code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A_ : List[Any] = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) lowerCamelCase__ : Dict = DetaConfig( backbone_config=_lowerCamelCase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=_lowerCamelCase , with_box_refine=_lowerCamelCase , two_stage=_lowerCamelCase , ) # set labels lowerCamelCase__ : Union[str, Any] = 'huggingface/label-files' if "o365" in model_name: lowerCamelCase__ : List[Any] = 366 lowerCamelCase__ : int = 'object365-id2label.json' else: lowerCamelCase__ : Tuple = 91 lowerCamelCase__ : Dict = 'coco-detection-id2label.json' lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) ) , 'r' ) ) lowerCamelCase__ : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Optional[int] = idalabel lowerCamelCase__ : Dict = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Any = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = dct.pop(_lowerCamelCase ) lowerCamelCase__ : Tuple = val def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCamelCase__ : List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase__ : Union[str, Any] = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) lowerCamelCase__ : Union[str, Any] = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = in_proj_weight[:dim, :] lowerCamelCase__ : Optional[int] = in_proj_bias[: dim] lowerCamelCase__ : Any = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase__ : List[Any] = in_proj_bias[ dim : dim * 2 ] lowerCamelCase__ : Any = in_proj_weight[ -dim :, : ] lowerCamelCase__ : Dict = in_proj_bias[-dim :] # fmt: on def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # transformer decoder self-attention layers lowerCamelCase__ : Optional[Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention lowerCamelCase__ : List[str] = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) lowerCamelCase__ : Any = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Any = in_proj_weight[:hidden_size, :] lowerCamelCase__ : Optional[Any] = in_proj_bias[:hidden_size] lowerCamelCase__ : Union[str, Any] = in_proj_weight[ hidden_size : hidden_size * 2, : ] lowerCamelCase__ : str = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase__ : Union[str, Any] = in_proj_weight[-hidden_size:, :] lowerCamelCase__ : Optional[int] = in_proj_bias[-hidden_size:] def lowerCamelCase_ ( ): lowerCamelCase__ : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = get_deta_config(_lowerCamelCase ) # load original state dict if model_name == "deta-swin-large": lowerCamelCase__ : int = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": lowerCamelCase__ : Any = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) lowerCamelCase__ : Optional[Any] = torch.load(_lowerCamelCase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(_lowerCamelCase , param.shape ) # rename keys lowerCamelCase__ : Tuple = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_swin_q_k_v(_lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCamelCase , _lowerCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: lowerCamelCase__ : int = state_dict.pop(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = val if "input_proj" in key: lowerCamelCase__ : List[Any] = state_dict.pop(_lowerCamelCase ) lowerCamelCase__ : Any = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: lowerCamelCase__ : Dict = state_dict.pop(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = val # finally, create HuggingFace model and load state dict lowerCamelCase__ : Tuple = DetaForObjectDetection(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() lowerCamelCase__ : int = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(_lowerCamelCase ) # load image processor lowerCamelCase__ : str = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Any = processor(images=_lowerCamelCase , return_tensors='pt' ) lowerCamelCase__ : List[str] = encoding['pixel_values'] lowerCamelCase__ : Any = model(pixel_values.to(_lowerCamelCase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": lowerCamelCase__ : Union[str, Any] = torch.tensor( [[-7.6_308, -2.8_485, -5.3_737], [-7.2_037, -4.5_505, -4.8_027], [-7.2_943, -4.2_611, -4.6_617]] ) lowerCamelCase__ : List[str] = torch.tensor([[0.4_987, 0.4_969, 0.9_999], [0.2_549, 0.5_498, 0.4_805], [0.5_498, 0.2_757, 0.0_569]] ) elif model_name == "deta-swin-large-o365": lowerCamelCase__ : str = torch.tensor( [[-8.0_122, -3.5_720, -4.9_717], [-8.1_547, -3.6_886, -4.6_389], [-7.6_610, -3.6_194, -5.0_134]] ) lowerCamelCase__ : List[str] = torch.tensor([[0.2_523, 0.5_549, 0.4_881], [0.7_715, 0.4_149, 0.4_601], [0.5_503, 0.2_753, 0.0_575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_lowerCamelCase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_lowerCamelCase ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A_ : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
367
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) A_ : Optional[int] = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_28, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') A_ : Union[str, Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) A_ : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55) A_ : int = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) A_ : int = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions A_ : Union[str, Any] = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) A_ : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) A_ : int = np.expand_dims(test_image, axis=0) A_ : Tuple = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: A_ : Any = "Normal" if result[0][0] == 1: A_ : Any = "Abnormality detected"
368
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
0
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
0
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = flatten_dict(_lowerCamelCase ) return flax_params def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = {} lowerCamelCase__ : Optional[Any] = { 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } lowerCamelCase__ : Union[str, Any] = { 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowerCamelCase__ : Union[str, Any] = '.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowerCamelCase__ : int = new_key.replace(_lowerCamelCase , _lowerCamelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowerCamelCase__ : Optional[Any] = new_key.replace(_lowerCamelCase , _lowerCamelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowerCamelCase__ : List[Any] = re.sub(r'layers_(\d+)' , r'layer.\1' , _lowerCamelCase ) lowerCamelCase__ : Optional[Any] = new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowerCamelCase__ : int = re.sub(r'layers_(\d+)' , r'layer.\1' , _lowerCamelCase ) lowerCamelCase__ : Any = flax_dict[key] lowerCamelCase__ : List[str] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowerCamelCase__ : Dict = torch.from_numpy(converted_dict[key].T ) else: lowerCamelCase__ : Union[str, Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False ): lowerCamelCase__ : List[Any] = get_flax_param(_lowerCamelCase ) if not use_large: lowerCamelCase__ : Optional[Any] = PixaStructVisionConfig() lowerCamelCase__ : Dict = PixaStructTextConfig() else: lowerCamelCase__ : Optional[Any] = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowerCamelCase__ : Union[str, Any] = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowerCamelCase__ : Optional[Any] = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_lowerCamelCase ) lowerCamelCase__ : Any = PixaStructForConditionalGeneration(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = rename_and_convert_flax_params(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) lowerCamelCase__ : Tuple = PixaStructImageProcessor() lowerCamelCase__ : Tuple = PixaStructProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) if use_large: lowerCamelCase__ : Union[str, Any] = 4096 lowerCamelCase__ : int = True # mkdir if needed os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) print('Model saved in {}'.format(_lowerCamelCase ) ) if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") A_ : List[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 lowerCamelCase__ : int = 1 lowerCamelCase__ : str = 1 while repunit: lowerCamelCase__ : Optional[int] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowerCamelCase_ ( _lowerCamelCase = 100_0000 ): lowerCamelCase__ : Optional[int] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_lowerCamelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"{solution() = }")
371
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : str = word.split() def justify(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: lowerCamelCase__ : Optional[Any] = max_width - width lowerCamelCase__ : str = len(_lowerCamelCase ) if len(_lowerCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCamelCase__ : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCamelCase__ : Union[str, Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCamelCase__ : Optional[Any] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_lowerCamelCase ): num_spaces_between_words_list[i] += 1 lowerCamelCase__ : Dict = [] for i in range(_lowerCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : list[str] = [] lowerCamelCase__ : Optional[int] = 0 for word in words: if width + len(_lowerCamelCase ) + len(_lowerCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_lowerCamelCase ) width += len(_lowerCamelCase ) else: # justify the line and add it to result answer.append(justify(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) # reset new line and new width lowerCamelCase__ : Dict = [word], len(_lowerCamelCase ) lowerCamelCase__ : Dict = max_width - width - len(_lowerCamelCase ) answer.append(' '.join(_lowerCamelCase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
350
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
0
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = (IPNDMScheduler,) lowerCamelCase__ : Any = (('num_inference_steps', 50),) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = {'num_train_timesteps': 1_0_0_0} config.update(**lowerCamelCase_ ) return config def a__ (self, lowerCamelCase_=0, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = dict(self.forward_default_kwargs ) lowerCamelCase__ : Any = kwargs.pop('num_inference_steps', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = self.dummy_sample lowerCamelCase__ : List[str] = 0.1 * sample lowerCamelCase__ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCamelCase__ : Any = self.get_scheduler_config(**lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals lowerCamelCase__ : Dict = dummy_past_residuals[:] if time_step is None: lowerCamelCase__ : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) lowerCamelCase__ : Dict = scheduler_class.from_pretrained(lowerCamelCase_ ) new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals lowerCamelCase__ : Optional[Any] = dummy_past_residuals[:] lowerCamelCase__ : Optional[int] = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample lowerCamelCase__ : int = new_scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCamelCase__ : Any = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample lowerCamelCase__ : Optional[Any] = new_scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ (self ): '''simple docstring''' pass def a__ (self, lowerCamelCase_=0, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = dict(self.forward_default_kwargs ) lowerCamelCase__ : Tuple = kwargs.pop('num_inference_steps', lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.dummy_sample lowerCamelCase__ : List[str] = 0.1 * sample lowerCamelCase__ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCamelCase__ : List[str] = self.get_scheduler_config() lowerCamelCase__ : Tuple = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) lowerCamelCase__ : Any = dummy_past_residuals[:] if time_step is None: lowerCamelCase__ : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) lowerCamelCase__ : List[str] = scheduler_class.from_pretrained(lowerCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) lowerCamelCase__ : Dict = dummy_past_residuals[:] lowerCamelCase__ : List[Any] = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample lowerCamelCase__ : int = new_scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCamelCase__ : Dict = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample lowerCamelCase__ : List[str] = new_scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = self.scheduler_classes[0] lowerCamelCase__ : int = self.get_scheduler_config(**lowerCamelCase_ ) lowerCamelCase__ : Any = scheduler_class(**lowerCamelCase_ ) lowerCamelCase__ : str = 1_0 lowerCamelCase__ : Union[str, Any] = self.dummy_model() lowerCamelCase__ : Any = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase__ : Union[str, Any] = model(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowerCamelCase__ : Tuple = model(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Dict = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample return sample def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = dict(self.forward_default_kwargs ) lowerCamelCase__ : int = kwargs.pop('num_inference_steps', lowerCamelCase_ ) for scheduler_class in self.scheduler_classes: lowerCamelCase__ : List[str] = self.get_scheduler_config() lowerCamelCase__ : int = scheduler_class(**lowerCamelCase_ ) lowerCamelCase__ : int = self.dummy_sample lowerCamelCase__ : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase_, 'set_timesteps' ): scheduler.set_timesteps(lowerCamelCase_ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase_, 'set_timesteps' ): lowerCamelCase__ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCamelCase__ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCamelCase__ : Dict = dummy_past_residuals[:] lowerCamelCase__ : Tuple = scheduler.timesteps[5] lowerCamelCase__ : Optional[int] = scheduler.timesteps[6] lowerCamelCase__ : int = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowerCamelCase__ : Optional[Any] = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample lowerCamelCase__ : Dict = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def a__ (self ): '''simple docstring''' for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCamelCase_, time_step=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 1_0], [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=lowerCamelCase_, time_step=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.full_loop() lowerCamelCase__ : Any = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 2_5_4_0_5_2_9 ) < 1_0
351
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class a_ ( snake_case_ ): def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowerCamelCase__ : Optional[Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = None, lowerCamelCase_ = 0.0, lowerCamelCase_ = 5_0, lowerCamelCase_ = None, lowerCamelCase_ = "pil", lowerCamelCase_ = True, ): '''simple docstring''' if isinstance(self.unet.config.sample_size, lowerCamelCase_ ): lowerCamelCase__ : Optional[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCamelCase__ : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Tuple = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : Any = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCamelCase__ : str = self.scheduler.step( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, eta=lowerCamelCase_, use_clipped_model_output=lowerCamelCase_, generator=lowerCamelCase_ ).prev_sample lowerCamelCase__ : str = (image / 2 + 0.5).clamp(0, 1 ) lowerCamelCase__ : int = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowerCamelCase__ : Optional[int] = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
352
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
0
"""simple docstring""" from ....utils import logging A_ : List[str] = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, lowerCamelCase_=2_0_4_8 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = config.__dict__ lowerCamelCase__ : str = modal_hidden_size if num_labels: lowerCamelCase__ : List[str] = num_labels
353
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase_ ( _lowerCamelCase ): return 1 / (1 + np.exp(-z )) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return (-y * np.log(_lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = np.dot(_lowerCamelCase , _lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase ) ) ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=7_0000 ): lowerCamelCase__ : Dict = np.zeros(x.shape[1] ) for iterations in range(_lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : List[Any] = sigmoid_function(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = np.dot(x.T , h - y ) / y.size lowerCamelCase__ : Tuple = theta - alpha * gradient # updating the weights lowerCamelCase__ : Tuple = np.dot(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Dict = sigmoid_function(_lowerCamelCase ) lowerCamelCase__ : Tuple = cost_function(_lowerCamelCase , _lowerCamelCase ) if iterations % 100 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": A_ : str = datasets.load_iris() A_ : str = iris.data[:, :2] A_ : Optional[Any] = (iris.target != 0) * 1 A_ : List[Any] = 0.1 A_ : Union[str, Any] = logistic_reg(alpha, x, y, max_iterations=7_00_00) print("theta: ", theta) # printing the theta i.e our weights vector def lowerCamelCase_ ( _lowerCamelCase ): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") (A_) : List[str] = (x[:, 0].min(), x[:, 0].max()) (A_) : List[Any] = (x[:, 1].min(), x[:, 1].max()) (A_) : Tuple = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) A_ : Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] A_ : List[str] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
354
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) A_ : List[str] = logging.get_logger(__name__) A_ : Tuple = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) A_ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCamelCase_ ( _lowerCamelCase ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase__ : List[Any] = model_type_to_module_name(_lowerCamelCase ) lowerCamelCase__ : Dict = importlib.import_module(f'''.{module_name}''' , 'transformers.models' ) try: return getattr(_lowerCamelCase , _lowerCamelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowerCamelCase , '__name__' , _lowerCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase__ : Tuple = importlib.import_module('transformers' ) if hasattr(_lowerCamelCase , _lowerCamelCase ): return getattr(_lowerCamelCase , _lowerCamelCase ) return None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , **_lowerCamelCase , ): lowerCamelCase__ : int = get_file_from_repo( _lowerCamelCase , _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , resume_download=_lowerCamelCase , proxies=_lowerCamelCase , use_auth_token=_lowerCamelCase , revision=_lowerCamelCase , local_files_only=_lowerCamelCase , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(_lowerCamelCase , encoding='utf-8' ) as reader: return json.load(_lowerCamelCase ) class a_ : '''simple docstring''' def __init__(self ): '''simple docstring''' raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(lowerCamelCase_ ) def a__ (cls, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = kwargs.pop('config', lowerCamelCase_ ) lowerCamelCase__ : List[Any] = kwargs.pop('trust_remote_code', lowerCamelCase_ ) lowerCamelCase__ : Any = True lowerCamelCase__ : str = FeatureExtractionMixin.get_feature_extractor_dict(lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : str = config_dict.get('feature_extractor_type', lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = None if "AutoFeatureExtractor" in config_dict.get('auto_map', {} ): lowerCamelCase__ : Tuple = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_, **lowerCamelCase_ ) # It could be in `config.feature_extractor_type`` lowerCamelCase__ : List[Any] = getattr(lowerCamelCase_, 'feature_extractor_type', lowerCamelCase_ ) if hasattr(lowerCamelCase_, 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase__ : List[Any] = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: lowerCamelCase__ : str = feature_extractor_class_from_name(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = feature_extractor_auto_map is not None lowerCamelCase__ : List[str] = feature_extractor_class is not None or type(lowerCamelCase_ ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase__ : Tuple = resolve_trust_remote_code( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) if has_remote_code and trust_remote_code: lowerCamelCase__ : str = get_class_from_dynamic_module( lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('code_revision', lowerCamelCase_ ) if os.path.isdir(lowerCamelCase_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(lowerCamelCase_, **lowerCamelCase_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(lowerCamelCase_, **lowerCamelCase_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(lowerCamelCase_ ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase__ : int = FEATURE_EXTRACTOR_MAPPING[type(lowerCamelCase_ )] return feature_extractor_class.from_dict(lowerCamelCase_, **lowerCamelCase_ ) raise ValueError( f'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' f'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(lowerCamelCase_, lowerCamelCase_ )
355
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
0
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
356
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # Load checkpoint lowerCamelCase__ : Union[str, Any] = torch.load(_lowerCamelCase , map_location='cpu' ) lowerCamelCase__ : List[str] = chkpt['model'] # We have the base model one level deeper than the original XLM repository lowerCamelCase__ : Optional[Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: lowerCamelCase__ : Any = v else: lowerCamelCase__ : Optional[int] = v lowerCamelCase__ : Dict = chkpt['params'] lowerCamelCase__ : List[Any] = {n: v for n, v in config.items() if not isinstance(_lowerCamelCase , (torch.FloatTensor, numpy.ndarray) )} lowerCamelCase__ : str = chkpt['dico_word2id'] lowerCamelCase__ : Optional[int] = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model lowerCamelCase__ : List[Any] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCamelCase__ : Optional[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME lowerCamelCase__ : Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , indent=2 ) + '\n' ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , indent=2 ) + '\n' ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : int = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
357
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Any = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = 'pegasus' lowerCamelCase__ : Optional[Any] = ['past_key_values'] lowerCamelCase__ : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self, lowerCamelCase_=5_0_2_6_5, lowerCamelCase_=1_0_2_4, lowerCamelCase_=1_2, lowerCamelCase_=4_0_9_6, lowerCamelCase_=1_6, lowerCamelCase_=1_2, lowerCamelCase_=4_0_9_6, lowerCamelCase_=1_6, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_="gelu", lowerCamelCase_=1_0_2_4, lowerCamelCase_=0.1, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=0.02, lowerCamelCase_=0, lowerCamelCase_=False, lowerCamelCase_=0, lowerCamelCase_=1, lowerCamelCase_=1, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : str = max_position_embeddings lowerCamelCase__ : Optional[int] = d_model lowerCamelCase__ : Union[str, Any] = encoder_ffn_dim lowerCamelCase__ : List[Any] = encoder_layers lowerCamelCase__ : Union[str, Any] = encoder_attention_heads lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim lowerCamelCase__ : str = decoder_layers lowerCamelCase__ : List[str] = decoder_attention_heads lowerCamelCase__ : Dict = dropout lowerCamelCase__ : Any = attention_dropout lowerCamelCase__ : Tuple = activation_dropout lowerCamelCase__ : Any = activation_function lowerCamelCase__ : int = init_std lowerCamelCase__ : List[str] = encoder_layerdrop lowerCamelCase__ : Union[str, Any] = decoder_layerdrop lowerCamelCase__ : Tuple = use_cache lowerCamelCase__ : Any = encoder_layers lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, is_encoder_decoder=lowerCamelCase_, decoder_start_token_id=lowerCamelCase_, forced_eos_token_id=lowerCamelCase_, **lowerCamelCase_, ) @property def a__ (self ): '''simple docstring''' return self.encoder_attention_heads @property def a__ (self ): '''simple docstring''' return self.d_model
358
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
0
"""simple docstring""" from math import ceil, sqrt def lowerCamelCase_ ( _lowerCamelCase = 100_0000 ): lowerCamelCase__ : Optional[Any] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__ : Optional[Any] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__ : Optional[int] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"{solution() = }")
359
