2, lowerCamelCase_ = 3_0_5_2_2, lowerCamelCase_ = 7_6_8, lowerCamelCase_ = 1_2, lowerCamelCase_ = 1_2, lowerCamelCase_ = 3_0_7_2, lowerCamelCase_ = "gelu", lowerCamelCase_ = 0.1, lowerCamelCase_ = 0.1, lowerCamelCase_ = 5_1_2, lowerCamelCase_ = 2, lowerCamelCase_ = 0.02, lowerCamelCase_ = 1e-12, lowerCamelCase_ = False, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : str = attention_window lowerCamelCase__ : List[Any] = sep_token_id lowerCamelCase__ : Union[str, Any] = bos_token_id lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : Any = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = max_position_embeddings lowerCamelCase__ : Optional[int] = type_vocab_size lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : int = layer_norm_eps lowerCamelCase__ : int = onnx_export class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ = "default", lowerCamelCase_ = None ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : str = True @property def a__ (self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase__ : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = super().outputs if self.task == "default": lowerCamelCase__ : Union[str, Any] = {0: 'batch'} return outputs @property def a__ (self ): '''simple docstring''' return 1e-4 @property def a__ (self ): '''simple docstring''' return max(super().default_onnx_opset, 1_4 ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = -1, lowerCamelCase_ = -1, lowerCamelCase_ = False, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : Dict = super().generate_dummy_inputs( preprocessor=lowerCamelCase_, batch_size=lowerCamelCase_, seq_length=lowerCamelCase_, is_pair=lowerCamelCase_, framework=lowerCamelCase_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCamelCase__ : List[Any] = torch.zeros_like(inputs['input_ids'] ) # make every second token global lowerCamelCase__ : Tuple = 1 return inputs
316
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : int = len(_lowerCamelCase ) # No of vertices in graph lowerCamelCase__ : Optional[int] = [0] * n lowerCamelCase__ : str = [False] * n def dfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = True lowerCamelCase__ : List[str] = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , id_ ) lowerCamelCase__ : Any = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCamelCase__ : Optional[Any] = min(low[at] , low[to] ) lowerCamelCase__ : list[tuple[int, int]] = [] for i in range(_lowerCamelCase ): if not visited[i]: dfs(_lowerCamelCase , -1 , _lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A_ : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys A_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = [[1, 2, 4], [1, 2, 3, 4]] lowerCamelCase__ : Dict = DisjunctiveConstraint(lowerCamelCase_ ) self.assertTrue(isinstance(dc.token_ids, lowerCamelCase_ ) ) with self.assertRaises(lowerCamelCase_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCamelCase_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCamelCase_ ): DisjunctiveConstraint(lowerCamelCase_ ) # fails here def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = [[1, 2, 3], [1, 2, 4]] lowerCamelCase__ : Optional[int] = DisjunctiveConstraint(lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = dc.update(1 ) lowerCamelCase__ : int = stepped is True and completed is False and reset is False self.assertTrue(lowerCamelCase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = dc.update(2 ) lowerCamelCase__ : Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCamelCase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = dc.update(3 ) lowerCamelCase__ : Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCamelCase_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCamelCase__ : List[str] = DisjunctiveConstraint(lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A_ : str = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=False ): lowerCamelCase__ : List[str] = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token') ) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings') ) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias') ) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) # fmt: on return rename_keys def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase__ : str = '' else: lowerCamelCase__ : Union[str, Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : Union[str, Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) lowerCamelCase__ : List[Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase__ : str = in_proj_bias[: config.hidden_size] lowerCamelCase__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : List[str] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Any = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = dct.pop(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = val def lowerCamelCase_ ( ): lowerCamelCase__ : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Dict = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): lowerCamelCase__ : Union[str, Any] = BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=_lowerCamelCase , ) lowerCamelCase__ : str = ViTHybridConfig(backbone_config=_lowerCamelCase , image_size=384 , num_labels=1000 ) lowerCamelCase__ : str = False # load original model from timm lowerCamelCase__ : str = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase__ : Dict = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Tuple = 'huggingface/label-files' lowerCamelCase__ : Any = 'imagenet-1k-id2label.json' lowerCamelCase__ : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : Optional[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Optional[Any] = idalabel lowerCamelCase__ : Any = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase__ : List[Any] = ViTHybridModel(_lowerCamelCase ).eval() else: lowerCamelCase__ : Dict = ViTHybridForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # create image processor lowerCamelCase__ : Dict = create_transform(**resolve_data_config({} , model=_lowerCamelCase ) ) lowerCamelCase__ : Optional[int] = transform.transforms lowerCamelCase__ : Optional[Any] = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } lowerCamelCase__ : List[Any] = ViTHybridImageProcessor( do_resize=_lowerCamelCase , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCamelCase , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=_lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase__ : List[Any] = prepare_img() lowerCamelCase__ : Tuple = transform(_lowerCamelCase ).unsqueeze(0 ) lowerCamelCase__ : List[str] = processor(_lowerCamelCase , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) # verify logits with torch.no_grad(): lowerCamelCase__ : Tuple = model(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = outputs.logits print('Predicted class:' , logits.argmax(-1 ).item() ) if base_model: lowerCamelCase__ : Optional[int] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: lowerCamelCase__ : int = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) A_ : Optional[Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
316
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
1
