code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase = 1000 ): lowerCamelCase__ : str = -1 lowerCamelCase__ : List[Any] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c lowerCamelCase__ : Tuple = (n * n - 2 * a * n) // (2 * n - 2 * a) lowerCamelCase__ : Union[str, Any] = n - a - b if c * c == (a * a + b * b): lowerCamelCase__ : Dict = a * b * c if candidate >= product: lowerCamelCase__ : Dict = candidate return product if __name__ == "__main__": print(f"{solution() = }")
316
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a_ : '''simple docstring''' @staticmethod def a__ (*lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = MODEL_FOR_OBJECT_DETECTION_MAPPING def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ObjectDetectionPipeline(model=lowerCamelCase_, image_processor=lowerCamelCase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png', threshold=0.0 ) self.assertGreater(len(lowerCamelCase_ ), 0 ) for detected_object in outputs: self.assertEqual( lowerCamelCase_, { 'score': ANY(lowerCamelCase_ ), 'label': ANY(lowerCamelCase_ ), 'box': {'xmin': ANY(lowerCamelCase_ ), 'ymin': ANY(lowerCamelCase_ ), 'xmax': ANY(lowerCamelCase_ ), 'ymax': ANY(lowerCamelCase_ )}, }, ) import datasets lowerCamelCase__ : Any = datasets.load_dataset('hf-internal-testing/fixtures_image_utils', 'image', split='test' ) lowerCamelCase__ : Tuple = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] lowerCamelCase__ : Optional[int] = object_detector(lowerCamelCase_, threshold=0.0 ) self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) for outputs in batch_outputs: self.assertGreater(len(lowerCamelCase_ ), 0 ) for detected_object in outputs: self.assertEqual( lowerCamelCase_, { 'score': ANY(lowerCamelCase_ ), 'label': ANY(lowerCamelCase_ ), 'box': {'xmin': ANY(lowerCamelCase_ ), 'ymin': ANY(lowerCamelCase_ ), 'xmax': ANY(lowerCamelCase_ ), 'ymax': ANY(lowerCamelCase_ )}, }, ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def a__ (self ): '''simple docstring''' pass @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/tiny-detr-mobilenetsv3' lowerCamelCase__ : int = AutoModelForObjectDetection.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = ObjectDetectionPipeline(model=lowerCamelCase_, feature_extractor=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg', threshold=0.0 ) self.assertEqual( nested_simplify(lowerCamelCase_, decimals=4 ), [ {'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 1_5_9, 'ymin': 1_2_0, 'xmax': 4_8_0, 'ymax': 3_5_9}}, {'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 1_5_9, 'ymin': 1_2_0, 'xmax': 4_8_0, 'ymax': 3_5_9}}, ], ) lowerCamelCase__ : str = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ], threshold=0.0, ) self.assertEqual( nested_simplify(lowerCamelCase_, decimals=4 ), [ [ {'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 1_5_9, 'ymin': 1_2_0, 'xmax': 4_8_0, 'ymax': 3_5_9}}, {'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 1_5_9, 'ymin': 1_2_0, 'xmax': 4_8_0, 'ymax': 3_5_9}}, ], [ {'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 1_5_9, 'ymin': 1_2_0, 'xmax': 4_8_0, 'ymax': 3_5_9}}, {'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 1_5_9, 'ymin': 1_2_0, 'xmax': 4_8_0, 'ymax': 3_5_9}}, ], ], ) @require_torch @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = 'facebook/detr-resnet-50' lowerCamelCase__ : List[Any] = AutoModelForObjectDetection.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = ObjectDetectionPipeline(model=lowerCamelCase_, feature_extractor=lowerCamelCase_ ) lowerCamelCase__ : int = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(lowerCamelCase_, decimals=4 ), [ {'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_0, 'xmax': 1_7_5, 'ymax': 1_1_7}}, {'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 3_3_3, 'ymin': 7_2, 'xmax': 3_6_8, 'ymax': 1_8_7}}, {'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_3_9, 'ymax': 4_7_3}}, {'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 1_3, 'ymin': 5_2, 'xmax': 3_1_4, 'ymax': 4_7_0}}, {'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 3_4_5, 'ymin': 2_3, 'xmax': 6_4_0, 'ymax': 3_6_8}}, ], ) lowerCamelCase__ : Any = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(lowerCamelCase_, decimals=4 ), [ [ {'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_0, 'xmax': 1_7_5, 'ymax': 1_1_7}}, {'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 3_3_3, 'ymin': 7_2, 'xmax': 3_6_8, 'ymax': 1_8_7}}, {'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_3_9, 'ymax': 4_7_3}}, {'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 1_3, 'ymin': 5_2, 'xmax': 3_1_4, 'ymax': 4_7_0}}, {'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 3_4_5, 'ymin': 2_3, 'xmax': 6_4_0, 'ymax': 3_6_8}}, ], [ {'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_0, 'xmax': 1_7_5, 'ymax': 1_1_7}}, {'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 3_3_3, 'ymin': 7_2, 'xmax': 3_6_8, 'ymax': 1_8_7}}, {'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_3_9, 'ymax': 4_7_3}}, {'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 1_3, 'ymin': 5_2, 'xmax': 3_1_4, 'ymax': 4_7_0}}, {'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 3_4_5, 'ymin': 2_3, 'xmax': 6_4_0, 'ymax': 3_6_8}}, ], ], ) @require_torch @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = 'facebook/detr-resnet-50' lowerCamelCase__ : List[Any] = pipeline('object-detection', model=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(lowerCamelCase_, decimals=4 ), [ {'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_0, 'xmax': 1_7_5, 'ymax': 1_1_7}}, {'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 3_3_3, 'ymin': 7_2, 'xmax': 3_6_8, 'ymax': 1_8_7}}, {'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_3_9, 'ymax': 4_7_3}}, {'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 1_3, 'ymin': 5_2, 'xmax': 3_1_4, 'ymax': 4_7_0}}, {'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 3_4_5, 'ymin': 2_3, 'xmax': 6_4_0, 'ymax': 3_6_8}}, ], ) lowerCamelCase__ : str = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(lowerCamelCase_, decimals=4 ), [ [ {'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_0, 'xmax': 1_7_5, 'ymax': 1_1_7}}, {'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 3_3_3, 'ymin': 7_2, 'xmax': 3_6_8, 'ymax': 1_8_7}}, {'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_3_9, 'ymax': 4_7_3}}, {'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 1_3, 'ymin': 5_2, 'xmax': 3_1_4, 'ymax': 4_7_0}}, {'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 3_4_5, 'ymin': 2_3, 'xmax': 6_4_0, 'ymax': 3_6_8}}, ], [ {'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_0, 'xmax': 1_7_5, 'ymax': 1_1_7}}, {'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 3_3_3, 'ymin': 7_2, 'xmax': 3_6_8, 'ymax': 1_8_7}}, {'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_3_9, 'ymax': 4_7_3}}, {'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 1_3, 'ymin': 5_2, 'xmax': 3_1_4, 'ymax': 4_7_0}}, {'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 3_4_5, 'ymin': 2_3, 'xmax': 6_4_0, 'ymax': 3_6_8}}, ], ], ) @require_torch @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 0.9_985 lowerCamelCase__ : str = 'facebook/detr-resnet-50' lowerCamelCase__ : str = pipeline('object-detection', model=lowerCamelCase_ ) lowerCamelCase__ : Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg', threshold=lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_, decimals=4 ), [ {'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 1_3, 'ymin': 5_2, 'xmax': 3_1_4, 'ymax': 4_7_0}}, {'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 3_4_5, 'ymin': 2_3, 'xmax': 6_4_0, 'ymax': 3_6_8}}, ], ) @require_torch @require_pytesseract @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'Narsil/layoutlmv3-finetuned-funsd' lowerCamelCase__ : Any = 0.9_993 lowerCamelCase__ : List[Any] = pipeline('object-detection', model=lowerCamelCase_, threshold=lowerCamelCase_ ) lowerCamelCase__ : str = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(lowerCamelCase_, decimals=4 ), [ {'score': 0.9_993, 'label': 'I-ANSWER', 'box': {'xmin': 2_9_4, 'ymin': 2_5_4, 'xmax': 3_4_3, 'ymax': 2_6_4}}, {'score': 0.9_993, 'label': 'I-ANSWER', 'box': {'xmin': 2_9_4, 'ymin': 2_5_4, 'xmax': 3_4_3, 'ymax': 2_6_4}}, ], )
316
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[str] = '' for i in table: res += inp[i - 1] return res def lowerCamelCase_ ( _lowerCamelCase ): return data[1:] + data[0] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : str = '' for i in range(len(_lowerCamelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = int('0b' + data[0] + data[-1] , 2 ) lowerCamelCase__ : List[str] = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = message[:4] lowerCamelCase__ : Tuple = message[4:] lowerCamelCase__ : Optional[int] = apply_table(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = xor(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : List[str] = apply_sbox(_lowerCamelCase , temp[:4] ) # noqa: E741 lowerCamelCase__ : Optional[Any] = apply_sbox(_lowerCamelCase , temp[4:] ) lowerCamelCase__ : List[str] = '0' * (2 - len(_lowerCamelCase )) + l # noqa: E741 lowerCamelCase__ : Dict = '0' * (2 - len(_lowerCamelCase )) + r lowerCamelCase__ : Union[str, Any] = apply_table(l + r , _lowerCamelCase ) lowerCamelCase__ : List[str] = xor(_lowerCamelCase , _lowerCamelCase ) return temp + right if __name__ == "__main__": A_ : str = input("Enter 10 bit key: ") A_ : List[str] = input("Enter 8 bit message: ") A_ : Optional[Any] = [6, 3, 7, 4, 8, 5, 10, 9] A_ : List[str] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] A_ : List[Any] = [2, 4, 3, 1] A_ : Tuple = [2, 6, 3, 1, 4, 8, 5, 7] A_ : Optional[int] = [4, 1, 3, 5, 7, 2, 8, 6] A_ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] A_ : Union[str, Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] A_ : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation A_ : Optional[Any] = apply_table(key, paa_table) A_ : Any = temp[:5] A_ : Any = temp[5:] A_ : List[str] = left_shift(left) A_ : Union[str, Any] = left_shift(right) A_ : Dict = apply_table(left + right, pa_table) A_ : Optional[int] = left_shift(left) A_ : Union[str, Any] = left_shift(right) A_ : List[Any] = left_shift(left) A_ : str = left_shift(right) A_ : Optional[Any] = apply_table(left + right, pa_table) # encryption A_ : str = apply_table(message, IP) A_ : str = function(expansion, sa, sa, keya, temp) A_ : Union[str, Any] = temp[4:] + temp[:4] A_ : List[str] = function(expansion, sa, sa, keya, temp) A_ : int = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption A_ : int = apply_table(CT, IP) A_ : Any = function(expansion, sa, sa, keya, temp) A_ : str = temp[4:] + temp[:4] A_ : List[Any] = function(expansion, sa, sa, keya, temp) A_ : List[str] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
1
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets A_ : Any = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" A_ : Union[str, Any] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" A_ : Optional[Any] = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def a__ (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage='https://github.com/krishnap25/mauve', inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence' ), 'references': datasets.Value('string', id='sequence' ), } ), codebase_urls=['https://github.com/krishnap25/mauve'], reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ], ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_="auto", lowerCamelCase_=-1, lowerCamelCase_=0.9, lowerCamelCase_=5, lowerCamelCase_=5_0_0, lowerCamelCase_="gpt2-large", lowerCamelCase_=-1, lowerCamelCase_=1_0_2_4, lowerCamelCase_=2_5, lowerCamelCase_=5, lowerCamelCase_=True, lowerCamelCase_=2_5, ): '''simple docstring''' lowerCamelCase__ : List[str] = compute_mauve( p_text=lowerCamelCase_, q_text=lowerCamelCase_, p_features=lowerCamelCase_, q_features=lowerCamelCase_, p_tokens=lowerCamelCase_, q_tokens=lowerCamelCase_, num_buckets=lowerCamelCase_, pca_max_data=lowerCamelCase_, kmeans_explained_var=lowerCamelCase_, kmeans_num_redo=lowerCamelCase_, kmeans_max_iter=lowerCamelCase_, featurize_model_name=lowerCamelCase_, device_id=lowerCamelCase_, max_text_length=lowerCamelCase_, divergence_curve_discretization_size=lowerCamelCase_, mauve_scaling_factor=lowerCamelCase_, verbose=lowerCamelCase_, seed=lowerCamelCase_, ) return out
316
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = [0] * len(_lowerCamelCase ) lowerCamelCase__ : Any = [] lowerCamelCase__ : Dict = [] lowerCamelCase__ : List[Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowerCamelCase ) ): if indegree[i] == 0: queue.append(_lowerCamelCase ) while queue: lowerCamelCase__ : List[str] = queue.pop(0 ) cnt += 1 topo.append(_lowerCamelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_lowerCamelCase ) if cnt != len(_lowerCamelCase ): print('Cycle exists' ) else: print(_lowerCamelCase ) # Adjacency List of Graph A_ : Optional[int] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : List[Any] = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A_ : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A_ : list[int] = [ord(letter) for letter in string.ascii_lowercase] A_ : set[int] = {ord(char) for char in VALID_CHARS} A_ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : str = "" lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int for keychar, cipherchar in zip(cycle(_lowerCamelCase ) , _lowerCamelCase ): lowerCamelCase__ : str = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_lowerCamelCase ) return decoded def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : list[str] = [] for key in product(_lowerCamelCase , repeat=3 ): lowerCamelCase__ : Union[str, Any] = try_key(_lowerCamelCase , _lowerCamelCase ) if encoded is not None: possibles.append(_lowerCamelCase ) return possibles def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return [possible for possible in possibles if common_word in possible.lower()] def lowerCamelCase_ ( _lowerCamelCase = "p059_cipher.txt" ): lowerCamelCase__ : list[int] lowerCamelCase__ : list[str] lowerCamelCase__ : str lowerCamelCase__ : str lowerCamelCase__ : str = Path(_lowerCamelCase ).parent.joinpath(_lowerCamelCase ).read_text(encoding='utf-8' ) lowerCamelCase__ : Optional[Any] = [int(_lowerCamelCase ) for number in data.strip().split(',' )] lowerCamelCase__ : Tuple = filter_valid_chars(_lowerCamelCase ) for common_word in COMMON_WORDS: lowerCamelCase__ : Dict = filter_common_word(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) == 1: break lowerCamelCase__ : List[Any] = possibles[0] return sum(ord(_lowerCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
316
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
1
"""simple docstring""" from __future__ import annotations A_ : List[Any] = 8.988E9 # units = N * m^s * C^-2 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: lowerCamelCase__ : Union[str, Any] = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowerCamelCase__ : Optional[int] = abs(_lowerCamelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowerCamelCase__ : List[Any] = abs(_lowerCamelCase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowerCamelCase__ : Union[str, Any] = (COULOMBS_CONSTANT * charge_product / abs(_lowerCamelCase )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = False, lowerCamelCase_ = False, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' super().__init__( lowerCamelCase_, split=lowerCamelCase_, features=lowerCamelCase_, cache_dir=lowerCamelCase_, keep_in_memory=lowerCamelCase_, streaming=lowerCamelCase_, num_proc=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : Any = field lowerCamelCase__ : str = path_or_paths if isinstance(lowerCamelCase_, lowerCamelCase_ ) else {self.split: path_or_paths} lowerCamelCase__ : Dict = Json( cache_dir=lowerCamelCase_, data_files=lowerCamelCase_, features=lowerCamelCase_, field=lowerCamelCase_, **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' if self.streaming: lowerCamelCase__ : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : str = None lowerCamelCase__ : Tuple = None lowerCamelCase__ : Optional[int] = None self.builder.download_and_prepare( download_config=lowerCamelCase_, download_mode=lowerCamelCase_, verification_mode=lowerCamelCase_, base_path=lowerCamelCase_, num_proc=self.num_proc, ) lowerCamelCase__ : List[Any] = self.builder.as_dataset( split=self.split, verification_mode=lowerCamelCase_, in_memory=self.keep_in_memory ) return dataset class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) lowerCamelCase__ : List[Any] = dataset lowerCamelCase__ : List[Any] = path_or_buf lowerCamelCase__ : Union[str, Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowerCamelCase__ : List[Any] = num_proc lowerCamelCase__ : List[str] = 'utf-8' lowerCamelCase__ : Optional[int] = to_json_kwargs def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.to_json_kwargs.pop('path_or_buf', lowerCamelCase_ ) lowerCamelCase__ : Tuple = self.to_json_kwargs.pop('orient', 'records' ) lowerCamelCase__ : Union[str, Any] = self.to_json_kwargs.pop('lines', True if orient == 'records' else False ) lowerCamelCase__ : Union[str, Any] = self.to_json_kwargs.pop('index', False if orient in ['split', 'table'] else True ) lowerCamelCase__ : str = self.to_json_kwargs.pop('compression', lowerCamelCase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf, (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf, 'wb', compression=lowerCamelCase_ ) as buffer: lowerCamelCase__ : Tuple = self._write(file_obj=lowerCamelCase_, orient=lowerCamelCase_, lines=lowerCamelCase_, index=lowerCamelCase_, **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ' was passed. Please provide a local path instead.' ) lowerCamelCase__ : List[Any] = self._write( file_obj=self.path_or_buf, orient=lowerCamelCase_, lines=lowerCamelCase_, index=lowerCamelCase_, **self.to_json_kwargs ) return written def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = args lowerCamelCase__ : Union[str, Any] = query_table( table=self.dataset.data, key=slice(lowerCamelCase_, offset + self.batch_size ), indices=self.dataset._indices, ) lowerCamelCase__ : Optional[int] = batch.to_pandas().to_json( path_or_buf=lowerCamelCase_, orient=lowerCamelCase_, lines=lowerCamelCase_, index=lowerCamelCase_, **lowerCamelCase_ ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0, len(self.dataset ), self.batch_size ), unit='ba', disable=not logging.is_progress_bar_enabled(), desc='Creating json from Arrow format', ): lowerCamelCase__ : str = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowerCamelCase_ ) else: lowerCamelCase__ , lowerCamelCase__ : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json, [(offset, orient, lines, index, to_json_kwargs) for offset in range(0, lowerCamelCase_, lowerCamelCase_ )], ), total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size, unit='ba', disable=not logging.is_progress_bar_enabled(), desc='Creating json from Arrow format', ): written += file_obj.write(lowerCamelCase_ ) return written
316
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run A_ : Dict = True except (ImportError, AttributeError): A_ : Dict = object def lowerCamelCase_ ( *_lowerCamelCase , **_lowerCamelCase ): pass A_ : Any = False A_ : Union[str, Any] = logging.get_logger("transformers-cli/serving") def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(_lowerCamelCase , args.host , args.port , args.workers ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : dict class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[str] lowerCamelCase__ : Optional[List[int]] class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : str class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Any class a_ ( snake_case_ ): '''simple docstring''' @staticmethod def a__ (lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = parser.add_parser( 'serve', help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task', type=lowerCamelCase_, choices=get_supported_tasks(), help='The task to run the pipeline on', ) serve_parser.add_argument('--host', type=lowerCamelCase_, default='localhost', help='Interface the server will listen on.' ) serve_parser.add_argument('--port', type=lowerCamelCase_, default=8_8_8_8, help='Port the serving will listen to.' ) serve_parser.add_argument('--workers', type=lowerCamelCase_, default=1, help='Number of http workers' ) serve_parser.add_argument('--model', type=lowerCamelCase_, help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config', type=lowerCamelCase_, help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer', type=lowerCamelCase_, help='Tokenizer name to use.' ) serve_parser.add_argument( '--device', type=lowerCamelCase_, default=-1, help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)', ) serve_parser.set_defaults(func=lowerCamelCase_ ) def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = pipeline lowerCamelCase__ : Optional[Any] = host lowerCamelCase__ : Union[str, Any] = port lowerCamelCase__ : Union[str, Any] = workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install "transformers[serving]".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(f'''Serving model over {host}:{port}''' ) lowerCamelCase__ : Union[str, Any] = FastAPI( routes=[ APIRoute( '/', self.model_info, response_model=lowerCamelCase_, response_class=lowerCamelCase_, methods=['GET'], ), APIRoute( '/tokenize', self.tokenize, response_model=lowerCamelCase_, response_class=lowerCamelCase_, methods=['POST'], ), APIRoute( '/detokenize', self.detokenize, response_model=lowerCamelCase_, response_class=lowerCamelCase_, methods=['POST'], ), APIRoute( '/forward', self.forward, response_model=lowerCamelCase_, response_class=lowerCamelCase_, methods=['POST'], ), ], timeout=6_0_0, ) def a__ (self ): '''simple docstring''' run(self._app, host=self.host, port=self.port, workers=self.workers ) def a__ (self ): '''simple docstring''' return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def a__ (self, lowerCamelCase_ = Body(lowerCamelCase_, embed=lowerCamelCase_ ), lowerCamelCase_ = Body(lowerCamelCase_, embed=lowerCamelCase_ ) ): '''simple docstring''' try: lowerCamelCase__ : int = self._pipeline.tokenizer.tokenize(lowerCamelCase_ ) if return_ids: lowerCamelCase__ : Optional[Any] = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) return ServeTokenizeResult(tokens=lowerCamelCase_, tokens_ids=lowerCamelCase_ ) else: return ServeTokenizeResult(tokens=lowerCamelCase_ ) except Exception as e: raise HTTPException(status_code=5_0_0, detail={'model': '', 'error': str(lowerCamelCase_ )} ) def a__ (self, lowerCamelCase_ = Body(lowerCamelCase_, embed=lowerCamelCase_ ), lowerCamelCase_ = Body(lowerCamelCase_, embed=lowerCamelCase_ ), lowerCamelCase_ = Body(lowerCamelCase_, embed=lowerCamelCase_ ), ): '''simple docstring''' try: lowerCamelCase__ : Tuple = self._pipeline.tokenizer.decode(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return ServeDeTokenizeResult(model='', text=lowerCamelCase_ ) except Exception as e: raise HTTPException(status_code=5_0_0, detail={'model': '', 'error': str(lowerCamelCase_ )} ) async def a__ (self, lowerCamelCase_=Body(lowerCamelCase_, embed=lowerCamelCase_ ) ): '''simple docstring''' if len(lowerCamelCase_ ) == 0: return ServeForwardResult(output=[], attention=[] ) try: # Forward through the model lowerCamelCase__ : Any = self._pipeline(lowerCamelCase_ ) return ServeForwardResult(output=lowerCamelCase_ ) except Exception as e: raise HTTPException(5_0_0, {'error': str(lowerCamelCase_ )} )
316
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A_ : Optional[int] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") A_ : List[Any] = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A_ : Tuple = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A_ : Optional[Any] = sorted(arg_to_scheduler.keys()) A_ : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class a_ ( pl.LightningModule ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_="base", lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : Optional[int] = Path(self.hparams.output_dir ) lowerCamelCase__ : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: lowerCamelCase__ : Optional[int] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path, **({'num_labels': num_labels} if num_labels is not None else {}), cache_dir=lowerCamelCase_, **lowerCamelCase_, ) else: lowerCamelCase__ : PretrainedConfig = config lowerCamelCase__ : Union[str, Any] = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams, lowerCamelCase_, lowerCamelCase_ ): assert hasattr(self.config, lowerCamelCase_ ), f'''model config doesn\'t have a `{p}` attribute''' setattr(self.config, lowerCamelCase_, getattr(self.hparams, lowerCamelCase_ ) ) if tokenizer is None: lowerCamelCase__ : Tuple = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path, cache_dir=lowerCamelCase_, ) else: lowerCamelCase__ : PreTrainedTokenizer = tokenizer lowerCamelCase__ : Dict = MODEL_MODES[mode] if model is None: lowerCamelCase__ : List[str] = self.model_type.from_pretrained( self.hparams.model_name_or_path, from_tf=bool('.ckpt' in self.hparams.model_name_or_path ), config=self.config, cache_dir=lowerCamelCase_, ) else: lowerCamelCase__ : Optional[int] = model def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_type.from_pretrained(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] lowerCamelCase__ : str = get_schedule_func( self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps() ) lowerCamelCase__ : Dict = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model lowerCamelCase__ : int = ['bias', 'LayerNorm.weight'] lowerCamelCase__ : Tuple = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: lowerCamelCase__ : Optional[Any] = Adafactor( lowerCamelCase_, lr=self.hparams.learning_rate, scale_parameter=lowerCamelCase_, relative_step=lowerCamelCase_ ) else: lowerCamelCase__ : List[str] = AdamW( lowerCamelCase_, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon ) lowerCamelCase__ : Dict = optimizer lowerCamelCase__ : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return self.validation_step(lowerCamelCase_, lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.validation_end(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = max(1, self.hparams.gpus ) # TODO: consider num_tpu_cores lowerCamelCase__ : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def a__ (self, lowerCamelCase_ ): '''simple docstring''' if stage == "test": lowerCamelCase__ : Any = len(self.test_dataloader().dataset ) else: lowerCamelCase__ : Any = self.get_dataloader('train', self.hparams.train_batch_size, shuffle=lowerCamelCase_ ) lowerCamelCase__ : Tuple = len(self.train_dataloader().dataset ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def a__ (self ): '''simple docstring''' return self.train_loader def a__ (self ): '''simple docstring''' return self.get_dataloader('dev', self.hparams.eval_batch_size, shuffle=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' return self.get_dataloader('test', self.hparams.eval_batch_size, shuffle=lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return os.path.join( self.hparams.data_dir, 'cached_{}_{}_{}'.format( lowerCamelCase_, list(filter(lowerCamelCase_, self.hparams.model_name_or_path.split('/' ) ) ).pop(), str(self.hparams.max_seq_length ), ), ) @pl.utilities.rank_zero_only def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.output_dir.joinpath('best_tfmr' ) lowerCamelCase__ : Optional[int] = self.step_count self.model.save_pretrained(lowerCamelCase_ ) self.tokenizer.save_pretrained(lowerCamelCase_ ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' parser.add_argument( '--model_name_or_path', default=lowerCamelCase_, type=lowerCamelCase_, required=lowerCamelCase_, help='Path to pretrained model or model identifier from huggingface.co/models', ) parser.add_argument( '--config_name', default='', type=lowerCamelCase_, help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name', default=lowerCamelCase_, type=lowerCamelCase_, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--cache_dir', default=str(Path(lowerCamelCase_ ).parent / 'test_run' / 'cache' ), type=lowerCamelCase_, help='Where do you want to store the pre-trained models downloaded from huggingface.co', ) parser.add_argument( '--encoder_layerdrop', type=lowerCamelCase_, help='Encoder layer dropout probability (Optional). Goes into model.config', ) parser.add_argument( '--decoder_layerdrop', type=lowerCamelCase_, help='Decoder layer dropout probability (Optional). Goes into model.config', ) parser.add_argument( '--dropout', type=lowerCamelCase_, help='Dropout probability (Optional). Goes into model.config', ) parser.add_argument( '--attention_dropout', type=lowerCamelCase_, help='Attention dropout probability (Optional). Goes into model.config', ) parser.add_argument('--learning_rate', default=5e-5, type=lowerCamelCase_, help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler', default='linear', choices=lowerCamelCase_, metavar=lowerCamelCase_, type=lowerCamelCase_, help='Learning rate scheduler', ) parser.add_argument('--weight_decay', default=0.0, type=lowerCamelCase_, help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon', default=1e-8, type=lowerCamelCase_, help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps', default=0, type=lowerCamelCase_, help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers', default=4, type=lowerCamelCase_, help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs', dest='max_epochs', default=3, type=lowerCamelCase_ ) parser.add_argument('--train_batch_size', default=3_2, type=lowerCamelCase_ ) parser.add_argument('--eval_batch_size', default=3_2, type=lowerCamelCase_ ) parser.add_argument('--adafactor', action='store_true' ) class a_ ( pl.Callback ): '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class a_ ( pl.Callback ): '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowerCamelCase_ ) class a_ ( pl.Callback ): '''simple docstring''' def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = trainer.lr_schedulers[0]['scheduler'] lowerCamelCase__ : Optional[Any] = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) lowerCamelCase__ : Tuple = trainer.callback_metrics # Log results for key in sorted(lowerCamelCase_ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(lowerCamelCase_, str(metrics[key] ) ) ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' rank_zero_info('***** Test results *****' ) lowerCamelCase__ : List[str] = trainer.callback_metrics # Log and save results to file lowerCamelCase__ : Optional[int] = os.path.join(pl_module.hparams.output_dir, 'test_results.txt' ) with open(lowerCamelCase_, 'w' ) as writer: for key in sorted(lowerCamelCase_ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(lowerCamelCase_, str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(lowerCamelCase_, str(metrics[key] ) ) ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(_lowerCamelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=_lowerCamelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_lowerCamelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=_lowerCamelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=_lowerCamelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=_lowerCamelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=_lowerCamelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(_lowerCamelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=_lowerCamelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[] , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ): pl.seed_everything(args.seed ) # init model lowerCamelCase__ : int = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_lowerCamelCase ) # add custom checkpoints if checkpoint_callback is None: lowerCamelCase__ : Any = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_lowerCamelCase ) if logging_callback is None: lowerCamelCase__ : str = LoggingCallback() lowerCamelCase__ : List[Any] = {} if args.fpaa: lowerCamelCase__ : List[Any] = 16 if args.gpus > 1: lowerCamelCase__ : int = 'auto' lowerCamelCase__ : str = 'ddp' lowerCamelCase__ : Dict = args.accumulate_grad_batches lowerCamelCase__ : str = None lowerCamelCase__ : List[str] = 'auto' lowerCamelCase__ : int = pl.Trainer.from_argparse_args( _lowerCamelCase , weights_summary=_lowerCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_lowerCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_lowerCamelCase , ) if args.do_train: trainer.fit(_lowerCamelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