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A_ : str = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=False ): lowerCamelCase__ : List[str] = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token') ) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings') ) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias') ) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) # fmt: on return rename_keys def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase__ : str = '' else: lowerCamelCase__ : Union[str, Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : Union[str, Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) lowerCamelCase__ : List[Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase__ : str = in_proj_bias[: config.hidden_size] lowerCamelCase__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : List[str] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Any = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = dct.pop(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = val def lowerCamelCase_ ( ): lowerCamelCase__ : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Dict = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): lowerCamelCase__ : Union[str, Any] = BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=_lowerCamelCase , ) lowerCamelCase__ : str = ViTHybridConfig(backbone_config=_lowerCamelCase , image_size=384 , num_labels=1000 ) lowerCamelCase__ : str = False # load original model from timm lowerCamelCase__ : str = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase__ : Dict = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Tuple = 'huggingface/label-files' lowerCamelCase__ : Any = 'imagenet-1k-id2label.json' lowerCamelCase__ : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : Optional[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Optional[Any] = idalabel lowerCamelCase__ : Any = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase__ : List[Any] = ViTHybridModel(_lowerCamelCase ).eval() else: lowerCamelCase__ : Dict = ViTHybridForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # create image processor lowerCamelCase__ : Dict = create_transform(**resolve_data_config({} , model=_lowerCamelCase ) ) lowerCamelCase__ : Optional[int] = transform.transforms lowerCamelCase__ : Optional[Any] = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } lowerCamelCase__ : List[Any] = ViTHybridImageProcessor( do_resize=_lowerCamelCase , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCamelCase , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=_lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase__ : List[Any] = prepare_img() lowerCamelCase__ : Tuple = transform(_lowerCamelCase ).unsqueeze(0 ) lowerCamelCase__ : List[str] = processor(_lowerCamelCase , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) # verify logits with torch.no_grad(): lowerCamelCase__ : Tuple = model(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = outputs.logits print('Predicted class:' , logits.argmax(-1 ).item() ) if base_model: lowerCamelCase__ : Optional[int] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: lowerCamelCase__ : int = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) A_ : Optional[Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
360
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Dict = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = 'mra' def __init__(self, lowerCamelCase_=5_0_2_6_5, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=1, lowerCamelCase_=0.02, lowerCamelCase_=1e-5, lowerCamelCase_="absolute", lowerCamelCase_=4, lowerCamelCase_="full", lowerCamelCase_=0, lowerCamelCase_=0, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : Tuple = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : int = type_vocab_size lowerCamelCase__ : Any = layer_norm_eps lowerCamelCase__ : Optional[Any] = position_embedding_type lowerCamelCase__ : Any = block_per_row lowerCamelCase__ : List[Any] = approx_mode lowerCamelCase__ : Union[str, Any] = initial_prior_first_n_blocks lowerCamelCase__ : str = initial_prior_diagonal_n_blocks
361
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
0
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = False, lowerCamelCase_ = False, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' super().__init__( lowerCamelCase_, split=lowerCamelCase_, features=lowerCamelCase_, cache_dir=lowerCamelCase_, keep_in_memory=lowerCamelCase_, streaming=lowerCamelCase_, num_proc=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : Any = field lowerCamelCase__ : str = path_or_paths if isinstance(lowerCamelCase_, lowerCamelCase_ ) else {self.split: path_or_paths} lowerCamelCase__ : Dict = Json( cache_dir=lowerCamelCase_, data_files=lowerCamelCase_, features=lowerCamelCase_, field=lowerCamelCase_, **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' if self.streaming: lowerCamelCase__ : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : str = None lowerCamelCase__ : Tuple = None lowerCamelCase__ : Optional[int] = None self.builder.download_and_prepare( download_config=lowerCamelCase_, download_mode=lowerCamelCase_, verification_mode=lowerCamelCase_, base_path=lowerCamelCase_, num_proc=self.num_proc, ) lowerCamelCase__ : List[Any] = self.builder.as_dataset( split=self.split, verification_mode=lowerCamelCase_, in_memory=self.keep_in_memory ) return dataset class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) lowerCamelCase__ : List[Any] = dataset lowerCamelCase__ : List[Any] = path_or_buf lowerCamelCase__ : Union[str, Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowerCamelCase__ : List[Any] = num_proc lowerCamelCase__ : List[str] = 'utf-8' lowerCamelCase__ : Optional[int] = to_json_kwargs def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.to_json_kwargs.pop('path_or_buf', lowerCamelCase_ ) lowerCamelCase__ : Tuple = self.to_json_kwargs.pop('orient', 'records' ) lowerCamelCase__ : Union[str, Any] = self.to_json_kwargs.pop('lines', True if orient == 'records' else False ) lowerCamelCase__ : Union[str, Any] = self.to_json_kwargs.pop('index', False if orient in ['split', 'table'] else True ) lowerCamelCase__ : str = self.to_json_kwargs.pop('compression', lowerCamelCase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf, (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf, 'wb', compression=lowerCamelCase_ ) as buffer: lowerCamelCase__ : Tuple = self._write(file_obj=lowerCamelCase_, orient=lowerCamelCase_, lines=lowerCamelCase_, index=lowerCamelCase_, **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ' was passed. Please provide a local path instead.' ) lowerCamelCase__ : List[Any] = self._write( file_obj=self.path_or_buf, orient=lowerCamelCase_, lines=lowerCamelCase_, index=lowerCamelCase_, **self.to_json_kwargs ) return written def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = args lowerCamelCase__ : Union[str, Any] = query_table( table=self.dataset.data, key=slice(lowerCamelCase_, offset + self.batch_size ), indices=self.dataset._indices, ) lowerCamelCase__ : Optional[int] = batch.to_pandas().to_json( path_or_buf=lowerCamelCase_, orient=lowerCamelCase_, lines=lowerCamelCase_, index=lowerCamelCase_, **lowerCamelCase_ ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0, len(self.dataset ), self.batch_size ), unit='ba', disable=not logging.is_progress_bar_enabled(), desc='Creating json from Arrow format', ): lowerCamelCase__ : str = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowerCamelCase_ ) else: lowerCamelCase__ : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json, [(offset, orient, lines, index, to_json_kwargs) for offset in range(0, lowerCamelCase_, lowerCamelCase_ )], ), total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size, unit='ba', disable=not logging.is_progress_bar_enabled(), desc='Creating json from Arrow format', ): written += file_obj.write(lowerCamelCase_ ) return written
362
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCamelCase_ ( _lowerCamelCase ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCamelCase_ ( ): with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" lowerCamelCase__ : Dict = [1, 2, 3] with pytest.raises(_lowerCamelCase ): with parallel_backend('unsupported backend' ): map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=2 ) with pytest.raises(_lowerCamelCase ): with parallel_backend('unsupported backend' ): map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = [1, 2] lowerCamelCase__ : Tuple = {'a': 1, 'b': 2} lowerCamelCase__ : List[Any] = {'a': [1, 2], 'b': [3, 4]} lowerCamelCase__ : Optional[int] = {'a': {'1': 1}, 'b': 2} lowerCamelCase__ : List[Any] = {'a': 1, 'b': 2, 'c': 3, 'd': 4} lowerCamelCase__ : List[str] = [2, 3] lowerCamelCase__ : List[Any] = {'a': 2, 'b': 3} lowerCamelCase__ : Optional[Any] = {'a': [2, 3], 'b': [4, 5]} lowerCamelCase__ : Any = {'a': {'1': 2}, 'b': 3} lowerCamelCase__ : List[Any] = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa
363
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Optional[int] = "▁" A_ : Dict = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} A_ : List[str] = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } A_ : Tuple = {"vinai/bartpho-syllable": 10_24} class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = VOCAB_FILES_NAMES lowerCamelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Any = ['input_ids', 'attention_mask'] def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_="<s>", lowerCamelCase_="</s>", lowerCamelCase_="</s>", lowerCamelCase_="<s>", lowerCamelCase_="<unk>", lowerCamelCase_="<pad>", lowerCamelCase_="<mask>", lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[Any] = AddedToken(lowerCamelCase_, lstrip=lowerCamelCase_, rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_, lowerCamelCase_ ) else mask_token lowerCamelCase__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase_, eos_token=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, cls_token=lowerCamelCase_, pad_token=lowerCamelCase_, mask_token=lowerCamelCase_, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase_, ) lowerCamelCase__ : int = vocab_file lowerCamelCase__ : List[Any] = monolingual_vocab_file lowerCamelCase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowerCamelCase__ : Optional[int] = {} lowerCamelCase__ : List[Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase_ ) not in self.fairseq_tokens_to_ids: lowerCamelCase__ : List[Any] = cnt cnt += 1 with open(lowerCamelCase_, 'r', encoding='utf-8' ) as f: for line in f.readlines(): lowerCamelCase__ : Tuple = line.strip().split()[0] lowerCamelCase__ : Any = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase_ ) not in self.fairseq_tokens_to_ids: lowerCamelCase__ : Optional[Any] = len(self.fairseq_tokens_to_ids ) lowerCamelCase__ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.__dict__.copy() lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): lowerCamelCase__ : Optional[int] = {} lowerCamelCase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] lowerCamelCase__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_, token_ids_a=lowerCamelCase_, already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [self.sep_token_id] lowerCamelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__ (self ): '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase_, out_type=lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.fairseq_ids_to_tokens[index] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = ''.join(lowerCamelCase_ ).replace(lowerCamelCase_, ' ' ).strip() return out_string def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : List[str] = os.path.join( lowerCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : str = os.path.join( lowerCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'], ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_, 'wb' ) as fi: lowerCamelCase__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file, lowerCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase_, 'w', encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(lowerCamelCase_ )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
364
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
0
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
365
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , ): lowerCamelCase__ : List[str] = cipher_alphabet or [chr(_lowerCamelCase ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCamelCase__ : Any = { 'a': 0.08_497, 'b': 0.01_492, 'c': 0.02_202, 'd': 0.04_253, 'e': 0.11_162, 'f': 0.02_228, 'g': 0.02_015, 'h': 0.06_094, 'i': 0.07_546, 'j': 0.00_153, 'k': 0.01_292, 'l': 0.04_025, 'm': 0.02_406, 'n': 0.06_749, 'o': 0.07_507, 'p': 0.01_929, 'q': 0.00_095, 'r': 0.07_587, 's': 0.06_327, 't': 0.09_356, 'u': 0.02_758, 'v': 0.00_978, 'w': 0.02_560, 'x': 0.00_150, 'y': 0.01_994, 'z': 0.00_077, } else: # Custom frequencies dictionary lowerCamelCase__ : Union[str, Any] = frequencies_dict if not case_sensitive: lowerCamelCase__ : Any = ciphertext.lower() # Chi squared statistic values lowerCamelCase__ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(_lowerCamelCase ) ): lowerCamelCase__ : List[Any] = '' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCamelCase__ : List[str] = (alphabet_letters.index(letter.lower() ) - shift) % len( _lowerCamelCase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCamelCase__ : int = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCamelCase__ : Union[str, Any] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : Optional[int] = decrypted_with_shift.lower().count(_lowerCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : Tuple = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : Optional[int] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : Union[str, Any] = decrypted_with_shift.count(_lowerCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : Optional[int] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCamelCase__ : Optional[Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_lowerCamelCase ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCamelCase__ : int = min( _lowerCamelCase , key=_lowerCamelCase , ) # Get all the data from the most likely cipher (key, decoded message) ( lowerCamelCase__ ) : Union[str, Any] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
366
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" A_ : int = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = set() # keep track of all the paths to be checked lowerCamelCase__ : Dict = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowerCamelCase__ : List[Any] = queue.pop(0 ) # get the last node from the path lowerCamelCase__ : Optional[Any] = path[-1] if node not in explored: lowerCamelCase__ : Any = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowerCamelCase__ : str = list(_lowerCamelCase ) new_path.append(_lowerCamelCase ) queue.append(_lowerCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_lowerCamelCase ) # in case there's no path between the 2 nodes return [] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowerCamelCase__ : Optional[int] = [start] lowerCamelCase__ : str = set(_lowerCamelCase ) # Keep tab on distances from `start` node. lowerCamelCase__ : Dict = {start: 0, target: -1} while queue: lowerCamelCase__ : List[Any] = queue.pop(0 ) if node == target: lowerCamelCase__ : int = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_lowerCamelCase ) queue.append(_lowerCamelCase ) lowerCamelCase__ : int = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
367
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase = 100_0000 ): lowerCamelCase__ : Optional[int] = 1 lowerCamelCase__ : List[Any] = 1 lowerCamelCase__ : List[Any] = {1: 1} for inputa in range(2 , _lowerCamelCase ): lowerCamelCase__ : int = 0 lowerCamelCase__ : Dict = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCamelCase__ : Union[str, Any] = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCamelCase__ : int = counter if counter > pre_counter: lowerCamelCase__ : List[str] = inputa lowerCamelCase__ : str = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
368
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
369
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
0
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=2, lowerCamelCase_=3_2, lowerCamelCase_=1_6, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=4, lowerCamelCase_=[0, 1, 2, 3], lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=[1, 3_8_4, 2_4, 2_4], lowerCamelCase_=True, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = parent lowerCamelCase__ : str = batch_size lowerCamelCase__ : Union[str, Any] = image_size lowerCamelCase__ : Any = patch_size lowerCamelCase__ : Optional[int] = num_channels lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : str = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : Union[str, Any] = num_hidden_layers lowerCamelCase__ : Optional[Any] = backbone_out_indices lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Tuple = initializer_range lowerCamelCase__ : Union[str, Any] = num_labels lowerCamelCase__ : Any = backbone_featmap_shape lowerCamelCase__ : Optional[Any] = scope lowerCamelCase__ : str = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ : Union[str, Any] = (image_size // patch_size) ** 2 lowerCamelCase__ : Tuple = num_patches + 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = None if self.use_labels: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) lowerCamelCase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [9_6, 1_9_2, 3_8_4, 7_6_8], 'num_groups': 2, } return DPTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, backbone_config=lowerCamelCase_, backbone_featmap_shape=self.backbone_featmap_shape, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = DPTModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : List[Any] = DPTForDepthEstimation(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Tuple = DPTForSemanticSegmentation(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Dict = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = config_and_inputs lowerCamelCase__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase__ : Union[str, Any] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ : str = False lowerCamelCase__ : str = False lowerCamelCase__ : List[Any] = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = DPTModelTester(self ) lowerCamelCase__ : int = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowerCamelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, nn.Linear ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Tuple = model_class(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[str] = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : List[Any] = True if model_class in get_values(lowerCamelCase_ ): continue lowerCamelCase__ : Union[str, Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.train() lowerCamelCase__ : str = self._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ).loss loss.backward() def a__ (self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Dict = False lowerCamelCase__ : Any = True if model_class in get_values(lowerCamelCase_ ) or not model_class.supports_gradient_checkpointing: continue lowerCamelCase__ : List[str] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.gradient_checkpointing_enable() model.train() lowerCamelCase__ : List[Any] = self._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) lowerCamelCase__ : str = model(**lowerCamelCase_ ).loss loss.backward() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Any = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: lowerCamelCase__ : Any = model_class(config=lowerCamelCase_ ) # Skip the check for the backbone lowerCamelCase__ : int = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowerCamelCase__ : Dict = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f'''Parameter {name} of model {model_class} seems not properly initialized''', ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a__ (self ): '''simple docstring''' pass @slow def a__ (self ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowerCamelCase__ : Optional[Any] = DPTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Any = 'add' with self.assertRaises(lowerCamelCase_ ): lowerCamelCase__ : Dict = DPTForDepthEstimation(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' ) lowerCamelCase__ : int = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='pt' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : int = model(**lowerCamelCase_ ) lowerCamelCase__ : Dict = outputs.predicted_depth # verify the predicted depth lowerCamelCase__ : List[Any] = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape, lowerCamelCase_ ) lowerCamelCase__ : str = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0, lowerCamelCase_, atol=1e-4 ) )
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[int] = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: A_ : List[Any] = None A_ : str = logging.get_logger(__name__) A_ : Union[str, Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} A_ : Union[str, Any] = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } A_ : Dict = { "facebook/mbart-large-en-ro": 10_24, "facebook/mbart-large-cc25": 10_24, } # fmt: off A_ : List[str] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : str = ['input_ids', 'attention_mask'] lowerCamelCase__ : Union[str, Any] = MBartTokenizer lowerCamelCase__ : List[int] = [] lowerCamelCase__ : List[int] = [] def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_="<s>", lowerCamelCase_="</s>", lowerCamelCase_="</s>", lowerCamelCase_="<s>", lowerCamelCase_="<unk>", lowerCamelCase_="<pad>", lowerCamelCase_="<mask>", lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = AddedToken(lowerCamelCase_, lstrip=lowerCamelCase_, rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_, lowerCamelCase_ ) else mask_token super().__init__( vocab_file=lowerCamelCase_, tokenizer_file=lowerCamelCase_, bos_token=lowerCamelCase_, eos_token=lowerCamelCase_, sep_token=lowerCamelCase_, cls_token=lowerCamelCase_, unk_token=lowerCamelCase_, pad_token=lowerCamelCase_, mask_token=lowerCamelCase_, src_lang=lowerCamelCase_, tgt_lang=lowerCamelCase_, additional_special_tokens=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : int = vocab_file lowerCamelCase__ : Tuple = False if not self.vocab_file else True lowerCamelCase__ : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(lowerCamelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : Optional[Any] = src_lang if src_lang is not None else 'en_XX' lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__ (self ): '''simple docstring''' return self._src_lang @src_lang.setter def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : str = src_lang lowerCamelCase__ : str = self(lowerCamelCase_, add_special_tokens=lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = self.convert_tokens_to_ids(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = tgt_lang_id return inputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = "en_XX", lowerCamelCase_ = None, lowerCamelCase_ = "ro_RO", **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Tuple = src_lang lowerCamelCase__ : str = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) def a__ (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def a__ (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : Any = [self.eos_token_id, self.cur_lang_code] lowerCamelCase__ : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : int = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.convert_tokens_to_ids(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Tuple = [self.eos_token_id, self.cur_lang_code] lowerCamelCase__ : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return lowerCamelCase__ : Optional[Any] = os.path.join( lowerCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file, lowerCamelCase_ ) return (out_vocab_file,)
350
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase A_ : int = logging.get_logger(__name__) A_ : Tuple = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = 'longformer' def __init__(self, lowerCamelCase_ = 5_1_2, lowerCamelCase_ = 2, lowerCamelCase_ = 1, lowerCamelCase_ = 0, lowerCamelCase_ = 2, lowerCamelCase_ = 3_0_5_2_2, lowerCamelCase_ = 7_6_8, lowerCamelCase_ = 1_2, lowerCamelCase_ = 1_2, lowerCamelCase_ = 3_0_7_2, lowerCamelCase_ = "gelu", lowerCamelCase_ = 0.1, lowerCamelCase_ = 0.1, lowerCamelCase_ = 5_1_2, lowerCamelCase_ = 2, lowerCamelCase_ = 0.02, lowerCamelCase_ = 1e-12, lowerCamelCase_ = False, **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowerCamelCase__ : str = attention_window lowerCamelCase__ : List[Any] = sep_token_id lowerCamelCase__ : Union[str, Any] = bos_token_id lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : Any = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = max_position_embeddings lowerCamelCase__ : Optional[int] = type_vocab_size lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : int = layer_norm_eps lowerCamelCase__ : int = onnx_export class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ = "default", lowerCamelCase_ = None ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : str = True @property def a__ (self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase__ : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = super().outputs if self.task == "default": lowerCamelCase__ : Union[str, Any] = {0: 'batch'} return outputs @property def a__ (self ): '''simple docstring''' return 1e-4 @property def a__ (self ): '''simple docstring''' return max(super().default_onnx_opset, 1_4 ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = -1, lowerCamelCase_ = -1, lowerCamelCase_ = False, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : Dict = super().generate_dummy_inputs( preprocessor=lowerCamelCase_, batch_size=lowerCamelCase_, seq_length=lowerCamelCase_, is_pair=lowerCamelCase_, framework=lowerCamelCase_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCamelCase__ : List[Any] = torch.zeros_like(inputs['input_ids'] ) # make every second token global lowerCamelCase__ : Tuple = 1 return inputs
351
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Union[str, Any] = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class a_ ( snake_case_ ): lowerCamelCase__ : Optional[int] = 'mgp-str' def __init__(self, lowerCamelCase_=[3_2, 1_2_8], lowerCamelCase_=4, lowerCamelCase_=3, lowerCamelCase_=2_7, lowerCamelCase_=3_8, lowerCamelCase_=5_0_2_5_7, lowerCamelCase_=3_0_5_2_2, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=4.0, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=1e-5, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=False, lowerCamelCase_=0.02, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = image_size lowerCamelCase__ : Tuple = patch_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : Tuple = max_token_length lowerCamelCase__ : Dict = num_character_labels lowerCamelCase__ : Tuple = num_bpe_labels lowerCamelCase__ : Tuple = num_wordpiece_labels lowerCamelCase__ : str = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : List[str] = mlp_ratio lowerCamelCase__ : Optional[Any] = distilled lowerCamelCase__ : List[str] = layer_norm_eps lowerCamelCase__ : Dict = drop_rate lowerCamelCase__ : str = qkv_bias lowerCamelCase__ : Dict = attn_drop_rate lowerCamelCase__ : List[str] = drop_path_rate lowerCamelCase__ : Tuple = output_aa_attentions lowerCamelCase__ : Tuple = initializer_range
352
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
0