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller A_ : Any = 3 def lowerCamelCase_ ( _lowerCamelCase ): print('Generating primitive root of p' ) while True: lowerCamelCase__ : str = random.randrange(3 , _lowerCamelCase ) if pow(_lowerCamelCase , 2 , _lowerCamelCase ) == 1: continue if pow(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) == 1: continue return g def lowerCamelCase_ ( _lowerCamelCase ): print('Generating prime p...' ) lowerCamelCase__ : Tuple = rabin_miller.generate_large_prime(_lowerCamelCase ) # select large prime number. lowerCamelCase__ : Union[str, Any] = primitive_root(_lowerCamelCase ) # one primitive root on modulo p. lowerCamelCase__ : Dict = random.randrange(3 , _lowerCamelCase ) # private_key -> have to be greater than 2 for safety. lowerCamelCase__ : Optional[Any] = cryptomath.find_mod_inverse(pow(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) lowerCamelCase__ : int = (key_size, e_a, e_a, p) lowerCamelCase__ : List[Any] = (key_size, d) return public_key, private_key def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print('\nWARNING:' ) print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' 'Use a different name or delete these files and re-run this program.' ) sys.exit() lowerCamelCase__ , lowerCamelCase__ : int = generate_key(_lowerCamelCase ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' , 'w' ) as fo: fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' , 'w' ) as fo: fo.write(f'''{private_key[0]},{private_key[1]}''' ) def lowerCamelCase_ ( ): print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
316
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
1
"""simple docstring""" A_ : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609344, "knot": 1.852, } A_ : dict[str, float] = { "km/h": 1.0, "m/s": 0.277777778, "mph": 0.621371192, "knot": 0.539956803, } def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: lowerCamelCase__ : List[Any] = ( f'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n''' f'''Valid values are: {', '.join(_lowerCamelCase )}''' ) raise ValueError(_lowerCamelCase ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" import functools def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # Validation if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not all(isinstance(_lowerCamelCase , _lowerCamelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(_lowerCamelCase ) != 3 or not all(isinstance(_lowerCamelCase , _lowerCamelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(_lowerCamelCase ) == 0: return 0 if min(_lowerCamelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(_lowerCamelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) lowerCamelCase__ : Dict = set(_lowerCamelCase ) @functools.cache def dynamic_programming(_lowerCamelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" from __future__ import annotations import bisect def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): if hi < 0: lowerCamelCase__ : str = len(_lowerCamelCase ) while lo < hi: lowerCamelCase__ : List[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowerCamelCase__ : List[str] = mid + 1 else: lowerCamelCase__ : Optional[int] = mid return lo def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): if hi < 0: lowerCamelCase__ : int = len(_lowerCamelCase ) while lo < hi: lowerCamelCase__ : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowerCamelCase__ : Optional[Any] = mid + 1 else: lowerCamelCase__ : int = mid return lo def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): sorted_collection.insert(bisect_left(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): sorted_collection.insert(bisect_right(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[int] = len(_lowerCamelCase ) - 1 while left <= right: lowerCamelCase__ : Optional[int] = left + (right - left) // 2 lowerCamelCase__ : Union[str, Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowerCamelCase__ : Optional[Any] = midpoint - 1 else: lowerCamelCase__ : str = midpoint + 1 return None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = bisect.bisect_left(_lowerCamelCase , _lowerCamelCase ) if index != len(_lowerCamelCase ) and sorted_collection[index] == item: return index return None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if right < left: return None lowerCamelCase__ : int = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , midpoint - 1 ) else: return binary_search_by_recursion(_lowerCamelCase , _lowerCamelCase , midpoint + 1 , _lowerCamelCase ) if __name__ == "__main__": A_ : Dict = input("Enter numbers separated by comma:\n").strip() A_ : Dict = sorted(int(item) for item in user_input.split(",")) A_ : List[str] = int(input("Enter a single number to be found in the list:\n")) A_ : List[str] = binary_search(collection, target) if result is None: print(f"{target} was not found in {collection}.") else: print(f"{target} was found at position {result} in {collection}.")
316
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class a_ ( unittest.TestCase ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=9_9, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=4, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : int = seq_length lowerCamelCase__ : Any = is_training lowerCamelCase__ : Dict = use_attention_mask lowerCamelCase__ : List[str] = use_token_type_ids lowerCamelCase__ : int = use_labels lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : Tuple = num_attention_heads lowerCamelCase__ : List[Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : List[str] = attention_probs_dropout_prob lowerCamelCase__ : str = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[str] = type_sequence_label_size lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : List[str] = num_choices def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Any = None if self.use_attention_mask: lowerCamelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : List[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : str = RobertaPreLayerNormConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = config_and_inputs lowerCamelCase__ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[str] = True lowerCamelCase__ : List[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = FlaxRobertaPreLayerNormModelTester(self ) @slow def a__ (self ): '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__ : Dict = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=lowerCamelCase_ ) lowerCamelCase__ : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ ) @require_flax class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=lowerCamelCase_ ) lowerCamelCase__ : int = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]], dtype=jnp.intaa ) lowerCamelCase__ : List[Any] = model(lowerCamelCase_ )[0] lowerCamelCase__ : Any = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ), lowerCamelCase_ ) # compare the actual values for a slice. lowerCamelCase__ : str = np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], lowerCamelCase_, atol=1e-4 ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]], dtype=jnp.intaa ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ )[0] # compare the actual values for a slice. lowerCamelCase__ : Union[str, Any] = np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], lowerCamelCase_, atol=1e-4 ) )