316
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
1
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=7 ): lowerCamelCase__ : List[str] = None if token is not None: lowerCamelCase__ : Dict = {'Accept': 'application/vnd.github+json', 'Authorization': f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowerCamelCase__ : List[Any] = '636036' lowerCamelCase__ : int = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowerCamelCase__ : Optional[int] = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() return result["workflow_runs"] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = get_daily_ci_runs(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowerCamelCase__ : int = workflow_run['id'] break return workflow_run_id def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = get_last_daily_ci_runs(_lowerCamelCase ) if workflow_run_id is not None: lowerCamelCase__ : Optional[Any] = get_artifacts_links(worflow_run_id=_lowerCamelCase , token=_lowerCamelCase ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowerCamelCase__ : int = artifacts_links[artifact_name] download_artifact( artifact_name=_lowerCamelCase , artifact_url=_lowerCamelCase , output_dir=_lowerCamelCase , token=_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): get_last_daily_ci_artifacts(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Optional[Any] = {} for artifact_name in artifact_names: lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''{artifact_name}.zip''' ) if os.path.isfile(_lowerCamelCase ): lowerCamelCase__ : Dict = {} with zipfile.ZipFile(_lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase ): # read the file with z.open(_lowerCamelCase ) as f: lowerCamelCase__ : str = f.read().decode('UTF-8' ) return results
316
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
1
"""simple docstring""" import math import tensorflow as tf from packaging import version def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Any = tf.convert_to_tensor(_lowerCamelCase ) lowerCamelCase__ : List[str] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = tf.convert_to_tensor(_lowerCamelCase ) lowerCamelCase__ : str = tf.cast(math.pi , x.dtype ) lowerCamelCase__ : Any = tf.cast(0.044_715 , x.dtype ) lowerCamelCase__ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(_lowerCamelCase , 3 )) )) return x * cdf def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = tf.convert_to_tensor(_lowerCamelCase ) return x * tf.tanh(tf.math.softplus(_lowerCamelCase ) ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = tf.convert_to_tensor(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = tf.cast(0.044_715 , x.dtype ) lowerCamelCase__ : str = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = tf.convert_to_tensor(_lowerCamelCase ) lowerCamelCase__ : int = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCamelCase_ ( _lowerCamelCase ): return tf.clip_by_value(_gelu(_lowerCamelCase ) , -10 , 10 ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=-1 ): lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = tf.split(_lowerCamelCase , 2 , axis=_lowerCamelCase ) return a * tf.math.sigmoid(_lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCamelCase_ ( _lowerCamelCase ): return tf.keras.activations.gelu(_lowerCamelCase , approximate=_lowerCamelCase ) A_ : Any = tf.keras.activations.gelu A_ : Optional[Any] = approximate_gelu_wrap else: A_ : Optional[Any] = _gelu A_ : List[str] = _gelu_new A_ : Union[str, Any] = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCamelCase_ ( _lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
1
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=9_9, lowerCamelCase_=1_3, lowerCamelCase_=1_6, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=True, lowerCamelCase_=2, lowerCamelCase_=3_2, lowerCamelCase_=4, lowerCamelCase_=4, lowerCamelCase_=3_0, lowerCamelCase_=0, lowerCamelCase_=1, lowerCamelCase_=2, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : List[str] = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Dict = decoder_seq_length # For common tests lowerCamelCase__ : int = self.decoder_seq_length lowerCamelCase__ : str = is_training lowerCamelCase__ : Optional[Any] = use_attention_mask lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : int = vocab_size lowerCamelCase__ : List[Any] = d_model lowerCamelCase__ : Union[str, Any] = d_model lowerCamelCase__ : Union[str, Any] = decoder_layers lowerCamelCase__ : Optional[int] = decoder_layers lowerCamelCase__ : List[Any] = decoder_ffn_dim lowerCamelCase__ : int = decoder_attention_heads lowerCamelCase__ : List[str] = decoder_attention_heads lowerCamelCase__ : str = eos_token_id lowerCamelCase__ : int = bos_token_id lowerCamelCase__ : List[Any] = pad_token_id lowerCamelCase__ : Any = decoder_start_token_id lowerCamelCase__ : Tuple = use_cache lowerCamelCase__ : int = max_position_embeddings lowerCamelCase__ : Dict = None lowerCamelCase__ : Any = decoder_seq_length lowerCamelCase__ : List[Any] = 2 lowerCamelCase__ : int = 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size ) lowerCamelCase__ : str = None if self.use_attention_mask: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2 ) lowerCamelCase__ : Optional[Any] = None if self.use_labels: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size ) lowerCamelCase__ : Any = TrOCRConfig( vocab_size=self.vocab_size, d_model=self.d_model, decoder_layers=self.decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, decoder_attention_heads=self.decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, max_position_embeddings=self.max_position_embeddings, ) return (config, input_ids, attention_mask, lm_labels) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : int = True lowerCamelCase__ : str = TrOCRDecoder(config=lowerCamelCase_ ).to(lowerCamelCase_ ).eval() lowerCamelCase__ : str = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, use_cache=lowerCamelCase_ ) self.parent.assertTrue(len(lowerCamelCase_ ) == len(lowerCamelCase_ ) ) self.parent.assertTrue(len(lowerCamelCase_ ) == len(lowerCamelCase_ ) + 1 ) lowerCamelCase__ : Tuple = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Dict = ids_tensor((2, 1), config.vocab_size - 1 ) + 1 # append to next input_ids and lowerCamelCase__ : str = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_ )['last_hidden_state'] lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, past_key_values=lowerCamelCase_ )['last_hidden_state'] # select random slice lowerCamelCase__ : Tuple = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowerCamelCase__ : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = config_and_inputs lowerCamelCase__ : Dict = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase__ : Tuple = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Optional[Any] = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : str = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = TrOCRStandaloneDecoderModelTester(self, is_training=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = ConfigTester(self, config_class=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def a__ (self ): '''simple docstring''' pass
316
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while b: lowerCamelCase__ , lowerCamelCase__ : Dict = b, a % b return a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return a if b == 0 else euclidean_gcd_recursive(_lowerCamelCase , a % b ) def lowerCamelCase_ ( ): print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
316
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
1
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[str] = cva.getAffineTransform(_lowerCamelCase , _lowerCamelCase ) return cva.warpAffine(_lowerCamelCase , _lowerCamelCase , (rows, cols) ) if __name__ == "__main__": # read original image A_ : Union[str, Any] = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value A_ : Dict = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A_, A_ : Any = gray_img.shape # set different points to rotate image A_ : Union[str, Any] = np.array([[50, 50], [2_00, 50], [50, 2_00]], np.floataa) A_ : Optional[Any] = np.array([[10, 1_00], [2_00, 50], [1_00, 2_50]], np.floataa) A_ : List[Any] = np.array([[50, 50], [1_50, 50], [1_20, 2_00]], np.floataa) A_ : str = np.array([[10, 1_00], [80, 50], [1_80, 2_50]], np.floataa) # add all rotated images in a list A_ : str = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A_ : Optional[Any] = plt.figure(1) A_ : Tuple = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
1
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = 3 lowerCamelCase__ : Dict = 2_5_0 lowerCamelCase__ : Dict = ids_tensor((batch_size, length), lowerCamelCase_ ) lowerCamelCase__ : Any = torch.ones((batch_size, length), device=lowerCamelCase_, dtype=torch.float ) / length return input_ids, scores def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[str] = self._get_tensors(5 ) lowerCamelCase__ : List[str] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ , lowerCamelCase__ : Tuple = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self._get_tensors(1_0 ) self.assertTrue(criteria(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = MaxLengthCriteria(max_length=1_0 ) lowerCamelCase__ , lowerCamelCase__ : Any = self._get_tensors(5 ) self.assertFalse(criteria(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = self._get_tensors(1_0 ) self.assertTrue(criteria(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = MaxNewTokensCriteria(start_length=5, max_new_tokens=5 ) lowerCamelCase__ , lowerCamelCase__ : int = self._get_tensors(5 ) self.assertFalse(criteria(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = self._get_tensors(1_0 ) self.assertTrue(criteria(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length, 1_0 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = self._get_tensors(5 ) lowerCamelCase__ : Tuple = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ : Optional[int] = MaxTimeCriteria(max_time=0.1, initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ), 1_0 ) with self.assertWarns(lowerCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ), 1_1 ) lowerCamelCase__ : List[str] = validate_stopping_criteria(StoppingCriteriaList(), 1_1 ) self.assertEqual(len(lowerCamelCase_ ), 1 )
316
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A_ : List[Any] = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) lowerCamelCase__ : Dict = DetaConfig( backbone_config=_lowerCamelCase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=_lowerCamelCase , with_box_refine=_lowerCamelCase , two_stage=_lowerCamelCase , ) # set labels lowerCamelCase__ : Union[str, Any] = 'huggingface/label-files' if "o365" in model_name: lowerCamelCase__ : List[Any] = 366 lowerCamelCase__ : int = 'object365-id2label.json' else: lowerCamelCase__ : Tuple = 91 lowerCamelCase__ : Dict = 'coco-detection-id2label.json' lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) ) , 'r' ) ) lowerCamelCase__ : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Optional[int] = idalabel lowerCamelCase__ : Dict = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Any = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = dct.pop(_lowerCamelCase ) lowerCamelCase__ : Tuple = val def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCamelCase__ : List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase__ : Union[str, Any] = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) lowerCamelCase__ : Union[str, Any] = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = in_proj_weight[:dim, :] lowerCamelCase__ : Optional[int] = in_proj_bias[: dim] lowerCamelCase__ : Any = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase__ : List[Any] = in_proj_bias[ dim : dim * 2 ] lowerCamelCase__ : Any = in_proj_weight[ -dim :, : ] lowerCamelCase__ : Dict = in_proj_bias[-dim :] # fmt: on def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # transformer decoder self-attention layers lowerCamelCase__ : Optional[Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention lowerCamelCase__ : List[str] = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) lowerCamelCase__ : Any = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Any = in_proj_weight[:hidden_size, :] lowerCamelCase__ : Optional[Any] = in_proj_bias[:hidden_size] lowerCamelCase__ : Union[str, Any] = in_proj_weight[ hidden_size : hidden_size * 2, : ] lowerCamelCase__ : str = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase__ : Union[str, Any] = in_proj_weight[-hidden_size:, :] lowerCamelCase__ : Optional[int] = in_proj_bias[-hidden_size:] def lowerCamelCase_ ( ): lowerCamelCase__ : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = get_deta_config(_lowerCamelCase ) # load original state dict if model_name == "deta-swin-large": lowerCamelCase__ : int = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": lowerCamelCase__ : Any = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) lowerCamelCase__ : Optional[Any] = torch.load(_lowerCamelCase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(_lowerCamelCase , param.shape ) # rename keys lowerCamelCase__ : Tuple = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_swin_q_k_v(_lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCamelCase , _lowerCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: lowerCamelCase__ : int = state_dict.pop(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = val if "input_proj" in key: lowerCamelCase__ : List[Any] = state_dict.pop(_lowerCamelCase ) lowerCamelCase__ : Any = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: lowerCamelCase__ : Dict = state_dict.pop(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = val # finally, create HuggingFace model and load state dict lowerCamelCase__ : Tuple = DetaForObjectDetection(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() lowerCamelCase__ : int = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(_lowerCamelCase ) # load image processor lowerCamelCase__ : str = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Any = processor(images=_lowerCamelCase , return_tensors='pt' ) lowerCamelCase__ : List[str] = encoding['pixel_values'] lowerCamelCase__ : Any = model(pixel_values.to(_lowerCamelCase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": lowerCamelCase__ : Union[str, Any] = torch.tensor( [[-7.6_308, -2.8_485, -5.3_737], [-7.2_037, -4.5_505, -4.8_027], [-7.2_943, -4.2_611, -4.6_617]] ) lowerCamelCase__ : List[str] = torch.tensor([[0.4_987, 0.4_969, 0.9_999], [0.2_549, 0.5_498, 0.4_805], [0.5_498, 0.2_757, 0.0_569]] ) elif model_name == "deta-swin-large-o365": lowerCamelCase__ : str = torch.tensor( [[-8.0_122, -3.5_720, -4.9_717], [-8.1_547, -3.6_886, -4.6_389], [-7.6_610, -3.6_194, -5.0_134]] ) lowerCamelCase__ : List[str] = torch.tensor([[0.2_523, 0.5_549, 0.4_881], [0.7_715, 0.4_149, 0.4_601], [0.5_503, 0.2_753, 0.0_575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_lowerCamelCase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_lowerCamelCase ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A_ : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
316
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # Load checkpoint lowerCamelCase__ : Union[str, Any] = torch.load(_lowerCamelCase , map_location='cpu' ) lowerCamelCase__ : List[str] = chkpt['model'] # We have the base model one level deeper than the original XLM repository lowerCamelCase__ : Optional[Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: lowerCamelCase__ : Any = v else: lowerCamelCase__ : Optional[int] = v lowerCamelCase__ : Dict = chkpt['params'] lowerCamelCase__ : List[Any] = {n: v for n, v in config.items() if not isinstance(_lowerCamelCase , (torch.FloatTensor, numpy.ndarray) )} lowerCamelCase__ : str = chkpt['dico_word2id'] lowerCamelCase__ : Optional[int] = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model lowerCamelCase__ : List[Any] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCamelCase__ : Optional[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME lowerCamelCase__ : Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , indent=2 ) + '\n' ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , indent=2 ) + '\n' ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : int = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
316
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ : List[Any] = logging.get_logger(__name__) A_ : str = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'deformable_detr' lowerCamelCase__ : Optional[Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__(self, lowerCamelCase_=True, lowerCamelCase_=None, lowerCamelCase_=3, lowerCamelCase_=3_0_0, lowerCamelCase_=1_0_2_4, lowerCamelCase_=6, lowerCamelCase_=1_0_2_4, lowerCamelCase_=8, lowerCamelCase_=6, lowerCamelCase_=1_0_2_4, lowerCamelCase_=8, lowerCamelCase_=0.0, lowerCamelCase_=True, lowerCamelCase_="relu", lowerCamelCase_=2_5_6, lowerCamelCase_=0.1, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=0.02, lowerCamelCase_=1.0, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_="sine", lowerCamelCase_="resnet50", lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=4, lowerCamelCase_=4, lowerCamelCase_=4, lowerCamelCase_=False, lowerCamelCase_=3_0_0, lowerCamelCase_=False, lowerCamelCase_=1, lowerCamelCase_=5, lowerCamelCase_=2, lowerCamelCase_=1, lowerCamelCase_=1, lowerCamelCase_=5, lowerCamelCase_=2, lowerCamelCase_=0.1, lowerCamelCase_=0.25, lowerCamelCase_=False, **lowerCamelCase_, ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCamelCase__ : Dict = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = backbone_config.get('model_type' ) lowerCamelCase__ : str = CONFIG_MAPPING[backbone_model_type] lowerCamelCase__ : Dict = config_class.from_dict(lowerCamelCase_ ) lowerCamelCase__ : Any = use_timm_backbone lowerCamelCase__ : Optional[Any] = backbone_config lowerCamelCase__ : Any = num_channels lowerCamelCase__ : Union[str, Any] = num_queries lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Optional[Any] = d_model lowerCamelCase__ : int = encoder_ffn_dim lowerCamelCase__ : Any = encoder_layers lowerCamelCase__ : int = encoder_attention_heads lowerCamelCase__ : Any = decoder_ffn_dim lowerCamelCase__ : str = decoder_layers lowerCamelCase__ : List[str] = decoder_attention_heads lowerCamelCase__ : Dict = dropout lowerCamelCase__ : Any = attention_dropout lowerCamelCase__ : Any = activation_dropout lowerCamelCase__ : Tuple = activation_function lowerCamelCase__ : Optional[Any] = init_std lowerCamelCase__ : List[Any] = init_xavier_std lowerCamelCase__ : List[Any] = encoder_layerdrop lowerCamelCase__ : str = auxiliary_loss lowerCamelCase__ : int = position_embedding_type lowerCamelCase__ : List[Any] = backbone lowerCamelCase__ : Dict = use_pretrained_backbone lowerCamelCase__ : Dict = dilation # deformable attributes lowerCamelCase__ : Any = num_feature_levels lowerCamelCase__ : List[Any] = encoder_n_points lowerCamelCase__ : str = decoder_n_points lowerCamelCase__ : List[Any] = two_stage lowerCamelCase__ : int = two_stage_num_proposals lowerCamelCase__ : Tuple = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCamelCase__ : Optional[int] = class_cost lowerCamelCase__ : Tuple = bbox_cost lowerCamelCase__ : Dict = giou_cost # Loss coefficients lowerCamelCase__ : Any = mask_loss_coefficient lowerCamelCase__ : Tuple = dice_loss_coefficient lowerCamelCase__ : List[Any] = bbox_loss_coefficient lowerCamelCase__ : Any = giou_loss_coefficient lowerCamelCase__ : str = eos_coefficient lowerCamelCase__ : Any = focal_alpha lowerCamelCase__ : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return self.encoder_attention_heads @property def a__ (self ): '''simple docstring''' return self.d_model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCamelCase__ : Optional[int] = self.backbone_config.to_dict() lowerCamelCase__ : str = self.__class__.model_type return output
316
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
1
"""simple docstring""" from ....utils import logging A_ : List[str] = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=2_0_4_8 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = config.__dict__ lowerCamelCase__ : str = modal_hidden_size if num_labels: lowerCamelCase__ : List[str] = num_labels
316
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowerCamelCase__ : Optional[int] = n - k # Calculate C(n,k) for i in range(_lowerCamelCase ): result *= n - i result //= i + 1 return result def lowerCamelCase_ ( _lowerCamelCase ): return binomial_coefficient(2 * node_count , _lowerCamelCase ) // (node_count + 1) def lowerCamelCase_ ( _lowerCamelCase ): if n < 0: raise ValueError('factorial() not defined for negative values' ) lowerCamelCase__ : int = 1 for i in range(1 , n + 1 ): result *= i return result def lowerCamelCase_ ( _lowerCamelCase ): return catalan_number(_lowerCamelCase ) * factorial(_lowerCamelCase ) if __name__ == "__main__": A_ : List[Any] = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f"Given {node_count} nodes, there are {binary_tree_count(node_count)} " f"binary trees and {catalan_number(node_count)} binary search trees." )
316
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ : List[Any] = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ): lowerCamelCase__ : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for i in range(config.num_hidden_layers ): lowerCamelCase__ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : int = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) lowerCamelCase__ : Any = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] lowerCamelCase__ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : str = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = dct.pop(_lowerCamelCase ) lowerCamelCase__ : str = val @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Tuple = False if "vqa" in checkpoint_url: lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : Tuple = 3129 lowerCamelCase__ : List[Any] = 'huggingface/label-files' lowerCamelCase__ : int = 'vqa2-id2label.json' lowerCamelCase__ : Tuple = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : Optional[int] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : List[str] = idalabel lowerCamelCase__ : str = {v: k for k, v in idalabel.items()} lowerCamelCase__ : Dict = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: lowerCamelCase__ : Tuple = True lowerCamelCase__ : Tuple = 2 lowerCamelCase__ : Union[str, Any] = {0: 'False', 1: 'True'} lowerCamelCase__ : Tuple = {v: k for k, v in config.idalabel.items()} lowerCamelCase__ : Dict = 3 lowerCamelCase__ : str = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: lowerCamelCase__ : Any = True lowerCamelCase__ : Dict = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: lowerCamelCase__ : List[Any] = True lowerCamelCase__ : List[str] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowerCamelCase__ : Dict = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location='cpu' )['state_dict'] lowerCamelCase__ : Optional[int] = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: lowerCamelCase__ : Tuple = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: lowerCamelCase__ , lowerCamelCase__ : List[Any] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor lowerCamelCase__ : int = ViltImageProcessor(size=384 ) lowerCamelCase__ : List[Any] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowerCamelCase__ : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: lowerCamelCase__ : str = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_lowerCamelCase ).raw ) lowerCamelCase__ : int = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_lowerCamelCase ).raw ) lowerCamelCase__ : str = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowerCamelCase__ : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors='pt' ) lowerCamelCase__ : List[Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors='pt' ) lowerCamelCase__ : Tuple = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowerCamelCase__ : Optional[Any] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=_lowerCamelCase ).raw ) if mlm_model: lowerCamelCase__ : Tuple = 'a bunch of [MASK] laying on a [MASK].' else: lowerCamelCase__ : Tuple = 'How many cats are there?' lowerCamelCase__ : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors='pt' ) lowerCamelCase__ : List[Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: lowerCamelCase__ : Dict = torch.Size([1, 11, 3_0522] ) lowerCamelCase__ : int = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" lowerCamelCase__ : str = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowerCamelCase__ : Any = torch.Size([1, 3129] ) lowerCamelCase__ : List[str] = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" lowerCamelCase__ : Optional[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowerCamelCase__ : List[str] = torch.Size([1, 2] ) lowerCamelCase__ : Optional[int] = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A_ : Optional[Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
316
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
1