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = GPTaTokenizer lowerCamelCase__ : Optional[int] = GPTaTokenizerFast lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : str = {'add_prefix_space': True} lowerCamelCase__ : Dict = False def a__ (self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] lowerCamelCase__ : List[str] = dict(zip(lowerCamelCase_, range(len(lowerCamelCase_ ) ) ) ) lowerCamelCase__ : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} lowerCamelCase__ : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase__ : List[str] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase_ ) ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = 'lower newer' lowerCamelCase__ : int = 'lower newer' return input_text, output_text def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = GPTaTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowerCamelCase__ : str = 'lower newer' lowerCamelCase__ : List[str] = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowerCamelCase__ : List[str] = tokenizer.tokenize(lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : int = tokens + [tokenizer.unk_token] lowerCamelCase__ : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ), lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = 'lower newer' # Testing tokenization lowerCamelCase__ : int = tokenizer.tokenize(lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : str = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) # Testing conversion to ids without special tokens lowerCamelCase__ : Optional[int] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : Dict = rust_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) # Testing conversion to ids with special tokens lowerCamelCase__ : Tuple = self.get_rust_tokenizer(add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer.encode(lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) # Testing the unknown token lowerCamelCase__ : int = tokens + [rust_tokenizer.unk_token] lowerCamelCase__ : Tuple = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCamelCase_ ), lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' pass def a__ (self, lowerCamelCase_=1_5 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_, **lowerCamelCase_ ) # Simple input lowerCamelCase__ : Optional[Any] = 'This is a simple input' lowerCamelCase__ : Optional[int] = ['This is a simple input 1', 'This is a simple input 2'] lowerCamelCase__ : Any = ('This is a simple input', 'This is a pair') lowerCamelCase__ : Dict = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowerCamelCase_, tokenizer_r.encode, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length' ) # Simple input self.assertRaises(lowerCamelCase_, tokenizer_r.encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length' ) # Simple input self.assertRaises( lowerCamelCase_, tokenizer_r.batch_encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length', ) # Pair input self.assertRaises(lowerCamelCase_, tokenizer_r.encode, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length' ) # Pair input self.assertRaises(lowerCamelCase_, tokenizer_r.encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length' ) # Pair input self.assertRaises( lowerCamelCase_, tokenizer_r.batch_encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding='max_length', ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = GPTaTokenizer.from_pretrained(self.tmpdirname, pad_token='<pad>' ) # Simple input lowerCamelCase__ : Tuple = 'This is a simple input' lowerCamelCase__ : str = ['This is a simple input looooooooong', 'This is a simple input'] lowerCamelCase__ : int = ('This is a simple input', 'This is a pair') lowerCamelCase__ : Dict = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] lowerCamelCase__ : Optional[int] = tokenizer.pad_token_id lowerCamelCase__ : Any = tokenizer(lowerCamelCase_, padding='max_length', max_length=3_0, return_tensors='np' ) lowerCamelCase__ : Union[str, Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, truncate=lowerCamelCase_, return_tensors='np' ) lowerCamelCase__ : str = tokenizer(*lowerCamelCase_, padding='max_length', max_length=6_0, return_tensors='np' ) lowerCamelCase__ : int = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, truncate=lowerCamelCase_, return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1], 3_0 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1], 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1], 6_0 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1], 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = '$$$' lowerCamelCase__ : List[str] = GPTaTokenizer.from_pretrained(self.tmpdirname, bos_token=lowerCamelCase_, add_bos_token=lowerCamelCase_ ) lowerCamelCase__ : str = 'This is a simple input' lowerCamelCase__ : int = ['This is a simple input 1', 'This is a simple input 2'] lowerCamelCase__ : List[str] = tokenizer.bos_token_id lowerCamelCase__ : List[str] = tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = tokenizer(lowerCamelCase_ ) self.assertEqual(out_s.input_ids[0], lowerCamelCase_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCamelCase__ : int = tokenizer.decode(out_s.input_ids ) lowerCamelCase__ : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0], lowerCamelCase_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [self.get_tokenizer(do_lower_case=lowerCamelCase_, add_bos_token=lowerCamelCase_ )] for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Optional[Any] = 'Encode this.' lowerCamelCase__ : Optional[Any] = 'This one too please.' lowerCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) encoded_sequence += tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tokenizer.encode_plus( lowerCamelCase_, lowerCamelCase_, add_special_tokens=lowerCamelCase_, return_special_tokens_mask=lowerCamelCase_, ) lowerCamelCase__ : str = encoded_sequence_dict['input_ids'] lowerCamelCase__ : Any = encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) lowerCamelCase__ : Any = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(lowerCamelCase_ ) ] lowerCamelCase__ : List[str] = [x for x in filtered_sequence if x is not None] self.assertEqual(lowerCamelCase_, lowerCamelCase_ ) @require_tokenizers class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = AutoTokenizer.from_pretrained('facebook/opt-350m', from_slow=lowerCamelCase_ ) lowerCamelCase__ : Tuple = 'A photo of a cat' lowerCamelCase__ : Tuple = tokenizer.encode( lowerCamelCase_, ) self.assertEqual(lowerCamelCase_, [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('test_opt' ) lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('./test_opt' ) lowerCamelCase__ : Any = tokenizer.encode( lowerCamelCase_, ) self.assertEqual(lowerCamelCase_, [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = AutoTokenizer.from_pretrained('facebook/opt-350m', use_slow=lowerCamelCase_ ) lowerCamelCase__ : int = 'A photo of a cat' lowerCamelCase__ : Optional[Any] = tokenizer.encode( lowerCamelCase_, ) # Same as above self.assertEqual(lowerCamelCase_, [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = AutoTokenizer.from_pretrained('facebook/opt-350m', from_slow=lowerCamelCase_ ) lowerCamelCase__ : Dict = 'bos' lowerCamelCase__ : List[Any] = tokenizer.get_vocab()['bos'] lowerCamelCase__ : List[Any] = 'A photo of a cat' lowerCamelCase__ : Dict = tokenizer.encode( lowerCamelCase_, ) # We changed the bos token self.assertEqual(lowerCamelCase_, [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('./tok' ) lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) lowerCamelCase__ : Dict = tokenizer.encode( lowerCamelCase_, ) self.assertEqual(lowerCamelCase_, [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
353
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) lowerCamelCase__ : int = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowerCamelCase__ : str = True for i in range(1 , s + 1 ): lowerCamelCase__ : Any = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowerCamelCase__ : Union[str, Any] = dp[i][j - 1] if arr[i - 1] <= j: lowerCamelCase__ : Dict = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowerCamelCase__ : List[Any] = s - 2 * j break return diff
354
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while b: lowerCamelCase__ : Dict = b, a % b return a def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return a if b == 0 else euclidean_gcd_recursive(_lowerCamelCase , a % b ) def lowerCamelCase_ ( ): print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
355
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : UNetaDModel lowerCamelCase__ : ScoreSdeVeScheduler def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 2_0_0_0, lowerCamelCase_ = None, lowerCamelCase_ = "pil", lowerCamelCase_ = True, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Tuple = self.unet.config.sample_size lowerCamelCase__ : Dict = (batch_size, 3, img_size, img_size) lowerCamelCase__ : List[Any] = self.unet lowerCamelCase__ : Optional[Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_ ) * self.scheduler.init_noise_sigma lowerCamelCase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) self.scheduler.set_sigmas(lowerCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCamelCase__ : int = self.scheduler.sigmas[i] * torch.ones(shape[0], device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCamelCase__ : Optional[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample lowerCamelCase__ : List[str] = self.scheduler.step_correct(lowerCamelCase_, lowerCamelCase_, generator=lowerCamelCase_ ).prev_sample # prediction step lowerCamelCase__ : List[Any] = model(lowerCamelCase_, lowerCamelCase_ ).sample lowerCamelCase__ : Any = self.scheduler.step_pred(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, generator=lowerCamelCase_ ) lowerCamelCase__ : Any = output.prev_sample, output.prev_sample_mean lowerCamelCase__ : Union[str, Any] = sample_mean.clamp(0, 1 ) lowerCamelCase__ : Optional[Any] = sample.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowerCamelCase__ : Optional[Any] = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase_ )
356
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
0
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
357
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
0
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
358
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
0
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ : Tuple = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[str] = PegasusTokenizer lowerCamelCase__ : Dict = PegasusTokenizerFast lowerCamelCase__ : Tuple = True lowerCamelCase__ : Optional[Any] = True def a__ (self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : Union[str, Any] = PegasusTokenizer(lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ("This is a test", "This is a test") def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = '</s>' lowerCamelCase__ : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ), lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ), lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '<pad>' ) self.assertEqual(vocab_keys[1], '</s>' ) self.assertEqual(vocab_keys[-1], 'v' ) self.assertEqual(len(lowerCamelCase_ ), 1_1_0_3 ) def a__ (self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1_1_0_3 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase__ : Optional[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCamelCase__ : Any = rust_tokenizer([raw_input_str], return_tensors=lowerCamelCase_, add_special_tokens=lowerCamelCase_ ).input_ids[0] lowerCamelCase__ : Any = py_tokenizer([raw_input_str], return_tensors=lowerCamelCase_, add_special_tokens=lowerCamelCase_ ).input_ids[0] self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase__ : Optional[Any] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCamelCase__ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase__ : Union[str, Any] = tokenizer([raw_input_str], return_tensors=lowerCamelCase_ ).input_ids[0] self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCamelCase__ : List[str] = 'To ensure a smooth flow of bank resolutions.' lowerCamelCase__ : int = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase__ : List[Any] = tokenizer([raw_input_str], return_tensors=lowerCamelCase_ ).input_ids[0] self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['This is going to be way too long.' * 1_5_0, 'short example'] lowerCamelCase__ : Optional[Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCamelCase__ : Optional[int] = self._large_tokenizer(lowerCamelCase_, padding=lowerCamelCase_, truncation=lowerCamelCase_, return_tensors='pt' ) lowerCamelCase__ : Any = self._large_tokenizer( text_target=lowerCamelCase_, max_length=5, padding=lowerCamelCase_, truncation=lowerCamelCase_, return_tensors='pt' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase_ ) == 2 # input_ids, attention_mask. @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = {'input_ids': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_, model_name='google/bigbird-pegasus-large-arxiv', revision='ba85d0851d708441f91440d509690f1ab6353415', ) @require_sentencepiece @require_tokenizers class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[str] = PegasusTokenizer lowerCamelCase__ : List[str] = PegasusTokenizerFast lowerCamelCase__ : Dict = True lowerCamelCase__ : str = True def a__ (self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : Optional[Any] = PegasusTokenizer(lowerCamelCase_, offset=0, mask_token_sent=lowerCamelCase_, mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ (self ): '''simple docstring''' return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def a__ (self, **lowerCamelCase_ ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ("This is a test", "This is a test") def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase__ : str = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase__ : Optional[int] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCamelCase__ : List[str] = rust_tokenizer([raw_input_str], return_tensors=lowerCamelCase_, add_special_tokens=lowerCamelCase_ ).input_ids[0] lowerCamelCase__ : Optional[int] = py_tokenizer([raw_input_str], return_tensors=lowerCamelCase_, add_special_tokens=lowerCamelCase_ ).input_ids[0] self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) @require_torch def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ['This is going to be way too long.' * 1_0_0_0, 'short example'] lowerCamelCase__ : Tuple = ['not super long but more than 5 tokens', 'tiny'] lowerCamelCase__ : Optional[Any] = self._large_tokenizer(lowerCamelCase_, padding=lowerCamelCase_, truncation=lowerCamelCase_, return_tensors='pt' ) lowerCamelCase__ : Any = self._large_tokenizer( text_target=lowerCamelCase_, max_length=5, padding=lowerCamelCase_, truncation=lowerCamelCase_, return_tensors='pt' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase_ ) == 2 # input_ids, attention_mask. def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCamelCase__ : List[Any] = self._large_tokenizer(lowerCamelCase_ ).input_ids self.assertListEqual( lowerCamelCase_, [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1], )
359
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
0
import string from math import logaa def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) lowerCamelCase__ : str = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCamelCase__ : int = corpus_without_punctuation.split('\n' ) lowerCamelCase__ : int = term.lower() return (len([doc for doc in docs if term in doc] ), len(_lowerCamelCase )) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return round(tf * idf , 3 )
360
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
0
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Dict = np.inf def set_batch_size(_lowerCamelCase ) -> None: nonlocal batch_size if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary": lowerCamelCase__ : str = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowerCamelCase , _lowerCamelCase ) return None if batch_size is np.inf else batch_size class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = False, lowerCamelCase_ = False, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' super().__init__( lowerCamelCase_, split=lowerCamelCase_, features=lowerCamelCase_, cache_dir=lowerCamelCase_, keep_in_memory=lowerCamelCase_, streaming=lowerCamelCase_, num_proc=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : str = path_or_paths if isinstance(lowerCamelCase_, lowerCamelCase_ ) else {self.split: path_or_paths} lowerCamelCase__ : Optional[Any] = _PACKAGED_DATASETS_MODULES['parquet'][1] lowerCamelCase__ : List[Any] = Parquet( cache_dir=lowerCamelCase_, data_files=lowerCamelCase_, features=lowerCamelCase_, hash=lowerCamelCase_, **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' if self.streaming: lowerCamelCase__ : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCamelCase__ : str = None lowerCamelCase__ : str = None lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = None self.builder.download_and_prepare( download_config=lowerCamelCase_, download_mode=lowerCamelCase_, verification_mode=lowerCamelCase_, base_path=lowerCamelCase_, num_proc=self.num_proc, ) lowerCamelCase__ : List[str] = self.builder.as_dataset( split=self.split, verification_mode=lowerCamelCase_, in_memory=self.keep_in_memory ) return dataset class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Optional[int] = dataset lowerCamelCase__ : List[Any] = path_or_buf lowerCamelCase__ : Tuple = batch_size or get_writer_batch_size(dataset.features ) lowerCamelCase__ : str = parquet_writer_kwargs def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf, (str, bytes, os.PathLike) ): with open(self.path_or_buf, 'wb+' ) as buffer: lowerCamelCase__ : List[str] = self._write(file_obj=lowerCamelCase_, batch_size=lowerCamelCase_, **self.parquet_writer_kwargs ) else: lowerCamelCase__ : int = self._write(file_obj=self.path_or_buf, batch_size=lowerCamelCase_, **self.parquet_writer_kwargs ) return written def a__ (self, lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = 0 lowerCamelCase__ : List[str] = parquet_writer_kwargs.pop('path_or_buf', lowerCamelCase_ ) lowerCamelCase__ : str = self.dataset.features.arrow_schema lowerCamelCase__ : str = pq.ParquetWriter(lowerCamelCase_, schema=lowerCamelCase_, **lowerCamelCase_ ) for offset in logging.tqdm( range(0, len(self.dataset ), lowerCamelCase_ ), unit='ba', disable=not logging.is_progress_bar_enabled(), desc='Creating parquet from Arrow format', ): lowerCamelCase__ : List[Any] = query_table( table=self.dataset._data, key=slice(lowerCamelCase_, offset + batch_size ), indices=self.dataset._indices if self.dataset._indices is not None else None, ) writer.write_table(lowerCamelCase_ ) written += batch.nbytes writer.close() return written
361
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
0
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if len(_lowerCamelCase ) != 2 or len(a[0] ) != 2 or len(_lowerCamelCase ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) lowerCamelCase__ : Optional[int] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_lowerCamelCase ) ) ] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_lowerCamelCase ) ) ] def lowerCamelCase_ ( _lowerCamelCase ): if len(_lowerCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) lowerCamelCase__ : Union[str, Any] = len(_lowerCamelCase ) lowerCamelCase__ : Any = matrix_length // 2 lowerCamelCase__ : Tuple = [[a[i][j] for j in range(_lowerCamelCase , _lowerCamelCase )] for i in range(_lowerCamelCase )] lowerCamelCase__ : str = [ [a[i][j] for j in range(_lowerCamelCase , _lowerCamelCase )] for i in range(_lowerCamelCase , _lowerCamelCase ) ] lowerCamelCase__ : Dict = [[a[i][j] for j in range(_lowerCamelCase )] for i in range(_lowerCamelCase )] lowerCamelCase__ : List[str] = [[a[i][j] for j in range(_lowerCamelCase )] for i in range(_lowerCamelCase , _lowerCamelCase )] return top_left, top_right, bot_left, bot_right def lowerCamelCase_ ( _lowerCamelCase ): return len(_lowerCamelCase ), len(matrix[0] ) def lowerCamelCase_ ( _lowerCamelCase ): print('\n'.join(str(_lowerCamelCase ) for line in matrix ) ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if matrix_dimensions(_lowerCamelCase ) == (2, 2): return default_matrix_multiplication(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Tuple = split_matrix(_lowerCamelCase ) lowerCamelCase__ : int = split_matrix(_lowerCamelCase ) lowerCamelCase__ : Dict = actual_strassen(_lowerCamelCase , matrix_subtraction(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ : Tuple = actual_strassen(matrix_addition(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) lowerCamelCase__ : Optional[int] = actual_strassen(matrix_addition(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) lowerCamelCase__ : int = actual_strassen(_lowerCamelCase , matrix_subtraction(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ : Any = actual_strassen(matrix_addition(_lowerCamelCase , _lowerCamelCase ) , matrix_addition(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ : Any = actual_strassen(matrix_subtraction(_lowerCamelCase , _lowerCamelCase ) , matrix_addition(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ : List[str] = actual_strassen(matrix_subtraction(_lowerCamelCase , _lowerCamelCase ) , matrix_addition(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ : int = matrix_addition(matrix_subtraction(matrix_addition(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) , _lowerCamelCase ) lowerCamelCase__ : Dict = matrix_addition(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : List[Any] = matrix_addition(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Dict = matrix_subtraction(matrix_subtraction(matrix_addition(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) , _lowerCamelCase ) # construct the new matrix from our 4 quadrants lowerCamelCase__ : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(_lowerCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if matrix_dimensions(_lowerCamelCase )[1] != matrix_dimensions(_lowerCamelCase )[0]: lowerCamelCase__ : List[Any] = ( 'Unable to multiply these matrices, please check the dimensions.\n' f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = matrix_dimensions(_lowerCamelCase ) lowerCamelCase__ : Dict = matrix_dimensions(_lowerCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowerCamelCase__ : int = max(*_lowerCamelCase , *_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = int(math.pow(2 , math.ceil(math.loga(_lowerCamelCase ) ) ) ) lowerCamelCase__ : Union[str, Any] = matrixa lowerCamelCase__ : Union[str, Any] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , _lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , _lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowerCamelCase__ : List[str] = actual_strassen(_lowerCamelCase , _lowerCamelCase ) # Removing the additional zeros for i in range(0 , _lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _lowerCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A_ : Dict = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A_ : Union[str, Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
362
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
0
from math import pow def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count lowerCamelCase__ : Dict = int(pow(_lowerCamelCase , _lowerCamelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n lowerCamelCase__ : List[Any] = backtrack( _lowerCamelCase , _lowerCamelCase , current_number + 1 , _lowerCamelCase , _lowerCamelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. lowerCamelCase__ : List[str] = backtrack( _lowerCamelCase , _lowerCamelCase , current_number + 1 , _lowerCamelCase , _lowerCamelCase ) return current_sum, solutions_count def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(_lowerCamelCase , _lowerCamelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[str] = '' for i in table: res += inp[i - 1] return res def lowerCamelCase_ ( _lowerCamelCase ): return data[1:] + data[0] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : str = '' for i in range(len(_lowerCamelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Dict = int('0b' + data[0] + data[-1] , 2 ) lowerCamelCase__ : List[str] = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : int = message[:4] lowerCamelCase__ : Tuple = message[4:] lowerCamelCase__ : Optional[int] = apply_table(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = xor(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : List[str] = apply_sbox(_lowerCamelCase , temp[:4] ) # noqa: E741 lowerCamelCase__ : Optional[Any] = apply_sbox(_lowerCamelCase , temp[4:] ) lowerCamelCase__ : List[str] = '0' * (2 - len(_lowerCamelCase )) + l # noqa: E741 lowerCamelCase__ : Dict = '0' * (2 - len(_lowerCamelCase )) + r lowerCamelCase__ : Union[str, Any] = apply_table(l + r , _lowerCamelCase ) lowerCamelCase__ : List[str] = xor(_lowerCamelCase , _lowerCamelCase ) return temp + right if __name__ == "__main__": A_ : str = input("Enter 10 bit key: ") A_ : List[str] = input("Enter 8 bit message: ") A_ : Optional[Any] = [6, 3, 7, 4, 8, 5, 10, 9] A_ : List[str] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] A_ : List[Any] = [2, 4, 3, 1] A_ : Tuple = [2, 6, 3, 1, 4, 8, 5, 7] A_ : Optional[int] = [4, 1, 3, 5, 7, 2, 8, 6] A_ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] A_ : Union[str, Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] A_ : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation A_ : Optional[Any] = apply_table(key, paa_table) A_ : Any = temp[:5] A_ : Any = temp[5:] A_ : List[str] = left_shift(left) A_ : Union[str, Any] = left_shift(right) A_ : Dict = apply_table(left + right, pa_table) A_ : Optional[int] = left_shift(left) A_ : Union[str, Any] = left_shift(right) A_ : List[Any] = left_shift(left) A_ : str = left_shift(right) A_ : Optional[Any] = apply_table(left + right, pa_table) # encryption A_ : str = apply_table(message, IP) A_ : str = function(expansion, sa, sa, keya, temp) A_ : Union[str, Any] = temp[4:] + temp[:4] A_ : List[str] = function(expansion, sa, sa, keya, temp) A_ : int = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption A_ : int = apply_table(CT, IP) A_ : Any = function(expansion, sa, sa, keya, temp) A_ : str = temp[4:] + temp[:4] A_ : List[Any] = function(expansion, sa, sa, keya, temp) A_ : List[str] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
364
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
0
"""simple docstring""" from math import pi, sqrt def lowerCamelCase_ ( _lowerCamelCase ): if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(_lowerCamelCase ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(_lowerCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowerCamelCase_ ( ): assert gamma(0.5 ) == sqrt(_lowerCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() A_ : Any = 1.0 while num: A_ : Tuple = float(input("Gamma of: ")) print(f"gamma({num}) = {gamma(num)}") print("\nEnter 0 to exit...")