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" A_ : int = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = set() # keep track of all the paths to be checked lowerCamelCase__ : Dict = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowerCamelCase__ : List[Any] = queue.pop(0 ) # get the last node from the path lowerCamelCase__ : Optional[Any] = path[-1] if node not in explored: lowerCamelCase__ : Any = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowerCamelCase__ : str = list(_lowerCamelCase ) new_path.append(_lowerCamelCase ) queue.append(_lowerCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_lowerCamelCase ) # in case there's no path between the 2 nodes return [] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowerCamelCase__ : Optional[int] = [start] lowerCamelCase__ : str = set(_lowerCamelCase ) # Keep tab on distances from `start` node. lowerCamelCase__ : Dict = {start: 0, target: -1} while queue: lowerCamelCase__ : List[Any] = queue.pop(0 ) if node == target: lowerCamelCase__ : int = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_lowerCamelCase ) queue.append(_lowerCamelCase ) lowerCamelCase__ : int = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
316
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
1
"""simple docstring""" A_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution A_ : list[bool | None] = [None] * 10_00_00_00 A_ : Tuple = True A_ : Union[str, Any] = False def lowerCamelCase_ ( _lowerCamelCase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase__ : str = chain(next_number(_lowerCamelCase ) ) lowerCamelCase__ : int = number_chain while number < 1000_0000: lowerCamelCase__ : str = number_chain number *= 10 return number_chain def lowerCamelCase_ ( _lowerCamelCase = 1000_0000 ): for i in range(1 , _lowerCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
316
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : str = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['pixel_values'] def __init__(self, lowerCamelCase_ = True, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = PILImageResampling.BILINEAR, lowerCamelCase_ = True, lowerCamelCase_ = 1 / 2_5_5, lowerCamelCase_ = True, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = size if size is not None else {'shortest_edge': 3_8_4} lowerCamelCase__ : List[str] = get_size_dict(lowerCamelCase_, default_to_square=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = do_resize lowerCamelCase__ : str = size # Default value set here for backwards compatibility where the value in config is None lowerCamelCase__ : str = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 lowerCamelCase__ : List[Any] = resample lowerCamelCase__ : Optional[int] = do_rescale lowerCamelCase__ : Union[str, Any] = rescale_factor lowerCamelCase__ : List[str] = do_normalize lowerCamelCase__ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = PILImageResampling.BICUBIC, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[str] = get_size_dict(lowerCamelCase_, default_to_square=lowerCamelCase_ ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) lowerCamelCase__ : Optional[int] = size['shortest_edge'] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowerCamelCase__ : List[str] = int(shortest_edge / crop_pct ) lowerCamelCase__ : Tuple = get_resize_output_image_size(lowerCamelCase_, size=lowerCamelCase_, default_to_square=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = resize(image=lowerCamelCase_, size=lowerCamelCase_, resample=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase_, size=(shortest_edge, shortest_edge), data_format=lowerCamelCase_, **lowerCamelCase_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase_, size=(shortest_edge, shortest_edge), resample=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' return rescale(lowerCamelCase_, scale=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' return normalize(lowerCamelCase_, mean=lowerCamelCase_, std=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = ChannelDimension.FIRST, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : int = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : Union[str, Any] = crop_pct if crop_pct is not None else self.crop_pct lowerCamelCase__ : str = resample if resample is not None else self.resample lowerCamelCase__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : Optional[Any] = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : Tuple = image_std if image_std is not None else self.image_std lowerCamelCase__ : str = size if size is not None else self.size lowerCamelCase__ : Tuple = get_size_dict(lowerCamelCase_, default_to_square=lowerCamelCase_ ) lowerCamelCase__ : int = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase__ : Any = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: lowerCamelCase__ : Optional[int] = [self.resize(image=lowerCamelCase_, size=lowerCamelCase_, crop_pct=lowerCamelCase_, resample=lowerCamelCase_ ) for image in images] if do_rescale: lowerCamelCase__ : Optional[Any] = [self.rescale(image=lowerCamelCase_, scale=lowerCamelCase_ ) for image in images] if do_normalize: lowerCamelCase__ : Tuple = [self.normalize(image=lowerCamelCase_, mean=lowerCamelCase_, std=lowerCamelCase_ ) for image in images] lowerCamelCase__ : Optional[Any] = [to_channel_dimension_format(lowerCamelCase_, lowerCamelCase_ ) for image in images] lowerCamelCase__ : List[str] = {'pixel_values': images} return BatchFeature(data=lowerCamelCase_, tensor_type=lowerCamelCase_ )
316
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
1
"""simple docstring""" A_ : Optional[Any] = "Input must be a string of 8 numbers plus letter" A_ : str = "TRWAGMYFPDXBNJZSQVHLCKE" def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = f'''Expected string as input, found {type(_lowerCamelCase ).__name__}''' raise TypeError(_lowerCamelCase ) lowerCamelCase__ : Tuple = spanish_id.replace('-' , '' ).upper() if len(_lowerCamelCase ) != 9: raise ValueError(_lowerCamelCase ) try: lowerCamelCase__ : int = int(spanish_id_clean[0:8] ) lowerCamelCase__ : List[Any] = spanish_id_clean[8] except ValueError as ex: raise ValueError(_lowerCamelCase ) from ex if letter.isdigit(): raise ValueError(_lowerCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
1
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[int] = IFInpaintingSuperResolutionPipeline lowerCamelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCamelCase__ : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCamelCase__ : Optional[Any] = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ): '''simple docstring''' return self._get_superresolution_dummy_components() def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Tuple = floats_tensor((1, 3, 1_6, 1_6), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = floats_tensor((1, 3, 3_2, 3_2), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = floats_tensor((1, 3, 3_2, 3_2), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def a__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def a__ (self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' ) def a__ (self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def a__ (self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def a__ (self ): '''simple docstring''' self._test_save_load_local() def a__ (self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2, )
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
1