"""simple docstring""" import numpy # List of input, output pairs A_ : Optional[Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A_ : List[str] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) A_ : Optional[int] = [2, 4, 1, 5] A_ : List[Any] = len(train_data) A_ : Optional[Any] = 0.009 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase="train" ): return calculate_hypothesis_value(_lowerCamelCase , _lowerCamelCase ) - output( _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = 0 for i in range(len(_lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=m ): lowerCamelCase__ : Any = 0 for i in range(_lowerCamelCase ): if index == -1: summation_value += _error(_lowerCamelCase ) else: summation_value += _error(_lowerCamelCase ) * train_data[i][0][index] return summation_value def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = summation_of_cost_derivative(_lowerCamelCase , _lowerCamelCase ) / m return cost_derivative_value def lowerCamelCase_ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ : Dict = 0.000_002 lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = 0 while True: j += 1 lowerCamelCase__ : List[Any] = [0, 0, 0, 0] for i in range(0 , len(_lowerCamelCase ) ): lowerCamelCase__ : str = get_cost_derivative(i - 1 ) lowerCamelCase__ : List[str] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _lowerCamelCase , _lowerCamelCase , atol=_lowerCamelCase , rtol=_lowerCamelCase , ): break lowerCamelCase__ : Optional[int] = temp_parameter_vector print(('Number of iterations:', j) ) def lowerCamelCase_ ( ): for i in range(len(_lowerCamelCase ) ): print(('Actual output value:', output(_lowerCamelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(_lowerCamelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" from __future__ import annotations from collections import deque class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : list[dict] = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []} ) for keyword in keywords: self.add_keyword(lowerCamelCase_ ) self.set_fail_transitions() def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = 0 for character in keyword: lowerCamelCase__ : int = self.find_next_state(lowerCamelCase_, lowerCamelCase_ ) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowerCamelCase__ : Tuple = len(self.adlist ) - 1 else: lowerCamelCase__ : Optional[int] = next_state self.adlist[current_state]["output"].append(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : deque = deque() for node in self.adlist[0]["next_states"]: q.append(lowerCamelCase_ ) lowerCamelCase__ : str = 0 while q: lowerCamelCase__ : Optional[Any] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(lowerCamelCase_ ) lowerCamelCase__ : Dict = self.adlist[r]['fail_state'] while ( self.find_next_state(lowerCamelCase_, self.adlist[child]['value'] ) is None and state != 0 ): lowerCamelCase__ : Optional[int] = self.adlist[state]['fail_state'] lowerCamelCase__ : Optional[int] = self.find_next_state( lowerCamelCase_, self.adlist[child]['value'] ) if self.adlist[child]["fail_state"] is None: lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : int = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : dict = {} # returns a dict with keywords and list of its occurrences lowerCamelCase__ : Tuple = 0 for i in range(len(lowerCamelCase_ ) ): while ( self.find_next_state(lowerCamelCase_, string[i] ) is None and current_state != 0 ): lowerCamelCase__ : Dict = self.adlist[current_state]['fail_state'] lowerCamelCase__ : Union[str, Any] = self.find_next_state(lowerCamelCase_, string[i] ) if next_state is None: lowerCamelCase__ : Union[str, Any] = 0 else: lowerCamelCase__ : Dict = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowerCamelCase__ : List[Any] = [] result[key].append(i - len(lowerCamelCase_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Tuple = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Any = 'pix2struct_text_model' lowerCamelCase__ : List[str] = ['past_key_values'] lowerCamelCase__ : List[str] = { 'hidden_size': 'hidden_size', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self, lowerCamelCase_=5_0_2_4_4, lowerCamelCase_=7_6_8, lowerCamelCase_=6_4, lowerCamelCase_=2_0_4_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_2, lowerCamelCase_=1_2_8, lowerCamelCase_=0.1, lowerCamelCase_=1e-6, lowerCamelCase_=1.0, lowerCamelCase_="gelu_new", lowerCamelCase_=0, lowerCamelCase_=False, lowerCamelCase_=0, lowerCamelCase_=1, lowerCamelCase_=False, lowerCamelCase_=True, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : List[Any] = hidden_size lowerCamelCase__ : str = d_kv lowerCamelCase__ : List[Any] = d_ff lowerCamelCase__ : str = num_layers lowerCamelCase__ : Optional[int] = num_heads lowerCamelCase__ : Optional[int] = relative_attention_num_buckets lowerCamelCase__ : Tuple = relative_attention_max_distance lowerCamelCase__ : List[str] = dropout_rate lowerCamelCase__ : Dict = layer_norm_epsilon lowerCamelCase__ : Dict = initializer_factor lowerCamelCase__ : Tuple = use_cache lowerCamelCase__ : Optional[int] = eos_token_id lowerCamelCase__ : Optional[int] = decoder_start_token_id # for backwards compatibility lowerCamelCase__ : Dict = dense_act_fn super().__init__( pad_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, decoder_start_token_id=lowerCamelCase_, tie_word_embeddings=lowerCamelCase_, is_decoder=lowerCamelCase_, **lowerCamelCase_, ) @classmethod def a__ (cls, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : str = cls.get_config_dict(lowerCamelCase_, **lowerCamelCase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": lowerCamelCase__ : int = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls, 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_, **lowerCamelCase_ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = 'pix2struct_vision_model' def __init__(self, lowerCamelCase_=7_6_8, lowerCamelCase_=7_6_8, lowerCamelCase_=2_0_4_8, lowerCamelCase_=6_4, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_="gelu_new", lowerCamelCase_=1e-6, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=1e-10, lowerCamelCase_=1.0, lowerCamelCase_=4_0_9_6, lowerCamelCase_=3_2, lowerCamelCase_=1_2_8, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : Any = patch_embed_hidden_size lowerCamelCase__ : List[str] = d_ff lowerCamelCase__ : List[Any] = dropout_rate lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Union[str, Any] = initializer_factor lowerCamelCase__ : Union[str, Any] = attention_dropout lowerCamelCase__ : List[str] = layer_norm_eps lowerCamelCase__ : Dict = dense_act_fn lowerCamelCase__ : Tuple = seq_len lowerCamelCase__ : int = relative_attention_num_buckets lowerCamelCase__ : Union[str, Any] = relative_attention_max_distance lowerCamelCase__ : Optional[int] = d_kv @classmethod def a__ (cls, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : Any = cls.get_config_dict(lowerCamelCase_, **lowerCamelCase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": lowerCamelCase__ : List[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls, 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_, **lowerCamelCase_ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'pix2struct' lowerCamelCase__ : Optional[int] = True def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=1.0, lowerCamelCase_=0.02, lowerCamelCase_=False, lowerCamelCase_=False, lowerCamelCase_=True, **lowerCamelCase_, ): '''simple docstring''' super().__init__(tie_word_embeddings=lowerCamelCase_, is_encoder_decoder=lowerCamelCase_, **lowerCamelCase_ ) if text_config is None: lowerCamelCase__ : Tuple = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: lowerCamelCase__ : List[Any] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) lowerCamelCase__ : Any = PixaStructTextConfig(**lowerCamelCase_ ) lowerCamelCase__ : Dict = PixaStructVisionConfig(**lowerCamelCase_ ) lowerCamelCase__ : Dict = self.text_config.decoder_start_token_id lowerCamelCase__ : Optional[int] = self.text_config.pad_token_id lowerCamelCase__ : Any = self.text_config.eos_token_id lowerCamelCase__ : Any = initializer_factor lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : int = self.initializer_range lowerCamelCase__ : Any = self.initializer_range lowerCamelCase__ : str = is_vqa @classmethod def a__ (cls, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Any = self.text_config.to_dict() lowerCamelCase__ : Dict = self.vision_config.to_dict() lowerCamelCase__ : int = self.__class__.model_type return output
316
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
1
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A_ : Tuple = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: A_ : str = json.load(f) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self, lowerCamelCase_ ): '''simple docstring''' return FSMTTokenizer.from_pretrained(lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = FSMTForConditionalGeneration.from_pretrained(lowerCamelCase_ ).to(lowerCamelCase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = f'''facebook/wmt19-{pair}''' lowerCamelCase__ : Optional[int] = self.get_tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = self.get_model(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = bleu_data[pair]['src'] lowerCamelCase__ : Dict = bleu_data[pair]['tgt'] lowerCamelCase__ : List[str] = tokenizer(lowerCamelCase_, return_tensors='pt', truncation=lowerCamelCase_, padding='longest' ).to(lowerCamelCase_ ) lowerCamelCase__ : int = model.generate( input_ids=batch.input_ids, num_beams=8, ) lowerCamelCase__ : Dict = tokenizer.batch_decode( lowerCamelCase_, skip_special_tokens=lowerCamelCase_, clean_up_tokenization_spaces=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = calculate_bleu(lowerCamelCase_, lowerCamelCase_ ) print(lowerCamelCase_ ) self.assertGreaterEqual(scores['bleu'], lowerCamelCase_ )
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if exponent == 1: return base if exponent % 2 == 0: lowerCamelCase__ : Any = _modexpt(_lowerCamelCase , exponent // 2 , _lowerCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_lowerCamelCase , exponent - 1 , _lowerCamelCase )) % modulo_value def lowerCamelCase_ ( _lowerCamelCase = 1777 , _lowerCamelCase = 1855 , _lowerCamelCase = 8 ): lowerCamelCase__ : Dict = base for _ in range(1 , _lowerCamelCase ): lowerCamelCase__ : List[str] = _modexpt(_lowerCamelCase , _lowerCamelCase , 10**digits ) return result if __name__ == "__main__": print(f"{solution() = }")
316
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = model.config lowerCamelCase__ : List[Any] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowerCamelCase__ : Tuple = MBartConfig( is_decoder=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , add_cross_attention=_lowerCamelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_lowerCamelCase , add_final_layer_norm=_lowerCamelCase , ) return encoder_config, decoder_config def lowerCamelCase_ ( _lowerCamelCase ): if "encoder.model" in name: lowerCamelCase__ : Tuple = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: lowerCamelCase__ : int = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: lowerCamelCase__ : Tuple = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCamelCase__ : List[str] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: lowerCamelCase__ : Dict = 'encoder.' + name if "attn.proj" in name: lowerCamelCase__ : Optional[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: lowerCamelCase__ : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCamelCase__ : Union[str, Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCamelCase__ : Tuple = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCamelCase__ : Tuple = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": lowerCamelCase__ : Optional[int] = 'encoder.layernorm.weight' if name == "encoder.norm.bias": lowerCamelCase__ : Any = 'encoder.layernorm.bias' return name def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for key in orig_state_dict.copy().keys(): lowerCamelCase__ : List[str] = orig_state_dict.pop(_lowerCamelCase ) if "qkv" in key: lowerCamelCase__ : str = key.split('.' ) lowerCamelCase__ : int = int(key_split[3] ) lowerCamelCase__ : List[str] = int(key_split[5] ) lowerCamelCase__ : Tuple = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCamelCase__ : Optional[Any] = val[:dim, :] lowerCamelCase__ : Optional[int] = val[dim : dim * 2, :] lowerCamelCase__ : int = val[-dim:, :] else: lowerCamelCase__ : str = val[:dim] lowerCamelCase__ : Union[str, Any] = val[dim : dim * 2] lowerCamelCase__ : List[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowerCamelCase__ : Tuple = val return orig_state_dict def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False ): # load original model lowerCamelCase__ : str = DonutModel.from_pretrained(_lowerCamelCase ).eval() # load HuggingFace model lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = get_configs(_lowerCamelCase ) lowerCamelCase__ : Dict = DonutSwinModel(_lowerCamelCase ) lowerCamelCase__ : List[str] = MBartForCausalLM(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = VisionEncoderDecoderModel(encoder=_lowerCamelCase , decoder=_lowerCamelCase ) model.eval() lowerCamelCase__ : List[Any] = original_model.state_dict() lowerCamelCase__ : Optional[Any] = convert_state_dict(_lowerCamelCase , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) # verify results on scanned document lowerCamelCase__ : Optional[int] = load_dataset('hf-internal-testing/example-documents' ) lowerCamelCase__ : List[Any] = dataset['test'][0]['image'].convert('RGB' ) lowerCamelCase__ : List[str] = XLMRobertaTokenizerFast.from_pretrained(_lowerCamelCase , from_slow=_lowerCamelCase ) lowerCamelCase__ : Tuple = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowerCamelCase__ : str = DonutProcessor(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Tuple = processor(_lowerCamelCase , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowerCamelCase__ : int = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' lowerCamelCase__ : Any = 'When is the coffee break?' lowerCamelCase__ : List[str] = task_prompt.replace('{user_input}' , _lowerCamelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowerCamelCase__ : Union[str, Any] = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowerCamelCase__ : Union[str, Any] = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowerCamelCase__ : Optional[Any] = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowerCamelCase__ : Any = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowerCamelCase__ : Optional[int] = 'hello world' else: raise ValueError('Model name not supported' ) lowerCamelCase__ : str = original_model.decoder.tokenizer(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors='pt' )[ 'input_ids' ] lowerCamelCase__ : str = original_model.encoder.model.patch_embed(_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : str = model.encoder.embeddings(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) # verify encoder hidden states lowerCamelCase__ : Optional[Any] = original_model.encoder(_lowerCamelCase ) lowerCamelCase__ : Dict = model.encoder(_lowerCamelCase ).last_hidden_state assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-2 ) # verify decoder hidden states lowerCamelCase__ : Union[str, Any] = original_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).logits lowerCamelCase__ : List[Any] = model(_lowerCamelCase , decoder_input_ids=_lowerCamelCase ).logits assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) A_ : Dict = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
316
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
1
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata A_ : Union[str, Any] = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class a_ ( tr.AbstractTransform ): '''simple docstring''' def __init__(self, lowerCamelCase_ = " " ): '''simple docstring''' lowerCamelCase__ : Tuple = sentence_delimiter def a__ (self, lowerCamelCase_ ): '''simple docstring''' return list(lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [] for sent_idx, sentence in enumerate(lowerCamelCase_ ): chars.extend(self.process_string(lowerCamelCase_ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_ ) - 1: chars.append(self.sentence_delimiter ) return chars A_ : int = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: A_ : Union[str, Any] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) A_ : Union[str, Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" A_ : str = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" A_ : Optional[Any] = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def a__ (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence' ), 'references': datasets.Value('string', id='sequence' ), } ), codebase_urls=['https://github.com/jitsi/jiwer/'], reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ], ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_, lowerCamelCase_, truth_transform=lowerCamelCase_, hypothesis_transform=lowerCamelCase_, )["wer"] lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : int = 0 for prediction, reference in zip(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : List[Any] = jiwer.compute_measures( lowerCamelCase_, lowerCamelCase_, truth_transform=lowerCamelCase_, hypothesis_transform=lowerCamelCase_, ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
316
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = len(_lowerCamelCase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase__ : Union[str, Any] = 0 print(_lowerCamelCase , end=',' ) # Consider rest of the activities for j in range(_lowerCamelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(_lowerCamelCase , end=',' ) lowerCamelCase__ : Dict = j if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = [1, 3, 0, 5, 8, 5] A_ : Optional[Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
1
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A_ : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1_6000 ): lowerCamelCase__ : int = int(round(sample_rate * max_length ) ) if len(_lowerCamelCase ) <= sample_length: return wav lowerCamelCase__ : Optional[Any] = randint(0 , len(_lowerCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class a_ : '''simple docstring''' lowerCamelCase__ : Optional[str] = field(default=snake_case_ , metadata={'help': 'Name of a dataset from the datasets package'} ) lowerCamelCase__ : Optional[str] = field( default=snake_case_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase__ : Optional[str] = field( default=snake_case_ , metadata={'help': 'A file containing the training audio paths and labels.'} ) lowerCamelCase__ : Optional[str] = field( default=snake_case_ , metadata={'help': 'A file containing the validation audio paths and labels.'} ) lowerCamelCase__ : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) lowerCamelCase__ : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCamelCase__ : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class a_ : '''simple docstring''' lowerCamelCase__ : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) lowerCamelCase__ : Optional[str] = field( default=snake_case_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase__ : Optional[str] = field( default=snake_case_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) lowerCamelCase__ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase__ : Optional[str] = field( default=snake_case_ , metadata={'help': 'Name or path of preprocessor config.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase__ : Optional[bool] = field( default=snake_case_ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def a__ (self ): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.', lowerCamelCase_, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.' ) def lowerCamelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase__ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification' , _lowerCamelCase , _lowerCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ : Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowerCamelCase__ : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. lowerCamelCase__ : Any = DatasetDict() lowerCamelCase__ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' 'Make sure to set `--audio_column_name` to the correct audio column - one of ' f'''{', '.join(raw_datasets['train'].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' 'Make sure to set `--label_column_name` to the correct text column - one of ' f'''{', '.join(raw_datasets['train'].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowerCamelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowerCamelCase__ : Optional[int] = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowerCamelCase__ : Optional[Any] = feature_extractor.model_input_names[0] def train_transforms(_lowerCamelCase ): lowerCamelCase__ : int = [] for audio in batch[data_args.audio_column_name]: lowerCamelCase__ : List[Any] = random_subsample( audio['array'] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_lowerCamelCase ) lowerCamelCase__ : Tuple = feature_extractor(_lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) lowerCamelCase__ : List[str] = {model_input_name: inputs.get(_lowerCamelCase )} lowerCamelCase__ : Dict = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = [audio['array'] for audio in batch[data_args.audio_column_name]] lowerCamelCase__ : Union[str, Any] = feature_extractor(_lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) lowerCamelCase__ : Tuple = {model_input_name: inputs.get(_lowerCamelCase )} lowerCamelCase__ : Optional[Any] = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowerCamelCase__ : List[str] = raw_datasets['train'].features[data_args.label_column_name].names lowerCamelCase__ , lowerCamelCase__ : Dict = {}, {} for i, label in enumerate(_lowerCamelCase ): lowerCamelCase__ : Optional[Any] = str(_lowerCamelCase ) lowerCamelCase__ : str = label # Load the accuracy metric from the datasets package lowerCamelCase__ : int = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_lowerCamelCase ): lowerCamelCase__ : int = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_lowerCamelCase , references=eval_pred.label_ids ) lowerCamelCase__ : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel=_lowerCamelCase , finetuning_task='audio-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ : Dict = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase__ : List[str] = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_lowerCamelCase , output_all_columns=_lowerCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase__ : Optional[Any] = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_lowerCamelCase , output_all_columns=_lowerCamelCase ) # Initialize our trainer lowerCamelCase__ : List[Any] = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=raw_datasets['train'] if training_args.do_train else None , eval_dataset=raw_datasets['eval'] if training_args.do_eval else None , compute_metrics=_lowerCamelCase , tokenizer=_lowerCamelCase , ) # Training if training_args.do_train: lowerCamelCase__ : Any = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ : Optional[int] = last_checkpoint lowerCamelCase__ : Optional[int] = trainer.train(resume_from_checkpoint=_lowerCamelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase__ : List[Any] = trainer.evaluate() trainer.log_metrics('eval' , _lowerCamelCase ) trainer.save_metrics('eval' , _lowerCamelCase ) # Write model card and (optionally) push to hub lowerCamelCase__ : Dict = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase ) else: trainer.create_model_card(**_lowerCamelCase ) if __name__ == "__main__": main()
316
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): if len(_lowerCamelCase ) <= 1: return [tuple(_lowerCamelCase )] lowerCamelCase__ : Dict = [] def generate(_lowerCamelCase , _lowerCamelCase ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , _lowerCamelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = arr[k - 1], arr[i] else: # k is odd lowerCamelCase__ , lowerCamelCase__ : Optional[int] = arr[k - 1], arr[0] generate(k - 1 , _lowerCamelCase ) generate(len(_lowerCamelCase ) , _lowerCamelCase ) return res if __name__ == "__main__": A_ : List[Any] = input("Enter numbers separated by a comma:\n").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(",")] print(heaps(arr))
316
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
1
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) A_ : Optional[int] = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_28, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') A_ : Union[str, Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) A_ : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55) A_ : int = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) A_ : int = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions A_ : Union[str, Any] = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) A_ : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) A_ : int = np.expand_dims(test_image, axis=0) A_ : Tuple = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: A_ : Any = "Normal" if result[0][0] == 1: A_ : Any = "Abnormality detected"
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowerCamelCase__ : Optional[Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = None, lowerCamelCase_ = 0.0, lowerCamelCase_ = 5_0, lowerCamelCase_ = None, lowerCamelCase_ = "pil", lowerCamelCase_ = True, ): '''simple docstring''' if isinstance(self.unet.config.sample_size, lowerCamelCase_ ): lowerCamelCase__ : Optional[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCamelCase__ : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Tuple = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : Any = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCamelCase__ : str = self.scheduler.step( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, eta=lowerCamelCase_, use_clipped_model_output=lowerCamelCase_, generator=lowerCamelCase_ ).prev_sample lowerCamelCase__ : str = (image / 2 + 0.5).clamp(0, 1 ) lowerCamelCase__ : int = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowerCamelCase__ : Optional[int] = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
316
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
1
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowerCamelCase_ ( _lowerCamelCase ): return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = create_tensor(_lowerCamelCase ) lowerCamelCase__ : Any = gather(_lowerCamelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = [state.process_index] lowerCamelCase__ : Tuple = gather_object(_lowerCamelCase ) assert len(_lowerCamelCase ) == state.num_processes, f'''{gathered_obj}, {len(_lowerCamelCase )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = create_tensor(_lowerCamelCase ) lowerCamelCase__ : int = broadcast(_lowerCamelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowerCamelCase_ ( _lowerCamelCase ): # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: lowerCamelCase__ : Dict = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowerCamelCase__ : Union[str, Any] = torch.arange(state.num_processes ).to(state.device ) lowerCamelCase__ : Any = pad_across_processes(_lowerCamelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowerCamelCase_ ( _lowerCamelCase ): # For now runs on only two processes if state.num_processes != 2: return lowerCamelCase__ : Union[str, Any] = create_tensor(_lowerCamelCase ) lowerCamelCase__ : Any = reduce(_lowerCamelCase , 'sum' ) lowerCamelCase__ : Union[str, Any] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase ), f'''{reduced_tensor} != {truth_tensor}''' def lowerCamelCase_ ( _lowerCamelCase ): # For now runs on only two processes if state.num_processes != 2: return lowerCamelCase__ : Any = create_tensor(_lowerCamelCase ) lowerCamelCase__ : List[str] = reduce(_lowerCamelCase , 'mean' ) lowerCamelCase__ : Dict = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase ), f'''{reduced_tensor} != {truth_tensor}''' def lowerCamelCase_ ( _lowerCamelCase ): # For xla_spawn (TPUs) main() def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = PartialState() state.print(f'''State: {state}''' ) state.print('testing gather' ) test_gather(_lowerCamelCase ) state.print('testing gather_object' ) test_gather_object(_lowerCamelCase ) state.print('testing broadcast' ) test_broadcast(_lowerCamelCase ) state.print('testing pad_across_processes' ) test_pad_across_processes(_lowerCamelCase ) state.print('testing reduce_sum' ) test_reduce_sum(_lowerCamelCase ) state.print('testing reduce_mean' ) test_reduce_mean(_lowerCamelCase ) if __name__ == "__main__": main()
316
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
1
"""simple docstring""" A_ : Tuple = 2_56 # Modulus to hash a string A_ : str = 1_00_00_03 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[str] = len(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = len(_lowerCamelCase ) if p_len > t_len: return False lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : Union[str, Any] = 1 # Calculating the hash of pattern and substring of text for i in range(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowerCamelCase__ : Dict = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowerCamelCase__ : List[Any] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowerCamelCase__ : Optional[int] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowerCamelCase_ ( ): lowerCamelCase__ : List[Any] = 'abc1abc12' lowerCamelCase__ : Tuple = 'alskfjaldsabc1abc1abc12k23adsfabcabc' lowerCamelCase__ : Union[str, Any] = 'alskfjaldsk23adsfabcabc' assert rabin_karp(_lowerCamelCase , _lowerCamelCase ) and not rabin_karp(_lowerCamelCase , _lowerCamelCase ) # Test 2) lowerCamelCase__ : List[Any] = 'ABABX' lowerCamelCase__ : Optional[int] = 'ABABZABABYABABX' assert rabin_karp(_lowerCamelCase , _lowerCamelCase ) # Test 3) lowerCamelCase__ : Any = 'AAAB' lowerCamelCase__ : str = 'ABAAAAAB' assert rabin_karp(_lowerCamelCase , _lowerCamelCase ) # Test 4) lowerCamelCase__ : List[Any] = 'abcdabcy' lowerCamelCase__ : List[Any] = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(_lowerCamelCase , _lowerCamelCase ) # Test 5) lowerCamelCase__ : List[Any] = 'Lü' lowerCamelCase__ : Union[str, Any] = 'Lüsai' assert rabin_karp(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : List[Any] = 'Lue' assert not rabin_karp(_lowerCamelCase , _lowerCamelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
316
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) lowerCamelCase__ : list = [] for char_count in range(_lowerCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_lowerCamelCase ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
316
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True lowerCamelCase__ : str = 4 lowerCamelCase__ : List[str] = (1 << p) - 1 for _ in range(p - 2 ): lowerCamelCase__ : Any = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
316
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
1