365
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : str = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['pixel_values'] def __init__(self, lowerCamelCase_ = True, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = PILImageResampling.BILINEAR, lowerCamelCase_ = True, lowerCamelCase_ = 1 / 2_5_5, lowerCamelCase_ = True, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = size if size is not None else {'shortest_edge': 3_8_4} lowerCamelCase__ : List[str] = get_size_dict(lowerCamelCase_, default_to_square=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = do_resize lowerCamelCase__ : str = size # Default value set here for backwards compatibility where the value in config is None lowerCamelCase__ : str = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 lowerCamelCase__ : List[Any] = resample lowerCamelCase__ : Optional[int] = do_rescale lowerCamelCase__ : Union[str, Any] = rescale_factor lowerCamelCase__ : List[str] = do_normalize lowerCamelCase__ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = PILImageResampling.BICUBIC, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[str] = get_size_dict(lowerCamelCase_, default_to_square=lowerCamelCase_ ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) lowerCamelCase__ : Optional[int] = size['shortest_edge'] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowerCamelCase__ : List[str] = int(shortest_edge / crop_pct ) lowerCamelCase__ : Tuple = get_resize_output_image_size(lowerCamelCase_, size=lowerCamelCase_, default_to_square=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = resize(image=lowerCamelCase_, size=lowerCamelCase_, resample=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase_, size=(shortest_edge, shortest_edge), data_format=lowerCamelCase_, **lowerCamelCase_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase_, size=(shortest_edge, shortest_edge), resample=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' return rescale(lowerCamelCase_, scale=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' return normalize(lowerCamelCase_, mean=lowerCamelCase_, std=lowerCamelCase_, data_format=lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = ChannelDimension.FIRST, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : int = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : Union[str, Any] = crop_pct if crop_pct is not None else self.crop_pct lowerCamelCase__ : str = resample if resample is not None else self.resample lowerCamelCase__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : Optional[Any] = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : Tuple = image_std if image_std is not None else self.image_std lowerCamelCase__ : str = size if size is not None else self.size lowerCamelCase__ : Tuple = get_size_dict(lowerCamelCase_, default_to_square=lowerCamelCase_ ) lowerCamelCase__ : int = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError('crop_pct must be specified if size < 384.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase__ : Any = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: lowerCamelCase__ : Optional[int] = [self.resize(image=lowerCamelCase_, size=lowerCamelCase_, crop_pct=lowerCamelCase_, resample=lowerCamelCase_ ) for image in images] if do_rescale: lowerCamelCase__ : Optional[Any] = [self.rescale(image=lowerCamelCase_, scale=lowerCamelCase_ ) for image in images] if do_normalize: lowerCamelCase__ : Tuple = [self.normalize(image=lowerCamelCase_, mean=lowerCamelCase_, std=lowerCamelCase_ ) for image in images] lowerCamelCase__ : Optional[Any] = [to_channel_dimension_format(lowerCamelCase_, lowerCamelCase_ ) for image in images] lowerCamelCase__ : List[str] = {'pixel_values': images} return BatchFeature(data=lowerCamelCase_, tensor_type=lowerCamelCase_ )
366
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[int] = IFInpaintingSuperResolutionPipeline lowerCamelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCamelCase__ : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCamelCase__ : Optional[Any] = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ): '''simple docstring''' return self._get_superresolution_dummy_components() def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Tuple = floats_tensor((1, 3, 1_6, 1_6), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = floats_tensor((1, 3, 3_2, 3_2), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = floats_tensor((1, 3, 3_2, 3_2), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def a__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def a__ (self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' ) def a__ (self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def a__ (self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def a__ (self ): '''simple docstring''' self._test_save_load_local() def a__ (self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2, )
367
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=0.0, lowerCamelCase_ = None, lowerCamelCase_ = "geglu", lowerCamelCase_ = None, lowerCamelCase_ = False, lowerCamelCase_ = False, lowerCamelCase_ = False, lowerCamelCase_ = False, lowerCamelCase_ = True, lowerCamelCase_ = "layer_norm", lowerCamelCase_ = False, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Union[str, Any] = only_cross_attention lowerCamelCase__ : Dict = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' lowerCamelCase__ : Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: lowerCamelCase__ : Optional[int] = AdaLayerNorm(lowerCamelCase_, lowerCamelCase_ ) elif self.use_ada_layer_norm_zero: lowerCamelCase__ : Optional[int] = AdaLayerNormZero(lowerCamelCase_, lowerCamelCase_ ) else: lowerCamelCase__ : List[Any] = nn.LayerNorm(lowerCamelCase_, elementwise_affine=lowerCamelCase_ ) lowerCamelCase__ : List[str] = Attention( query_dim=lowerCamelCase_, heads=lowerCamelCase_, dim_head=lowerCamelCase_, dropout=lowerCamelCase_, bias=lowerCamelCase_, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=lowerCamelCase_, ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. lowerCamelCase__ : Optional[int] = ( AdaLayerNorm(lowerCamelCase_, lowerCamelCase_ ) if self.use_ada_layer_norm else nn.LayerNorm(lowerCamelCase_, elementwise_affine=lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = Attention( query_dim=lowerCamelCase_, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=lowerCamelCase_, dim_head=lowerCamelCase_, dropout=lowerCamelCase_, bias=lowerCamelCase_, upcast_attention=lowerCamelCase_, ) # is self-attn if encoder_hidden_states is none else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Dict = None # 3. Feed-forward lowerCamelCase__ : str = nn.LayerNorm(lowerCamelCase_, elementwise_affine=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = FeedForward(lowerCamelCase_, dropout=lowerCamelCase_, activation_fn=lowerCamelCase_, final_dropout=lowerCamelCase_ ) # let chunk size default to None lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : str = 0 def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = chunk_size lowerCamelCase__ : Optional[Any] = dim def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = None, ): '''simple docstring''' if self.use_ada_layer_norm: lowerCamelCase__ : Optional[int] = self.norma(lowerCamelCase_, lowerCamelCase_ ) elif self.use_ada_layer_norm_zero: lowerCamelCase__ : Tuple = self.norma( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, hidden_dtype=hidden_states.dtype ) else: lowerCamelCase__ : int = self.norma(lowerCamelCase_ ) lowerCamelCase__ : Any = cross_attention_kwargs if cross_attention_kwargs is not None else {} lowerCamelCase__ : str = self.attna( lowerCamelCase_, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=lowerCamelCase_, **lowerCamelCase_, ) if self.use_ada_layer_norm_zero: lowerCamelCase__ : int = gate_msa.unsqueeze(1 ) * attn_output lowerCamelCase__ : Union[str, Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: lowerCamelCase__ : Tuple = ( self.norma(lowerCamelCase_, lowerCamelCase_ ) if self.use_ada_layer_norm else self.norma(lowerCamelCase_ ) ) lowerCamelCase__ : Dict = self.attna( lowerCamelCase_, encoder_hidden_states=lowerCamelCase_, attention_mask=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : str = attn_output + hidden_states # 3. Feed-forward lowerCamelCase__ : Optional[int] = self.norma(lowerCamelCase_ ) if self.use_ada_layer_norm_zero: lowerCamelCase__ : Optional[Any] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) lowerCamelCase__ : int = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size lowerCamelCase__ : Optional[Any] = torch.cat( [self.ff(lowerCamelCase_ ) for hid_slice in norm_hidden_states.chunk(lowerCamelCase_, dim=self._chunk_dim )], dim=self._chunk_dim, ) else: lowerCamelCase__ : List[str] = self.ff(lowerCamelCase_ ) if self.use_ada_layer_norm_zero: lowerCamelCase__ : Optional[Any] = gate_mlp.unsqueeze(1 ) * ff_output lowerCamelCase__ : int = ff_output + hidden_states return hidden_states class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = 4, lowerCamelCase_ = 0.0, lowerCamelCase_ = "geglu", lowerCamelCase_ = False, ): '''simple docstring''' super().__init__() lowerCamelCase__ : Tuple = int(dim * mult ) lowerCamelCase__ : List[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": lowerCamelCase__ : Optional[Any] = GELU(lowerCamelCase_, lowerCamelCase_ ) if activation_fn == "gelu-approximate": lowerCamelCase__ : Dict = GELU(lowerCamelCase_, lowerCamelCase_, approximate='tanh' ) elif activation_fn == "geglu": lowerCamelCase__ : str = GEGLU(lowerCamelCase_, lowerCamelCase_ ) elif activation_fn == "geglu-approximate": lowerCamelCase__ : Dict = ApproximateGELU(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = nn.ModuleList([] ) # project in self.net.append(lowerCamelCase_ ) # project dropout self.net.append(nn.Dropout(lowerCamelCase_ ) ) # project out self.net.append(nn.Linear(lowerCamelCase_, lowerCamelCase_ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(lowerCamelCase_ ) ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' for module in self.net: lowerCamelCase__ : Optional[Any] = module(lowerCamelCase_ ) return hidden_states class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = "none" ): '''simple docstring''' super().__init__() lowerCamelCase__ : Optional[int] = nn.Linear(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : str = approximate def a__ (self, lowerCamelCase_ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(lowerCamelCase_, approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ), approximate=self.approximate ).to(dtype=gate.dtype ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.proj(lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.gelu(lowerCamelCase_ ) return hidden_states class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() lowerCamelCase__ : Union[str, Any] = nn.Linear(lowerCamelCase_, dim_out * 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(lowerCamelCase_ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.proj(lowerCamelCase_ ).chunk(2, dim=-1 ) return hidden_states * self.gelu(lowerCamelCase_ ) class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() lowerCamelCase__ : Any = nn.Linear(lowerCamelCase_, lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.proj(lowerCamelCase_ ) return x * torch.sigmoid(1.702 * x ) class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() lowerCamelCase__ : Optional[int] = nn.Embedding(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : str = nn.SiLU() lowerCamelCase__ : int = nn.Linear(lowerCamelCase_, embedding_dim * 2 ) lowerCamelCase__ : Tuple = nn.LayerNorm(lowerCamelCase_, elementwise_affine=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.linear(self.silu(self.emb(lowerCamelCase_ ) ) ) lowerCamelCase__ : Optional[Any] = torch.chunk(lowerCamelCase_, 2 ) lowerCamelCase__ : Optional[int] = self.norm(lowerCamelCase_ ) * (1 + scale) + shift return x class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() lowerCamelCase__ : Tuple = CombinedTimestepLabelEmbeddings(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[Any] = nn.SiLU() lowerCamelCase__ : List[Any] = nn.Linear(lowerCamelCase_, 6 * embedding_dim, bias=lowerCamelCase_ ) lowerCamelCase__ : int = nn.LayerNorm(lowerCamelCase_, elementwise_affine=lowerCamelCase_, eps=1e-6 ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=None ): '''simple docstring''' lowerCamelCase__ : Tuple = self.linear(self.silu(self.emb(lowerCamelCase_, lowerCamelCase_, hidden_dtype=lowerCamelCase_ ) ) ) lowerCamelCase__ : str = emb.chunk(6, dim=1 ) lowerCamelCase__ : List[str] = self.norm(lowerCamelCase_ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class a_ ( nn.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = 1e-5 ): '''simple docstring''' super().__init__() lowerCamelCase__ : Optional[Any] = num_groups lowerCamelCase__ : List[Any] = eps if act_fn is None: lowerCamelCase__ : int = None else: lowerCamelCase__ : Optional[int] = get_activation(lowerCamelCase_ ) lowerCamelCase__ : List[str] = nn.Linear(lowerCamelCase_, out_dim * 2 ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self.act: lowerCamelCase__ : List[Any] = self.act(lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.linear(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = emb[:, :, None, None] lowerCamelCase__ : List[str] = emb.chunk(2, dim=1 ) lowerCamelCase__ : int = F.group_norm(lowerCamelCase_, self.num_groups, eps=self.eps ) lowerCamelCase__ : Optional[int] = x * (1 + scale) + shift return x
368
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
0
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=7 ): lowerCamelCase__ : List[str] = None if token is not None: lowerCamelCase__ : Dict = {'Accept': 'application/vnd.github+json', 'Authorization': f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowerCamelCase__ : List[Any] = '636036' lowerCamelCase__ : int = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowerCamelCase__ : Optional[int] = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() return result["workflow_runs"] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = get_daily_ci_runs(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowerCamelCase__ : int = workflow_run['id'] break return workflow_run_id def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = get_last_daily_ci_runs(_lowerCamelCase ) if workflow_run_id is not None: lowerCamelCase__ : Optional[Any] = get_artifacts_links(worflow_run_id=_lowerCamelCase , token=_lowerCamelCase ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowerCamelCase__ : int = artifacts_links[artifact_name] download_artifact( artifact_name=_lowerCamelCase , artifact_url=_lowerCamelCase , output_dir=_lowerCamelCase , token=_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): get_last_daily_ci_artifacts(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Optional[Any] = {} for artifact_name in artifact_names: lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''{artifact_name}.zip''' ) if os.path.isfile(_lowerCamelCase ): lowerCamelCase__ : Dict = {} with zipfile.ZipFile(_lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase ): # read the file with z.open(_lowerCamelCase ) as f: lowerCamelCase__ : str = f.read().decode('UTF-8' ) return results
369
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True lowerCamelCase__ : str = 4 lowerCamelCase__ : List[str] = (1 << p) - 1 for _ in range(p - 2 ): lowerCamelCase__ : Any = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" from functools import reduce A_ : Dict = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCamelCase_ ( _lowerCamelCase = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda _lowerCamelCase , _lowerCamelCase : str(int(_lowerCamelCase ) * int(_lowerCamelCase ) ) , n[i : i + 13] ) ) for i in range(len(_lowerCamelCase ) - 12 ) ) if __name__ == "__main__": print(f"{solution() = }")
371
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=9_9, lowerCamelCase_=1_3, lowerCamelCase_=1_6, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=True, lowerCamelCase_=2, lowerCamelCase_=3_2, lowerCamelCase_=4, lowerCamelCase_=4, lowerCamelCase_=3_0, lowerCamelCase_=0, lowerCamelCase_=1, lowerCamelCase_=2, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : List[str] = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Dict = decoder_seq_length # For common tests lowerCamelCase__ : int = self.decoder_seq_length lowerCamelCase__ : str = is_training lowerCamelCase__ : Optional[Any] = use_attention_mask lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : int = vocab_size lowerCamelCase__ : List[Any] = d_model lowerCamelCase__ : Union[str, Any] = d_model lowerCamelCase__ : Union[str, Any] = decoder_layers lowerCamelCase__ : Optional[int] = decoder_layers lowerCamelCase__ : List[Any] = decoder_ffn_dim lowerCamelCase__ : int = decoder_attention_heads lowerCamelCase__ : List[str] = decoder_attention_heads lowerCamelCase__ : str = eos_token_id lowerCamelCase__ : int = bos_token_id lowerCamelCase__ : List[Any] = pad_token_id lowerCamelCase__ : Any = decoder_start_token_id lowerCamelCase__ : Tuple = use_cache lowerCamelCase__ : int = max_position_embeddings lowerCamelCase__ : Dict = None lowerCamelCase__ : Any = decoder_seq_length lowerCamelCase__ : List[Any] = 2 lowerCamelCase__ : int = 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size ) lowerCamelCase__ : str = None if self.use_attention_mask: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2 ) lowerCamelCase__ : Optional[Any] = None if self.use_labels: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size ) lowerCamelCase__ : Any = TrOCRConfig( vocab_size=self.vocab_size, d_model=self.d_model, decoder_layers=self.decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, decoder_attention_heads=self.decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, max_position_embeddings=self.max_position_embeddings, ) return (config, input_ids, attention_mask, lm_labels) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : int = True lowerCamelCase__ : str = TrOCRDecoder(config=lowerCamelCase_ ).to(lowerCamelCase_ ).eval() lowerCamelCase__ : str = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, use_cache=lowerCamelCase_ ) self.parent.assertTrue(len(lowerCamelCase_ ) == len(lowerCamelCase_ ) ) self.parent.assertTrue(len(lowerCamelCase_ ) == len(lowerCamelCase_ ) + 1 ) lowerCamelCase__ : Tuple = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Dict = ids_tensor((2, 1), config.vocab_size - 1 ) + 1 # append to next input_ids and lowerCamelCase__ : str = torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : List[str] = model(lowerCamelCase_ )['last_hidden_state'] lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, past_key_values=lowerCamelCase_ )['last_hidden_state'] # select random slice lowerCamelCase__ : Tuple = ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowerCamelCase__ : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1e-3 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[int] = config_and_inputs lowerCamelCase__ : Dict = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase__ : Tuple = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase__ : Optional[Any] = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : str = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = TrOCRStandaloneDecoderModelTester(self, is_training=lowerCamelCase_ ) lowerCamelCase__ : List[Any] = ConfigTester(self, config_class=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def a__ (self ): '''simple docstring''' pass
350
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): """simple docstring""" if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError('Input value must be a \'int\' type' ) return bin(_lowerCamelCase ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ : List[Any] = logging.get_logger(__name__) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ): lowerCamelCase__ : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for i in range(config.num_hidden_layers ): lowerCamelCase__ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : int = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) lowerCamelCase__ : Any = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] lowerCamelCase__ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : str = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = dct.pop(_lowerCamelCase ) lowerCamelCase__ : str = val @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Tuple = False if "vqa" in checkpoint_url: lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : Tuple = 3129 lowerCamelCase__ : List[Any] = 'huggingface/label-files' lowerCamelCase__ : int = 'vqa2-id2label.json' lowerCamelCase__ : Tuple = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : Optional[int] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : List[str] = idalabel lowerCamelCase__ : str = {v: k for k, v in idalabel.items()} lowerCamelCase__ : Dict = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: lowerCamelCase__ : Tuple = True lowerCamelCase__ : Tuple = 2 lowerCamelCase__ : Union[str, Any] = {0: 'False', 1: 'True'} lowerCamelCase__ : Tuple = {v: k for k, v in config.idalabel.items()} lowerCamelCase__ : Dict = 3 lowerCamelCase__ : str = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: lowerCamelCase__ : Any = True lowerCamelCase__ : Dict = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: lowerCamelCase__ : List[Any] = True lowerCamelCase__ : List[str] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys lowerCamelCase__ : Dict = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location='cpu' )['state_dict'] lowerCamelCase__ : Optional[int] = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: lowerCamelCase__ : Tuple = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: lowerCamelCase__ : List[Any] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor lowerCamelCase__ : int = ViltImageProcessor(size=384 ) lowerCamelCase__ : List[Any] = BertTokenizer.from_pretrained('bert-base-uncased' ) lowerCamelCase__ : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: lowerCamelCase__ : str = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_lowerCamelCase ).raw ) lowerCamelCase__ : int = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_lowerCamelCase ).raw ) lowerCamelCase__ : str = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) lowerCamelCase__ : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors='pt' ) lowerCamelCase__ : List[Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors='pt' ) lowerCamelCase__ : Tuple = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowerCamelCase__ : Optional[Any] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=_lowerCamelCase ).raw ) if mlm_model: lowerCamelCase__ : Tuple = 'a bunch of [MASK] laying on a [MASK].' else: lowerCamelCase__ : Tuple = 'How many cats are there?' lowerCamelCase__ : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors='pt' ) lowerCamelCase__ : List[Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: lowerCamelCase__ : Dict = torch.Size([1, 11, 3_0522] ) lowerCamelCase__ : int = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" lowerCamelCase__ : str = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowerCamelCase__ : Any = torch.Size([1, 3129] ) lowerCamelCase__ : List[str] = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" lowerCamelCase__ : Optional[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowerCamelCase__ : List[str] = torch.Size([1, 2] ) lowerCamelCase__ : Optional[int] = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A_ : Optional[Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