"""simple docstring""" from __future__ import annotations import time import numpy as np A_ : Tuple = [8, 5, 9, 7] A_ : Any = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A_ : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : str = claim_vector lowerCamelCase__ : List[Any] = allocated_resources_table lowerCamelCase__ : Dict = maximum_claim_table def a__ (self ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def a__ (self ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def a__ (self ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(lowerCamelCase_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def a__ (self ): '''simple docstring''' return {self.__need().index(lowerCamelCase_ ): i for i in self.__need()} def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.__need() lowerCamelCase__ : List[Any] = self.__allocated_resources_table lowerCamelCase__ : Optional[Any] = self.__available_resources() lowerCamelCase__ : Optional[int] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 5_0 + '\n' ) while need_list: lowerCamelCase__ : List[Any] = False for each_need in need_list: lowerCamelCase__ : Tuple = True for index, need in enumerate(lowerCamelCase_ ): if need > available_resources[index]: lowerCamelCase__ : Optional[int] = False break if execution: lowerCamelCase__ : Any = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCamelCase__ : Dict = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(lowerCamelCase_ ) # update available/freed resources stack lowerCamelCase__ : List[str] = np.array(lowerCamelCase_ ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(lowerCamelCase_ ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def a__ (self ): '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(lowerCamelCase_ ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(lowerCamelCase_ ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(lowerCamelCase_ ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(lowerCamelCase_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return int(input_a == input_a == 0 ) def lowerCamelCase_ ( ): print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(f'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(f'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(f'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(f'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
316
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
1
"""simple docstring""" import string from math import logaa def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) lowerCamelCase__ : str = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCamelCase__ : int = corpus_without_punctuation.split('\n' ) lowerCamelCase__ : int = term.lower() return (len([doc for doc in docs if term in doc] ), len(_lowerCamelCase )) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return round(tf * idf , 3 )
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
1
"""simple docstring""" from functools import reduce A_ : Dict = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCamelCase_ ( _lowerCamelCase = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda _lowerCamelCase , _lowerCamelCase : str(int(_lowerCamelCase ) * int(_lowerCamelCase ) ) , n[i : i + 13] ) ) for i in range(len(_lowerCamelCase ) - 12 ) ) if __name__ == "__main__": print(f"{solution() = }")
316
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
1
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # ===== initialization ===== lowerCamelCase__ : Optional[Any] = Mock() lowerCamelCase__ : Optional[Any] = conn, Mock() lowerCamelCase__ : int = iter([1, None] ) lowerCamelCase__ : Dict = lambda _lowerCamelCase : next(_lowerCamelCase ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=_lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
316
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[str]] = [[] for _ in range(_lowerCamelCase )] lowerCamelCase__ : List[str] = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(_lowerCamelCase ) <= key: return input_string for position, character in enumerate(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = position % (lowest * 2) # puts it in bounds lowerCamelCase__ : List[Any] = min(_lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_lowerCamelCase ) lowerCamelCase__ : Any = [''.join(_lowerCamelCase ) for row in temp_grid] lowerCamelCase__ : List[Any] = ''.join(_lowerCamelCase ) return output_string def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : str = [] lowerCamelCase__ : int = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string lowerCamelCase__ : list[list[str]] = [[] for _ in range(_lowerCamelCase )] # generates template for position in range(len(_lowerCamelCase ) ): lowerCamelCase__ : List[str] = position % (lowest * 2) # puts it in bounds lowerCamelCase__ : int = min(_lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) lowerCamelCase__ : Dict = 0 for row in temp_grid: # fills in the characters lowerCamelCase__ : str = input_string[counter : counter + len(_lowerCamelCase )] grid.append(list(_lowerCamelCase ) ) counter += len(_lowerCamelCase ) lowerCamelCase__ : Tuple = '' # reads as zigzag for position in range(len(_lowerCamelCase ) ): lowerCamelCase__ : Tuple = position % (lowest * 2) # puts it in bounds lowerCamelCase__ : Tuple = min(_lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = {} for key_guess in range(1 , len(_lowerCamelCase ) ): # tries every key lowerCamelCase__ : Tuple = decrypt(_lowerCamelCase , _lowerCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: A_ : List[Any] = None A_ : str = logging.get_logger(__name__) A_ : Union[str, Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} A_ : Union[str, Any] = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } A_ : Dict = { "facebook/mbart-large-en-ro": 10_24, "facebook/mbart-large-cc25": 10_24, } # fmt: off A_ : List[str] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : str = ['input_ids', 'attention_mask'] lowerCamelCase__ : Union[str, Any] = MBartTokenizer lowerCamelCase__ : List[int] = [] lowerCamelCase__ : List[int] = [] def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_="<s>", lowerCamelCase_="</s>", lowerCamelCase_="</s>", lowerCamelCase_="<s>", lowerCamelCase_="<unk>", lowerCamelCase_="<pad>", lowerCamelCase_="<mask>", lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = AddedToken(lowerCamelCase_, lstrip=lowerCamelCase_, rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_, lowerCamelCase_ ) else mask_token super().__init__( vocab_file=lowerCamelCase_, tokenizer_file=lowerCamelCase_, bos_token=lowerCamelCase_, eos_token=lowerCamelCase_, sep_token=lowerCamelCase_, cls_token=lowerCamelCase_, unk_token=lowerCamelCase_, pad_token=lowerCamelCase_, mask_token=lowerCamelCase_, src_lang=lowerCamelCase_, tgt_lang=lowerCamelCase_, additional_special_tokens=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : int = vocab_file lowerCamelCase__ : Tuple = False if not self.vocab_file else True lowerCamelCase__ : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(lowerCamelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : Optional[Any] = src_lang if src_lang is not None else 'en_XX' lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__ (self ): '''simple docstring''' return self._src_lang @src_lang.setter def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : str = src_lang lowerCamelCase__ : str = self(lowerCamelCase_, add_special_tokens=lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = self.convert_tokens_to_ids(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = tgt_lang_id return inputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = "en_XX", lowerCamelCase_ = None, lowerCamelCase_ = "ro_RO", **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Tuple = src_lang lowerCamelCase__ : str = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) def a__ (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def a__ (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : Any = [self.eos_token_id, self.cur_lang_code] lowerCamelCase__ : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : int = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.convert_tokens_to_ids(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Tuple = [self.eos_token_id, self.cur_lang_code] lowerCamelCase__ : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return lowerCamelCase__ : Optional[Any] = os.path.join( lowerCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file, lowerCamelCase_ ) return (out_vocab_file,)