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class a_ : '''simple docstring''' lowerCamelCase__ : CommonSchedulerState # setable values lowerCamelCase__ : jnp.ndarray lowerCamelCase__ : jnp.ndarray lowerCamelCase__ : Optional[int] = None @classmethod def a__ (cls, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return cls(common=lowerCamelCase_, init_noise_sigma=lowerCamelCase_, timesteps=lowerCamelCase_ ) @dataclass class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : DDPMSchedulerState class a_ ( snake_case_ , snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[str] = [e.name for e in FlaxKarrasDiffusionSchedulers] lowerCamelCase__ : jnp.dtype @property def a__ (self ): '''simple docstring''' return True @register_to_config def __init__(self, lowerCamelCase_ = 1_0_0_0, lowerCamelCase_ = 0.0_001, lowerCamelCase_ = 0.02, lowerCamelCase_ = "linear", lowerCamelCase_ = None, lowerCamelCase_ = "fixed_small", lowerCamelCase_ = True, lowerCamelCase_ = "epsilon", lowerCamelCase_ = jnp.floataa, ): '''simple docstring''' lowerCamelCase__ : str = dtype def a__ (self, lowerCamelCase_ = None ): '''simple docstring''' if common is None: lowerCamelCase__ : List[Any] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCamelCase__ : List[str] = jnp.array(1.0, dtype=self.dtype ) lowerCamelCase__ : int = jnp.arange(0, self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowerCamelCase_, init_noise_sigma=lowerCamelCase_, timesteps=lowerCamelCase_, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' return sample def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = () ): '''simple docstring''' lowerCamelCase__ : List[str] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCamelCase__ : Any = (jnp.arange(0, lowerCamelCase_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowerCamelCase_, timesteps=lowerCamelCase_, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=None ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] lowerCamelCase__ : Optional[int] = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCamelCase__ : List[Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCamelCase__ : Dict = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCamelCase__ : List[Any] = jnp.clip(lowerCamelCase_, a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCamelCase__ : Any = jnp.log(jnp.clip(lowerCamelCase_, a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCamelCase__ : List[str] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCamelCase__ : Optional[Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCamelCase__ : int = variance lowerCamelCase__ : Union[str, Any] = state.common.betas[t] lowerCamelCase__ : Tuple = (predicted_variance + 1) / 2 lowerCamelCase__ : Any = frac * max_log + (1 - frac) * min_log return variance def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' lowerCamelCase__ : List[Any] = timestep if key is None: lowerCamelCase__ : Dict = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = jnp.split(lowerCamelCase_, sample.shape[1], axis=1 ) else: lowerCamelCase__ : Optional[Any] = None # 1. compute alphas, betas lowerCamelCase__ : Dict = state.common.alphas_cumprod[t] lowerCamelCase__ : Any = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype ) ) lowerCamelCase__ : Any = 1 - alpha_prod_t lowerCamelCase__ : Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCamelCase__ : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCamelCase__ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCamelCase__ : str = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCamelCase__ : Union[str, Any] = jnp.clip(lowerCamelCase_, -1, 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : Dict = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCamelCase__ : Any = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCamelCase__ : List[Any] = jax.random.split(lowerCamelCase_, num=1 ) lowerCamelCase__ : Dict = jax.random.normal(lowerCamelCase_, shape=model_output.shape, dtype=self.dtype ) return (self._get_variance(lowerCamelCase_, lowerCamelCase_, predicted_variance=lowerCamelCase_ ) ** 0.5) * noise lowerCamelCase__ : Union[str, Any] = jnp.where(t > 0, random_variance(), jnp.zeros(model_output.shape, dtype=self.dtype ) ) lowerCamelCase__ : Dict = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowerCamelCase_, state=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' return add_noise_common(state.common, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' return get_velocity_common(state.common, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self.config.num_train_timesteps
316
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort A_ : Tuple = "1" A_ : Any = "0" A_ : Union[str, Any] = "1" A_ : Union[str, Any] = ort.SessionOptions() A_ : str = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("Create inference session...") A_ : List[str] = ["TensorrtExecutionProvider", "CUDAExecutionProvider"] A_ : List[str] = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider) A_ : Tuple = ort.RunOptions() A_ : Optional[int] = 1_28 A_ : List[str] = 1 A_ : str = np.ones((batch, sequence), dtype=np.intaa) A_ : Optional[Any] = np.ones((batch, sequence), dtype=np.intaa) A_ : Optional[Any] = np.ones((batch, sequence), dtype=np.intaa) print("Warm up phase...") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Start inference...") A_ : Any = time.time() A_ : str = 20_00 A_ : List[Any] = {} for iter in range(max_iters): A_ : str = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 10_00 / max_iters))
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A_ : Any = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def lowerCamelCase_ ( ): lowerCamelCase__ : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCamelCase__ : Optional[int] = get_sagemaker_input() else: lowerCamelCase__ : List[str] = get_cluster_input() return config def lowerCamelCase_ ( _lowerCamelCase=None ): if subparsers is not None: lowerCamelCase__ : Optional[int] = subparsers.add_parser('config' , description=_lowerCamelCase ) else: lowerCamelCase__ : Any = argparse.ArgumentParser('Accelerate config command' , description=_lowerCamelCase ) parser.add_argument( '--config_file' , default=_lowerCamelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_lowerCamelCase ) return parser def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = get_user_input() if args.config_file is not None: lowerCamelCase__ : List[str] = args.config_file else: if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) lowerCamelCase__ : int = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(_lowerCamelCase ) else: config.to_yaml_file(_lowerCamelCase ) print(f'''accelerate configuration saved at {config_file}''' ) def lowerCamelCase_ ( ): lowerCamelCase__ : List[Any] = config_command_parser() lowerCamelCase__ : Tuple = parser.parse_args() config_command(_lowerCamelCase ) if __name__ == "__main__": main()
316
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
1
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ = 1_3, lowerCamelCase_ = 6_4, lowerCamelCase_ = 2, lowerCamelCase_ = 3, lowerCamelCase_ = 3, lowerCamelCase_ = True, lowerCamelCase_ = True, lowerCamelCase_ = 1_2_8, lowerCamelCase_=[1_6, 3_2, 6_4, 1_2_8], lowerCamelCase_ = 7, lowerCamelCase_ = 4, lowerCamelCase_ = 3_7, lowerCamelCase_ = "gelu", lowerCamelCase_ = 0.1, lowerCamelCase_ = 0.1, lowerCamelCase_ = 1_0, lowerCamelCase_ = 0.02, lowerCamelCase_ = 2, lowerCamelCase_ = 1, lowerCamelCase_ = 1_2_8, lowerCamelCase_ = [2, 2, 2, 2], lowerCamelCase_ = 2, lowerCamelCase_ = 2, ): '''simple docstring''' lowerCamelCase__ : str = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : List[Any] = image_size lowerCamelCase__ : Optional[int] = patch_size lowerCamelCase__ : Optional[Any] = num_channels lowerCamelCase__ : Dict = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : str = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : Tuple = hidden_act lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : Tuple = type_sequence_label_size lowerCamelCase__ : str = initializer_range lowerCamelCase__ : Any = encoder_stride lowerCamelCase__ : List[Any] = num_attention_outputs lowerCamelCase__ : List[str] = embed_dim lowerCamelCase__ : List[str] = embed_dim + 1 lowerCamelCase__ : int = resolution lowerCamelCase__ : Optional[int] = depths lowerCamelCase__ : str = hidden_sizes lowerCamelCase__ : List[str] = dim lowerCamelCase__ : Optional[Any] = mlp_expansion_ratio def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : str = None if self.use_labels: lowerCamelCase__ : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : Tuple = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, resolution=self.resolution, depths=self.depths, hidden_sizes=self.hidden_sizes, dim=self.dim, mlp_expansion_ratio=self.mlp_expansion_ratio, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = TFEfficientFormerModel(config=lowerCamelCase_ ) lowerCamelCase__ : str = model(lowerCamelCase_, training=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.type_sequence_label_size lowerCamelCase__ : int = TFEfficientFormerForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : str = model(lowerCamelCase_, labels=lowerCamelCase_, training=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : Optional[int] = 1 lowerCamelCase__ : Dict = TFEfficientFormerForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = config_and_inputs lowerCamelCase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : List[Any] = False lowerCamelCase__ : List[Any] = False lowerCamelCase__ : List[Any] = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFEfficientFormerModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester( self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Optional[int] = [*signature.parameters.keys()] lowerCamelCase__ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Optional[Any] = model_class(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ), training=lowerCamelCase_ ) lowerCamelCase__ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ : int = getattr( self.model_tester, 'expected_num_hidden_layers', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase_ ), lowerCamelCase_ ) if hasattr(self.model_tester, 'encoder_seq_length' ): lowerCamelCase__ : Union[str, Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester, 'chunk_length' ) and self.model_tester.chunk_length > 1: lowerCamelCase__ : Optional[int] = seq_length * self.model_tester.chunk_length else: lowerCamelCase__ : Optional[int] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: lowerCamelCase__ : List[Any] = outputs.decoder_hidden_states self.asseretIsInstance(lowerCamelCase_, (list, tuple) ) self.assertEqual(len(lowerCamelCase_ ), lowerCamelCase_ ) lowerCamelCase__ : Dict = getattr(self.model_tester, 'seq_length', lowerCamelCase_ ) lowerCamelCase__ : List[Any] = getattr(self.model_tester, 'decoder_seq_length', lowerCamelCase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ), [decoder_seq_length, self.model_tester.hidden_size], ) lowerCamelCase__ , lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : str = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : List[str] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Union[str, Any] = TFEfficientFormerModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : str = True lowerCamelCase__ : Union[str, Any] = getattr(self.model_tester, 'seq_length', lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = getattr(self.model_tester, 'encoder_seq_length', lowerCamelCase_ ) lowerCamelCase__ : int = getattr(self.model_tester, 'key_length', lowerCamelCase_ ) lowerCamelCase__ : Dict = getattr(self.model_tester, 'chunk_length', lowerCamelCase_ ) if chunk_length is not None and hasattr(self.model_tester, 'num_hashes' ): lowerCamelCase__ : int = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCamelCase__ : List[str] = True lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Tuple = True lowerCamelCase__ : Optional[Any] = model_class(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ), training=lowerCamelCase_ ) lowerCamelCase__ : str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase_ ), self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__ : str = True lowerCamelCase__ : Union[str, Any] = model_class(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ), training=lowerCamelCase_ ) lowerCamelCase__ : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase_ ), self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCamelCase__ : Any = model_class(lowerCamelCase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCamelCase__ : Optional[int] = { key: tf.keras.Input(shape=val.shape[1:], dtype=val.dtype, name=lowerCamelCase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.assertTrue(outputs_dict is not None ) def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) lowerCamelCase__ : Union[str, Any] = self.default_image_processor lowerCamelCase__ : Tuple = prepare_img() lowerCamelCase__ : str = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Optional[int] = model(**lowerCamelCase_, training=lowerCamelCase_ ) # verify the logits lowerCamelCase__ : int = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Dict = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) lowerCamelCase__ : Any = self.default_image_processor lowerCamelCase__ : int = prepare_img() lowerCamelCase__ : Dict = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Optional[Any] = model(**lowerCamelCase_, training=lowerCamelCase_ ) # verify the logits lowerCamelCase__ : Optional[Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : List[Any] = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
1
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowerCamelCase_ ( ): print('Making key files...' ) make_key_files('rsa' , 1024 ) print('Key files generation successful.' ) def lowerCamelCase_ ( _lowerCamelCase ): print('Generating prime p...' ) lowerCamelCase__ : List[str] = rabinMiller.generate_large_prime(_lowerCamelCase ) print('Generating prime q...' ) lowerCamelCase__ : Optional[int] = rabinMiller.generate_large_prime(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: lowerCamelCase__ : List[Any] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCamelCase , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) lowerCamelCase__ : Optional[Any] = cryptoMath.find_mod_inverse(_lowerCamelCase , (p - 1) * (q - 1) ) lowerCamelCase__ : Any = (n, e) lowerCamelCase__ : Union[str, Any] = (n, d) return (public_key, private_key) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print('\nWARNING:' ) print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' 'Use a different name or delete these files and re-run this program.' ) sys.exit() lowerCamelCase__ , lowerCamelCase__ : List[Any] = generate_key(_lowerCamelCase ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' , 'w' ) as out_file: out_file.write(f'''{key_size},{public_key[0]},{public_key[1]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' , 'w' ) as out_file: out_file.write(f'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : str = BlipImageProcessor() lowerCamelCase__ : List[str] = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) lowerCamelCase__ : Dict = BlipaProcessor(lowerCamelCase_, lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase_ ).tokenizer def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase_ ).image_processor def a__ (self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )] lowerCamelCase__ : int = [Image.fromarray(np.moveaxis(lowerCamelCase_, 0, -1 ) ) for x in image_inputs] return image_inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = BlipaProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Optional[int] = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) lowerCamelCase__ : Tuple = self.get_image_processor(do_normalize=lowerCamelCase_, padding_value=1.0 ) lowerCamelCase__ : List[Any] = BlipaProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCamelCase_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : Tuple = BlipaProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.prepare_image_inputs() lowerCamelCase__ : List[Any] = image_processor(lowerCamelCase_, return_tensors='np' ) lowerCamelCase__ : Optional[int] = processor(images=lowerCamelCase_, return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.get_image_processor() lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : int = BlipaProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : Dict = 'lower newer' lowerCamelCase__ : List[Any] = processor(text=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer(lowerCamelCase_, return_token_type_ids=lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_image_processor() lowerCamelCase__ : List[str] = self.get_tokenizer() lowerCamelCase__ : Optional[int] = BlipaProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : Any = 'lower newer' lowerCamelCase__ : str = self.prepare_image_inputs() lowerCamelCase__ : List[str] = processor(text=lowerCamelCase_, images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ), ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : int = self.get_tokenizer() lowerCamelCase__ : Dict = BlipaProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : List[str] = processor.batch_decode(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.get_image_processor() lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : Dict = BlipaProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowerCamelCase__ : Dict = 'lower newer' lowerCamelCase__ : Tuple = self.prepare_image_inputs() lowerCamelCase__ : Optional[Any] = processor(text=lowerCamelCase_, images=lowerCamelCase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ), ['pixel_values', 'input_ids', 'attention_mask'] )
316
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor A_ : int = logging.get_logger(__name__) class a_ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.', __a, ) super().__init__(*__a, **__a )
350
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
0
"""simple docstring""" from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
351
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging A_ : int = logging.get_logger(__name__) if is_vision_available(): import PIL class a_ ( _UpperCAmelCase ): lowerCamelCase__ : Optional[int] = ["pixel_values"] def __init__(self, lowerCamelCase_ = True, lowerCamelCase_ = None, lowerCamelCase_ = PILImageResampling.BICUBIC, lowerCamelCase_ = True, lowerCamelCase_ = None, lowerCamelCase_ = True, lowerCamelCase_ = 1 / 2_5_5, lowerCamelCase_ = True, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowerCamelCase__ : str = size if size is not None else {'''shortest_edge''': 2_2_4} lowerCamelCase__ : List[Any] = get_size_dict(_UpperCAmelCase, default_to_square=_UpperCAmelCase ) lowerCamelCase__ : List[str] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCamelCase__ : Dict = get_size_dict(_UpperCAmelCase, default_to_square=_UpperCAmelCase, param_name='crop_size' ) lowerCamelCase__ : Optional[Any] = do_resize lowerCamelCase__ : Any = size lowerCamelCase__ : Optional[Any] = resample lowerCamelCase__ : List[Any] = do_center_crop lowerCamelCase__ : Optional[Any] = crop_size lowerCamelCase__ : Optional[Any] = do_rescale lowerCamelCase__ : Any = rescale_factor lowerCamelCase__ : List[Any] = do_normalize lowerCamelCase__ : str = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase__ : Dict = image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase__ : str = do_convert_rgb def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = PILImageResampling.BICUBIC, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Tuple = get_size_dict(_UpperCAmelCase, default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowerCamelCase__ : Dict = get_resize_output_image_size(_UpperCAmelCase, size=size['shortest_edge'], default_to_square=_UpperCAmelCase ) return resize(_UpperCAmelCase, size=_UpperCAmelCase, resample=_UpperCAmelCase, data_format=_UpperCAmelCase, **_UpperCAmelCase ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Dict = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCAmelCase, size=(size['height'], size['width']), data_format=_UpperCAmelCase, **_UpperCAmelCase ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' return rescale(_UpperCAmelCase, scale=_UpperCAmelCase, data_format=_UpperCAmelCase, **_UpperCAmelCase ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' return normalize(_UpperCAmelCase, mean=_UpperCAmelCase, std=_UpperCAmelCase, data_format=_UpperCAmelCase, **_UpperCAmelCase ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = ChannelDimension.FIRST, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[Any] = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : Optional[int] = size if size is not None else self.size lowerCamelCase__ : Optional[int] = get_size_dict(_UpperCAmelCase, param_name='size', default_to_square=_UpperCAmelCase ) lowerCamelCase__ : str = resample if resample is not None else self.resample lowerCamelCase__ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__ : List[str] = crop_size if crop_size is not None else self.crop_size lowerCamelCase__ : Dict = get_size_dict(_UpperCAmelCase, param_name='crop_size', default_to_square=_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : str = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : List[Any] = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : int = image_std if image_std is not None else self.image_std lowerCamelCase__ : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase__ : Tuple = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase__ : Union[str, Any] = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. lowerCamelCase__ : Optional[int] = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: lowerCamelCase__ : str = [self.resize(image=_UpperCAmelCase, size=_UpperCAmelCase, resample=_UpperCAmelCase ) for image in images] if do_center_crop: lowerCamelCase__ : Optional[Any] = [self.center_crop(image=_UpperCAmelCase, size=_UpperCAmelCase ) for image in images] if do_rescale: lowerCamelCase__ : Any = [self.rescale(image=_UpperCAmelCase, scale=_UpperCAmelCase ) for image in images] if do_normalize: lowerCamelCase__ : Optional[Any] = [self.normalize(image=_UpperCAmelCase, mean=_UpperCAmelCase, std=_UpperCAmelCase ) for image in images] lowerCamelCase__ : Tuple = [to_channel_dimension_format(_UpperCAmelCase, _UpperCAmelCase ) for image in images] lowerCamelCase__ : Dict = {'''pixel_values''': images} return BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase )
352
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller A_ : Optional[int] = 3 def lowerCamelCase_ ( _lowerCamelCase ): """simple docstring""" print('Generating primitive root of p' ) while True: lowerCamelCase__ : Dict = random.randrange(3 , __lowerCAmelCase ) if pow(__lowerCAmelCase , 2 , __lowerCAmelCase ) == 1: continue if pow(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) == 1: continue return g def lowerCamelCase_ ( _lowerCamelCase ): """simple docstring""" print('Generating prime p...' ) lowerCamelCase__ : str = rabin_miller.generate_large_prime(__lowerCAmelCase ) # select large prime number. lowerCamelCase__ : List[str] = primitive_root(__lowerCAmelCase ) # one primitive root on modulo p. lowerCamelCase__ : Optional[Any] = random.randrange(3 , __lowerCAmelCase ) # private_key -> have to be greater than 2 for safety. lowerCamelCase__ : Any = cryptomath.find_mod_inverse(pow(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) lowerCamelCase__ : int = (key_size, e_a, e_a, p) lowerCamelCase__ : Optional[int] = (key_size, d) return public_key, private_key def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print('\nWARNING:' ) print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' 'Use a different name or delete these files and re-run this program.' ) sys.exit() lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = generate_key(__lowerCAmelCase ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' , 'w' ) as fo: fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' , 'w' ) as fo: fo.write(f'''{private_key[0]},{private_key[1]}''' ) def lowerCamelCase_ ( ): """simple docstring""" print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
353
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : Optional[Any] = logging.get_logger(__name__) A_ : int = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class a_ ( a__ , a__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = 'resnet' lowerCamelCase__ : Any = ['basic', 'bottleneck'] def __init__(self, lowerCamelCase_=3, lowerCamelCase_=6_4, lowerCamelCase_=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8], lowerCamelCase_=[3, 4, 6, 3], lowerCamelCase_="bottleneck", lowerCamelCase_="relu", lowerCamelCase_=False, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**_lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) lowerCamelCase__ : int = num_channels lowerCamelCase__ : Dict = embedding_size lowerCamelCase__ : Union[str, Any] = hidden_sizes lowerCamelCase__ : Dict = depths lowerCamelCase__ : str = layer_type lowerCamelCase__ : int = hidden_act lowerCamelCase__ : str = downsample_in_first_stage lowerCamelCase__ : Dict = ['''stem'''] + [f'''stage{idx}''' for idx in range(1, len(_lowerCamelCase ) + 1 )] lowerCamelCase__ : Any = get_aligned_output_features_output_indices( out_features=_lowerCamelCase, out_indices=_lowerCamelCase, stage_names=self.stage_names ) class a_ ( a__ ): '''simple docstring''' lowerCamelCase__ : str = version.parse('1.11' ) @property def a__ (self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a__ (self ): '''simple docstring''' return 1e-3
354
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
0
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() A_ : str = logging.get_logger("transformers.models.encodec") A_ : List[str] = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } A_ : Optional[int] = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } A_ : List[Any] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } A_ : str = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } A_ : Optional[int] = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } A_ : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } A_ : int = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } A_ : int = [] A_ : Optional[Any] = [] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for attribute in key.split('.' ): lowerCamelCase__ : Any = getattr(__a , __a ) if weight_type is not None: lowerCamelCase__ : Optional[int] = getattr(__a , __a ).shape else: lowerCamelCase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase__ : int = value elif weight_type == "weight_g": lowerCamelCase__ : List[Any] = value elif weight_type == "weight_v": lowerCamelCase__ : str = value elif weight_type == "bias": lowerCamelCase__ : Optional[int] = value elif weight_type == "running_mean": lowerCamelCase__ : List[Any] = value elif weight_type == "running_var": lowerCamelCase__ : Dict = value elif weight_type == "num_batches_tracked": lowerCamelCase__ : Dict = value elif weight_type == "weight_ih_l0": lowerCamelCase__ : List[Any] = value elif weight_type == "weight_hh_l0": lowerCamelCase__ : List[Any] = value elif weight_type == "bias_ih_l0": lowerCamelCase__ : Optional[int] = value elif weight_type == "bias_hh_l0": lowerCamelCase__ : Optional[Any] = value elif weight_type == "weight_ih_l1": lowerCamelCase__ : Optional[int] = value elif weight_type == "weight_hh_l1": lowerCamelCase__ : Optional[Any] = value elif weight_type == "bias_ih_l1": lowerCamelCase__ : Dict = value elif weight_type == "bias_hh_l1": lowerCamelCase__ : Optional[Any] = value else: lowerCamelCase__ : int = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCamelCase__ : Optional[Any] = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCamelCase__ : Optional[Any] = MAPPING_24K elif model_name == "encodec_48khz": lowerCamelCase__ : Optional[int] = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(__a , __a ): logger.info(f'''{name} was ignored''' ) continue lowerCamelCase__ : List[str] = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCamelCase__ : List[Any] = key.split('.*.' ) if prefix in name and suffix in name: lowerCamelCase__ : Union[str, Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCamelCase__ : Optional[int] = True if "*" in mapped_key: lowerCamelCase__ : List[Any] = name.split(__a )[0].split('.' )[-2] lowerCamelCase__ : Dict = mapped_key.replace('*' , __a ) if "weight_g" in name: lowerCamelCase__ : int = 'weight_g' elif "weight_v" in name: lowerCamelCase__ : int = 'weight_v' elif "weight_ih_l0" in name: lowerCamelCase__ : List[Any] = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCamelCase__ : List[Any] = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCamelCase__ : Optional[Any] = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCamelCase__ : List[str] = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCamelCase__ : List[str] = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCamelCase__ : Union[str, Any] = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCamelCase__ : str = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCamelCase__ : Any = 'bias_hh_l1' elif "bias" in name: lowerCamelCase__ : Optional[int] = 'bias' elif "weight" in name: lowerCamelCase__ : Tuple = 'weight' elif "running_mean" in name: lowerCamelCase__ : Any = 'running_mean' elif "running_var" in name: lowerCamelCase__ : Optional[int] = 'running_var' elif "num_batches_tracked" in name: lowerCamelCase__ : Union[str, Any] = 'num_batches_tracked' else: lowerCamelCase__ : int = None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ): if config_path is not None: lowerCamelCase__ : List[str] = EncodecConfig.from_pretrained(__a ) else: lowerCamelCase__ : Tuple = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCamelCase__ : Optional[int] = [8, 5, 4, 4] lowerCamelCase__ : Any = [2.2] lowerCamelCase__ : Dict = 64 lowerCamelCase__ : Dict = 3_2000 lowerCamelCase__ : Optional[int] = 2048 lowerCamelCase__ : Tuple = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : List[Any] = False elif model_name == "encodec_48khz": lowerCamelCase__ : int = [8, 5, 4, 2] lowerCamelCase__ : Any = [3.0, 6.0, 12.0, 24.0] lowerCamelCase__ : List[str] = 4_8000 lowerCamelCase__ : str = 2 lowerCamelCase__ : List[str] = False lowerCamelCase__ : Optional[Any] = 'time_group_norm' lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Tuple = 1.0 lowerCamelCase__ : Optional[int] = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCamelCase__ : Any = EncodecModel(__a ) lowerCamelCase__ : Optional[int] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__a ) lowerCamelCase__ : Dict = torch.load(__a ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCamelCase__ : Tuple = original_checkpoint['best_state'] recursively_load_weights(__a , __a , __a ) model.save_pretrained(__a ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(__a ) model.push_to_hub(__a ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) A_ : int = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