352
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class a_ : '''simple docstring''' lowerCamelCase__ : Any = PegasusConfig lowerCamelCase__ : Optional[Any] = {} lowerCamelCase__ : int = 'gelu' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=9_9, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=4_0, lowerCamelCase_=2, lowerCamelCase_=1, lowerCamelCase_=0, ): '''simple docstring''' lowerCamelCase__ : Any = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Optional[int] = seq_length lowerCamelCase__ : Tuple = is_training lowerCamelCase__ : Optional[int] = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : Tuple = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : List[str] = eos_token_id lowerCamelCase__ : Dict = pad_token_id lowerCamelCase__ : Optional[Any] = bos_token_id def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) lowerCamelCase__ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) lowerCamelCase__ : Union[str, Any] = tf.concat([input_ids, eos_tensor], axis=1 ) lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Any = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) lowerCamelCase__ : List[str] = prepare_pegasus_inputs_dict(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return config, inputs_dict def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = TFPegasusModel(config=lowerCamelCase_ ).get_decoder() lowerCamelCase__ : Any = inputs_dict['input_ids'] lowerCamelCase__ : Tuple = input_ids[:1, :] lowerCamelCase__ : str = inputs_dict['attention_mask'][:1, :] lowerCamelCase__ : Optional[Any] = inputs_dict['head_mask'] lowerCamelCase__ : str = 1 # first forward pass lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, head_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ : Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : int = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and lowerCamelCase__ : Tuple = tf.concat([input_ids, next_tokens], axis=-1 ) lowerCamelCase__ : List[str] = tf.concat([attention_mask, next_attn_mask], axis=-1 ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ )[0] lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice lowerCamelCase__ : List[str] = int(ids_tensor((1,), output_from_past.shape[-1] ) ) lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__ : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase_, lowerCamelCase_, rtol=1e-3 ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ): """simple docstring""" if attention_mask is None: lowerCamelCase__ : Any = tf.cast(tf.math.not_equal(_lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__ : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () lowerCamelCase__ : int = (TFPegasusForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ : Optional[int] = ( { 'conversational': TFPegasusForConditionalGeneration, 'feature-extraction': TFPegasusModel, 'summarization': TFPegasusForConditionalGeneration, 'text2text-generation': TFPegasusForConditionalGeneration, 'translation': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ : int = True lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Tuple = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFPegasusModelTester(self ) lowerCamelCase__ : Tuple = ConfigTester(self, config_class=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[Any] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] lowerCamelCase__ : str = [ 'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to' ' reduce the risk of wildfires.', 'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.', ] # differs slightly from pytorch, likely due to numerical differences in linear layers lowerCamelCase__ : int = 'google/pegasus-xsum' @cached_property def a__ (self ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.translate_src_text(**lowerCamelCase_ ) assert self.expected_text == generated_words def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.tokenizer(self.src_text, **lowerCamelCase_, padding=lowerCamelCase_, return_tensors='tf' ) lowerCamelCase__ : Tuple = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, use_cache=lowerCamelCase_, ) lowerCamelCase__ : Tuple = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=lowerCamelCase_ ) return generated_words @slow def a__ (self ): '''simple docstring''' self._assert_generated_batch_equal_expected()
353
"""simple docstring""" class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = len(lowerCamelCase_ ) lowerCamelCase__ : Any = [0] * len_array if len_array > 0: lowerCamelCase__ : Union[str, Any] = array[0] for i in range(1, lowerCamelCase_ ): lowerCamelCase__ : Optional[int] = self.prefix_sum[i - 1] + array[i] def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCamelCase__ : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowerCamelCase__ : List[str] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowerCamelCase__ : List[str] = subset[i - 1][j] if arr[i - 1] <= j: lowerCamelCase__ : Any = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
0
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : int = SwinConfig() lowerCamelCase__ : List[str] = swin_name.split('_' ) lowerCamelCase__ : Tuple = name_split[1] lowerCamelCase__ : List[str] = int(name_split[4] ) lowerCamelCase__ : List[Any] = int(name_split[3][-1] ) if model_size == "tiny": lowerCamelCase__ : Union[str, Any] = 96 lowerCamelCase__ : Any = (2, 2, 6, 2) lowerCamelCase__ : Union[str, Any] = (3, 6, 12, 24) elif model_size == "small": lowerCamelCase__ : List[Any] = 96 lowerCamelCase__ : List[Any] = (2, 2, 18, 2) lowerCamelCase__ : Any = (3, 6, 12, 24) elif model_size == "base": lowerCamelCase__ : Union[str, Any] = 128 lowerCamelCase__ : List[Any] = (2, 2, 18, 2) lowerCamelCase__ : Union[str, Any] = (4, 8, 16, 32) else: lowerCamelCase__ : int = 192 lowerCamelCase__ : List[str] = (2, 2, 18, 2) lowerCamelCase__ : str = (6, 12, 24, 48) if "in22k" in swin_name: lowerCamelCase__ : Tuple = 2_1841 else: lowerCamelCase__ : List[Any] = 1000 lowerCamelCase__ : Optional[Any] = 'huggingface/label-files' lowerCamelCase__ : Dict = 'imagenet-1k-id2label.json' lowerCamelCase__ : Tuple = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : Dict = {int(_lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Union[str, Any] = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : List[str] = img_size lowerCamelCase__ : Tuple = num_classes lowerCamelCase__ : Optional[Any] = embed_dim lowerCamelCase__ : List[Any] = depths lowerCamelCase__ : Optional[int] = num_heads lowerCamelCase__ : Optional[int] = window_size return config def lowerCamelCase_ ( _lowerCamelCase ): if "patch_embed.proj" in name: lowerCamelCase__ : str = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCamelCase__ : Any = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: lowerCamelCase__ : Any = 'encoder.' + name if "attn.proj" in name: lowerCamelCase__ : Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCamelCase__ : List[Any] = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCamelCase__ : Tuple = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCamelCase__ : str = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCamelCase__ : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase__ : Optional[int] = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": lowerCamelCase__ : Any = 'layernorm.weight' if name == "norm.bias": lowerCamelCase__ : str = 'layernorm.bias' if "head" in name: lowerCamelCase__ : str = name.replace('head' , 'classifier' ) else: lowerCamelCase__ : List[str] = 'swin.' + name return name def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for key in orig_state_dict.copy().keys(): lowerCamelCase__ : int = orig_state_dict.pop(_lowerCamelCase ) if "mask" in key: continue elif "qkv" in key: lowerCamelCase__ : Optional[int] = key.split('.' ) lowerCamelCase__ : Any = int(key_split[1] ) lowerCamelCase__ : List[str] = int(key_split[3] ) lowerCamelCase__ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCamelCase__ : Tuple = val[:dim, :] lowerCamelCase__ : int = val[ dim : dim * 2, : ] lowerCamelCase__ : Optional[Any] = val[-dim:, :] else: lowerCamelCase__ : List[Any] = val[ :dim ] lowerCamelCase__ : List[Any] = val[ dim : dim * 2 ] lowerCamelCase__ : Optional[Any] = val[ -dim: ] else: lowerCamelCase__ : Union[str, Any] = val return orig_state_dict def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Optional[int] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() lowerCamelCase__ : int = get_swin_config(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = SwinForImageClassification(_lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = convert_state_dict(timm_model.state_dict() , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Tuple = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) lowerCamelCase__ : Any = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) lowerCamelCase__ : List[str] = image_processor(images=_lowerCamelCase , return_tensors='pt' ) lowerCamelCase__ : Any = timm_model(inputs['pixel_values'] ) lowerCamelCase__ : Optional[Any] = model(**_lowerCamelCase ).logits assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) print(f'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A_ : List[str] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
355
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Optional[int] = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Any = 'transfo-xl' lowerCamelCase__ : List[str] = ['mems'] lowerCamelCase__ : Dict = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self, lowerCamelCase_=2_6_7_7_3_5, lowerCamelCase_=[2_0_0_0_0, 4_0_0_0_0, 2_0_0_0_0_0], lowerCamelCase_=1_0_2_4, lowerCamelCase_=1_0_2_4, lowerCamelCase_=1_6, lowerCamelCase_=6_4, lowerCamelCase_=4_0_9_6, lowerCamelCase_=4, lowerCamelCase_=False, lowerCamelCase_=1_8, lowerCamelCase_=1_6_0_0, lowerCamelCase_=1_0_0_0, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=0, lowerCamelCase_=-1, lowerCamelCase_=True, lowerCamelCase_=0.1, lowerCamelCase_=0.0, lowerCamelCase_=True, lowerCamelCase_="normal", lowerCamelCase_=0.01, lowerCamelCase_=0.01, lowerCamelCase_=0.02, lowerCamelCase_=1e-5, lowerCamelCase_=0, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : str = vocab_size lowerCamelCase__ : int = [] self.cutoffs.extend(lowerCamelCase_ ) if proj_share_all_but_first: lowerCamelCase__ : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCamelCase__ : str = [False] + [False] * len(self.cutoffs ) lowerCamelCase__ : Dict = d_model lowerCamelCase__ : int = d_embed lowerCamelCase__ : Union[str, Any] = d_head lowerCamelCase__ : List[str] = d_inner lowerCamelCase__ : List[str] = div_val lowerCamelCase__ : Union[str, Any] = pre_lnorm lowerCamelCase__ : Optional[int] = n_layer lowerCamelCase__ : Dict = n_head lowerCamelCase__ : List[Any] = mem_len lowerCamelCase__ : Tuple = same_length lowerCamelCase__ : List[Any] = attn_type lowerCamelCase__ : List[Any] = clamp_len lowerCamelCase__ : Union[str, Any] = sample_softmax lowerCamelCase__ : Union[str, Any] = adaptive lowerCamelCase__ : Optional[int] = dropout lowerCamelCase__ : List[str] = dropatt lowerCamelCase__ : Optional[int] = untie_r lowerCamelCase__ : List[str] = init lowerCamelCase__ : List[str] = init_range lowerCamelCase__ : int = proj_init_std lowerCamelCase__ : List[str] = init_std lowerCamelCase__ : int = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def a__ (self, lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
356
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
0
A_ : Tuple = 2_56 # Modulus to hash a string A_ : str = 1_00_00_03 def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[str] = len(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = len(_lowerCamelCase ) if p_len > t_len: return False lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : Union[str, Any] = 1 # Calculating the hash of pattern and substring of text for i in range(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowerCamelCase__ : Dict = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowerCamelCase__ : List[Any] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowerCamelCase__ : Optional[int] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowerCamelCase_ ( ): lowerCamelCase__ : List[Any] = 'abc1abc12' lowerCamelCase__ : Tuple = 'alskfjaldsabc1abc1abc12k23adsfabcabc' lowerCamelCase__ : Union[str, Any] = 'alskfjaldsk23adsfabcabc' assert rabin_karp(_lowerCamelCase , _lowerCamelCase ) and not rabin_karp(_lowerCamelCase , _lowerCamelCase ) # Test 2) lowerCamelCase__ : List[Any] = 'ABABX' lowerCamelCase__ : Optional[int] = 'ABABZABABYABABX' assert rabin_karp(_lowerCamelCase , _lowerCamelCase ) # Test 3) lowerCamelCase__ : Any = 'AAAB' lowerCamelCase__ : str = 'ABAAAAAB' assert rabin_karp(_lowerCamelCase , _lowerCamelCase ) # Test 4) lowerCamelCase__ : List[Any] = 'abcdabcy' lowerCamelCase__ : List[Any] = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(_lowerCamelCase , _lowerCamelCase ) # Test 5) lowerCamelCase__ : List[Any] = 'Lü' lowerCamelCase__ : Union[str, Any] = 'Lüsai' assert rabin_karp(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : List[Any] = 'Lue' assert not rabin_karp(_lowerCamelCase , _lowerCamelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
357
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A_ : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys A_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
358
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging A_ : Dict = logging.get_logger(__name__) A_ : List[str] = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = 'van' def __init__(self, lowerCamelCase_=2_2_4, lowerCamelCase_=3, lowerCamelCase_=[7, 3, 3, 3], lowerCamelCase_=[4, 2, 2, 2], lowerCamelCase_=[6_4, 1_2_8, 3_2_0, 5_1_2], lowerCamelCase_=[3, 3, 1_2, 3], lowerCamelCase_=[8, 8, 4, 4], lowerCamelCase_="gelu", lowerCamelCase_=0.02, lowerCamelCase_=1e-6, lowerCamelCase_=1e-2, lowerCamelCase_=0.0, lowerCamelCase_=0.0, **lowerCamelCase_, ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = image_size lowerCamelCase__ : Optional[Any] = num_channels lowerCamelCase__ : List[str] = patch_sizes lowerCamelCase__ : int = strides lowerCamelCase__ : Optional[int] = hidden_sizes lowerCamelCase__ : Optional[Any] = depths lowerCamelCase__ : List[str] = mlp_ratios lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Optional[Any] = initializer_range lowerCamelCase__ : List[Any] = layer_norm_eps lowerCamelCase__ : Any = layer_scale_init_value lowerCamelCase__ : Dict = drop_path_rate lowerCamelCase__ : Union[str, Any] = dropout_rate
359
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : str = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Any = 'switch_transformers' lowerCamelCase__ : List[Any] = ['past_key_values'] lowerCamelCase__ : Optional[int] = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__(self, lowerCamelCase_=3_2_1_2_8, lowerCamelCase_=7_6_8, lowerCamelCase_=6_4, lowerCamelCase_=2_0_4_8, lowerCamelCase_=6_4, lowerCamelCase_=1_2, lowerCamelCase_=3, lowerCamelCase_=1_2, lowerCamelCase_=3, lowerCamelCase_=1_2, lowerCamelCase_=8, lowerCamelCase_=False, lowerCamelCase_=0.01, lowerCamelCase_="float32", lowerCamelCase_=False, lowerCamelCase_=3_2, lowerCamelCase_=1_2_8, lowerCamelCase_=0.1, lowerCamelCase_=1e-6, lowerCamelCase_=0.001, lowerCamelCase_=0.001, lowerCamelCase_=1.0, lowerCamelCase_="relu", lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=True, lowerCamelCase_=0, lowerCamelCase_=1, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : Tuple = d_model lowerCamelCase__ : Union[str, Any] = d_kv lowerCamelCase__ : Any = d_ff lowerCamelCase__ : Optional[Any] = num_sparse_encoder_layers lowerCamelCase__ : Union[str, Any] = num_layers lowerCamelCase__ : Optional[int] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCamelCase__ : List[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowerCamelCase__ : str = self.num_layers // self.num_sparse_encoder_layers else: lowerCamelCase__ : Optional[Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowerCamelCase__ : Optional[int] = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowerCamelCase__ : int = self.num_decoder_layers # HACK: this will create 0 sparse layers lowerCamelCase__ : Optional[Any] = num_heads lowerCamelCase__ : int = num_experts lowerCamelCase__ : int = expert_capacity lowerCamelCase__ : str = router_bias lowerCamelCase__ : List[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) lowerCamelCase__ : Optional[Any] = router_dtype lowerCamelCase__ : Optional[Any] = router_ignore_padding_tokens lowerCamelCase__ : Optional[Any] = relative_attention_num_buckets lowerCamelCase__ : int = relative_attention_max_distance lowerCamelCase__ : Union[str, Any] = dropout_rate lowerCamelCase__ : List[str] = layer_norm_epsilon lowerCamelCase__ : List[str] = initializer_factor lowerCamelCase__ : Union[str, Any] = feed_forward_proj lowerCamelCase__ : Optional[Any] = use_cache lowerCamelCase__ : Optional[int] = add_router_probs lowerCamelCase__ : Dict = router_z_loss_coef lowerCamelCase__ : Union[str, Any] = router_aux_loss_coef lowerCamelCase__ : Optional[int] = self.feed_forward_proj.split('-' ) lowerCamelCase__ : Union[str, Any] = act_info[-1] lowerCamelCase__ : int = act_info[0] == 'gated' if len(lowerCamelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCamelCase_ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCamelCase__ : Any = 'gelu_new' super().__init__( pad_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, is_encoder_decoder=lowerCamelCase_, **lowerCamelCase_, )
360
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Tuple = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase__ : List[str] = len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(_lowerCamelCase ) , 'Postfix'.center(_lowerCamelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , (''.join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=' | ' , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": lowerCamelCase__ : List[Any] = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ : Tuple = '(' # change ")" to "(" return (infix_2_postfix(''.join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation A_ : List[str] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
0
from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
0
"""simple docstring""" A_ : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609344, "knot": 1.852, } A_ : dict[str, float] = { "km/h": 1.0, "m/s": 0.277777778, "mph": 0.621371192, "knot": 0.539956803, } def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: lowerCamelCase__ : List[Any] = ( f'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n''' f'''Valid values are: {', '.join(_lowerCamelCase )}''' ) raise ValueError(_lowerCamelCase ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} A_ : Optional[int] = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } A_ : Any = { "gpt2": 10_24, "gpt2-medium": 10_24, "gpt2-large": 10_24, "gpt2-xl": 10_24, "distilgpt2": 10_24, } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = VOCAB_FILES_NAMES lowerCamelCase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Tuple = ['input_ids', 'attention_mask'] lowerCamelCase__ : Dict = GPTaTokenizer def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_="<|endoftext|>", lowerCamelCase_="<|endoftext|>", lowerCamelCase_="<|endoftext|>", lowerCamelCase_=False, **lowerCamelCase_, ): '''simple docstring''' super().__init__( lowerCamelCase_, lowerCamelCase_, tokenizer_file=lowerCamelCase_, unk_token=lowerCamelCase_, bos_token=lowerCamelCase_, eos_token=lowerCamelCase_, add_prefix_space=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = kwargs.pop('add_bos_token', lowerCamelCase_ ) lowerCamelCase__ : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowerCamelCase_ ) != add_prefix_space: lowerCamelCase__ : Any = getattr(lowerCamelCase_, pre_tok_state.pop('type' ) ) lowerCamelCase__ : Tuple = add_prefix_space lowerCamelCase__ : int = pre_tok_class(**lowerCamelCase_ ) lowerCamelCase__ : int = add_prefix_space def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = kwargs.get('is_split_into_words', lowerCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = kwargs.get('is_split_into_words', lowerCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : List[str] = self._tokenizer.model.save(lowerCamelCase_, name=lowerCamelCase_ ) return tuple(lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) + [self.eos_token_id] ) if len(lowerCamelCase_ ) > self.model_max_length: lowerCamelCase__ : List[str] = input_ids[-self.model_max_length :] return input_ids
363
"""simple docstring""" from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = data lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[Any] = None def lowerCamelCase_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) lowerCamelCase__ : str = input('Enter the value of the root node: ' ).strip().lower() lowerCamelCase__ : queue.Queue = queue.Queue() lowerCamelCase__ : Optional[Any] = TreeNode(int(_lowerCamelCase ) ) q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = q.get() lowerCamelCase__ : str = f'''Enter the left node of {node_found.data}: ''' lowerCamelCase__ : Dict = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : str = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Dict = left_node q.put(_lowerCamelCase ) lowerCamelCase__ : List[str] = f'''Enter the right node of {node_found.data}: ''' lowerCamelCase__ : List[str] = input(_lowerCamelCase ).strip().lower() or 'n' if check == "n": return tree_node lowerCamelCase__ : Optional[int] = TreeNode(int(_lowerCamelCase ) ) lowerCamelCase__ : Any = right_node q.put(_lowerCamelCase ) raise def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : queue.Queue = queue.Queue() q.put(_lowerCamelCase ) while not q.empty(): lowerCamelCase__ : List[Any] = [] while not q.empty(): lowerCamelCase__ : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCamelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCamelCase__ : Optional[Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ : list[TreeNode] = [] lowerCamelCase__ : int = node while n or stack: while n: stack.append(_lowerCamelCase ) lowerCamelCase__ : List[str] = n.left lowerCamelCase__ : Tuple = stack.pop() print(n.data , end=',' ) lowerCamelCase__ : Union[str, Any] = n.right def lowerCamelCase_ ( _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not node: return lowerCamelCase__ , lowerCamelCase__ : Any = [], [] lowerCamelCase__ : int = node stacka.append(_lowerCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase__ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_lowerCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase_ ( _lowerCamelCase = "" , _lowerCamelCase=50 , _lowerCamelCase="*" ): if not s: return "\n" + width * char lowerCamelCase__ , lowerCamelCase__ : Dict = divmod(width - len(_lowerCamelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) A_ : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
0