316
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 lowerCamelCase__ : int = 1 lowerCamelCase__ : str = 1 while repunit: lowerCamelCase__ : Optional[int] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowerCamelCase_ ( _lowerCamelCase = 100_0000 ): lowerCamelCase__ : Optional[int] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_lowerCamelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"{solution() = }")
316
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
1
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=[3_0, 3_0], lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=8, lowerCamelCase_=1_0, ): '''simple docstring''' lowerCamelCase__ : str = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : List[Any] = image_size lowerCamelCase__ : Union[str, Any] = patch_size lowerCamelCase__ : List[str] = num_channels lowerCamelCase__ : Dict = is_training lowerCamelCase__ : Dict = use_labels lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : List[str] = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Optional[int] = hidden_act lowerCamelCase__ : int = hidden_dropout_prob lowerCamelCase__ : int = attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] = type_sequence_label_size lowerCamelCase__ : str = initializer_range lowerCamelCase__ : int = num_labels lowerCamelCase__ : Any = scope lowerCamelCase__ : int = n_targets lowerCamelCase__ : List[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase__ : Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase__ : Any = num_patches + 1 + self.num_detection_tokens def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase__ : List[Any] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase__ : Dict = [] for i in range(self.batch_size ): lowerCamelCase__ : Any = {} lowerCamelCase__ : Tuple = torch.randint( high=self.num_labels, size=(self.n_targets,), device=lowerCamelCase_ ) lowerCamelCase__ : Dict = torch.rand(self.n_targets, 4, device=lowerCamelCase_ ) labels.append(lowerCamelCase_ ) lowerCamelCase__ : str = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return YolosConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, num_detection_tokens=self.num_detection_tokens, num_labels=self.num_labels, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = YolosModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : str = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = YolosForObjectDetection(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Union[str, Any] = model(pixel_values=lowerCamelCase_ ) lowerCamelCase__ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase__ : Optional[int] = model(pixel_values=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = config_and_inputs lowerCamelCase__ : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCamelCase__ : Optional[int] = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Tuple = False def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Dict = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase__ : List[str] = [] for i in range(self.model_tester.batch_size ): lowerCamelCase__ : List[str] = {} lowerCamelCase__ : int = torch.ones( size=(self.model_tester.n_targets,), device=lowerCamelCase_, dtype=torch.long ) lowerCamelCase__ : Tuple = torch.ones( self.model_tester.n_targets, 4, device=lowerCamelCase_, dtype=torch.float ) labels.append(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = labels return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = YolosModelTester(self ) lowerCamelCase__ : Any = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : str = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowerCamelCase__ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, nn.Linear ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Union[str, Any] = [*signature.parameters.keys()] lowerCamelCase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Any = True # in YOLOS, the seq_len is different lowerCamelCase__ : List[str] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Dict = True lowerCamelCase__ : List[str] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : List[Any] = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ : int = outputs.attentions self.assertEqual(len(lowerCamelCase_ ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__ : Any = True lowerCamelCase__ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : str = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ : Any = outputs.attentions self.assertEqual(len(lowerCamelCase_ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) lowerCamelCase__ : Optional[int] = len(lowerCamelCase_ ) # Check attention is always last and order is fine lowerCamelCase__ : Tuple = True lowerCamelCase__ : Tuple = True lowerCamelCase__ : Union[str, Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states, len(lowerCamelCase_ ) ) lowerCamelCase__ : Tuple = outputs.attentions self.assertEqual(len(lowerCamelCase_ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def a__ (self ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : int = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Any = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ : List[str] = outputs.hidden_states lowerCamelCase__ : int = getattr( self.model_tester, 'expected_num_hidden_layers', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase_ ), lowerCamelCase_ ) # YOLOS has a different seq_length lowerCamelCase__ : Optional[int] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : Optional[Any] = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = YolosModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = self.default_image_processor lowerCamelCase__ : Optional[int] = prepare_img() lowerCamelCase__ : Any = image_processor(images=lowerCamelCase_, return_tensors='pt' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : str = model(inputs.pixel_values ) # verify outputs lowerCamelCase__ : Optional[Any] = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]], device=lowerCamelCase_, ) lowerCamelCase__ : List[str] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]], device=lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], lowerCamelCase_, atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], lowerCamelCase_, atol=1e-4 ) ) # verify postprocessing lowerCamelCase__ : Union[str, Any] = image_processor.post_process_object_detection( lowerCamelCase_, threshold=0.3, target_sizes=[image.size[::-1]] )[0] lowerCamelCase__ : List[Any] = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(lowerCamelCase_ ) lowerCamelCase__ : int = [7_5, 7_5, 1_7, 6_3, 1_7] lowerCamelCase__ : Any = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(lowerCamelCase_ ) self.assertEqual(len(results['scores'] ), 5 ) self.assertTrue(torch.allclose(results['scores'], lowerCamelCase_, atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist(), lowerCamelCase_ ) self.assertTrue(torch.allclose(results['boxes'][0, :], lowerCamelCase_ ) )
316
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
1