355
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : List[Any] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
356
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowerCamelCase_ ( _lowerCamelCase ): return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=__A ) lowerCamelCase__ : Optional[Any] = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__A ) EnvironmentCommand.register_subcommand(__A ) TestCommand.register_subcommand(__A ) RunBeamCommand.register_subcommand(__A ) DummyDataCommand.register_subcommand(__A ) # Parse args lowerCamelCase__ , lowerCamelCase__ : Dict = parser.parse_known_args() if not hasattr(__A , 'func' ): parser.print_help() exit(1 ) lowerCamelCase__ : str = parse_unknown_args(__A ) # Run lowerCamelCase__ : List[Any] = args.func(__A , **__A ) service.run() if __name__ == "__main__": main()
357
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
0
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=7 ): lowerCamelCase__ : Dict = None if token is not None: lowerCamelCase__ : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowerCamelCase__ : str = """636036""" lowerCamelCase__ : List[str] = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowerCamelCase__ : str = requests.get(lowerCamelCase_ , headers=lowerCamelCase_ ).json() return result["workflow_runs"] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Any = get_daily_ci_runs(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowerCamelCase__ : List[str] = workflow_run["""id"""] break return workflow_run_id def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : str = get_last_daily_ci_runs(lowerCamelCase_ ) if workflow_run_id is not None: lowerCamelCase__ : Tuple = get_artifacts_links(worflow_run_id=lowerCamelCase_ , token=lowerCamelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowerCamelCase__ : Tuple = artifacts_links[artifact_name] download_artifact( artifact_name=lowerCamelCase_ , artifact_url=lowerCamelCase_ , output_dir=lowerCamelCase_ , token=lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): get_last_daily_ci_artifacts(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : Tuple = {} for artifact_name in artifact_names: lowerCamelCase__ : Any = os.path.join(lowerCamelCase_ , f'''{artifact_name}.zip''' ) if os.path.isfile(lowerCamelCase_ ): lowerCamelCase__ : Dict = {} with zipfile.ZipFile(lowerCamelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase_ ): # read the file with z.open(lowerCamelCase_ ) as f: lowerCamelCase__ : Tuple = f.read().decode('UTF-8' ) return results
358
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
0
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) A_ : List[str] = """\ Text data. Second line of data.""" A_ : Any = """file""" @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') lowerCamelCase__ : Optional[int] = bytes(_lowerCamelCase , 'utf-8' ) with zstd.open(_lowerCamelCase , 'wb' ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture def lowerCamelCase_ ( _lowerCamelCase ): with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , 'w' ) as f: f.write(_lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} lowerCamelCase__ : List[Any] = input_paths[compression_format] lowerCamelCase__ : Optional[Any] = tmp_path / 'cache' lowerCamelCase__ : Dict = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase ) lowerCamelCase__ : Any = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) with open(_lowerCamelCase ) as f: lowerCamelCase__ : int = f.read() with open(_lowerCamelCase ) as f: lowerCamelCase__ : Any = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : str = 'custom_cache' lowerCamelCase__ : Optional[Any] = 'custom_extracted_dir' lowerCamelCase__ : Union[str, Any] = tmp_path / 'custom_extracted_path' if default_extracted: lowerCamelCase__ : Optional[int] = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , _lowerCamelCase ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowerCamelCase ) ) lowerCamelCase__ : List[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowerCamelCase__ : Any = xz_file lowerCamelCase__ : List[str] = ( DownloadConfig(extract_compressed_file=_lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase ) ) lowerCamelCase__ : List[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) assert Path(_lowerCamelCase ).parent.parts[-2:] == expected def lowerCamelCase_ ( _lowerCamelCase ): # absolute path lowerCamelCase__ : Union[str, Any] = str(Path(_lowerCamelCase ).resolve() ) assert cached_path(_lowerCamelCase ) == text_file # relative path lowerCamelCase__ : Dict = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_lowerCamelCase ) == text_file def lowerCamelCase_ ( _lowerCamelCase ): # absolute path lowerCamelCase__ : Optional[Any] = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) # relative path lowerCamelCase__ : Tuple = './__missing_file__.txt' with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = get_from_cache(f'''tmp://{tmpfs_file}''' ) with open(_lowerCamelCase ) as f: lowerCamelCase__ : Dict = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , _lowerCamelCase ) def lowerCamelCase_ ( ): with pytest.raises(_lowerCamelCase ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_lowerCamelCase ): http_get('https://huggingface.co' , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_lowerCamelCase ): ftp_get('ftp://huggingface.co' , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_lowerCamelCase ): fsspec_get('s3://huggingface.co' , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): fsspec_head('s3://huggingface.co' )
359
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): A_ : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A_ : Dict = 12_80_22 A_ : str = 12_80_28 @require_sentencepiece class a_ ( A_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = MaMaaaTokenizer lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Union[str, Any] = True def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] lowerCamelCase__ : List[Any] = dict(zip(snake_case__, range(len(snake_case__ ) ) ) ) lowerCamelCase__ : int = Path(self.tmpdirname ) save_json(snake_case__, save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case__, save_dir / VOCAB_FILES_NAMES['spm_file'] ) lowerCamelCase__ : str = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname, **snake_case__ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ( "This is a test", "This is a test", ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = "</s>" lowerCamelCase__ : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ), snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ), snake_case__ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : Tuple = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0], '</s>' ) self.assertEqual(vocab_keys[1], '<unk>' ) self.assertEqual(vocab_keys[-1], '<s>' ) self.assertEqual(len(snake_case__ ), tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : Union[str, Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__, ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ), [2, 3, 4, 5, 6], ) lowerCamelCase__ : Union[str, Any] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(snake_case__, ['▁This', '▁is', '▁a', '▁t', 'est'] ) lowerCamelCase__ : int = tokenizer.convert_tokens_to_string(snake_case__ ) self.assertEqual(snake_case__, 'This is a test' ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__, model_name='facebook/m2m100_418M', revision='c168bae485c864188cf9aa0e4108b0b6934dc91e', ) @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = "facebook/m2m100_418M" lowerCamelCase__ : int = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] lowerCamelCase__ : Union[str, Any] = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off lowerCamelCase__ : Optional[Any] = [EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2] @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name, src_lang='en', tgt_lang='fr' ) lowerCamelCase__ : Dict = 1 return cls def a__ (self ): '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id('ar' ), 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id('en' ), 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ), 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ), 1_2_8_0_6_3 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.tokenizer.get_vocab() self.assertEqual(len(snake_case__ ), self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'], 3 ) self.assertIn(self.tokenizer.get_lang_token('en' ), snake_case__ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = "en" lowerCamelCase__ : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, snake_case__ ) def a__ (self ): '''simple docstring''' self.assertIn(snake_case__, self.tokenizer.all_special_ids ) # fmt: off lowerCamelCase__ : List[Any] = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on lowerCamelCase__ : Dict = self.tokenizer.decode(snake_case__, skip_special_tokens=snake_case__ ) lowerCamelCase__ : List[Any] = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__, snake_case__ ) self.assertNotIn(self.tokenizer.eos_token, snake_case__ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = tempfile.mkdtemp() lowerCamelCase__ : Any = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(snake_case__ ) lowerCamelCase__ : Union[str, Any] = MaMaaaTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.lang_token_to_id, snake_case__ ) @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = "en" lowerCamelCase__ : Union[str, Any] = "fr" lowerCamelCase__ : Optional[int] = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=snake_case__, return_tensors='pt' ) lowerCamelCase__ : List[str] = shift_tokens_right( batch['labels'], self.tokenizer.pad_token_id, self.tokenizer.eos_token_id ) for k in batch: lowerCamelCase__ : Dict = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = "mr" self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) lowerCamelCase__ : Any = "zh" self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) lowerCamelCase__ : Any = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.tokenizer._build_translation_inputs('A test', return_tensors='pt', src_lang='en', tgt_lang='ar' ) self.assertEqual( nested_simplify(snake_case__ ), { # en_XX, A, test, EOS 'input_ids': [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 1_2_8_0_0_6, }, )
360
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ : List[str] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = XGLMTokenizer lowerCamelCase__ : Any = XGLMTokenizerFast lowerCamelCase__ : Tuple = True lowerCamelCase__ : str = True def a__ (self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : Any = XGLMTokenizer(_a, keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = '<pad>' lowerCamelCase__ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ), _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ), _a ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '<s>' ) self.assertEqual(vocab_keys[1], '<pad>' ) self.assertEqual(len(_a ), 1_0_0_8 ) def a__ (self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1_0_0_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = XGLMTokenizer(_a, keep_accents=_a ) lowerCamelCase__ : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(_a, ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ), [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]], ) lowerCamelCase__ : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _a, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ], ) lowerCamelCase__ : Any = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a, [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ], ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ], ) @cached_property def a__ (self ): '''simple docstring''' return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def a__ (self ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_a, f.name ) lowerCamelCase__ : Optional[int] = XGLMTokenizer(f.name, keep_accents=_a ) lowerCamelCase__ : List[Any] = pickle.dumps(_a ) pickle.loads(_a ) def a__ (self ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__ : Dict = self.get_tokenizer() lowerCamelCase__ : List[str] = self.get_rust_tokenizer() lowerCamelCase__ : Any = 'I was born in 92000, and this is falsé.' lowerCamelCase__ : Union[str, Any] = tokenizer.tokenize(_a ) lowerCamelCase__ : str = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a, _a ) lowerCamelCase__ : str = tokenizer.encode(_a, add_special_tokens=_a ) lowerCamelCase__ : str = rust_tokenizer.encode(_a, add_special_tokens=_a ) self.assertListEqual(_a, _a ) lowerCamelCase__ : List[str] = self.get_rust_tokenizer() lowerCamelCase__ : Optional[Any] = tokenizer.encode(_a ) lowerCamelCase__ : List[str] = rust_tokenizer.encode(_a ) self.assertListEqual(_a, _a ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'Hello World!' lowerCamelCase__ : Dict = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(_a, self.big_tokenizer.encode(_a ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowerCamelCase__ : List[str] = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(_a, self.big_tokenizer.encode(_a ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = { 'input_ids': [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a, model_name='facebook/xglm-564M', padding=_a, )
361
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
0
"""simple docstring""" import numpy # List of input, output pairs A_ : int = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A_ : Tuple = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) A_ : List[Any] = [2, 4, 1, 5] A_ : Union[str, Any] = len(train_data) A_ : Tuple = 0.009 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase="train" ): return calculate_hypothesis_value(lowercase__ , lowercase__ ) - output( lowercase__ , lowercase__ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = 0 for i in range(len(lowercase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=m ): lowerCamelCase__ : Optional[int] = 0 for i in range(lowercase__ ): if index == -1: summation_value += _error(lowercase__ ) else: summation_value += _error(lowercase__ ) * train_data[i][0][index] return summation_value def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = summation_of_cost_derivative(lowercase__ , lowercase__ ) / m return cost_derivative_value def lowerCamelCase_ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ : Tuple = 0.000_002 lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : Optional[int] = 0 while True: j += 1 lowerCamelCase__ : List[Any] = [0, 0, 0, 0] for i in range(0 , len(lowercase__ ) ): lowerCamelCase__ : List[Any] = get_cost_derivative(i - 1 ) lowerCamelCase__ : List[str] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowercase__ , lowercase__ , atol=lowercase__ , rtol=lowercase__ , ): break lowerCamelCase__ : List[Any] = temp_parameter_vector print(('Number of iterations:', j) ) def lowerCamelCase_ ( ): for i in range(len(lowercase__ ) ): print(('Actual output value:', output(lowercase__ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(lowercase__ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
362
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
0
from math import sqrt def lowerCamelCase_ ( _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" lowerCamelCase__ : Optional[Any] = True # 0 and 1 are none primes. if number <= 1: lowerCamelCase__ : Dict = False for divisor in range(2 , int(round(sqrt(_lowerCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCamelCase__ : Any = False break # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'status' must been from type bool" return status def lowerCamelCase_ ( _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCamelCase__ : int = list(range(2 , n + 1 ) ) lowerCamelCase__ : int = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCamelCase__ : str = 0 # filters actual prime numbers. lowerCamelCase__ : Tuple = [x for x in begin_list if x != 0] # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'ans' must been from type list" return ans def lowerCamelCase_ ( _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" lowerCamelCase__ : Dict = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_lowerCamelCase ): ans.append(_lowerCamelCase ) # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'ans' must been from type list" return ans def lowerCamelCase_ ( _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and number >= 0, "'number' must been an int and >= 0" lowerCamelCase__ : int = [] # this list will be returns of the function. # potential prime number factors. lowerCamelCase__ : List[str] = 2 lowerCamelCase__ : List[Any] = number if number == 0 or number == 1: ans.append(_lowerCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_lowerCamelCase ): while quotient != 1: if is_prime(_lowerCamelCase ) and (quotient % factor == 0): ans.append(_lowerCamelCase ) quotient /= factor else: factor += 1 else: ans.append(_lowerCamelCase ) # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'ans' must been from type list" return ans def lowerCamelCase_ ( _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCamelCase__ : List[str] = 0 # prime factorization of 'number' lowerCamelCase__ : Any = prime_factorization(_lowerCamelCase ) lowerCamelCase__ : Any = max(_lowerCamelCase ) # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'ans' must been from type int" return ans def lowerCamelCase_ ( _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCamelCase__ : List[Any] = 0 # prime factorization of 'number' lowerCamelCase__ : int = prime_factorization(_lowerCamelCase ) lowerCamelCase__ : List[str] = min(_lowerCamelCase ) # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'ans' must been from type int" return ans def lowerCamelCase_ ( _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _lowerCamelCase ), "compare bust been from type bool" return number % 2 == 0 def lowerCamelCase_ ( _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _lowerCamelCase ), "compare bust been from type bool" return number % 2 != 0 def lowerCamelCase_ ( _lowerCamelCase ): assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and (number > 2) and is_even(_lowerCamelCase ) ), "'number' must been an int, even and > 2" lowerCamelCase__ : List[Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCamelCase__ : Tuple = get_prime_numbers(_lowerCamelCase ) lowerCamelCase__ : Dict = len(_lowerCamelCase ) # run variable for while-loops. lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : Dict = None # exit variable. for break up the loops lowerCamelCase__ : int = True while i < len_pn and loop: lowerCamelCase__ : Optional[Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCamelCase__ : Any = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and (len(_lowerCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCamelCase__ : Optional[Any] = 0 while numbera != 0: lowerCamelCase__ : Union[str, Any] = numbera % numbera lowerCamelCase__ : Any = numbera lowerCamelCase__ : Dict = rest # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCamelCase__ : int = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCamelCase__ : int = prime_factorization(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = prime_factorization(_lowerCamelCase ) elif numbera == 1 or numbera == 1: lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Dict = max(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCamelCase__ : Optional[Any] = prime_fac_a.count(_lowerCamelCase ) lowerCamelCase__ : int = prime_fac_a.count(_lowerCamelCase ) for _ in range(max(_lowerCamelCase , _lowerCamelCase ) ): ans *= n else: lowerCamelCase__ : Union[str, Any] = prime_fac_a.count(_lowerCamelCase ) for _ in range(_lowerCamelCase ): ans *= n done.append(_lowerCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCamelCase__ : List[str] = prime_fac_a.count(_lowerCamelCase ) for _ in range(_lowerCamelCase ): ans *= n done.append(_lowerCamelCase ) # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCamelCase_ ( _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n >= 0), "'number' must been a positive int" lowerCamelCase__ : Dict = 0 lowerCamelCase__ : Optional[Any] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_lowerCamelCase ): ans += 1 # precondition assert isinstance(_lowerCamelCase , _lowerCamelCase ) and is_prime( _lowerCamelCase ), "'ans' must been a prime number and from type int" return ans def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): assert ( is_prime(_lowerCamelCase ) and is_prime(_lowerCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCamelCase__ : List[str] = p_number_a + 1 # jump to the next number lowerCamelCase__ : Optional[int] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_lowerCamelCase ): number += 1 while number < p_number_a: ans.append(_lowerCamelCase ) number += 1 # fetch the next prime number. while not is_prime(_lowerCamelCase ): number += 1 # precondition assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and ans[0] != p_number_a and ans[len(_lowerCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCamelCase_ ( _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n >= 1), "'n' must been int and >= 1" lowerCamelCase__ : Any = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_lowerCamelCase ) # precondition assert ans[0] == 1 and ans[len(_lowerCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCamelCase_ ( _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCamelCase__ : Optional[int] = get_divisors(_lowerCamelCase ) # precondition assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and (divisors[0] == 1) and (divisors[len(_lowerCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCamelCase__ : Tuple = gcd(abs(_lowerCamelCase ) , abs(_lowerCamelCase ) ) # precondition assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCamelCase_ ( _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n >= 0), "'n' must been a int and >= 0" lowerCamelCase__ : Tuple = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCamelCase_ ( _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (n >= 0), "'n' must been an int and >= 0" lowerCamelCase__ : Any = 0 lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : str = 1 # this will be return for _ in range(n - 1 ): lowerCamelCase__ : Any = ans ans += fiba lowerCamelCase__ : Any = tmp return ans
363
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Tuple = DiTPipeline lowerCamelCase__ : str = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowerCamelCase__ : Optional[Any] = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } lowerCamelCase__ : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase__ : Optional[int] = False def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : List[str] = TransformeraDModel( sample_size=1_6, num_layers=2, patch_size=4, attention_head_dim=8, num_attention_heads=2, in_channels=4, out_channels=8, attention_bias=lowercase_, activation_fn='gelu-approximate', num_embeds_ada_norm=1_0_0_0, norm_type='ada_norm_zero', norm_elementwise_affine=lowercase_, ) lowerCamelCase__ : List[Any] = AutoencoderKL() lowerCamelCase__ : Union[str, Any] = DDIMScheduler() lowerCamelCase__ : Tuple = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' if str(lowercase_ ).startswith('mps' ): lowerCamelCase__ : Tuple = torch.manual_seed(lowercase_ ) else: lowerCamelCase__ : List[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCamelCase__ : int = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = 'cpu' lowerCamelCase__ : Any = self.get_dummy_components() lowerCamelCase__ : Optional[int] = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowerCamelCase__ : Dict = self.get_dummy_inputs(lowercase_ ) lowerCamelCase__ : Dict = pipe(**lowercase_ ).images lowerCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 1_6, 1_6, 3) ) lowerCamelCase__ : Tuple = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) lowerCamelCase__ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase_, 1e-3 ) def a__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowercase_, expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def a__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCamelCase__ : Tuple = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) lowerCamelCase__ : Optional[int] = ['vase', 'umbrella', 'white shark', 'white wolf'] lowerCamelCase__ : int = pipe.get_label_ids(lowercase_ ) lowerCamelCase__ : Dict = pipe(lowercase_, generator=lowercase_, num_inference_steps=4_0, output_type='np' ).images for word, image in zip(lowercase_, lowercase_ ): lowerCamelCase__ : str = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) lowerCamelCase__ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) lowerCamelCase__ : List[Any] = ['vase', 'umbrella'] lowerCamelCase__ : Optional[Any] = pipe.get_label_ids(lowercase_ ) lowerCamelCase__ : Any = torch.manual_seed(0 ) lowerCamelCase__ : str = pipe(lowercase_, generator=lowercase_, num_inference_steps=2_5, output_type='np' ).images for word, image in zip(lowercase_, lowercase_ ): lowerCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
364
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): return round(float(moles / volume ) * nfactor ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor A_ : Dict = logging.get_logger(__name__) class a_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.', __UpperCAmelCase, ) super().__init__(*__UpperCAmelCase, **__UpperCAmelCase )
366
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : List[str] = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
367
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Dict = {'vocab_file': 'spm_char.model'} A_ : int = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } A_ : List[str] = { 'microsoft/speecht5_asr': 10_24, 'microsoft/speecht5_tts': 10_24, 'microsoft/speecht5_vc': 10_24, } class a_ ( _UpperCamelCase ): '''simple docstring''' lowerCamelCase__ : str = VOCAB_FILES_NAMES lowerCamelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__(self, lowerCamelCase_, lowerCamelCase_="<s>", lowerCamelCase_="</s>", lowerCamelCase_="<unk>", lowerCamelCase_="<pad>", lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_SCREAMING_SNAKE_CASE, eos_token=_SCREAMING_SNAKE_CASE, unk_token=_SCREAMING_SNAKE_CASE, pad_token=_SCREAMING_SNAKE_CASE, sp_model_kwargs=self.sp_model_kwargs, **_SCREAMING_SNAKE_CASE, ) lowerCamelCase__ : Union[str, Any] = vocab_file lowerCamelCase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def a__ (self ): '''simple docstring''' return self.sp_model.get_piece_size() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.__dict__.copy() lowerCamelCase__ : Union[str, Any] = None return state def __setstate__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): lowerCamelCase__ : Optional[int] = {} lowerCamelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.sp_model.encode(_SCREAMING_SNAKE_CASE, out_type=_SCREAMING_SNAKE_CASE ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Dict = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token lowerCamelCase__ : Union[str, Any] = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def a__ (self, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE, token_ids_a=_SCREAMING_SNAKE_CASE, already_has_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCamelCase__ : int = [1] if token_ids_a is None: return ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones return ([0] * len(_SCREAMING_SNAKE_CASE )) + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : Union[str, Any] = os.path.join( _SCREAMING_SNAKE_CASE, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE, 'wb' ) as fi: lowerCamelCase__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
368
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
0