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def lowerCamelCase_ ( _lowerCamelCase=None , _lowerCamelCase=None ): return field(default_factory=lambda: default , metadata=_lowerCamelCase ) @dataclass class a_ : '''simple docstring''' lowerCamelCase__ : str = field( metadata={'help': 'The csv file to plot.'} , ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) lowerCamelCase__ : Optional[str] = field( default=snake_case_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) lowerCamelCase__ : Optional[List[str]] = list_field( default=snake_case_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def lowerCamelCase_ ( _lowerCamelCase ): try: int(_lowerCamelCase ) return True except ValueError: return False def lowerCamelCase_ ( _lowerCamelCase ): try: float(_lowerCamelCase ) return True except ValueError: return False class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = args lowerCamelCase__ : Optional[int] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file, newline='' ) as csv_file: lowerCamelCase__ : Any = csv.DictReader(lowerCamelCase_ ) for row in reader: lowerCamelCase__ : Any = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None lowerCamelCase__ : Optional[Any] = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None lowerCamelCase__ : Tuple = float(row['result'] ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = plt.subplots() lowerCamelCase__ : Dict = 'Time usage' if self.args.is_time else 'Memory usage' lowerCamelCase__ : Optional[Any] = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowerCamelCase__ : Dict = sorted(set(self.result_dict[model_name]['bsz'] ) ) lowerCamelCase__ : Any = sorted(set(self.result_dict[model_name]['seq_len'] ) ) lowerCamelCase__ : int = self.result_dict[model_name]['result'] (lowerCamelCase__) : Optional[int] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowerCamelCase__ : int = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowerCamelCase__ : Tuple = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results], dtype=lowerCamelCase_, ) else: lowerCamelCase__ : Tuple = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results], dtype=np.floataa, ) (lowerCamelCase__) : Union[str, Any] = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) lowerCamelCase__ : int = np.asarray(lowerCamelCase_, lowerCamelCase_ )[: len(lowerCamelCase_ )] plt.scatter( lowerCamelCase_, lowerCamelCase_, label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(lowerCamelCase_, lowerCamelCase_, '--' ) title_str += f''' {label_model_name} vs.''' lowerCamelCase__ : Any = title_str[:-4] lowerCamelCase__ : List[str] = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(lowerCamelCase_ ) plt.xlabel(lowerCamelCase_ ) plt.ylabel(lowerCamelCase_ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def lowerCamelCase_ ( ): lowerCamelCase__ : Tuple = HfArgumentParser(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = parser.parse_args_into_dataclasses()[0] lowerCamelCase__ : Dict = Plot(args=_lowerCamelCase ) plot.plot() if __name__ == "__main__": main()
364
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[str] = logging.get_logger(__name__) A_ : Union[str, Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Tuple = 'markuplm' def __init__(self, lowerCamelCase_=3_0_5_2_2, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=0, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_=2_5_6, lowerCamelCase_=1_0_2_4, lowerCamelCase_=2_1_6, lowerCamelCase_=1_0_0_1, lowerCamelCase_=3_2, lowerCamelCase_=5_0, lowerCamelCase_="absolute", lowerCamelCase_=True, lowerCamelCase_=None, **lowerCamelCase_, ): '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Union[str, Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : int = layer_norm_eps lowerCamelCase__ : Dict = position_embedding_type lowerCamelCase__ : Optional[Any] = use_cache lowerCamelCase__ : List[str] = classifier_dropout # additional properties lowerCamelCase__ : Dict = max_depth lowerCamelCase__ : Any = max_xpath_tag_unit_embeddings lowerCamelCase__ : Tuple = max_xpath_subs_unit_embeddings lowerCamelCase__ : int = tag_pad_id lowerCamelCase__ : Optional[Any] = subs_pad_id lowerCamelCase__ : Union[str, Any] = xpath_unit_hidden_size
365
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
0
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[str] = cva.getAffineTransform(_lowerCamelCase , _lowerCamelCase ) return cva.warpAffine(_lowerCamelCase , _lowerCamelCase , (rows, cols) ) if __name__ == "__main__": # read original image A_ : Union[str, Any] = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value A_ : Dict = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A_ : Any = gray_img.shape # set different points to rotate image A_ : Union[str, Any] = np.array([[50, 50], [2_00, 50], [50, 2_00]], np.floataa) A_ : Optional[Any] = np.array([[10, 1_00], [2_00, 50], [1_00, 2_50]], np.floataa) A_ : List[Any] = np.array([[50, 50], [1_50, 50], [1_20, 2_00]], np.floataa) A_ : str = np.array([[10, 1_00], [80, 50], [1_80, 2_50]], np.floataa) # add all rotated images in a list A_ : str = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A_ : Optional[Any] = plt.figure(1) A_ : Tuple = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
366
"""simple docstring""" import re def lowerCamelCase_ ( _lowerCamelCase ): if len(re.findall('[ATCG]' , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] lowerCamelCase__ : Union[str, Any] = (low + high) // 2 lowerCamelCase__ : Any = max_subarray(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : List[Any] = max_subarray(_lowerCamelCase , mid + 1 , _lowerCamelCase ) lowerCamelCase__ : int = max_cross_sum(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : str = float('-inf' ), -1 lowerCamelCase__ : List[str] = float('-inf' ), -1 lowerCamelCase__ : int | float = 0 for i in range(_lowerCamelCase , low - 1 , -1 ): summ += arr[i] if summ > left_sum: lowerCamelCase__ : Any = summ lowerCamelCase__ : List[str] = i lowerCamelCase__ : str = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: lowerCamelCase__ : Tuple = summ lowerCamelCase__ : Union[str, Any] = i return max_left, max_right, (left_sum + right_sum) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = [randint(1 , _lowerCamelCase ) for _ in range(_lowerCamelCase )] lowerCamelCase__ : str = time.time() max_subarray(_lowerCamelCase , 0 , input_size - 1 ) lowerCamelCase__ : Union[str, Any] = time.time() return end - start def lowerCamelCase_ ( ): lowerCamelCase__ : List[str] = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] lowerCamelCase__ : Tuple = [time_max_subarray(_lowerCamelCase ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(_lowerCamelCase , _lowerCamelCase ): print(_lowerCamelCase , '\t\t' , _lowerCamelCase ) plt.plot(_lowerCamelCase , _lowerCamelCase ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
367
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Any = s.rsplit(_lowerCamelCase , _lowerCamelCase ) return new.join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Any = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : Union[str, Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowerCamelCase__ : str = rreplace(_lowerCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowerCamelCase__ : Optional[Any] = rreplace(_lowerCamelCase , '.b' , '.bias' , 1 ) lowerCamelCase__ : int = value.float() return upgrade @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True ): from dall_e import Encoder lowerCamelCase__ : List[str] = Encoder() if os.path.exists(_lowerCamelCase ): lowerCamelCase__ : Optional[int] = torch.load(_lowerCamelCase ) else: lowerCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : List[Any] = ckpt.state_dict() encoder.load_state_dict(_lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_lowerCamelCase ) else: lowerCamelCase__ : Dict = FlavaImageCodebookConfig() lowerCamelCase__ : Tuple = FlavaImageCodebook(_lowerCamelCase ).eval() lowerCamelCase__ : List[str] = encoder.state_dict() lowerCamelCase__ : Any = upgrade_state_dict(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = hf_model.state_dict() lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) lowerCamelCase__ : Optional[int] = count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A_ : str = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
"""simple docstring""" print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
368
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, lowerCamelCase_=2, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : str = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = scope lowerCamelCase__ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = num_patches + 2 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFDeiTModel(config=lowerCamelCase_ ) lowerCamelCase__ : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) lowerCamelCase__ : Any = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Optional[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : int = self.type_sequence_label_size lowerCamelCase__ : Union[str, Any] = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : Any = TFDeiTForImageClassification(lowerCamelCase_ ) lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase__ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = TFDeiTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, tf.keras.layers.Dense ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) lowerCamelCase__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ (self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase__ : List[Any] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=lowerCamelCase_, return_tensors='tf' ) # forward pass lowerCamelCase__ : Tuple = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Any = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Tuple = {"vocab_file": "spiece.model"} A_ : Tuple = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } A_ : Dict = { "albert-base-v1": 5_12, "albert-large-v1": 5_12, "albert-xlarge-v1": 5_12, "albert-xxlarge-v1": 5_12, "albert-base-v2": 5_12, "albert-large-v2": 5_12, "albert-xlarge-v2": 5_12, "albert-xxlarge-v2": 5_12, } A_ : Optional[Any] = "▁" class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : str = VOCAB_FILES_NAMES lowerCamelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self, lowerCamelCase_, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_="[CLS]", lowerCamelCase_="[SEP]", lowerCamelCase_="<unk>", lowerCamelCase_="[SEP]", lowerCamelCase_="<pad>", lowerCamelCase_="[CLS]", lowerCamelCase_="[MASK]", lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ( AddedToken(lowerCamelCase_, lstrip=lowerCamelCase_, rstrip=lowerCamelCase_, normalized=lowerCamelCase_ ) if isinstance(lowerCamelCase_, lowerCamelCase_ ) else mask_token ) lowerCamelCase__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_, remove_space=lowerCamelCase_, keep_accents=lowerCamelCase_, bos_token=lowerCamelCase_, eos_token=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, pad_token=lowerCamelCase_, cls_token=lowerCamelCase_, mask_token=lowerCamelCase_, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase_, ) lowerCamelCase__ : Union[str, Any] = do_lower_case lowerCamelCase__ : Optional[int] = remove_space lowerCamelCase__ : Any = keep_accents lowerCamelCase__ : List[str] = vocab_file lowerCamelCase__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.sp_model ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.__dict__.copy() lowerCamelCase__ : Any = None return state def __setstate__(self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Dict = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): lowerCamelCase__ : Dict = {} lowerCamelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' if self.remove_space: lowerCamelCase__ : List[Any] = ' '.join(inputs.strip().split() ) else: lowerCamelCase__ : int = inputs lowerCamelCase__ : str = outputs.replace('``', '"' ).replace('\'\'', '"' ) if not self.keep_accents: lowerCamelCase__ : Tuple = unicodedata.normalize('NFKD', lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = ''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_ )] ) if self.do_lower_case: lowerCamelCase__ : Union[str, Any] = outputs.lower() return outputs def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = self.preprocess_text(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = self.sp_model.encode(lowerCamelCase_, out_type=lowerCamelCase_ ) lowerCamelCase__ : Any = [] for piece in pieces: if len(lowerCamelCase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): lowerCamelCase__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_, '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase__ : Union[str, Any] = cur_pieces[1:] else: lowerCamelCase__ : List[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase_ ) else: new_pieces.append(lowerCamelCase_ ) return new_pieces def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase_ ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : List[str] = '' lowerCamelCase__ : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase_ ) + token lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[int] = [] else: current_sub_tokens.append(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = False out_string += self.sp_model.decode(lowerCamelCase_ ) return out_string.strip() def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : str = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ (self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_, token_ids_a=lowerCamelCase_, already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [self.sep_token_id] lowerCamelCase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ (self, lowerCamelCase_, lowerCamelCase_ = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : Optional[int] = os.path.join( lowerCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_, 'wb' ) as fi: lowerCamelCase__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,)
369
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
0
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A_ : int = logging.get_logger(__name__) A_ : Optional[Any] = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : List[Any] = 'bart' lowerCamelCase__ : int = ['past_key_values'] lowerCamelCase__ : Dict = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self, lowerCamelCase_=5_0_2_6_5, lowerCamelCase_=1_0_2_4, lowerCamelCase_=1_2, lowerCamelCase_=4_0_9_6, lowerCamelCase_=1_6, lowerCamelCase_=1_2, lowerCamelCase_=4_0_9_6, lowerCamelCase_=1_6, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_="gelu", lowerCamelCase_=1_0_2_4, lowerCamelCase_=0.1, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=0.02, lowerCamelCase_=0.0, lowerCamelCase_=False, lowerCamelCase_=True, lowerCamelCase_=3, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_=True, lowerCamelCase_=2, lowerCamelCase_=2, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : str = vocab_size lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = d_model lowerCamelCase__ : Optional[int] = encoder_ffn_dim lowerCamelCase__ : Optional[Any] = encoder_layers lowerCamelCase__ : str = encoder_attention_heads lowerCamelCase__ : str = decoder_ffn_dim lowerCamelCase__ : Optional[int] = decoder_layers lowerCamelCase__ : str = decoder_attention_heads lowerCamelCase__ : Union[str, Any] = dropout lowerCamelCase__ : List[Any] = attention_dropout lowerCamelCase__ : str = activation_dropout lowerCamelCase__ : List[str] = activation_function lowerCamelCase__ : Any = init_std lowerCamelCase__ : List[Any] = encoder_layerdrop lowerCamelCase__ : List[Any] = decoder_layerdrop lowerCamelCase__ : List[str] = classifier_dropout lowerCamelCase__ : Optional[int] = use_cache lowerCamelCase__ : Any = encoder_layers lowerCamelCase__ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowerCamelCase_, pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, is_encoder_decoder=lowerCamelCase_, decoder_start_token_id=lowerCamelCase_, forced_eos_token_id=lowerCamelCase_, **lowerCamelCase_, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated', lowerCamelCase_ ): lowerCamelCase__ : str = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' ) class a_ ( snake_case_ ): '''simple docstring''' @property def a__ (self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Optional[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: lowerCamelCase__ : Any = {0: 'batch'} lowerCamelCase__ : Optional[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowerCamelCase__ : str = {0: 'batch', 1: 'decoder_sequence'} lowerCamelCase__ : Dict = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_, direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ : str = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: lowerCamelCase__ : str = self.num_layers for i in range(lowerCamelCase_ ): lowerCamelCase__ : Tuple = {0: 'batch', 2: 'past_sequence + sequence'} lowerCamelCase__ : int = {0: 'batch', 2: 'past_sequence + sequence'} else: lowerCamelCase__ : Tuple = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def a__ (self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Union[str, Any] = super().outputs else: lowerCamelCase__ : int = super(lowerCamelCase_, self ).outputs if self.use_past: lowerCamelCase__ : str = self.num_layers for i in range(lowerCamelCase_ ): lowerCamelCase__ : Tuple = {0: 'batch', 2: 'past_sequence + sequence'} lowerCamelCase__ : List[Any] = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = -1, lowerCamelCase_ = -1, lowerCamelCase_ = False, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # Generate decoder inputs lowerCamelCase__ : str = seq_length if not self.use_past else 1 lowerCamelCase__ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Any = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ : List[Any] = dict(**lowerCamelCase_, **lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCamelCase__ : Optional[int] = common_inputs['input_ids'].shape lowerCamelCase__ : Union[str, Any] = common_inputs['decoder_input_ids'].shape[1] lowerCamelCase__ : Any = self.num_attention_heads lowerCamelCase__ : List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Dict = decoder_seq_length + 3 lowerCamelCase__ : List[str] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ : Any = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCamelCase_, lowerCamelCase_ )], dim=1 ) lowerCamelCase__ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ : Any = self.num_layers lowerCamelCase__ : Dict = min(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : Tuple = max(lowerCamelCase_, lowerCamelCase_ ) - min_num_layers lowerCamelCase__ : str = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowerCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), ) ) # TODO: test this. lowerCamelCase__ : List[str] = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowerCamelCase_, lowerCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) ) return common_inputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = -1, lowerCamelCase_ = -1, lowerCamelCase_ = False, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCamelCase__ : Optional[int] = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCamelCase__ : Any = seqlen + 2 lowerCamelCase__ : Any = self.num_layers lowerCamelCase__ : Dict = self.num_attention_heads lowerCamelCase__ : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : List[Any] = common_inputs['attention_mask'].dtype lowerCamelCase__ : List[str] = torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCamelCase_, lowerCamelCase_, dtype=lowerCamelCase_ )], dim=1 ) lowerCamelCase__ : Union[str, Any] = [ (torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) for _ in range(lowerCamelCase_ ) ] return common_inputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = -1, lowerCamelCase_ = -1, lowerCamelCase_ = False, lowerCamelCase_ = None, ): '''simple docstring''' lowerCamelCase__ : Any = compute_effective_axis_dimension( lowerCamelCase_, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ : Any = tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) lowerCamelCase__ : str = compute_effective_axis_dimension( lowerCamelCase_, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ : Union[str, Any] = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ : Optional[Any] = dict(tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_ ) ) return common_inputs def a__ (self, lowerCamelCase_, lowerCamelCase_ = -1, lowerCamelCase_ = -1, lowerCamelCase_ = False, lowerCamelCase_ = None, ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase_, batch_size=lowerCamelCase_, seq_length=lowerCamelCase_, is_pair=lowerCamelCase_, framework=lowerCamelCase_ ) elif self.task == "causal-lm": lowerCamelCase__ : Tuple = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase_, batch_size=lowerCamelCase_, seq_length=lowerCamelCase_, is_pair=lowerCamelCase_, framework=lowerCamelCase_ ) else: lowerCamelCase__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_, batch_size=lowerCamelCase_, seq_length=lowerCamelCase_, is_pair=lowerCamelCase_, framework=lowerCamelCase_ ) return common_inputs def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Any = super()._flatten_past_key_values_(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) else: lowerCamelCase__ : Any = super(lowerCamelCase_, self )._flatten_past_key_values_( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ )
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" from __future__ import annotations import time import numpy as np A_ : Tuple = [8, 5, 9, 7] A_ : Any = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A_ : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : str = claim_vector lowerCamelCase__ : List[Any] = allocated_resources_table lowerCamelCase__ : Dict = maximum_claim_table def a__ (self ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def a__ (self ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def a__ (self ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(lowerCamelCase_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def a__ (self ): '''simple docstring''' return {self.__need().index(lowerCamelCase_ ): i for i in self.__need()} def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self.__need() lowerCamelCase__ : List[Any] = self.__allocated_resources_table lowerCamelCase__ : Optional[Any] = self.__available_resources() lowerCamelCase__ : Optional[int] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 5_0 + '\n' ) while need_list: lowerCamelCase__ : List[Any] = False for each_need in need_list: lowerCamelCase__ : Tuple = True for index, need in enumerate(lowerCamelCase_ ): if need > available_resources[index]: lowerCamelCase__ : Optional[int] = False break if execution: lowerCamelCase__ : Any = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCamelCase__ : Dict = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(lowerCamelCase_ ) # update available/freed resources stack lowerCamelCase__ : List[str] = np.array(lowerCamelCase_ ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(lowerCamelCase_ ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def a__ (self ): '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(lowerCamelCase_ ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(lowerCamelCase_ ) + 1}''' + ' '.join(f'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(lowerCamelCase_ ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(lowerCamelCase_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" import numpy as np def lowerCamelCase_ ( _lowerCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( __lowercase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase , """tf_padding""" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , """depth_multiplier""" ) ) class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=3 , lowerCamelCase=32 , lowerCamelCase=0.25 , lowerCamelCase=8 , lowerCamelCase=True , lowerCamelCase=1_024 , lowerCamelCase=32 , lowerCamelCase="relu6" , lowerCamelCase=0.1 , lowerCamelCase=0.02 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=10 , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = depth_multiplier _lowerCAmelCase = min_depth _lowerCAmelCase = tf_padding _lowerCAmelCase = int(last_hidden_size * depth_multiplier ) _lowerCAmelCase = output_stride _lowerCAmelCase = hidden_act _lowerCAmelCase = classifier_dropout_prob _lowerCAmelCase = use_labels _lowerCAmelCase = is_training _lowerCAmelCase = num_labels _lowerCAmelCase = initializer_range _lowerCAmelCase = scope def A__ (self ): '''simple docstring''' _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def A__ (self ): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = MobileNetVaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.num_labels _lowerCAmelCase = MobileNetVaForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( __lowercase , __lowercase , unittest.TestCase ): __UpperCamelCase = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaModelTester(self ) _lowerCAmelCase = MobileNetVaConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def A__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(lowerCamelCase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def A__ (self ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = 26 self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = MobileNetVaModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): @cached_property def A__ (self ): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(lowerCamelCase ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**lowerCamelCase ) # verify the logits _lowerCAmelCase = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) _lowerCAmelCase = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) )