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging A_ : int = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['pixel_values'] def __init__(self, lowerCamelCase_ = True, lowerCamelCase_ = 1 / 2_5_5, lowerCamelCase_ = True, lowerCamelCase_ = 8, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Any = do_rescale lowerCamelCase__ : Tuple = rescale_factor lowerCamelCase__ : List[str] = do_pad lowerCamelCase__ : List[Any] = pad_size def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, **lowerCamelCase_ ): '''simple docstring''' return rescale(lowerCamelCase_, scale=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[int] = get_image_size(lowerCamelCase_ ) lowerCamelCase__ : Tuple = (old_height // size + 1) * size - old_height lowerCamelCase__ : int = (old_width // size + 1) * size - old_width return pad(lowerCamelCase_, ((0, pad_height), (0, pad_width)), mode='symmetric', data_format=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = ChannelDimension.FIRST, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Tuple = do_pad if do_pad is not None else self.do_pad lowerCamelCase__ : List[str] = pad_size if pad_size is not None else self.pad_size lowerCamelCase__ : List[Any] = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. lowerCamelCase__ : Optional[int] = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_rescale: lowerCamelCase__ : str = [self.rescale(image=lowerCamelCase_, scale=lowerCamelCase_ ) for image in images] if do_pad: lowerCamelCase__ : Dict = [self.pad(lowerCamelCase_, size=lowerCamelCase_ ) for image in images] lowerCamelCase__ : Tuple = [to_channel_dimension_format(lowerCamelCase_, lowerCamelCase_ ) for image in images] lowerCamelCase__ : Optional[Any] = {'pixel_values': images} return BatchFeature(data=lowerCamelCase_, tensor_type=lowerCamelCase_ )
316
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase = 100_0000 ): lowerCamelCase__ : List[Any] = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : int = '' lowerCamelCase__ : int = '' lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : str = 0 lowerCamelCase__ : Dict = 2_5_6 lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : int = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ : List[Any] = copy.deepcopy(self.img ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = plt.hist(self.img.ravel(), 2_5_6, [0, 2_5_6], label='x' ) lowerCamelCase__ : str = np.sum(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ : List[str] = x[i] / self.k self.sk += prk lowerCamelCase__ : List[str] = (self.L - 1) * self.sk if self.rem != 0: lowerCamelCase__ : Tuple = int(last % last ) lowerCamelCase__ : str = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCamelCase_ ) lowerCamelCase__ : str = int(np.ma.count(self.img ) / self.img[1].size ) lowerCamelCase__ : Any = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCamelCase__ : int = self.img[j][i] if num != self.last_list[num]: lowerCamelCase__ : Any = self.last_list[num] cva.imwrite('output_data/output.jpg', self.img ) def a__ (self ): '''simple docstring''' plt.hist(self.img.ravel(), 2_5_6, [0, 2_5_6] ) def a__ (self ): '''simple docstring''' cva.imshow('Output-Image', self.img ) cva.imshow('Input-Image', self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": A_ : List[Any] = os.path.join(os.path.basename(__file__), "image_data/input.jpg") A_ : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
316
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
1
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL A_ : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , ): output_path.parent.mkdir(parents=_lowerCamelCase , exist_ok=_lowerCamelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _lowerCamelCase , _lowerCamelCase , f=output_path.as_posix() , input_names=_lowerCamelCase , output_names=_lowerCamelCase , dynamic_axes=_lowerCamelCase , do_constant_folding=_lowerCamelCase , use_external_data_format=_lowerCamelCase , enable_onnx_checker=_lowerCamelCase , opset_version=_lowerCamelCase , ) else: export( _lowerCamelCase , _lowerCamelCase , f=output_path.as_posix() , input_names=_lowerCamelCase , output_names=_lowerCamelCase , dynamic_axes=_lowerCamelCase , do_constant_folding=_lowerCamelCase , opset_version=_lowerCamelCase , ) @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ): lowerCamelCase__ : str = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowerCamelCase__ : Union[str, Any] = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: lowerCamelCase__ : Tuple = 'cpu' lowerCamelCase__ : Dict = Path(_lowerCamelCase ) # VAE DECODER lowerCamelCase__ : List[str] = AutoencoderKL.from_pretrained(model_path + '/vae' ) lowerCamelCase__ : Any = vae_decoder.config.latent_channels # forward only through the decoder part lowerCamelCase__ : List[str] = vae_decoder.decode onnx_export( _lowerCamelCase , model_args=( torch.randn(1 , _lowerCamelCase , 25 , 25 ).to(device=_lowerCamelCase , dtype=_lowerCamelCase ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=_lowerCamelCase , ) del vae_decoder if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") A_ : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
1
"""simple docstring""" class a_ : # Public class to implement a graph '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = row lowerCamelCase__ : Optional[Any] = col lowerCamelCase__ : Any = graph def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowerCamelCase__ : Optional[Any] = [-1, 0, 1, -1, 1, -1, 0, 1] lowerCamelCase__ : str = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k], j + col_nbr[k], lowerCamelCase_ ): self.diffs(i + row_nbr[k], j + col_nbr[k], lowerCamelCase_ ) def a__ (self ): # And finally, count all islands. '''simple docstring''' lowerCamelCase__ : int = [[False for j in range(self.COL )] for i in range(self.ROW )] lowerCamelCase__ : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) count += 1 return count
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
1
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) A_ : List[str] = logging.get_logger(__name__) A_ : Tuple = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) A_ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCamelCase_ ( _lowerCamelCase ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase__ : List[Any] = model_type_to_module_name(_lowerCamelCase ) lowerCamelCase__ : Dict = importlib.import_module(f'''.{module_name}''' , 'transformers.models' ) try: return getattr(_lowerCamelCase , _lowerCamelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowerCamelCase , '__name__' , _lowerCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase__ : Tuple = importlib.import_module('transformers' ) if hasattr(_lowerCamelCase , _lowerCamelCase ): return getattr(_lowerCamelCase , _lowerCamelCase ) return None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , **_lowerCamelCase , ): lowerCamelCase__ : int = get_file_from_repo( _lowerCamelCase , _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , resume_download=_lowerCamelCase , proxies=_lowerCamelCase , use_auth_token=_lowerCamelCase , revision=_lowerCamelCase , local_files_only=_lowerCamelCase , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(_lowerCamelCase , encoding='utf-8' ) as reader: return json.load(_lowerCamelCase ) class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(lowerCamelCase_ ) def a__ (cls, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = kwargs.pop('config', lowerCamelCase_ ) lowerCamelCase__ : List[Any] = kwargs.pop('trust_remote_code', lowerCamelCase_ ) lowerCamelCase__ : Any = True lowerCamelCase__ , lowerCamelCase__ : str = FeatureExtractionMixin.get_feature_extractor_dict(lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : str = config_dict.get('feature_extractor_type', lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = None if "AutoFeatureExtractor" in config_dict.get('auto_map', {} ): lowerCamelCase__ : Tuple = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_, **lowerCamelCase_ ) # It could be in `config.feature_extractor_type`` lowerCamelCase__ : List[Any] = getattr(lowerCamelCase_, 'feature_extractor_type', lowerCamelCase_ ) if hasattr(lowerCamelCase_, 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase__ : List[Any] = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: lowerCamelCase__ : str = feature_extractor_class_from_name(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = feature_extractor_auto_map is not None lowerCamelCase__ : List[str] = feature_extractor_class is not None or type(lowerCamelCase_ ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase__ : Tuple = resolve_trust_remote_code( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) if has_remote_code and trust_remote_code: lowerCamelCase__ : str = get_class_from_dynamic_module( lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('code_revision', lowerCamelCase_ ) if os.path.isdir(lowerCamelCase_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(lowerCamelCase_, **lowerCamelCase_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(lowerCamelCase_, **lowerCamelCase_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(lowerCamelCase_ ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase__ : int = FEATURE_EXTRACTOR_MAPPING[type(lowerCamelCase_ )] return feature_extractor_class.from_dict(lowerCamelCase_, **lowerCamelCase_ ) raise ValueError( f'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' f'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(lowerCamelCase_, lowerCamelCase_ )
316
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
1
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Union[str, Any] = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Tuple = num_channels lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : Optional[int] = use_labels lowerCamelCase__ : Optional[int] = hidden_size lowerCamelCase__ : Union[str, Any] = num_hidden_layers lowerCamelCase__ : List[str] = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] = type_sequence_label_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Dict = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ : Any = (image_size // patch_size) ** 2 lowerCamelCase__ : int = num_patches + 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : Dict = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ViTMSNModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.type_sequence_label_size lowerCamelCase__ : Dict = ViTMSNForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, labels=lowerCamelCase_ ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : str = 1 lowerCamelCase__ : Tuple = ViTMSNForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = config_and_inputs lowerCamelCase__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[int] = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowerCamelCase__ : Optional[int] = ( {'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : List[str] = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ViTMSNModelTester(self ) lowerCamelCase__ : Any = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, nn.Linear ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Any = model_class(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[Any] = [*signature.parameters.keys()] lowerCamelCase__ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Any = ViTMSNModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def a__ (self ): '''simple docstring''' torch.manual_seed(2 ) lowerCamelCase__ : Any = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(lowerCamelCase_ ) lowerCamelCase__ : str = self.default_image_processor lowerCamelCase__ : int = prepare_img() lowerCamelCase__ : Dict = image_processor(images=lowerCamelCase_, return_tensors='pt' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : List[Any] = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : str = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = 'convbert' def __init__(self, lowerCamelCase_=3_0_5_2_2, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_=7_6_8, lowerCamelCase_=2, lowerCamelCase_=9, lowerCamelCase_=1, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : List[str] = type_vocab_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : Any = embedding_size lowerCamelCase__ : int = head_ratio lowerCamelCase__ : List[Any] = conv_kernel_size lowerCamelCase__ : Optional[Any] = num_groups lowerCamelCase__ : List[Any] = classifier_dropout class a_ ( snake_case_ ): '''simple docstring''' @property def a__ (self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase__ : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : List[Any] = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = 'luke' def __init__(self, lowerCamelCase_=5_0_2_6_7, lowerCamelCase_=5_0_0_0_0_0, lowerCamelCase_=7_6_8, lowerCamelCase_=2_5_6, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=True, lowerCamelCase_=None, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : Optional[int] = entity_vocab_size lowerCamelCase__ : Optional[int] = hidden_size lowerCamelCase__ : List[Any] = entity_emb_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Tuple = num_attention_heads lowerCamelCase__ : Dict = hidden_act lowerCamelCase__ : Dict = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : List[str] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = type_vocab_size lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : int = layer_norm_eps lowerCamelCase__ : Optional[Any] = use_entity_aware_attention lowerCamelCase__ : Union[str, Any] = classifier_dropout
316
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
1
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(snake_case_ ) , 'Tatoeba directory does not exist.' ) class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' self.resolver.convert_models(['heb-eng'] ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.resolver.write_model_card('opus-mt-he-en', dry_run=lowerCamelCase_ ) assert mmeta["long_pair"] == "heb-eng"
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
1
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = ['image_processor', 'tokenizer'] lowerCamelCase__ : int = 'OwlViTImageProcessor' lowerCamelCase__ : Union[str, Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : str = kwargs.pop('feature_extractor' ) lowerCamelCase__ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_="max_length", lowerCamelCase_="np", **lowerCamelCase_ ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(lowerCamelCase_, lowerCamelCase_ ) or (isinstance(lowerCamelCase_, lowerCamelCase_ ) and not isinstance(text[0], lowerCamelCase_ )): lowerCamelCase__ : Optional[Any] = [self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ )] elif isinstance(lowerCamelCase_, lowerCamelCase_ ) and isinstance(text[0], lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = [] # Maximum number of queries across batch lowerCamelCase__ : Any = max([len(lowerCamelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase_ ) != max_num_queries: lowerCamelCase__ : str = t + [' '] * (max_num_queries - len(lowerCamelCase_ )) lowerCamelCase__ : str = self.tokenizer(lowerCamelCase_, padding=lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) encodings.append(lowerCamelCase_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": lowerCamelCase__ : List[str] = np.concatenate([encoding['input_ids'] for encoding in encodings], axis=0 ) lowerCamelCase__ : List[str] = np.concatenate([encoding['attention_mask'] for encoding in encodings], axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCamelCase__ : Union[str, Any] = jnp.concatenate([encoding['input_ids'] for encoding in encodings], axis=0 ) lowerCamelCase__ : int = jnp.concatenate([encoding['attention_mask'] for encoding in encodings], axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCamelCase__ : Any = torch.cat([encoding['input_ids'] for encoding in encodings], dim=0 ) lowerCamelCase__ : List[Any] = torch.cat([encoding['attention_mask'] for encoding in encodings], dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCamelCase__ : List[Any] = tf.stack([encoding['input_ids'] for encoding in encodings], axis=0 ) lowerCamelCase__ : Any = tf.stack([encoding['attention_mask'] for encoding in encodings], axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) lowerCamelCase__ : Union[str, Any] = BatchEncoding() lowerCamelCase__ : Union[str, Any] = input_ids lowerCamelCase__ : str = attention_mask if query_images is not None: lowerCamelCase__ : int = BatchEncoding() lowerCamelCase__ : Any = self.image_processor( lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ).pixel_values lowerCamelCase__ : int = query_pixel_values if images is not None: lowerCamelCase__ : Dict = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : Optional[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCamelCase__ : List[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.image_processor.post_process(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.image_processor.post_process_object_detection(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.', lowerCamelCase_, ) return self.image_processor_class @property def a__ (self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.', lowerCamelCase_, ) return self.image_processor
316
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
1
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCamelCase__ : Any = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase_, variant=lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCamelCase__ : Optional[Any] = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase_, variant=lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowerCamelCase__ : Optional[Any] = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase_, variant=lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCamelCase__ : List[str] = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCamelCase_, variant=lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowerCamelCase__ : Optional[int] = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase_, variant=lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowerCamelCase__ : Any = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase_, variant=lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCamelCase__ : int = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCamelCase_, variant=lowerCamelCase_ ) )
316
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor A_ : Optional[Any] = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.', lowerCamelCase_, ) super().__init__(*lowerCamelCase_, **lowerCamelCase_ )
316
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
1
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase_ ( _lowerCamelCase ): return 1 / (1 + np.exp(-z )) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return (-y * np.log(_lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = np.dot(_lowerCamelCase , _lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase ) ) ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=7_0000 ): lowerCamelCase__ : Dict = np.zeros(x.shape[1] ) for iterations in range(_lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : List[Any] = sigmoid_function(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = np.dot(x.T , h - y ) / y.size lowerCamelCase__ : Tuple = theta - alpha * gradient # updating the weights lowerCamelCase__ : Tuple = np.dot(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Dict = sigmoid_function(_lowerCamelCase ) lowerCamelCase__ : Tuple = cost_function(_lowerCamelCase , _lowerCamelCase ) if iterations % 100 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": A_ : str = datasets.load_iris() A_ : str = iris.data[:, :2] A_ : Optional[Any] = (iris.target != 0) * 1 A_ : List[Any] = 0.1 A_ : Union[str, Any] = logistic_reg(alpha, x, y, max_iterations=7_00_00) print("theta: ", theta) # printing the theta i.e our weights vector def lowerCamelCase_ ( _lowerCamelCase ): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((A_), (A_)) : List[str] = (x[:, 0].min(), x[:, 0].max()) ((A_), (A_)) : List[Any] = (x[:, 1].min(), x[:, 1].max()) ((A_), (A_)) : Tuple = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) A_ : Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] A_ : List[str] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
316
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A_ : int = imread(r"digital_image_processing/image_data/lena_small.jpg") A_ : str = cvtColor(img, COLOR_BGR2GRAY) def lowerCamelCase_ ( ): lowerCamelCase__ : List[Any] = cn.convert_to_negative(_lowerCamelCase ) # assert negative_img array for at least one True assert negative_img.any() def lowerCamelCase_ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(_lowerCamelCase , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCamelCase_ ( ): lowerCamelCase__ : Tuple = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase__ : Dict = canny.canny(_lowerCamelCase ) # assert canny array for at least one True assert canny_array.any() def lowerCamelCase_ ( ): assert gg.gaussian_filter(_lowerCamelCase , 5 , sigma=0.9 ).all() def lowerCamelCase_ ( ): # laplace diagonals lowerCamelCase__ : List[str] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase__ : Tuple = conv.img_convolve(_lowerCamelCase , _lowerCamelCase ).astype(_lowerCamelCase ) assert res.any() def lowerCamelCase_ ( ): assert med.median_filter(_lowerCamelCase , 3 ).any() def lowerCamelCase_ ( ): lowerCamelCase__ , lowerCamelCase__ : Tuple = sob.sobel_filter(_lowerCamelCase ) assert grad.any() and theta.any() def lowerCamelCase_ ( ): lowerCamelCase__ : List[Any] = sp.make_sepia(_lowerCamelCase , 20 ) assert sepia.all() def lowerCamelCase_ ( _lowerCamelCase = "digital_image_processing/image_data/lena_small.jpg" ): lowerCamelCase__ : List[str] = bs.Burkes(imread(_lowerCamelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCamelCase_ ( _lowerCamelCase = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase__ : int = rs.NearestNeighbour(imread(_lowerCamelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCamelCase_ ( ): lowerCamelCase__ : int = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase__ : str = imread(_lowerCamelCase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Any = 0 lowerCamelCase__ : Union[str, Any] = image[x_coordinate][y_coordinate] lowerCamelCase__ : int = lbp.get_neighbors_pixel( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase__ : Any = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase__ : Dict = lbp.local_binary_value(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) assert lbp_image.any()
316
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
1