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument('--model_ckpt' , type=a__ , default='microsoft/unixcoder-base-nine' ) parser.add_argument('--num_epochs' , type=a__ , default=5 ) parser.add_argument('--batch_size' , type=a__ , default=6 ) parser.add_argument('--gradient_accumulation_steps' , type=a__ , default=1 ) parser.add_argument('--freeze' , type=a__ , default=a__ ) parser.add_argument('--learning_rate' , type=a__ , default=5e-4 ) parser.add_argument('--seed' , type=a__ , default=0 ) parser.add_argument('--lr_scheduler_type' , type=a__ , default='cosine' ) parser.add_argument('--num_warmup_steps' , type=a__ , default=10 ) parser.add_argument('--weight_decay' , type=a__ , default=0.01 ) parser.add_argument('--output_dir' , type=a__ , default='./results' ) return parser.parse_args() A_ : Union[str, Any] = load("accuracy") def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = eval_pred lowerCamelCase__ : Any = np.argmax(a__ , axis=1 ) return metric.compute(predictions=a__ , references=a__ ) class a_ ( a__ ): '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' super().__init__() lowerCamelCase__ : Union[str, Any] = trainer def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if control.should_evaluate: lowerCamelCase__ : List[str] = deepcopy(_lowerCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset, metric_key_prefix='train' ) return control_copy def lowerCamelCase_ ( ): lowerCamelCase__ : Any = get_args() set_seed(args.seed ) lowerCamelCase__ : Optional[Any] = load_dataset('codeparrot/codecomplex' , split='train' ) lowerCamelCase__ : Tuple = dataset.train_test_split(test_size=0.2 ) lowerCamelCase__ : List[Any] = train_test['''test'''].train_test_split(test_size=0.5 ) lowerCamelCase__ : Tuple = DatasetDict( { 'train': train_test['train'], 'test': test_validation['train'], 'valid': test_validation['test'], } ) print('Loading tokenizer and model' ) lowerCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ : Optional[Any] = tokenizer.eos_token lowerCamelCase__ : str = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) lowerCamelCase__ : Any = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : str = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity'] ) ) ) def tokenize(_lowerCamelCase ): lowerCamelCase__ : Any = tokenizer(example['src'] , truncation=a__ , max_length=1024 ) lowerCamelCase__ : Optional[int] = labels.straint(example['complexity'] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } lowerCamelCase__ : Dict = train_test_validation.map( a__ , batched=a__ , remove_columns=train_test_validation['train'].column_names , ) lowerCamelCase__ : Union[str, Any] = DataCollatorWithPadding(tokenizer=a__ ) lowerCamelCase__ : List[Any] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , ) lowerCamelCase__ : str = Trainer( model=a__ , args=a__ , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=a__ , data_collator=a__ , compute_metrics=a__ , ) print('Training...' ) trainer.add_callback(CustomCallback(a__ ) ) trainer.train() if __name__ == "__main__": main()
369
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): lowerCamelCase__ : str = array[indexa], array[indexa] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length > 1: lowerCamelCase__ : Tuple = int(length / 2 ) for i in range(__SCREAMING_SNAKE_CASE , low + middle ): comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if length > 1: lowerCamelCase__ : Optional[Any] = int(length / 2 ) bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 ) bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A_ : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A_ : Any = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer A_ : Optional[Any] = logging.get_logger(__name__) A_ : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ : Optional[Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } A_ : Any = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } A_ : Optional[Any] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } A_ : Optional[int] = { "facebook/dpr-ctx_encoder-single-nq-base": 5_12, "facebook/dpr-ctx_encoder-multiset-base": 5_12, } A_ : Optional[int] = { "facebook/dpr-question_encoder-single-nq-base": 5_12, "facebook/dpr-question_encoder-multiset-base": 5_12, } A_ : Tuple = { "facebook/dpr-reader-single-nq-base": 5_12, "facebook/dpr-reader-multiset-base": 5_12, } A_ : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } A_ : Dict = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } A_ : List[str] = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class a_ ( _UpperCAmelCase ): '''simple docstring''' lowerCamelCase__ : str = VOCAB_FILES_NAMES lowerCamelCase__ : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : List[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class a_ ( _UpperCAmelCase ): '''simple docstring''' lowerCamelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase__ : Optional[Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Optional[int] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : List[str] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A_ : Optional[int] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) A_ : Union[str, Any] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) A_ : int = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class a_ : '''simple docstring''' def __call__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = False, lowerCamelCase_ = False, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' if titles is None and texts is None: return super().__call__( lowercase_, padding=lowercase_, truncation=lowercase_, max_length=lowercase_, return_tensors=lowercase_, return_attention_mask=lowercase_, **lowercase_, ) elif titles is None or texts is None: lowerCamelCase__ : Tuple = titles if texts is None else texts return super().__call__( lowercase_, lowercase_, padding=lowercase_, truncation=lowercase_, max_length=lowercase_, return_tensors=lowercase_, return_attention_mask=lowercase_, **lowercase_, ) lowerCamelCase__ : List[Any] = titles if not isinstance(lowercase_, lowercase_ ) else [titles] lowerCamelCase__ : Dict = texts if not isinstance(lowercase_, lowercase_ ) else [texts] lowerCamelCase__ : List[Any] = len(lowercase_ ) lowerCamelCase__ : Optional[Any] = questions if not isinstance(lowercase_, lowercase_ ) else [questions] * n_passages if len(lowercase_ ) != len(lowercase_ ): raise ValueError( f'''There should be as many titles than texts but got {len(lowercase_ )} titles and {len(lowercase_ )} texts.''' ) lowerCamelCase__ : Any = super().__call__(lowercase_, lowercase_, padding=lowercase_, truncation=lowercase_ )["""input_ids"""] lowerCamelCase__ : str = super().__call__(lowercase_, add_special_tokens=lowercase_, padding=lowercase_, truncation=lowercase_ )["""input_ids"""] lowerCamelCase__ : List[Any] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowercase_, lowercase_ ) ] } if return_attention_mask is not False: lowerCamelCase__ : int = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase__ : int = attention_mask return self.pad(lowercase_, padding=lowercase_, max_length=lowercase_, return_tensors=lowercase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1_6, lowerCamelCase_ = 6_4, lowerCamelCase_ = 4, ): '''simple docstring''' lowerCamelCase__ : Optional[int] = reader_input["""input_ids"""] lowerCamelCase__ : Optional[int] = reader_output[:3] lowerCamelCase__ : Union[str, Any] = len(lowercase_ ) lowerCamelCase__ : List[Any] = sorted(range(lowercase_ ), reverse=lowercase_, key=relevance_logits.__getitem__ ) lowerCamelCase__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: lowerCamelCase__ : Optional[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase__ : Any = sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase__ : Any = sequence_ids.index(self.pad_token_id ) else: lowerCamelCase__ : Dict = len(lowercase_ ) lowerCamelCase__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowercase_, top_spans=lowercase_, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowercase_, start_index=lowercase_, end_index=lowercase_, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(lowercase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Tuple = [] for start_index, start_score in enumerate(lowercase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase__ : str = sorted(lowercase_, key=lambda lowerCamelCase_ : x[1], reverse=lowercase_ ) lowerCamelCase__ : Dict = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) lowerCamelCase__ : Optional[int] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowercase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class a_ ( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase__ : List[Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : List[str] = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : Any = ['input_ids', 'attention_mask']
371
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Any = len(__a ) while cur > 1: # Find the maximum number in arr lowerCamelCase__ : Optional[Any] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCamelCase__ : Optional[Any] = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCamelCase__ : Union[str, Any] = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": A_ : Tuple = input("Enter numbers separated by a comma:\n").strip() A_ : Optional[int] = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
350
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_2, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=[1_0, 2_0, 3_0, 4_0], lowerCamelCase_=[2, 2, 3, 2], lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=["stage2", "stage3", "stage4"], lowerCamelCase_=[2, 3, 4], lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Optional[int] = batch_size lowerCamelCase__ : Tuple = image_size lowerCamelCase__ : int = num_channels lowerCamelCase__ : Union[str, Any] = num_stages lowerCamelCase__ : List[str] = hidden_sizes lowerCamelCase__ : Optional[Any] = depths lowerCamelCase__ : Dict = is_training lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Tuple = intermediate_size lowerCamelCase__ : Optional[int] = hidden_act lowerCamelCase__ : Optional[int] = num_labels lowerCamelCase__ : str = initializer_range lowerCamelCase__ : str = out_features lowerCamelCase__ : Optional[int] = out_indices lowerCamelCase__ : int = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : int = None if self.use_labels: lowerCamelCase__ : List[str] = ids_tensor([self.batch_size], self.num_labels ) lowerCamelCase__ : Tuple = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=lowercase_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = ConvNextVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCamelCase__ : List[Any] = model(lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2), ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ConvNextVaForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = ConvNextVaBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCamelCase__ : Optional[int] = model(lowercase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase__ : int = None lowerCamelCase__ : str = ConvNextVaBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCamelCase__ : int = model(lowercase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = config_and_inputs lowerCamelCase__ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.prepare_config_and_inputs() lowerCamelCase__ : List[Any] = config_and_inputs lowerCamelCase__ : Optional[int] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class a_ ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__ : Dict = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : int = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = ConvNextVaModelTester(self ) lowerCamelCase__ : Any = ConfigTester(self, config_class=lowercase_, has_text_modality=lowercase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ (self ): '''simple docstring''' return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def a__ (self ): '''simple docstring''' pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() lowerCamelCase__ : List[str] = True if model_class.__name__ in [ *get_values(lowercase_ ), *get_values(lowercase_ ), ]: continue lowerCamelCase__ : Union[str, Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.train() lowerCamelCase__ : Optional[int] = self._prepare_for_class(lowercase_, lowercase_, return_labels=lowercase_ ) lowerCamelCase__ : int = model(**lowercase_ ).loss loss.backward() def a__ (self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_with_labels() lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Optional[int] = True if ( model_class.__name__ in [*get_values(lowercase_ ), *get_values(lowercase_ )] or not model_class.supports_gradient_checkpointing ): continue lowerCamelCase__ : Optional[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.gradient_checkpointing_enable() model.train() lowerCamelCase__ : Optional[Any] = self._prepare_for_class(lowercase_, lowercase_, return_labels=lowercase_ ) lowerCamelCase__ : int = model(**lowercase_ ).loss loss.backward() def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : str = model_class(lowercase_ ) lowerCamelCase__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[str] = [*signature.parameters.keys()] lowerCamelCase__ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1], lowercase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def a__ (self ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : str = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : int = model(**self._prepare_for_class(lowercase_, lowercase_ ) ) lowerCamelCase__ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(lowercase_ ), expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Tuple = True check_hidden_states_output(lowercase_, lowercase_, lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : List[Any] = True check_hidden_states_output(lowercase_, lowercase_, lowercase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def a__ (self ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Any = ConvNextVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def lowerCamelCase_ ( ): """simple docstring""" lowerCamelCase__ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(lowercase_ ) lowerCamelCase__ : Any = self.default_image_processor lowerCamelCase__ : Dict = prepare_img() lowerCamelCase__ : List[str] = preprocessor(images=lowercase_, return_tensors='pt' ).to(lowercase_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Dict = model(**lowercase_ ) # verify the logits lowerCamelCase__ : Optional[int] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowercase_ ) lowerCamelCase__ : Dict = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowercase_, atol=1e-4 ) )
351
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" from itertools import permutations def lowerCamelCase_ ( _lowerCamelCase ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase__ : str = [7, 11, 13, 17] for i, test in enumerate(_snake_case ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowerCamelCase_ ( _lowerCamelCase = 10 ): return sum( int(''.join(map(_snake_case , _snake_case ) ) ) for num in permutations(range(_snake_case ) ) if is_substring_divisible(_snake_case ) ) if __name__ == "__main__": print(f"{solution() = }")
352
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin A_ : str = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_6, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=1_4, lowerCamelCase_=1_0, lowerCamelCase_=1_9, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=True, lowerCamelCase_=1_6, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=4, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=[1, 2, 3, 4, 5], lowerCamelCase_=2_5, lowerCamelCase_=5, ): '''simple docstring''' lowerCamelCase__ : str = d_model lowerCamelCase__ : Optional[int] = parent lowerCamelCase__ : str = batch_size lowerCamelCase__ : Optional[int] = prediction_length lowerCamelCase__ : str = context_length lowerCamelCase__ : Dict = cardinality lowerCamelCase__ : List[str] = num_time_features lowerCamelCase__ : List[str] = lags_sequence lowerCamelCase__ : int = embedding_dimension lowerCamelCase__ : Any = is_training lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = context_length lowerCamelCase__ : Optional[Any] = prediction_length + label_length lowerCamelCase__ : List[Any] = label_length lowerCamelCase__ : str = moving_average lowerCamelCase__ : str = autocorrelation_factor def a__ (self ): '''simple docstring''' return AutoformerConfig( d_model=self.d_model, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, prediction_length=self.prediction_length, context_length=self.context_length, label_length=self.label_length, lags_sequence=self.lags_sequence, num_time_features=self.num_time_features, num_static_categorical_features=1, cardinality=[self.cardinality], embedding_dimension=[self.embedding_dimension], moving_average=self.moving_average, ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = config.context_length + max(config.lags_sequence ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size, 1], config.cardinality[0] ) lowerCamelCase__ : int = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCamelCase__ : Union[str, Any] = floats_tensor([self.batch_size, _past_length] ) lowerCamelCase__ : Union[str, Any] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCamelCase__ : Any = floats_tensor([self.batch_size, config.prediction_length] ) lowerCamelCase__ : Any = { 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.get_config() lowerCamelCase__ : Optional[int] = self.prepare_autoformer_inputs_dict(snake_case__ ) return config, inputs_dict def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoformerModel(config=snake_case__ ).to(snake_case__ ).eval() lowerCamelCase__ : int = model(**snake_case__ ) lowerCamelCase__ : List[str] = outputs.encoder_last_hidden_state lowerCamelCase__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ : int = model.get_encoder() encoder.save_pretrained(snake_case__ ) lowerCamelCase__ : Optional[Any] = AutoformerEncoder.from_pretrained(snake_case__ ).to(snake_case__ ) lowerCamelCase__ : Dict = model.create_network_inputs(**snake_case__ ) lowerCamelCase__ : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCamelCase__ : int = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]), dim=-1, ) lowerCamelCase__ : Tuple = encoder(inputs_embeds=snake_case__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) lowerCamelCase__ : List[Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...], dim=1 ) .unsqueeze(1 ) .repeat(1, config.prediction_length, 1 ) ) lowerCamelCase__ : Tuple = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]], device=enc_input.device, ) lowerCamelCase__ : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros), dim=1 ), feature[:, config.context_length - config.label_length :, ...], ), dim=-1, ) lowerCamelCase__ : Union[str, Any] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean), dim=1 ), feature[:, config.context_length - config.label_length :, ...], ), dim=-1, ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ : Optional[Any] = model.get_decoder() decoder.save_pretrained(snake_case__ ) lowerCamelCase__ : Optional[int] = AutoformerDecoder.from_pretrained(snake_case__ ).to(snake_case__ ) lowerCamelCase__ : Union[str, Any] = decoder( trend=snake_case__, inputs_embeds=snake_case__, encoder_hidden_states=snake_case__, )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class a_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCamelCase__ : Optional[int] = (AutoformerForPrediction,) if is_torch_available() else () lowerCamelCase__ : Any = {'feature-extraction': AutoformerModel} if is_torch_available() else {} lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : str = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Optional[Any] = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = AutoformerModelTester(self ) lowerCamelCase__ : Any = ConfigTester(self, config_class=snake_case__, has_text_modality=snake_case__ ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCamelCase__ : Any = model_class(snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ ) lowerCamelCase__ : List[Any] = model_class.from_pretrained(snake_case__, output_loading_info=snake_case__ ) self.assertEqual(info['missing_keys'], [] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case__ ) @unittest.skip(reason='Model has no tokens embeddings' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = inspect.signature(getattr(snake_case__, 'forward' ) ) # The main input is the name of the argument after `self` lowerCamelCase__ : Optional[Any] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name, snake_case__ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Tuple = model_class(snake_case__ ) lowerCamelCase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[Any] = [*signature.parameters.keys()] lowerCamelCase__ : Any = [ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask' ) expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ] ) self.assertListEqual(arg_names[: len(snake_case__ )], snake_case__ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : str = getattr(self.model_tester, 'seq_length', snake_case__ ) lowerCamelCase__ : str = getattr(self.model_tester, 'decoder_seq_length', snake_case__ ) lowerCamelCase__ : List[str] = getattr(self.model_tester, 'encoder_seq_length', snake_case__ ) lowerCamelCase__ : Tuple = getattr(self.model_tester, 'd_model', snake_case__ ) lowerCamelCase__ : List[str] = getattr(self.model_tester, 'num_attention_heads', snake_case__ ) lowerCamelCase__ : Optional[int] = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCamelCase__ : str = True lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : int = True lowerCamelCase__ : Optional[int] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCamelCase__ : str = model(**self._prepare_for_class(snake_case__, snake_case__ ) ) lowerCamelCase__ : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__ : List[str] = True lowerCamelCase__ : Any = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[int] = model(**self._prepare_for_class(snake_case__, snake_case__ ) ) lowerCamelCase__ : Tuple = outputs.encoder_attentions self.assertEqual(len(snake_case__ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, encoder_seq_length, dim], ) lowerCamelCase__ : Tuple = len(snake_case__ ) lowerCamelCase__ : List[str] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case__, snake_case__ ) # decoder attentions lowerCamelCase__ : int = outputs.decoder_attentions self.assertIsInstance(snake_case__, (list, tuple) ) self.assertEqual(len(snake_case__ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, decoder_seq_length, dim], ) # cross attentions lowerCamelCase__ : Any = outputs.cross_attentions self.assertIsInstance(snake_case__, (list, tuple) ) self.assertEqual(len(snake_case__ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, decoder_seq_length, dim], ) # Check attention is always last and order is fine lowerCamelCase__ : List[str] = True lowerCamelCase__ : Any = True lowerCamelCase__ : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[int] = model(**self._prepare_for_class(snake_case__, snake_case__ ) ) self.assertEqual(out_len + 2, len(snake_case__ ) ) lowerCamelCase__ : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, encoder_seq_length, dim], ) @is_flaky() def a__ (self ): '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def lowerCamelCase_ ( _lowerCamelCase="train-batch.pt" ): """simple docstring""" lowerCamelCase__ : Any = hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=_A , repo_type='dataset' ) lowerCamelCase__ : Any = torch.load(_A , map_location=_A ) return batch @require_torch @slow class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(snake_case__ ) lowerCamelCase__ : str = prepare_batch() with torch.no_grad(): lowerCamelCase__ : List[str] = model( past_values=batch['past_values'], past_time_features=batch['past_time_features'], past_observed_mask=batch['past_observed_mask'], static_categorical_features=batch['static_categorical_features'], future_values=batch['future_values'], future_time_features=batch['future_time_features'], )[0] lowerCamelCase__ : Tuple = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape, snake_case__ ) lowerCamelCase__ : Optional[int] = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]], device=snake_case__ ) self.assertTrue(torch.allclose(output[0, :3, :3], snake_case__, atol=snake_case__ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(snake_case__ ) lowerCamelCase__ : Optional[Any] = prepare_batch('val-batch.pt' ) with torch.no_grad(): lowerCamelCase__ : Any = model( past_values=batch['past_values'], past_time_features=batch['past_time_features'], past_observed_mask=batch['past_observed_mask'], static_categorical_features=batch['static_categorical_features'], ).encoder_last_hidden_state lowerCamelCase__ : str = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape, snake_case__ ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]], device=snake_case__ ) self.assertTrue(torch.allclose(output[0, :3, :3], snake_case__, atol=snake_case__ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(snake_case__ ) lowerCamelCase__ : str = prepare_batch('val-batch.pt' ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model.generate( static_categorical_features=batch['static_categorical_features'], past_time_features=batch['past_time_features'], past_values=batch['past_values'], future_time_features=batch['future_time_features'], past_observed_mask=batch['past_observed_mask'], ) lowerCamelCase__ : Tuple = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape, snake_case__ ) lowerCamelCase__ : Tuple = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786], device=snake_case__ ) lowerCamelCase__ : List[Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:], snake_case__, rtol=1e-1 ) )
353
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Tuple = logging.get_logger(__name__) A_ : Dict = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'gpt_bigcode' lowerCamelCase__ : str = ['past_key_values'] lowerCamelCase__ : str = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self, lowerCamelCase_=5_0_2_5_7, lowerCamelCase_=1_0_2_4, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=None, lowerCamelCase_="gelu_pytorch_tanh", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1e-5, lowerCamelCase_=0.02, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=5_0_2_5_6, lowerCamelCase_=5_0_2_5_6, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : Dict = n_positions lowerCamelCase__ : int = n_embd lowerCamelCase__ : Tuple = n_layer lowerCamelCase__ : Optional[Any] = n_head lowerCamelCase__ : Any = n_inner lowerCamelCase__ : Optional[Any] = activation_function lowerCamelCase__ : Tuple = resid_pdrop lowerCamelCase__ : Optional[Any] = embd_pdrop lowerCamelCase__ : List[str] = attn_pdrop lowerCamelCase__ : Union[str, Any] = layer_norm_epsilon lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Any = scale_attn_weights lowerCamelCase__ : Union[str, Any] = use_cache lowerCamelCase__ : int = attention_softmax_in_fpaa lowerCamelCase__ : List[str] = scale_attention_softmax_in_fpaa lowerCamelCase__ : Tuple = multi_query lowerCamelCase__ : str = bos_token_id lowerCamelCase__ : Tuple = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase, eos_token_id=__UpperCAmelCase, **__UpperCAmelCase )
354
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
0
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration A_ : List[str] = pytest.mark.integration A_ : List[Any] = {'''comet'''} A_ : List[str] = importlib.util.find_spec("fairseq") is not None A_ : Dict = {'''code_eval'''} A_ : List[Any] = os.name == '''nt''' A_ : Tuple = {'''bertscore''', '''frugalscore''', '''perplexity'''} A_ : Union[str, Any] = importlib.util.find_spec("transformers") is not None def lowerCamelCase_ ( _lowerCamelCase ): @wraps(snake_case_ ) def wrapper(self , _lowerCamelCase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('\"test requires Fairseq\"' ) else: test_case(self , snake_case_ ) return wrapper def lowerCamelCase_ ( _lowerCamelCase ): @wraps(snake_case_ ) def wrapper(self , _lowerCamelCase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('\"test requires transformers\"' ) else: test_case(self , snake_case_ ) return wrapper def lowerCamelCase_ ( _lowerCamelCase ): @wraps(snake_case_ ) def wrapper(self , _lowerCamelCase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('\"test not supported on Windows\"' ) else: test_case(self , snake_case_ ) return wrapper def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @local class a_ ( parameterized.TestCase ): '''simple docstring''' lowerCamelCase__ : List[str] = {} lowerCamelCase__ : Optional[Any] = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = """[...]""" lowerCamelCase__ : List[str] = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics', SCREAMING_SNAKE_CASE_ ) ).module_path ) lowerCamelCase__ : int = datasets.load.import_main_class(metric_module.__name__, dataset=SCREAMING_SNAKE_CASE_ ) # check parameters lowerCamelCase__ : int = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(SCREAMING_SNAKE_CASE_, metric_module.__name__ ): with self.use_local_metrics(): try: lowerCamelCase__ : int = doctest.testmod(SCREAMING_SNAKE_CASE_, verbose=SCREAMING_SNAKE_CASE_, raise_on_error=SCREAMING_SNAKE_CASE_ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed, 0 ) self.assertGreater(results.attempted, 1 ) @slow def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = """[...]""" lowerCamelCase__ : int = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics', SCREAMING_SNAKE_CASE_ ) ).module_path ) # run doctest with self.use_local_metrics(): lowerCamelCase__ : str = doctest.testmod(SCREAMING_SNAKE_CASE_, verbose=SCREAMING_SNAKE_CASE_, raise_on_error=SCREAMING_SNAKE_CASE_ ) self.assertEqual(results.failed, 0 ) self.assertGreater(results.attempted, 1 ) @contextmanager def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](SCREAMING_SNAKE_CASE_ ): yield else: yield @contextmanager def a__ (self ): '''simple docstring''' def load_local_metric(lowerCamelCase_, *lowerCamelCase_, **lowerCamelCase_ ): return load_metric(os.path.join('metrics', SCREAMING_SNAKE_CASE_ ), *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) with patch('datasets.load_metric' ) as mock_load_metric: lowerCamelCase__ : Any = load_local_metric yield @classmethod def a__ (cls, lowerCamelCase_ ): '''simple docstring''' def wrapper(lowerCamelCase_ ): lowerCamelCase__ : List[str] = contextmanager(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Any = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def lowerCamelCase_ ( _lowerCamelCase ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class a_ ( _UpperCAmelCase ): '''simple docstring''' def a__ (self, lowerCamelCase_ ): '''simple docstring''' assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: lowerCamelCase__ : Tuple = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def lowerCamelCase_ ( _lowerCamelCase ): import torch def bert_cos_score_idf(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(snake_case_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: lowerCamelCase__ : Optional[int] = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def lowerCamelCase_ ( _lowerCamelCase ): def load_from_checkpoint(_lowerCamelCase ): class a_ : '''simple docstring''' def a__ (self, lowerCamelCase_, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' assert len(SCREAMING_SNAKE_CASE_ ) == 2 lowerCamelCase__ : Dict = [0.19, 0.92] return scores, sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: lowerCamelCase__ : Dict = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: lowerCamelCase__ : Tuple = load_from_checkpoint yield def lowerCamelCase_ ( ): lowerCamelCase__ : List[str] = load_metric(os.path.join('metrics' , 'seqeval' ) ) lowerCamelCase__ : List[Any] = """ERROR""" lowerCamelCase__ : Union[str, Any] = f'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(snake_case_ , match=re.escape(snake_case_ ) ): metric.compute(predictions=[] , references=[] , scheme=snake_case_ )