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
1
"""simple docstring""" import qiskit def __UpperCAmelCase ( snake_case_ : int = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" _lowerCAmelCase = qubits # Using Aer's simulator _lowerCAmelCase = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register _lowerCAmelCase = qiskit.QuantumCircuit(snake_case_ , snake_case_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , snake_case_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , snake_case_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(snake_case_ ) ) , list(range(snake_case_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator _lowerCAmelCase = qiskit.execute(snake_case_ , snake_case_ , shots=1000 ) return job.result().get_counts(snake_case_ ) if __name__ == "__main__": print(F'Total count for various states are: {quantum_entanglement(3)}')
317
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ) -> str | None: """simple docstring""" _lowerCAmelCase = "" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def __UpperCAmelCase ( snake_case_ : list[int] ) -> list[str]: """simple docstring""" _lowerCAmelCase = [] for key in product(snake_case_ , repeat=3 ): _lowerCAmelCase = try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def __UpperCAmelCase ( snake_case_ : list[str] , snake_case_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( snake_case_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding="""utf-8""" ) _lowerCAmelCase = [int(snake_case_ ) for number in data.strip().split(""",""" )] _lowerCAmelCase = filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int ) -> int: """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 _lowerCAmelCase = 1 _lowerCAmelCase = 1 while repunit: _lowerCAmelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(snake_case_ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'{solution() = }')
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit + 1 _lowerCAmelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
"""simple docstring""" from functools import reduce SCREAMING_SNAKE_CASE : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __UpperCAmelCase ( snake_case_ : str = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case_ , snake_case_ : str(int(snake_case_ ) * int(snake_case_ ) ) , n[i : i + 13] ) ) for i in range(len(snake_case_ ) - 12 ) ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'vit_mae' def __init__(self , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3_072 , lowerCamelCase="gelu" , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=224 , lowerCamelCase=16 , lowerCamelCase=3 , lowerCamelCase=True , lowerCamelCase=16 , lowerCamelCase=512 , lowerCamelCase=8 , lowerCamelCase=2_048 , lowerCamelCase=0.75 , lowerCamelCase=False , **lowerCamelCase , ): '''simple docstring''' super().__init__(**lowerCamelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = qkv_bias _lowerCAmelCase = decoder_num_attention_heads _lowerCAmelCase = decoder_hidden_size _lowerCAmelCase = decoder_num_hidden_layers _lowerCAmelCase = decoder_intermediate_size _lowerCAmelCase = mask_ratio _lowerCAmelCase = norm_pix_loss
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 600851475143 ) -> int: """simple docstring""" try: _lowerCAmelCase = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: while n % i == 0: _lowerCAmelCase = i n //= i i += 1 if n > 1: _lowerCAmelCase = n return int(snake_case_ ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = '''▁''' SCREAMING_SNAKE_CASE : int = {'''vocab_file''': '''sentencepiece.bpe.model'''} SCREAMING_SNAKE_CASE : Optional[int] = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } SCREAMING_SNAKE_CASE : str = { '''facebook/mbart-large-50-one-to-many-mmt''': 1_0_2_4, } # fmt: off SCREAMING_SNAKE_CASE : Tuple = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class __lowerCamelCase ( __lowercase ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = ['input_ids', 'attention_mask'] __UpperCamelCase = [] __UpperCamelCase = [] def __init__(self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCamelCase , tgt_lang=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) _lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase = 1 _lowerCAmelCase = len(self.sp_model ) _lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCamelCase ) } _lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase = src_lang if src_lang is not None else """en_XX""" _lowerCAmelCase = self.lang_code_to_id[self._src_lang] _lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A__ (self ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A__ (self ): '''simple docstring''' return self._src_lang @src_lang.setter def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__(self ): '''simple docstring''' _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ (self , lowerCamelCase ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase = self.sp_model.PieceToId(lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ (self , lowerCamelCase ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = """""" _lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase ) + token _lowerCAmelCase = True _lowerCAmelCase = [] else: current_sub_tokens.append(lowerCamelCase ) _lowerCAmelCase = False out_string += self.sp_model.decode(lowerCamelCase ) return out_string.strip() def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , """wb""" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,) def A__ (self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) _lowerCAmelCase = [1] * len(self.prefix_tokens ) _lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase )) + ([0] * len(lowerCamelCase )) + suffix_ones def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase = src_lang _lowerCAmelCase = self(lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) _lowerCAmelCase = self.convert_tokens_to_ids(lowerCamelCase ) _lowerCAmelCase = tgt_lang_id return inputs def A__ (self , lowerCamelCase , lowerCamelCase = "en_XX" , lowerCamelCase = None , lowerCamelCase = "ro_RO" , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = src_lang _lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) def A__ (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def A__ (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.lang_code_to_id[src_lang] _lowerCAmelCase = [self.cur_lang_code_id] _lowerCAmelCase = [self.eos_token_id] def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.lang_code_to_id[tgt_lang] _lowerCAmelCase = [self.cur_lang_code_id] _lowerCAmelCase = [self.eos_token_id]
317
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether tp freeze the encoder.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __UpperCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Source language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Target language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': '# num_beams to use for evaluation.'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , F"""{split}_results.json""" ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase = SeqaSeqDataset # Get datasets _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) _lowerCAmelCase = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) _lowerCAmelCase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowerCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase = train_result.metrics _lowerCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate(metric_key_prefix="""val""" ) _lowerCAmelCase = data_args.n_val _lowerCAmelCase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowerCAmelCase = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="""test""" ) _lowerCAmelCase = test_output.metrics _lowerCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: _lowerCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) _lowerCAmelCase = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def __UpperCAmelCase ( snake_case_ : Any ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : str , snake_case_ : Any ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = """""" for i in table: res += inp[i - 1] return res def __UpperCAmelCase ( snake_case_ : str ) -> Tuple: """simple docstring""" return data[1:] + data[0] def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int ) -> Any: """simple docstring""" _lowerCAmelCase = """""" for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : str ) -> List[str]: """simple docstring""" _lowerCAmelCase = int("""0b""" + data[0] + data[-1] , 2 ) _lowerCAmelCase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Dict ) -> str: """simple docstring""" _lowerCAmelCase = message[:4] _lowerCAmelCase = message[4:] _lowerCAmelCase = apply_table(snake_case_ , snake_case_ ) _lowerCAmelCase = xor(snake_case_ , snake_case_ ) _lowerCAmelCase = apply_sbox(snake_case_ , temp[:4] ) # noqa: E741 _lowerCAmelCase = apply_sbox(snake_case_ , temp[4:] ) _lowerCAmelCase = """0""" * (2 - len(snake_case_ )) + l # noqa: E741 _lowerCAmelCase = """0""" * (2 - len(snake_case_ )) + r _lowerCAmelCase = apply_table(l + r , snake_case_ ) _lowerCAmelCase = xor(snake_case_ , snake_case_ ) return temp + right if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = input('''Enter 10 bit key: ''') SCREAMING_SNAKE_CASE : Optional[int] = input('''Enter 8 bit message: ''') SCREAMING_SNAKE_CASE : str = [6, 3, 7, 4, 8, 5, 1_0, 9] SCREAMING_SNAKE_CASE : Optional[Any] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] SCREAMING_SNAKE_CASE : str = [2, 4, 3, 1] SCREAMING_SNAKE_CASE : Tuple = [2, 6, 3, 1, 4, 8, 5, 7] SCREAMING_SNAKE_CASE : List[str] = [4, 1, 3, 5, 7, 2, 8, 6] SCREAMING_SNAKE_CASE : Union[str, Any] = [4, 1, 2, 3, 2, 3, 4, 1] SCREAMING_SNAKE_CASE : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] SCREAMING_SNAKE_CASE : Any = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation SCREAMING_SNAKE_CASE : Dict = apply_table(key, paa_table) SCREAMING_SNAKE_CASE : Optional[int] = temp[:5] SCREAMING_SNAKE_CASE : str = temp[5:] SCREAMING_SNAKE_CASE : List[Any] = left_shift(left) SCREAMING_SNAKE_CASE : int = left_shift(right) SCREAMING_SNAKE_CASE : Optional[Any] = apply_table(left + right, pa_table) SCREAMING_SNAKE_CASE : int = left_shift(left) SCREAMING_SNAKE_CASE : Dict = left_shift(right) SCREAMING_SNAKE_CASE : int = left_shift(left) SCREAMING_SNAKE_CASE : str = left_shift(right) SCREAMING_SNAKE_CASE : Union[str, Any] = apply_table(left + right, pa_table) # encryption SCREAMING_SNAKE_CASE : int = apply_table(message, IP) SCREAMING_SNAKE_CASE : Optional[int] = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE : int = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE : Tuple = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE : List[str] = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption SCREAMING_SNAKE_CASE : Dict = apply_table(CT, IP) SCREAMING_SNAKE_CASE : Optional[int] = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE : Optional[Any] = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE : Tuple = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
317
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" if num <= 0: raise ValueError("""Input must be a positive integer""" ) _lowerCAmelCase = [True] * (num + 1) _lowerCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case_ ): _lowerCAmelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Dict = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
317
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size def A__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = MobileNetVaImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """crop_size""" ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline SCREAMING_SNAKE_CASE : Tuple = '''path-to-your-trained-model''' SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') SCREAMING_SNAKE_CASE : Any = '''A photo of sks dog in a bucket''' SCREAMING_SNAKE_CASE : Any = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" for i in range(len(snake_case_ ) - 1 , 0 , -1 ): _lowerCAmelCase = False for j in range(snake_case_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j - 1], unsorted[j] _lowerCAmelCase = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j + 1], unsorted[j] _lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(''',''')] print(F'{cocktail_shaker_sort(unsorted) = }')
317
1
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( __lowercase ): @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _lowerCAmelCase = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _lowerCAmelCase = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _lowerCAmelCase = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCamelCase ) BertModel.from_pretrained(lowerCamelCase ) BertTokenizer.from_pretrained(lowerCamelCase ) pipeline(task="""fill-mask""" , model=lowerCamelCase ) # baseline - just load from_pretrained with normal network _lowerCAmelCase = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed _lowerCAmelCase = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCAmelCase = """1""" _lowerCAmelCase = subprocess.run(lowerCamelCase , env=lowerCamelCase , check=lowerCamelCase , capture_output=lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _lowerCAmelCase = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _lowerCAmelCase = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _lowerCAmelCase = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCamelCase ) BertModel.from_pretrained(lowerCamelCase ) BertTokenizer.from_pretrained(lowerCamelCase ) pipeline(task="""fill-mask""" , model=lowerCamelCase ) # baseline - just load from_pretrained with normal network _lowerCAmelCase = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed _lowerCAmelCase = self.get_env() _lowerCAmelCase = subprocess.run(lowerCamelCase , env=lowerCamelCase , check=lowerCamelCase , capture_output=lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = """ from transformers import BertConfig, BertModel, BertTokenizer """ _lowerCAmelCase = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _lowerCAmelCase = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _lowerCAmelCase = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed _lowerCAmelCase = self.get_env() _lowerCAmelCase = subprocess.run(lowerCamelCase , env=lowerCamelCase , check=lowerCamelCase , capture_output=lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network _lowerCAmelCase = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCAmelCase = """1""" _lowerCAmelCase = subprocess.run(lowerCamelCase , env=lowerCamelCase , check=lowerCamelCase , capture_output=lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = """ from transformers import pipeline """ _lowerCAmelCase = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _lowerCAmelCase = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _lowerCAmelCase = self.get_env() _lowerCAmelCase = """1""" _lowerCAmelCase = [sys.executable, """-c""", """\n""".join([load, mock, run] )] _lowerCAmelCase = subprocess.run(lowerCamelCase , env=lowerCamelCase , check=lowerCamelCase , capture_output=lowerCamelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = """ from transformers import AutoModel """ _lowerCAmelCase = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _lowerCAmelCase = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed _lowerCAmelCase = self.get_env() _lowerCAmelCase = subprocess.run(lowerCamelCase , env=lowerCamelCase , check=lowerCamelCase , capture_output=lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCAmelCase = """1""" _lowerCAmelCase = subprocess.run(lowerCamelCase , env=lowerCamelCase , check=lowerCamelCase , capture_output=lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
317
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : bool , snake_case_ : bool ) -> Tuple: """simple docstring""" def run_func(snake_case_ : Union[str, Any] ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : Optional[int] , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : Dict , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: """simple docstring""" _lowerCAmelCase = random.Random() _lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = "TensorFlow" @property def A__ (self ): '''simple docstring''' return tf.__version__ def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase , decoder_input_ids=lowerCamelCase , training=lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase , training=lowerCamelCase ) _lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase = model(lowerCamelCase , decoder_input_ids=lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients _lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A__ (self , lowerCamelCase ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase = timeit.repeat( lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _lowerCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _lowerCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase ) _lowerCAmelCase = meminfo.used _lowerCAmelCase = Memory(lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _lowerCAmelCase = None else: _lowerCAmelCase = measure_peak_memory_cpu(lowerCamelCase ) _lowerCAmelCase = Memory(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase = stop_memory_tracing(lowerCamelCase ) if memory is None: _lowerCAmelCase = summary.total else: _lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
317
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__lowercase ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) __UpperCamelCase = Features({'image': Image()} ) __UpperCamelCase = Features({'labels': ClassLabel} ) __UpperCamelCase = "image" __UpperCamelCase = "labels" def A__ (self , lowerCamelCase ): '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowerCamelCase ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) _lowerCAmelCase = copy.deepcopy(self ) _lowerCAmelCase = self.label_schema.copy() _lowerCAmelCase = features[self.label_column] _lowerCAmelCase = label_schema return task_template @property def A__ (self ): '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
317
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'transfo-xl' __UpperCamelCase = ['mems'] __UpperCamelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , lowerCamelCase=267_735 , lowerCamelCase=[20_000, 40_000, 200_000] , lowerCamelCase=1_024 , lowerCamelCase=1_024 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase=4_096 , lowerCamelCase=4 , lowerCamelCase=False , lowerCamelCase=18 , lowerCamelCase=1_600 , lowerCamelCase=1_000 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase=-1 , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="normal" , lowerCamelCase=0.01 , lowerCamelCase=0.01 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=0 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: _lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: _lowerCAmelCase = [False] + [False] * len(self.cutoffs ) _lowerCAmelCase = d_model _lowerCAmelCase = d_embed _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = div_val _lowerCAmelCase = pre_lnorm _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = mem_len _lowerCAmelCase = same_length _lowerCAmelCase = attn_type _lowerCAmelCase = clamp_len _lowerCAmelCase = sample_softmax _lowerCAmelCase = adaptive _lowerCAmelCase = dropout _lowerCAmelCase = dropatt _lowerCAmelCase = untie_r _lowerCAmelCase = init _lowerCAmelCase = init_range _lowerCAmelCase = proj_init_std _lowerCAmelCase = init_std _lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 3 , snake_case_ : int = 7 , snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = 1 for current_denominator in range(1 , limit + 1 ): _lowerCAmelCase = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _lowerCAmelCase = current_numerator _lowerCAmelCase = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
317
"""simple docstring""" import math def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 2 _lowerCAmelCase = int(math.sqrt(snake_case_ ) ) # Size of every segment _lowerCAmelCase = [True] * (end + 1) _lowerCAmelCase = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): _lowerCAmelCase = False start += 1 prime += in_prime _lowerCAmelCase = end + 1 _lowerCAmelCase = min(2 * end , snake_case_ ) while low <= n: _lowerCAmelCase = [True] * (high - low + 1) for each in in_prime: _lowerCAmelCase = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): _lowerCAmelCase = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) _lowerCAmelCase = high + 1 _lowerCAmelCase = min(high + end , snake_case_ ) return prime print(sieve(1_0**6))
317
1
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py SCREAMING_SNAKE_CASE : Any = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' SCREAMING_SNAKE_CASE : List[Any] = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' SCREAMING_SNAKE_CASE : str = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def A__ (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase=4 , lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase = compute_bleu( reference_corpus=lowerCamelCase , translation_corpus=lowerCamelCase , max_order=lowerCamelCase , smooth=lowerCamelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
317