355
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_2, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=[1_0, 2_0, 3_0, 4_0], lowerCamelCase_=[2, 2, 3, 2], lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=["stage2", "stage3", "stage4"], lowerCamelCase_=[2, 3, 4], lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : str = parent lowerCamelCase__ : Dict = batch_size lowerCamelCase__ : Optional[Any] = image_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : int = num_stages lowerCamelCase__ : int = hidden_sizes lowerCamelCase__ : Dict = depths lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : int = use_labels lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Tuple = num_labels lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : str = out_features lowerCamelCase__ : Dict = out_indices lowerCamelCase__ : Optional[int] = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = None if self.use_labels: lowerCamelCase__ : int = ids_tensor([self.batch_size], self.num_labels ) lowerCamelCase__ : List[Any] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = ConvNextModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2), ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = ConvNextForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = ConvNextBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase__ : List[str] = None lowerCamelCase__ : Dict = ConvNextBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.prepare_config_and_inputs() lowerCamelCase__ : int = config_and_inputs lowerCamelCase__ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowerCamelCase__ : Any = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = ConvNextModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ (self ): '''simple docstring''' return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def a__ (self ): '''simple docstring''' pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Tuple = model_class(lowerCamelCase_ ) lowerCamelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : int = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : Tuple = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[Any] = ConvNextModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(lowerCamelCase_ ) lowerCamelCase__ : str = self.default_image_processor lowerCamelCase__ : Optional[Any] = prepare_img() lowerCamelCase__ : Dict = image_processor(images=lowerCamelCase_, return_tensors='pt' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Tuple = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) ) @require_torch class a_ ( unittest.TestCase , __UpperCamelCase ): '''simple docstring''' lowerCamelCase__ : Any = (ConvNextBackbone,) if is_torch_available() else () lowerCamelCase__ : Any = ConvNextConfig lowerCamelCase__ : Union[str, Any] = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ConvNextModelTester(self )
356
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
0
from __future__ import annotations A_ : int = list[list[int]] # assigning initial values to the grid A_ : Optional[Any] = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution A_ : int = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase_ ( _lowerCamelCase ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase_ ( _lowerCamelCase ): if location := find_empty_location(A__ ): lowerCamelCase__ , lowerCamelCase__ : int = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(A__ , A__ , A__ , A__ ): lowerCamelCase__ : Optional[Any] = digit if sudoku(A__ ) is not None: return grid lowerCamelCase__ : str = 0 return None def lowerCamelCase_ ( _lowerCamelCase ): for row in grid: for cell in row: print(A__ , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") A_ : Optional[int] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
357
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
0
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = size lowerCamelCase__ : Optional[int] = [0] * size lowerCamelCase__ : Optional[int] = [0] * size @staticmethod def a__ (lowerCamelCase_ ): '''simple docstring''' return index | (index + 1) @staticmethod def a__ (lowerCamelCase_ ): '''simple docstring''' return (index & (index + 1)) - 1 def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = value while index < self.size: lowerCamelCase__ : Union[str, Any] = self.get_prev(__lowerCAmelCase ) + 1 if current_left_border == index: lowerCamelCase__ : Optional[Any] = value else: lowerCamelCase__ : List[Any] = max(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.get_next(__lowerCAmelCase ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' right -= 1 # Because of right is exclusive lowerCamelCase__ : Dict = 0 while left <= right: lowerCamelCase__ : int = self.get_prev(__lowerCAmelCase ) if left <= current_left: lowerCamelCase__ : Optional[Any] = max(__lowerCAmelCase, self.tree[right] ) lowerCamelCase__ : Tuple = current_left else: lowerCamelCase__ : Any = max(__lowerCAmelCase, self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
0
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def lowerCamelCase_ ( _lowerCamelCase ): if num <= 0: raise ValueError('math domain error' ) return quad(_UpperCamelCase , 0 , _UpperCamelCase , args=(_UpperCamelCase) )[0] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return math.pow(_UpperCamelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
359
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
0
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCamelCase__ : Tuple = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCamelCase__ : List[Any] = 4 lowerCamelCase__ : Dict = 48 lowerCamelCase__ : Dict = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCamelCase__ : List[str] = [6, 6, 6, 6] lowerCamelCase__ : Dict = 60 lowerCamelCase__ : Optional[int] = [6, 6, 6, 6] lowerCamelCase__ : int = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCamelCase__ : Union[str, Any] = 4 lowerCamelCase__ : Optional[int] = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCamelCase__ : Dict = 1 lowerCamelCase__ : Union[str, Any] = 1 lowerCamelCase__ : Union[str, Any] = 126 lowerCamelCase__ : Optional[Any] = 7 lowerCamelCase__ : Optional[int] = 255.0 lowerCamelCase__ : Dict = '' return config def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if "patch_embed.proj" in name and "layers" not in name: lowerCamelCase__ : Union[str, Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCamelCase__ : List[Any] = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: lowerCamelCase__ : Dict = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: lowerCamelCase__ : Dict = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: lowerCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCamelCase__ : int = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCamelCase__ : Union[str, Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCamelCase__ : List[Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCamelCase__ : Tuple = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase__ : int = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCamelCase__ : Dict = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCamelCase__ : Optional[int] = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCamelCase__ : List[str] = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCamelCase__ : List[Any] = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: lowerCamelCase__ : Optional[Any] = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": lowerCamelCase__ : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": lowerCamelCase__ : int = 'layernorm.bias' if "conv_first" in name: lowerCamelCase__ : str = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCamelCase__ : Any = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCamelCase__ : Optional[Any] = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: lowerCamelCase__ : str = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: lowerCamelCase__ : Any = name.replace('upsample.2' , 'upsample.convolution_1' ) lowerCamelCase__ : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCamelCase__ : List[Any] = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) lowerCamelCase__ : List[str] = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: lowerCamelCase__ : Dict = 'swin2sr.' + name return name def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Union[str, Any] = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: lowerCamelCase__ : int = key.split('.' ) lowerCamelCase__ : Optional[int] = int(key_split[1] ) lowerCamelCase__ : Union[str, Any] = int(key_split[4] ) lowerCamelCase__ : Optional[int] = config.embed_dim if "weight" in key: lowerCamelCase__ : Tuple = val[:dim, :] lowerCamelCase__ : int = val[dim : dim * 2, :] lowerCamelCase__ : Dict = val[-dim:, :] else: lowerCamelCase__ : Optional[int] = val[:dim] lowerCamelCase__ : List[Any] = val[dim : dim * 2] lowerCamelCase__ : List[str] = val[-dim:] pass else: lowerCamelCase__ : Optional[int] = val return orig_state_dict def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = get_config(lowerCAmelCase__ ) lowerCamelCase__ : Tuple = SwinaSRForImageSuperResolution(lowerCAmelCase__ ) model.eval() lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='cpu' ) lowerCamelCase__ : str = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: raise ValueError('Missing keys when converting: {}'.format(lowerCAmelCase__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values lowerCamelCase__ : int = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCamelCase__ : Tuple = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert('RGB' ) lowerCamelCase__ : Dict = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCamelCase__ : Optional[Any] = 126 if 'Jpeg' in checkpoint_url else 256 lowerCamelCase__ : int = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase__ : Optional[int] = transforms(lowerCAmelCase__ ).unsqueeze(0 ) if config.num_channels == 1: lowerCamelCase__ : List[str] = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCamelCase__ : List[str] = model(lowerCAmelCase__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCamelCase__ : List[str] = torch.Size([1, 3, 512, 512] ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCamelCase__ : Optional[Any] = torch.Size([1, 3, 1024, 1024] ) lowerCamelCase__ : Union[str, Any] = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCamelCase__ : Any = torch.Size([1, 3, 1024, 1024] ) lowerCamelCase__ : Tuple = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCamelCase__ : Tuple = torch.Size([1, 3, 512, 512] ) lowerCamelCase__ : int = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCamelCase__ : Tuple = torch.Size([1, 3, 1024, 1024] ) lowerCamelCase__ : Any = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowerCAmelCase__ , atol=1e-3 ) print('Looks ok!' ) lowerCamelCase__ : Optional[Any] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCamelCase__ : Dict = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") A_ : List[str] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
360
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
0
import math class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_=0 ): # a graph with Node 0,1,...,N-1 '''simple docstring''' lowerCamelCase__ : Optional[int] = n lowerCamelCase__ : Union[str, Any] = [ [math.inf for j in range(0, _snake_case )] for i in range(0, _snake_case ) ] # adjacency matrix for weight lowerCamelCase__ : Dict = [ [math.inf for j in range(0, _snake_case )] for i in range(0, _snake_case ) ] # dp[i][j] stores minimum distance from i to j def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = w def a__ (self ): '''simple docstring''' for k in range(0, self.n ): for i in range(0, self.n ): for j in range(0, self.n ): lowerCamelCase__ : Tuple = min(self.dp[i][j], self.dp[i][k] + self.dp[k][j] ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": A_ : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
361
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
0
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def lowerCamelCase_ ( ): lowerCamelCase__ : List[Any] = 10 lowerCamelCase__ : Optional[int] = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) lowerCamelCase__ : Any = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(lowercase_ ) ), } , features=lowercase_ , ) return dataset @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowercase_ ) return filename # FILE_CONTENT + files A_ : List[Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt' lowerCamelCase__ : List[Any] = FILE_CONTENT with open(lowercase_ , 'w' ) as f: f.write(lowercase_ ) return filename @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): import bza lowerCamelCase__ : str = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' lowerCamelCase__ : str = bytes(lowercase_ , 'utf-8' ) with bza.open(lowercase_ , 'wb' ) as f: f.write(lowercase_ ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): import gzip lowerCamelCase__ : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) lowerCamelCase__ : List[str] = bytes(lowercase_ , 'utf-8' ) with gzip.open(lowercase_ , 'wb' ) as f: f.write(lowercase_ ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): if datasets.config.LZ4_AVAILABLE: import lza.frame lowerCamelCase__ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' lowerCamelCase__ : Tuple = bytes(lowercase_ , 'utf-8' ) with lza.frame.open(lowercase_ , 'wb' ) as f: f.write(lowercase_ ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if datasets.config.PY7ZR_AVAILABLE: import pyazr lowerCamelCase__ : Dict = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowercase_ , 'w' ) as archive: archive.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): import tarfile lowerCamelCase__ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowercase_ , 'w' ) as f: f.add(lowercase_ , arcname=os.path.basename(lowercase_ ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): import lzma lowerCamelCase__ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' lowerCamelCase__ : Optional[Any] = bytes(lowercase_ , 'utf-8' ) with lzma.open(lowercase_ , 'wb' ) as f: f.write(lowercase_ ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): import zipfile lowerCamelCase__ : Dict = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowercase_ , 'w' ) as f: f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowerCamelCase__ : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' lowerCamelCase__ : int = bytes(lowercase_ , 'utf-8' ) with zstd.open(lowercase_ , 'wb' ) as f: f.write(lowercase_ ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Any = tmp_path_factory.mktemp('data' ) / 'file.xml' lowerCamelCase__ : Tuple = textwrap.dedent( '\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowercase_ , 'w' ) as f: f.write(lowercase_ ) return filename A_ : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] A_ : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] A_ : str = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } A_ : List[Any] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] A_ : Union[str, Any] = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def lowerCamelCase_ ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = datasets.Dataset.from_dict(lowercase_ ) lowerCamelCase__ : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowercase_ ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowercase_ ) ) as con: lowerCamelCase__ : Dict = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowercase_ , 'w' , newline='' ) as f: lowerCamelCase__ : List[str] = csv.DictWriter(lowercase_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase_ ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowercase_ , 'w' , newline='' ) as f: lowerCamelCase__ : Tuple = csv.DictWriter(lowercase_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase_ ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): import bza lowerCamelCase__ : str = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowercase_ , 'rb' ) as f: lowerCamelCase__ : Dict = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase_ , 'wb' ) as f: f.write(lowercase_ ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase_ , 'w' ) as f: f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase_ , 'w' ) as f: f.write(lowercase_ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowercase_ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowercase_ , 'w' ) as f: f.write(lowercase_ , arcname=os.path.join('main_dir' , os.path.basename(lowercase_ ) ) ) f.write(lowercase_ , arcname=os.path.join('main_dir' , os.path.basename(lowercase_ ) ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) lowerCamelCase__ : int = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowercase_ , 'wb' ) as f: lowerCamelCase__ : List[Any] = pq.ParquetWriter(lowercase_ , schema=lowercase_ ) lowerCamelCase__ : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase_ ) )] for k in DATA[0]} , schema=lowercase_ ) writer.write_table(lowercase_ ) writer.close() return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) lowerCamelCase__ : Union[str, Any] = {'data': DATA} with open(lowercase_ , 'w' ) as f: json.dump(lowercase_ , lowercase_ ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) lowerCamelCase__ : List[str] = {'data': DATA_DICT_OF_LISTS} with open(lowercase_ , 'w' ) as f: json.dump(lowercase_ , lowercase_ ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowercase_ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowercase_ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowercase_ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowercase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowercase_ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): import gzip lowerCamelCase__ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowercase_ , 'rb' ) as orig_file: with gzip.open(lowercase_ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase_ ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): import gzip lowerCamelCase__ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowercase_ , 'rb' ) as orig_file: with gzip.open(lowercase_ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase_ ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowercase_ , 'w' ) as f: f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowercase_ , 'w' ) as f: f.write(lowercase_ , arcname=os.path.join('nested' , os.path.basename(lowercase_ ) ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowercase_ , 'w' ) as f: f.write(lowercase_ , arcname=os.path.join('main_dir' , os.path.basename(lowercase_ ) ) ) f.write(lowercase_ , arcname=os.path.join('main_dir' , os.path.basename(lowercase_ ) ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowercase_ , 'w' ) as f: f.add(lowercase_ , arcname=os.path.basename(lowercase_ ) ) f.add(lowercase_ , arcname=os.path.basename(lowercase_ ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowercase_ , 'w' ) as f: f.add(lowercase_ , arcname=os.path.join('nested' , os.path.basename(lowercase_ ) ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = ['0', '1', '2', '3'] lowerCamelCase__ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowercase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = ['0', '1', '2', '3'] lowerCamelCase__ : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowercase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = ['0', '1', '2', '3'] lowerCamelCase__ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowercase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowercase_ , 'w' ) as f: f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowercase_ , 'w' ) as f: f.write(lowercase_ , arcname=os.path.join('main_dir' , os.path.basename(lowercase_ ) ) ) f.write(lowercase_ , arcname=os.path.join('main_dir' , os.path.basename(lowercase_ ) ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowercase_ , 'w' ) as f: f.write(lowercase_ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowercase_ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) lowerCamelCase__ : str = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(lowercase_ ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( ): return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def lowerCamelCase_ ( ): return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowercase_ , 'w' ) as f: f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) f.write(lowercase_ , arcname=os.path.basename(lowercase_ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
362
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
0
import baseaa def lowerCamelCase_ ( _lowerCamelCase ): return baseaa.baaencode(string.encode('utf-8' ) ) def lowerCamelCase_ ( _lowerCamelCase ): return baseaa.baadecode(UpperCamelCase__ ).decode('utf-8' ) if __name__ == "__main__": A_ : List[str] = "Hello World!" A_ : Any = baseaa_encode(test) print(encoded) A_ : Union[str, Any] = baseaa_decode(encoded) print(decoded)
363
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class a_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE ) requires_backends(self, 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def a__ (self, lowerCamelCase_=None ): '''simple docstring''' lowerCamelCase__ : List[str] = {} if top_k is not None: lowerCamelCase__ : Any = top_k return {}, {}, postprocess_params def __call__(self, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return super().__call__(_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = load_image(_SCREAMING_SNAKE_CASE ) lowerCamelCase__ : Union[str, Any] = self.image_processor(images=_SCREAMING_SNAKE_CASE, return_tensors=self.framework ) return model_inputs def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.model(**_SCREAMING_SNAKE_CASE ) return model_outputs def a__ (self, lowerCamelCase_, lowerCamelCase_=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: lowerCamelCase__ : Optional[Any] = self.model.config.num_labels if self.framework == "pt": lowerCamelCase__ : Tuple = model_outputs.logits.softmax(-1 )[0] lowerCamelCase__ : int = probs.topk(_SCREAMING_SNAKE_CASE ) elif self.framework == "tf": lowerCamelCase__ : int = stable_softmax(model_outputs.logits, axis=-1 )[0] lowerCamelCase__ : Optional[Any] = tf.math.top_k(_SCREAMING_SNAKE_CASE, k=_SCREAMING_SNAKE_CASE ) lowerCamelCase__ : List[str] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowerCamelCase__ : str = scores.tolist() lowerCamelCase__ : Union[str, Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE )]
364
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
0
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = {} def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=1 ): '''simple docstring''' if self.graph.get(UpperCAmelCase_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowerCamelCase__ : Union[str, Any] = [[w, v]] if not self.graph.get(UpperCAmelCase_ ): lowerCamelCase__ : List[str] = [] def a__ (self ): '''simple docstring''' return list(self.graph ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self.graph.get(UpperCAmelCase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCAmelCase_ ) def a__ (self, lowerCamelCase_=-2, lowerCamelCase_=-1 ): '''simple docstring''' if s == d: return [] lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] if s == -2: lowerCamelCase__ : int = list(self.graph )[0] stack.append(UpperCAmelCase_ ) visited.append(UpperCAmelCase_ ) lowerCamelCase__ : str = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCAmelCase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCAmelCase_ ) != 0: lowerCamelCase__ : str = stack[len(UpperCAmelCase_ ) - 1] else: lowerCamelCase__ : Optional[int] = ss # check if se have reached the starting point if len(UpperCAmelCase_ ) == 0: return visited def a__ (self, lowerCamelCase_=-1 ): '''simple docstring''' if c == -1: lowerCamelCase__ : int = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(UpperCAmelCase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): lowerCamelCase__ : str = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCAmelCase_, UpperCAmelCase_, 1 ) def a__ (self, lowerCamelCase_=-2 ): '''simple docstring''' lowerCamelCase__ : List[str] = deque() lowerCamelCase__ : Tuple = [] if s == -2: lowerCamelCase__ : List[str] = list(self.graph )[0] d.append(UpperCAmelCase_ ) visited.append(UpperCAmelCase_ ) while d: lowerCamelCase__ : Any = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def a__ (self, lowerCamelCase_ ): '''simple docstring''' return len(self.graph[u] ) def a__ (self, lowerCamelCase_=-2 ): '''simple docstring''' lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Optional[Any] = [] if s == -2: lowerCamelCase__ : Dict = list(self.graph )[0] stack.append(UpperCAmelCase_ ) visited.append(UpperCAmelCase_ ) lowerCamelCase__ : List[str] = s lowerCamelCase__ : List[Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : Optional[int] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(UpperCAmelCase_ ) != 0: lowerCamelCase__ : Optional[int] = stack[len(UpperCAmelCase_ ) - 1] else: lowerCamelCase__ : Union[str, Any] = ss # check if se have reached the starting point if len(UpperCAmelCase_ ) == 0: return sorted_nodes def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : str = [] lowerCamelCase__ : int = list(self.graph )[0] stack.append(UpperCAmelCase_ ) visited.append(UpperCAmelCase_ ) lowerCamelCase__ : List[Any] = -2 lowerCamelCase__ : str = [] lowerCamelCase__ : List[Any] = s lowerCamelCase__ : List[Any] = False lowerCamelCase__ : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase__ : Optional[Any] = len(UpperCAmelCase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase__ : Optional[int] = True if len(UpperCAmelCase_ ) != 0: lowerCamelCase__ : List[Any] = stack[len(UpperCAmelCase_ ) - 1] else: lowerCamelCase__ : int = False indirect_parents.append(UpperCAmelCase_ ) lowerCamelCase__ : Optional[Any] = s lowerCamelCase__ : Optional[int] = ss # check if se have reached the starting point if len(UpperCAmelCase_ ) == 0: return list(UpperCAmelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = [] lowerCamelCase__ : Tuple = [] lowerCamelCase__ : List[Any] = list(self.graph )[0] stack.append(UpperCAmelCase_ ) visited.append(UpperCAmelCase_ ) lowerCamelCase__ : List[str] = -2 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : str = s lowerCamelCase__ : Tuple = False lowerCamelCase__ : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase__ : Tuple = len(UpperCAmelCase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase__ : Optional[Any] = True if len(UpperCAmelCase_ ) != 0: lowerCamelCase__ : str = stack[len(UpperCAmelCase_ ) - 1] else: lowerCamelCase__ : Optional[int] = False indirect_parents.append(UpperCAmelCase_ ) lowerCamelCase__ : Dict = s lowerCamelCase__ : Dict = ss # check if se have reached the starting point if len(UpperCAmelCase_ ) == 0: return False def a__ (self, lowerCamelCase_=-2, lowerCamelCase_=-1 ): '''simple docstring''' lowerCamelCase__ : int = time() self.dfs(UpperCAmelCase_, UpperCAmelCase_ ) lowerCamelCase__ : Optional[int] = time() return end - begin def a__ (self, lowerCamelCase_=-2 ): '''simple docstring''' lowerCamelCase__ : Optional[int] = time() self.bfs(UpperCAmelCase_ ) lowerCamelCase__ : List[str] = time() return end - begin class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' lowerCamelCase__ : Tuple = {} def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=1 ): '''simple docstring''' if self.graph.get(UpperCAmelCase_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowerCamelCase__ : Optional[Any] = [[w, v]] # add the other way if self.graph.get(UpperCAmelCase_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowerCamelCase__ : List[Any] = [[w, u]] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self.graph.get(UpperCAmelCase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCAmelCase_ ) # the other way round if self.graph.get(UpperCAmelCase_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(UpperCAmelCase_ ) def a__ (self, lowerCamelCase_=-2, lowerCamelCase_=-1 ): '''simple docstring''' if s == d: return [] lowerCamelCase__ : Any = [] lowerCamelCase__ : List[str] = [] if s == -2: lowerCamelCase__ : str = list(self.graph )[0] stack.append(UpperCAmelCase_ ) visited.append(UpperCAmelCase_ ) lowerCamelCase__ : Union[str, Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCAmelCase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCAmelCase_ ) != 0: lowerCamelCase__ : int = stack[len(UpperCAmelCase_ ) - 1] else: lowerCamelCase__ : Optional[Any] = ss # check if se have reached the starting point if len(UpperCAmelCase_ ) == 0: return visited def a__ (self, lowerCamelCase_=-1 ): '''simple docstring''' if c == -1: lowerCamelCase__ : int = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(UpperCAmelCase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): lowerCamelCase__ : int = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCAmelCase_, UpperCAmelCase_, 1 ) def a__ (self, lowerCamelCase_=-2 ): '''simple docstring''' lowerCamelCase__ : Dict = deque() lowerCamelCase__ : Optional[Any] = [] if s == -2: lowerCamelCase__ : Dict = list(self.graph )[0] d.append(UpperCAmelCase_ ) visited.append(UpperCAmelCase_ ) while d: lowerCamelCase__ : Optional[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def a__ (self, lowerCamelCase_ ): '''simple docstring''' return len(self.graph[u] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = [] lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Tuple = list(self.graph )[0] stack.append(UpperCAmelCase_ ) visited.append(UpperCAmelCase_ ) lowerCamelCase__ : List[Any] = -2 lowerCamelCase__ : Tuple = [] lowerCamelCase__ : str = s lowerCamelCase__ : List[Any] = False lowerCamelCase__ : str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase__ : Tuple = len(UpperCAmelCase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase__ : Optional[int] = True if len(UpperCAmelCase_ ) != 0: lowerCamelCase__ : str = stack[len(UpperCAmelCase_ ) - 1] else: lowerCamelCase__ : List[str] = False indirect_parents.append(UpperCAmelCase_ ) lowerCamelCase__ : Dict = s lowerCamelCase__ : Optional[Any] = ss # check if se have reached the starting point if len(UpperCAmelCase_ ) == 0: return list(UpperCAmelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = [] lowerCamelCase__ : Dict = [] lowerCamelCase__ : Dict = list(self.graph )[0] stack.append(UpperCAmelCase_ ) visited.append(UpperCAmelCase_ ) lowerCamelCase__ : Optional[int] = -2 lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : Optional[Any] = s lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase__ : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase__ : Optional[int] = len(UpperCAmelCase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase__ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase__ : Union[str, Any] = True if len(UpperCAmelCase_ ) != 0: lowerCamelCase__ : Any = stack[len(UpperCAmelCase_ ) - 1] else: lowerCamelCase__ : List[Any] = False indirect_parents.append(UpperCAmelCase_ ) lowerCamelCase__ : Dict = s lowerCamelCase__ : Optional[Any] = ss # check if se have reached the starting point if len(UpperCAmelCase_ ) == 0: return False def a__ (self ): '''simple docstring''' return list(self.graph ) def a__ (self, lowerCamelCase_=-2, lowerCamelCase_=-1 ): '''simple docstring''' lowerCamelCase__ : int = time() self.dfs(UpperCAmelCase_, UpperCAmelCase_ ) lowerCamelCase__ : Union[str, Any] = time() return end - begin def a__ (self, lowerCamelCase_=-2 ): '''simple docstring''' lowerCamelCase__ : int = time() self.bfs(UpperCAmelCase_ ) lowerCamelCase__ : Optional[Any] = time() return end - begin
365
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowerCamelCase__ : List[Any] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: lowerCamelCase__ : str = 1 - (matter_density + radiation_density + dark_energy) lowerCamelCase__ : List[Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowerCamelCase__ : List[Any] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation A_ : int = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
366
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device A_ : Union[str, Any] = False class a_ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Any = 'A painting of a squirrel eating a burger ' lowerCamelCase__ : List[Any] = torch.manual_seed(0 ) lowerCamelCase__ : str = pipe( prompt=__lowerCamelCase, generator=__lowerCamelCase, guidance_scale=7.5, num_inference_steps=2, output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Any = generator.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = pipe( prompt=__lowerCamelCase, generator=__lowerCamelCase, guidance_scale=7.5, num_inference_steps=2, output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion', torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : int = 'A painting of a squirrel eating a burger ' lowerCamelCase__ : int = torch.manual_seed(0 ) lowerCamelCase__ : List[str] = pipe( prompt=__lowerCamelCase, generator=__lowerCamelCase, guidance_scale=7.5, num_inference_steps=5_0, output_type='numpy' ).images lowerCamelCase__ : Optional[Any] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Any = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
367
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCamelCase_ ( _lowerCamelCase="" ): lowerCamelCase__ : Dict = tempfile.mkdtemp() return os.path.join(__lowerCamelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = torch.rand(1_2, dtype=torch.floataa ) - 0.5 lowerCamelCase__ : int = AgentAudio(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_lowerCamelCase, agent_type.to_raw(), atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(_lowerCamelCase ) ) # Ensure that the file contains the same value as the original tensor lowerCamelCase__ , lowerCamelCase__ : List[str] = sf.read(_lowerCamelCase ) self.assertTrue(torch.allclose(_lowerCamelCase, torch.tensor(_lowerCamelCase ), atol=1e-4 ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = torch.rand(1_2, dtype=torch.floataa ) - 0.5 lowerCamelCase__ : Tuple = get_new_path(suffix='.wav' ) sf.write(_lowerCamelCase, _lowerCamelCase, 1_6_0_0_0 ) lowerCamelCase__ : Any = AgentAudio(_lowerCamelCase ) self.assertTrue(torch.allclose(_lowerCamelCase, agent_type.to_raw(), atol=1e-4 ) ) self.assertEqual(agent_type.to_string(), _lowerCamelCase ) @require_vision @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = torch.randint(0, 2_5_6, (6_4, 6_4, 3) ) lowerCamelCase__ : Optional[Any] = AgentImage(_lowerCamelCase ) lowerCamelCase__ : Dict = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_lowerCamelCase, agent_type._tensor, atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw(), Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_lowerCamelCase ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' lowerCamelCase__ : Dict = Image.open(_lowerCamelCase ) lowerCamelCase__ : str = AgentImage(_lowerCamelCase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_lowerCamelCase ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' lowerCamelCase__ : List[Any] = Image.open(_lowerCamelCase ) lowerCamelCase__ : List[Any] = AgentImage(_lowerCamelCase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_lowerCamelCase ) ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = 'Hey!' lowerCamelCase__ : Tuple = AgentText(_lowerCamelCase ) self.assertEqual(_lowerCamelCase, agent_type.to_string() ) self.assertEqual(_lowerCamelCase, agent_type.to_raw() ) self.assertEqual(_lowerCamelCase, _lowerCamelCase )
368
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
0
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = PhobertTokenizer lowerCamelCase__ : List[Any] = False def a__ (self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ : Any = ["T@@", "i", "I", "R@@", "r", "e@@"] lowerCamelCase__ : List[str] = dict(zip(_a, range(len(_a ) ) ) ) lowerCamelCase__ : Optional[Any] = ["#version: 0.2", "l à</w>"] lowerCamelCase__ : Dict = {"unk_token": "<unk>"} lowerCamelCase__ : List[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname, **_a ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = "Tôi là VinAI Research" lowerCamelCase__ : Tuple = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PhobertTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowerCamelCase__ : List[Any] = "Tôi là VinAI Research" lowerCamelCase__ : Dict = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() lowerCamelCase__ : Union[str, Any] = tokenizer.tokenize(_a ) print(_a ) self.assertListEqual(_a, _a ) lowerCamelCase__ : int = tokens + [tokenizer.unk_token] lowerCamelCase__ : List[Any] = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ), _a )
369
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A_ : str = logging.get_logger(__name__) A_ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ : Dict = { "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } A_ : Union[str, Any] = { "bert-base-uncased": 5_12, "bert-large-uncased": 5_12, "bert-base-cased": 5_12, "bert-large-cased": 5_12, "bert-base-multilingual-uncased": 5_12, "bert-base-multilingual-cased": 5_12, "bert-base-chinese": 5_12, "bert-base-german-cased": 5_12, "bert-large-uncased-whole-word-masking": 5_12, "bert-large-cased-whole-word-masking": 5_12, "bert-large-uncased-whole-word-masking-finetuned-squad": 5_12, "bert-large-cased-whole-word-masking-finetuned-squad": 5_12, "bert-base-cased-finetuned-mrpc": 5_12, "bert-base-german-dbmdz-cased": 5_12, "bert-base-german-dbmdz-uncased": 5_12, "TurkuNLP/bert-base-finnish-cased-v1": 5_12, "TurkuNLP/bert-base-finnish-uncased-v1": 5_12, "wietsedv/bert-base-dutch-cased": 5_12, } A_ : Optional[Any] = { "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class a_ ( _a ): '''simple docstring''' lowerCamelCase__ : List[Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : List[str] = BertTokenizer def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=True, lowerCamelCase_="[UNK]", lowerCamelCase_="[SEP]", lowerCamelCase_="[PAD]", lowerCamelCase_="[CLS]", lowerCamelCase_="[MASK]", lowerCamelCase_=True, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__( _a, tokenizer_file=_a, do_lower_case=_a, unk_token=_a, sep_token=_a, pad_token=_a, cls_token=_a, mask_token=_a, tokenize_chinese_chars=_a, strip_accents=_a, **_a, ) lowerCamelCase__ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase', _a ) != do_lower_case or normalizer_state.get('strip_accents', _a ) != strip_accents or normalizer_state.get('handle_chinese_chars', _a ) != tokenize_chinese_chars ): lowerCamelCase__ : Optional[int] = getattr(_a, normalizer_state.pop('type' ) ) lowerCamelCase__ : List[Any] = do_lower_case lowerCamelCase__ : Union[str, Any] = strip_accents lowerCamelCase__ : Tuple = tokenize_chinese_chars lowerCamelCase__ : int = normalizer_class(**_a ) lowerCamelCase__ : List[str] = do_lower_case def a__ (self, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Tuple = [self.sep_token_id] lowerCamelCase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : int = self._tokenizer.model.save(_a, name=_a ) return tuple(_a )
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict A_ : Union[str, Any] = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = _TestCommandArgs(dataset=_lowerCAmelCase , all_configs=_lowerCAmelCase , save_infos=_lowerCAmelCase ) lowerCamelCase__ : List[Any] = TestCommand(*_lowerCAmelCase ) test_command.run() lowerCamelCase__ : Tuple = os.path.join(_lowerCAmelCase , 'README.md' ) assert os.path.exists(_lowerCAmelCase ) lowerCamelCase__ : Tuple = DatasetInfosDict.from_directory(_lowerCAmelCase ) lowerCamelCase__ : Union[str, Any] = DatasetInfosDict( { 'default': DatasetInfo( features=Features( { 'tokens': Sequence(Value('string' ) ), 'ner_tags': Sequence( ClassLabel(names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] ) ), 'langs': Sequence(Value('string' ) ), 'spans': Sequence(Value('string' ) ), } ) , splits=[ { 'name': 'train', 'num_bytes': 235_1563, 'num_examples': 1_0000, }, { 'name': 'validation', 'num_bytes': 23_8418, 'num_examples': 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase__ : Optional[int] = getattr(dataset_infos['default'] , _lowerCAmelCase ), getattr(expected_dataset_infos['default'] , _lowerCAmelCase ) if key == "num_bytes": assert is_apercent_close(_lowerCAmelCase , _lowerCAmelCase ) elif key == "splits": assert list(_lowerCAmelCase ) == list(_lowerCAmelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
371
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : Tuple = logging.get_logger(__name__) A_ : int = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class a_ ( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' lowerCamelCase__ : Any = """dinat""" lowerCamelCase__ : Dict = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__(self, lowerCamelCase_=4, lowerCamelCase_=3, lowerCamelCase_=6_4, lowerCamelCase_=[3, 4, 6, 5], lowerCamelCase_=[2, 4, 8, 1_6], lowerCamelCase_=7, lowerCamelCase_=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]], lowerCamelCase_=3.0, lowerCamelCase_=True, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=0.1, lowerCamelCase_="gelu", lowerCamelCase_=0.02, lowerCamelCase_=1e-5, lowerCamelCase_=0.0, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**__lowercase ) lowerCamelCase__ : str = patch_size lowerCamelCase__ : int = num_channels lowerCamelCase__ : List[str] = embed_dim lowerCamelCase__ : Any = depths lowerCamelCase__ : Optional[int] = len(__lowercase ) lowerCamelCase__ : Any = num_heads lowerCamelCase__ : Dict = kernel_size lowerCamelCase__ : Union[str, Any] = dilations lowerCamelCase__ : int = mlp_ratio lowerCamelCase__ : Any = qkv_bias lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : str = drop_path_rate lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Optional[Any] = layer_norm_eps lowerCamelCase__ : Tuple = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ : Any = int(embed_dim * 2 ** (len(__lowercase ) - 1) ) lowerCamelCase__ : Tuple = layer_scale_init_value lowerCamelCase__ : Optional[Any] = ['''stem'''] + [f'''stage{idx}''' for idx in range(1, len(__lowercase ) + 1 )] lowerCamelCase__ : Tuple = get_aligned_output_features_output_indices( out_features=__lowercase, out_indices=__lowercase, stage_names=self.stage_names )
350
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = tempfile.mkdtemp() lowerCamelCase__ : int = BlipImageProcessor() lowerCamelCase__ : List[Any] = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) lowerCamelCase__ : Any = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) lowerCamelCase__ : List[Any] = InstructBlipProcessor(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase_ ).tokenizer def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase_ ).image_processor def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase_ ).qformer_tokenizer def a__ (self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )] lowerCamelCase__ : Dict = [Image.fromarray(np.moveaxis(lowerCamelCase_, 0, -1 ) ) for x in image_inputs] return image_inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor(), qformer_tokenizer=self.get_qformer_tokenizer(), ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Dict = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) lowerCamelCase__ : Optional[int] = self.get_image_processor(do_normalize=lowerCamelCase_, padding_value=1.0 ) lowerCamelCase__ : Optional[Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCamelCase_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase_ ) self.assertIsInstance(processor.qformer_tokenizer, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.get_image_processor() lowerCamelCase__ : Optional[Any] = self.get_tokenizer() lowerCamelCase__ : Any = self.get_qformer_tokenizer() lowerCamelCase__ : Any = InstructBlipProcessor( tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_, qformer_tokenizer=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = self.prepare_image_inputs() lowerCamelCase__ : Tuple = image_processor(lowerCamelCase_, return_tensors='np' ) lowerCamelCase__ : List[Any] = processor(images=lowerCamelCase_, return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.get_image_processor() lowerCamelCase__ : Union[str, Any] = self.get_tokenizer() lowerCamelCase__ : Any = self.get_qformer_tokenizer() lowerCamelCase__ : Union[str, Any] = InstructBlipProcessor( tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_, qformer_tokenizer=lowerCamelCase_ ) lowerCamelCase__ : str = 'lower newer' lowerCamelCase__ : List[str] = processor(text=lowerCamelCase_ ) lowerCamelCase__ : List[str] = tokenizer(lowerCamelCase_, return_token_type_ids=lowerCamelCase_ ) lowerCamelCase__ : Dict = qformer_tokenizer(lowerCamelCase_, return_token_type_ids=lowerCamelCase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key], encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key], encoded_processor['qformer_' + key] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.get_image_processor() lowerCamelCase__ : Union[str, Any] = self.get_tokenizer() lowerCamelCase__ : Tuple = self.get_qformer_tokenizer() lowerCamelCase__ : List[Any] = InstructBlipProcessor( tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_, qformer_tokenizer=lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 'lower newer' lowerCamelCase__ : Any = self.prepare_image_inputs() lowerCamelCase__ : Union[str, Any] = processor(text=lowerCamelCase_, images=lowerCamelCase_ ) self.assertListEqual( list(inputs.keys() ), ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'], ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.get_image_processor() lowerCamelCase__ : Optional[int] = self.get_tokenizer() lowerCamelCase__ : List[Any] = self.get_qformer_tokenizer() lowerCamelCase__ : Optional[int] = InstructBlipProcessor( tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_, qformer_tokenizer=lowerCamelCase_ ) lowerCamelCase__ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : Tuple = processor.batch_decode(lowerCamelCase_ ) lowerCamelCase__ : Dict = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.get_image_processor() lowerCamelCase__ : Tuple = self.get_tokenizer() lowerCamelCase__ : Optional[int] = self.get_qformer_tokenizer() lowerCamelCase__ : Union[str, Any] = InstructBlipProcessor( tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_, qformer_tokenizer=lowerCamelCase_ ) lowerCamelCase__ : Any = 'lower newer' lowerCamelCase__ : List[str] = self.prepare_image_inputs() lowerCamelCase__ : Union[str, Any] = processor(text=lowerCamelCase_, images=lowerCamelCase_ ) self.assertListEqual( list(inputs.keys() ), ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'], )
351
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : List[str] = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys A_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
352
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
0
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class a_ ( snake_case_ ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = tempfile.mkdtemp() lowerCamelCase__ : int = 5 # Realm tok lowerCamelCase__ : Union[str, Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCamelCase__ : int = os.path.join(self.tmpdirname, 'realm_tokenizer' ) os.makedirs(lowerCamelCase_, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = os.path.join(lowerCamelCase_, VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowerCamelCase__ : List[Any] = os.path.join(self.tmpdirname, 'realm_block_records' ) os.makedirs(lowerCamelCase_, exist_ok=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname, 'realm_tokenizer' ) ) def a__ (self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = RealmConfig(num_block_records=self.num_block_records ) return config def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], } ) return dataset def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = np.array( [ B'This is the first record', B'This is the second record', B'This is the third record', B'This is the fourth record', B'This is the fifth record', B'This is a longer longer longer record', ], dtype=lowerCamelCase_, ) return block_records def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = RealmRetriever( block_records=self.get_dummy_block_records(), tokenizer=self.get_tokenizer(), ) return retriever def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.get_config() lowerCamelCase__ : Dict = self.get_dummy_retriever() lowerCamelCase__ : Any = retriever.tokenizer lowerCamelCase__ : Optional[int] = np.array([0, 3], dtype='long' ) lowerCamelCase__ : Union[str, Any] = tokenizer(['Test question'] ).input_ids lowerCamelCase__ : List[Any] = tokenizer( ['the fourth'], add_special_tokens=lowerCamelCase_, return_token_type_ids=lowerCamelCase_, return_attention_mask=lowerCamelCase_, ).input_ids lowerCamelCase__ : Dict = config.reader_seq_len lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = retriever( lowerCamelCase_, lowerCamelCase_, answer_ids=lowerCamelCase_, max_length=lowerCamelCase_, return_tensors='np' ) self.assertEqual(len(lowerCamelCase_ ), 2 ) self.assertEqual(len(lowerCamelCase_ ), 2 ) self.assertEqual(len(lowerCamelCase_ ), 2 ) self.assertEqual(concat_inputs.input_ids.shape, (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape, (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape, (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape, (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ), ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'], ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ), ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'], ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.get_config() lowerCamelCase__ : List[str] = self.get_dummy_retriever() lowerCamelCase__ : Union[str, Any] = retriever.tokenizer lowerCamelCase__ : int = np.array([0, 3, 5], dtype='long' ) lowerCamelCase__ : str = tokenizer(['Test question'] ).input_ids lowerCamelCase__ : Any = tokenizer( ['the fourth', 'longer longer'], add_special_tokens=lowerCamelCase_, return_token_type_ids=lowerCamelCase_, return_attention_mask=lowerCamelCase_, ).input_ids lowerCamelCase__ : Dict = config.reader_seq_len lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = retriever( lowerCamelCase_, lowerCamelCase_, answer_ids=lowerCamelCase_, max_length=lowerCamelCase_, return_tensors='np' ) self.assertEqual([False, True, True], lowerCamelCase_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]], lowerCamelCase_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname, 'realm_block_records' ) ) # Test local path lowerCamelCase__ : List[Any] = retriever.from_pretrained(os.path.join(self.tmpdirname, 'realm_block_records' ) ) self.assertEqual(retriever.block_records[0], B'This is the first record' ) # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download' ) as mock_hf_hub_download: lowerCamelCase__ : str = os.path.join( os.path.join(self.tmpdirname, 'realm_block_records' ), _REALM_BLOCK_RECORDS_FILENAME ) lowerCamelCase__ : Optional[int] = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa' ) self.assertEqual(retriever.block_records[0], B'This is the first record' )
353
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A_ : List[Any] = logging.get_logger(__name__) A_ : Dict = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = 'bart' lowerCamelCase__ : Tuple = ['past_key_values'] lowerCamelCase__ : List[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self, lowerCamelCase_=5_0_2_6_5, lowerCamelCase_=1_0_2_4, lowerCamelCase_=1_2, lowerCamelCase_=4_0_9_6, lowerCamelCase_=1_6, lowerCamelCase_=1_2, lowerCamelCase_=4_0_9_6, lowerCamelCase_=1_6, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_="gelu", lowerCamelCase_=1_0_2_4, lowerCamelCase_=0.1, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=0.02, lowerCamelCase_=0.0, lowerCamelCase_=False, lowerCamelCase_=True, lowerCamelCase_=3, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_=True, lowerCamelCase_=2, lowerCamelCase_=2, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Tuple = vocab_size lowerCamelCase__ : int = max_position_embeddings lowerCamelCase__ : str = d_model lowerCamelCase__ : Tuple = encoder_ffn_dim lowerCamelCase__ : Any = encoder_layers lowerCamelCase__ : Optional[int] = encoder_attention_heads lowerCamelCase__ : Dict = decoder_ffn_dim lowerCamelCase__ : Optional[int] = decoder_layers lowerCamelCase__ : Union[str, Any] = decoder_attention_heads lowerCamelCase__ : List[str] = dropout lowerCamelCase__ : List[str] = attention_dropout lowerCamelCase__ : Any = activation_dropout lowerCamelCase__ : Any = activation_function lowerCamelCase__ : str = init_std lowerCamelCase__ : List[str] = encoder_layerdrop lowerCamelCase__ : int = decoder_layerdrop lowerCamelCase__ : List[str] = classifier_dropout lowerCamelCase__ : Tuple = use_cache lowerCamelCase__ : List[Any] = encoder_layers lowerCamelCase__ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_lowerCAmelCase, pad_token_id=_lowerCAmelCase, bos_token_id=_lowerCAmelCase, eos_token_id=_lowerCAmelCase, is_encoder_decoder=_lowerCAmelCase, decoder_start_token_id=_lowerCAmelCase, forced_eos_token_id=_lowerCAmelCase, **_lowerCAmelCase, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated', _lowerCAmelCase ): lowerCamelCase__ : int = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' ) class a_ ( snake_case_ ): '''simple docstring''' @property def a__ (self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Tuple = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: lowerCamelCase__ : Optional[Any] = {0: 'batch'} lowerCamelCase__ : int = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowerCamelCase__ : List[Any] = {0: 'batch', 1: 'decoder_sequence'} lowerCamelCase__ : Any = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase, direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ : List[str] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ : List[str] = self.num_layers for i in range(_lowerCAmelCase ): lowerCamelCase__ : Optional[Any] = {0: 'batch', 2: 'past_sequence + sequence'} lowerCamelCase__ : Optional[int] = {0: 'batch', 2: 'past_sequence + sequence'} else: lowerCamelCase__ : Union[str, Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def a__ (self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : str = super().outputs else: lowerCamelCase__ : Optional[int] = super(_lowerCAmelCase, self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.num_layers for i in range(_lowerCAmelCase ): lowerCamelCase__ : List[str] = {0: 'batch', 2: 'past_sequence + sequence'} lowerCamelCase__ : Optional[int] = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = -1, lowerCamelCase_ = -1, lowerCamelCase_ = False, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) # Generate decoder inputs lowerCamelCase__ : Union[str, Any] = seq_length if not self.use_past else 1 lowerCamelCase__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) lowerCamelCase__ : Union[str, Any] = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ : str = dict(**_lowerCAmelCase, **_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = common_inputs['input_ids'].shape lowerCamelCase__ : Dict = common_inputs['decoder_input_ids'].shape[1] lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_attention_heads lowerCamelCase__ : Optional[int] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Union[str, Any] = decoder_seq_length + 3 lowerCamelCase__ : Optional[int] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ : Dict = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_lowerCAmelCase, _lowerCAmelCase )], dim=1 ) lowerCamelCase__ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.num_layers lowerCamelCase__ : List[str] = min(_lowerCAmelCase, _lowerCAmelCase ) lowerCamelCase__ : Optional[Any] = max(_lowerCAmelCase, _lowerCAmelCase ) - min_num_layers lowerCamelCase__ : int = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. lowerCamelCase__ : str = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_lowerCAmelCase, _lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = -1, lowerCamelCase_ = -1, lowerCamelCase_ = False, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCamelCase__ , lowerCamelCase__ : List[Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCamelCase__ : List[str] = seqlen + 2 lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_attention_heads lowerCamelCase__ : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Optional[int] = common_inputs['attention_mask'].dtype lowerCamelCase__ : int = torch.cat( [common_inputs['attention_mask'], torch.ones(_lowerCAmelCase, _lowerCAmelCase, dtype=_lowerCAmelCase )], dim=1 ) lowerCamelCase__ : Optional[Any] = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = -1, lowerCamelCase_ = -1, lowerCamelCase_ = False, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : Dict = compute_effective_axis_dimension( _lowerCAmelCase, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ : Union[str, Any] = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) lowerCamelCase__ : Tuple = compute_effective_axis_dimension( _lowerCAmelCase, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ : Optional[int] = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ : Any = dict(tokenizer(_lowerCAmelCase, return_tensors=_lowerCAmelCase ) ) return common_inputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = -1, lowerCamelCase_ = -1, lowerCamelCase_ = False, lowerCamelCase_ = None, ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase, batch_size=_lowerCAmelCase, seq_length=_lowerCAmelCase, is_pair=_lowerCAmelCase, framework=_lowerCAmelCase ) elif self.task == "causal-lm": lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase, batch_size=_lowerCAmelCase, seq_length=_lowerCAmelCase, is_pair=_lowerCAmelCase, framework=_lowerCAmelCase ) else: lowerCamelCase__ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase, batch_size=_lowerCAmelCase, seq_length=_lowerCAmelCase, is_pair=_lowerCAmelCase, framework=_lowerCAmelCase ) return common_inputs def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Any = super()._flatten_past_key_values_(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) else: lowerCamelCase__ : List[str] = super(_lowerCAmelCase, self )._flatten_past_key_values_( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
354
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
0