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE : Any = (7_2_0, 1_2_8_0) # Height, Width SCREAMING_SNAKE_CASE : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE : List[Any] = 1 / 1_0_0 SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = '''''' SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = 2_5_0 def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_dataset(snake_case_ , snake_case_ ) for index in range(snake_case_ ): _lowerCAmelCase = random.sample(range(len(snake_case_ ) ) , 4 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase = random_chars(32 ) _lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _lowerCAmelCase = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowerCAmelCase = [] for anno in new_annos: _lowerCAmelCase = anno[3] - anno[1] _lowerCAmelCase = anno[4] - anno[2] _lowerCAmelCase = anno[1] + width / 2 _lowerCAmelCase = anno[2] + height / 2 _lowerCAmelCase = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(snake_case_ ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> tuple[list, list]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case_ , """*.txt""" ) ): _lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case_ ) as in_file: _lowerCAmelCase = in_file.readlines() _lowerCAmelCase = os.path.join(snake_case_ , F"""{label_name}.jpg""" ) _lowerCAmelCase = [] for obj_list in obj_lists: _lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) _lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 _lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list , snake_case_ : list[int] , snake_case_ : tuple[int, int] , snake_case_ : tuple[float, float] , snake_case_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" _lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = int(scale_x * output_size[1] ) _lowerCAmelCase = int(scale_y * output_size[0] ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, index in enumerate(snake_case_ ): _lowerCAmelCase = all_img_list[index] path_list.append(snake_case_ ) _lowerCAmelCase = all_annos[index] _lowerCAmelCase = cva.imread(snake_case_ ) if i == 0: # top-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCAmelCase = cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCAmelCase = cva.resize( snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = set(range(3 , snake_case_ , 2 ) ) primes.add(2 ) for p in range(3 , snake_case_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , snake_case_ , snake_case_ ) ) ) _lowerCAmelCase = [float(snake_case_ ) for n in range(limit + 1 )] for p in primes: for n in range(snake_case_ , limit + 1 , snake_case_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'{solution() = }')
317
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
1
"""simple docstring""" from typing import List import numpy as np def __UpperCAmelCase ( snake_case_ : dict ) -> int: """simple docstring""" _lowerCAmelCase = {key: len(snake_case_ ) for key, value in gen_kwargs.items() if isinstance(snake_case_ , snake_case_ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( """Sharding is ambiguous for this dataset: """ + """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n""" + """\n""".join(F"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """ + """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.""" ) ) _lowerCAmelCase = max(lists_lengths.values() , default=0 ) return max(1 , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int ) -> List[range]: """simple docstring""" _lowerCAmelCase = [] for group_idx in range(snake_case_ ): _lowerCAmelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCAmelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCAmelCase = range(snake_case_ , start + num_shards_to_add ) shards_indices_per_group.append(snake_case_ ) return shards_indices_per_group def __UpperCAmelCase ( snake_case_ : dict , snake_case_ : int ) -> List[dict]: """simple docstring""" _lowerCAmelCase = _number_of_shards_in_gen_kwargs(snake_case_ ) if num_shards == 1: return [dict(snake_case_ )] else: _lowerCAmelCase = _distribute_shards(num_shards=snake_case_ , max_num_jobs=snake_case_ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(snake_case_ , snake_case_ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(snake_case_ ) ) ] def __UpperCAmelCase ( snake_case_ : List[dict] ) -> dict: """simple docstring""" return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , snake_case_ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __UpperCAmelCase ( snake_case_ : np.random.Generator , snake_case_ : dict ) -> dict: """simple docstring""" _lowerCAmelCase = {len(snake_case_ ) for value in gen_kwargs.values() if isinstance(snake_case_ , snake_case_ )} _lowerCAmelCase = {} for size in list_sizes: _lowerCAmelCase = list(range(snake_case_ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCAmelCase = dict(snake_case_ ) for key, value in shuffled_kwargs.items(): if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = [value[i] for i in indices_per_size[len(snake_case_ )]] return shuffled_kwargs
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
1
"""simple docstring""" from ....utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class __lowerCamelCase ( __lowercase ): def __init__(self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=2_048 ): '''simple docstring''' _lowerCAmelCase = config.__dict__ _lowerCAmelCase = modal_hidden_size if num_labels: _lowerCAmelCase = num_labels
317
"""simple docstring""" from math import isqrt def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case_ , snake_case_ ): _lowerCAmelCase = False return [i for i in range(2 , snake_case_ ) if is_prime[i]] def __UpperCAmelCase ( snake_case_ : int = 10**8 ) -> int: """simple docstring""" _lowerCAmelCase = calculate_prime_numbers(max_number // 2 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Optional[Any]=1000 ) -> Union[str, Any]: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _lowerCAmelCase = n - 1 _lowerCAmelCase = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _lowerCAmelCase = 0 while count < prec: _lowerCAmelCase = random.randint(2 , n - 1 ) _lowerCAmelCase = bin_exp_mod(snake_case_ , snake_case_ , snake_case_ ) if b != 1: _lowerCAmelCase = True for _ in range(snake_case_ ): if b == n - 1: _lowerCAmelCase = False break _lowerCAmelCase = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCamelCase = 'CIDAS/clipseg-rd64-refined' __UpperCamelCase = 'image_segmenter' __UpperCamelCase = CLIPSegForImageSegmentation __UpperCamelCase = ['image', 'text'] __UpperCamelCase = ['image'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase , return_tensors="""pt""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase = self.model(**lowerCamelCase ).logits return logits def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = outputs.cpu().detach().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
317
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1e-3 ) def A__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
317
"""simple docstring""" from __future__ import annotations import queue class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None def __UpperCAmelCase ( ) -> TreeNode: """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) _lowerCAmelCase = input("""Enter the value of the root node: """ ).strip().lower() _lowerCAmelCase = queue.Queue() _lowerCAmelCase = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() _lowerCAmelCase = F"""Enter the left node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = left_node q.put(snake_case_ ) _lowerCAmelCase = F"""Enter the right node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = right_node q.put(snake_case_ ) raise def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = [] while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(snake_case_ ) _lowerCAmelCase = n.left # end of while means current node doesn't have left child _lowerCAmelCase = stack.pop() # start to traverse its right child _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: stack.append(snake_case_ ) _lowerCAmelCase = n.left _lowerCAmelCase = stack.pop() print(n.data , end=""",""" ) _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : str = "" , snake_case_ : int=50 , snake_case_ : Dict="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char _lowerCAmelCase , _lowerCAmelCase = divmod(width - len(snake_case_ ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) SCREAMING_SNAKE_CASE : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
317
1
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py SCREAMING_SNAKE_CASE : Tuple = '''.''' if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Tuple = [] with open(doctest_file_path) as fp: for line in fp: SCREAMING_SNAKE_CASE : Optional[int] = line.strip() SCREAMING_SNAKE_CASE : Tuple = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: SCREAMING_SNAKE_CASE : Dict = '''\n'''.join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
317
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(lowerCamelCase ), len(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE : Any = '''ABAABA''' SCREAMING_SNAKE_CASE : Optional[int] = '''AB''' SCREAMING_SNAKE_CASE : str = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
317
1
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : bool , snake_case_ : bool ) -> Tuple: """simple docstring""" def run_func(snake_case_ : Union[str, Any] ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : Optional[int] , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : Dict , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: """simple docstring""" _lowerCAmelCase = random.Random() _lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = "TensorFlow" @property def A__ (self ): '''simple docstring''' return tf.__version__ def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase , decoder_input_ids=lowerCamelCase , training=lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase , training=lowerCamelCase ) _lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase = model(lowerCamelCase , decoder_input_ids=lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients _lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A__ (self , lowerCamelCase ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase = timeit.repeat( lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _lowerCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _lowerCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase ) _lowerCAmelCase = meminfo.used _lowerCAmelCase = Memory(lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _lowerCAmelCase = None else: _lowerCAmelCase = measure_peak_memory_cpu(lowerCamelCase ) _lowerCAmelCase = Memory(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase = stop_memory_tracing(lowerCamelCase ) if memory is None: _lowerCAmelCase = summary.total else: _lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
317
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device SCREAMING_SNAKE_CASE : List[str] = False class __lowerCamelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( image=lowerCamelCase , generator=lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _lowerCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
317
1
"""simple docstring""" import math def __UpperCAmelCase ( snake_case_ : int ) -> list: """simple docstring""" _lowerCAmelCase = [True] * n _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): _lowerCAmelCase = i * 2 while index < n: _lowerCAmelCase = False _lowerCAmelCase = index + i _lowerCAmelCase = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def __UpperCAmelCase ( snake_case_ : int = 999966663333 ) -> int: """simple docstring""" _lowerCAmelCase = math.floor(math.sqrt(snake_case_ ) ) + 100 _lowerCAmelCase = prime_sieve(snake_case_ ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = primes[prime_index] while (last_prime**2) <= limit: _lowerCAmelCase = primes[prime_index + 1] _lowerCAmelCase = last_prime**2 _lowerCAmelCase = next_prime**2 # Get numbers divisible by lps(current) _lowerCAmelCase = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) _lowerCAmelCase = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps _lowerCAmelCase = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair _lowerCAmelCase = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
317
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1e-3 ) def A__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
317
1
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if args.model_type == "bert": SCREAMING_SNAKE_CASE : Tuple = BertForMaskedLM.from_pretrained(args.model_name) SCREAMING_SNAKE_CASE : Union[str, Any] = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') SCREAMING_SNAKE_CASE : Dict = model.state_dict() SCREAMING_SNAKE_CASE : str = {} for w in ["word_embeddings", "position_embeddings"]: SCREAMING_SNAKE_CASE : int = state_dict[F'{prefix}.embeddings.{w}.weight'] for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE : List[str] = state_dict[F'{prefix}.embeddings.LayerNorm.{w}'] SCREAMING_SNAKE_CASE : Dict = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE : Dict = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}' ] SCREAMING_SNAKE_CASE : Tuple = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}' ] SCREAMING_SNAKE_CASE : Any = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}' ] SCREAMING_SNAKE_CASE : Optional[Any] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}' ] SCREAMING_SNAKE_CASE : List[str] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}' ] SCREAMING_SNAKE_CASE : Optional[Any] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}' ] SCREAMING_SNAKE_CASE : List[str] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}' ] SCREAMING_SNAKE_CASE : Dict = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}' ] std_idx += 1 SCREAMING_SNAKE_CASE : Tuple = state_dict['''cls.predictions.decoder.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: SCREAMING_SNAKE_CASE : Any = state_dict[F'cls.predictions.transform.dense.{w}'] SCREAMING_SNAKE_CASE : int = state_dict[F'cls.predictions.transform.LayerNorm.{w}'] print(F'N layers selected for distillation: {std_idx}') print(F'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(F'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
317
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
317
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __lowerCamelCase : __UpperCamelCase = LEDConfig __UpperCamelCase = {} __UpperCamelCase = 'gelu' def __init__(self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=20 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=4 , ): '''simple docstring''' _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = eos_token_id _lowerCAmelCase = pad_token_id _lowerCAmelCase = bos_token_id _lowerCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _lowerCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _lowerCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _lowerCAmelCase = prepare_led_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = tf.concat( [tf.zeros_like(lowerCamelCase )[:, :-1], tf.ones_like(lowerCamelCase )[:, -1:]] , axis=-1 , ) _lowerCAmelCase = global_attention_mask return config, inputs_dict def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = TFLEDModel(config=lowerCamelCase ).get_decoder() _lowerCAmelCase = inputs_dict["""input_ids"""] _lowerCAmelCase = input_ids[:1, :] _lowerCAmelCase = inputs_dict["""attention_mask"""][:1, :] _lowerCAmelCase = 1 # first forward pass _lowerCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , use_cache=lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase )[0] _lowerCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] _lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase , lowerCamelCase , rtol=1e-3 ) def __UpperCAmelCase ( snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Optional[Any]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=None , snake_case_ : List[Any]=None , ) -> Optional[Any]: """simple docstring""" if attention_mask is None: _lowerCAmelCase = tf.cast(tf.math.not_equal(snake_case_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __lowerCamelCase ( __lowercase , __lowercase , unittest.TestCase ): __UpperCamelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __UpperCamelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFLEDModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowerCamelCase ) def A__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = tf.zeros_like(inputs_dict["""attention_mask"""] ) _lowerCAmelCase = 2 _lowerCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , ) _lowerCAmelCase = True _lowerCAmelCase = self.model_tester.seq_length _lowerCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCamelCase ): _lowerCAmelCase = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowerCamelCase ): _lowerCAmelCase = [t.numpy() for t in outputs.encoder_attentions] _lowerCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = model_class(lowerCamelCase ) _lowerCAmelCase = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) _lowerCAmelCase = len(lowerCamelCase ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) if self.is_encoder_decoder: _lowerCAmelCase = model_class(lowerCamelCase ) _lowerCAmelCase = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_decoder_attentions_output(lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(lowerCamelCase ) _lowerCAmelCase = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(lowerCamelCase ) _lowerCAmelCase = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' pass def __UpperCAmelCase ( snake_case_ : Dict ) -> int: """simple docstring""" return tf.constant(snake_case_ , dtype=tf.intaa ) SCREAMING_SNAKE_CASE : Optional[int] = 1e-4 @slow @require_tf class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led # change to intended input here _lowerCAmelCase = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCAmelCase = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCAmelCase = prepare_led_inputs_dict(model.config , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model(**lowerCamelCase )[0] _lowerCAmelCase = (1, 1_024, 768) self.assertEqual(output.shape , lowerCamelCase ) # change to expected output here _lowerCAmelCase = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase , atol=1e-3 ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ) # change to intended input here _lowerCAmelCase = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCAmelCase = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCAmelCase = prepare_led_inputs_dict(model.config , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model(**lowerCamelCase )[0] _lowerCAmelCase = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowerCamelCase ) # change to expected output here _lowerCAmelCase = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase , atol=1e-3 , rtol=1e-3 )
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 100 ) -> int: """simple docstring""" _lowerCAmelCase = n * (n + 1) * (2 * n + 1) / 6 _lowerCAmelCase = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
317
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ) -> str | None: """simple docstring""" _lowerCAmelCase = "" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def __UpperCAmelCase ( snake_case_ : list[int] ) -> list[str]: """simple docstring""" _lowerCAmelCase = [] for key in product(snake_case_ , repeat=3 ): _lowerCAmelCase = try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def __UpperCAmelCase ( snake_case_ : list[str] , snake_case_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( snake_case_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding="""utf-8""" ) _lowerCAmelCase = [int(snake_case_ ) for number in data.strip().split(""",""" )] _lowerCAmelCase = filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'new-model' if is_tf_available(): class __lowerCamelCase ( __lowercase ): __UpperCamelCase = NewModelConfig @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = """bert-base-cased""" _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = """bert-base-cased""" _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelForPreTraining.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase , output_loading_info=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase , output_loading_info=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase , output_loading_info=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow @require_tensorflow_probability def A__ (self ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = TFAutoModelForTableQuestionAnswering.from_pretrained( lowerCamelCase , output_loading_info=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase ) , 14_410 ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase ) , 14_410 ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = copy.deepcopy(model.config ) _lowerCAmelCase = ["""FunnelBaseModel"""] _lowerCAmelCase = TFAutoModel.from_config(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase ) _lowerCAmelCase = TFAutoModel.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' try: AutoConfig.register("""new-model""" , lowerCamelCase ) _lowerCAmelCase = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowerCamelCase ): auto_class.register(lowerCamelCase , lowerCamelCase ) auto_class.register(lowerCamelCase , lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase ): auto_class.register(lowerCamelCase , lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCAmelCase = BertModelTester(self ).get_config() _lowerCAmelCase = NewModelConfig(**tiny_config.to_dict() ) _lowerCAmelCase = auto_class.from_config(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase ) _lowerCAmelCase = auto_class.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def A__ (self ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase , """bert-base is not a local folder and is not a valid model identifier""" ): _lowerCAmelCase = TFAutoModel.from_pretrained("""bert-base""" ) def A__ (self ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _lowerCAmelCase = TFAutoModel.from_pretrained(lowerCamelCase , revision="""aaaaaa""" ) def A__ (self ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): _lowerCAmelCase = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def A__ (self ): '''simple docstring''' with self.assertRaisesRegex(lowerCamelCase , """Use `from_pt=True` to load this model""" ): _lowerCAmelCase = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: _lowerCAmelCase = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint _lowerCAmelCase = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: _lowerCAmelCase = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit + 1 _lowerCAmelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __lowerCamelCase ( __lowercase , __lowercase , unittest.TestCase ): __UpperCamelCase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __UpperCamelCase = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if return_labels: if model_class in get_values(lowerCamelCase ): _lowerCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __lowerCamelCase ( __lowercase ): def __init__(self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope _lowerCAmelCase = embedding_size def A__ (self ): '''simple docstring''' _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = TFMobileBertModel(config=lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = model(lowerCamelCase ) _lowerCAmelCase = [input_ids, input_mask] _lowerCAmelCase = model(lowerCamelCase ) _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = TFMobileBertForMaskedLM(config=lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = TFMobileBertForNextSentencePrediction(config=lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = TFMobileBertForPreTraining(config=lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFMobileBertForSequenceClassification(config=lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.num_choices _lowerCAmelCase = TFMobileBertForMultipleChoice(config=lowerCamelCase ) _lowerCAmelCase = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFMobileBertForTokenClassification(config=lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = TFMobileBertForQuestionAnswering(config=lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def A__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase ) @slow def A__ (self ): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase = TFMobileBertModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) _lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = model(lowerCamelCase )[0] _lowerCAmelCase = [1, 6, 30_522] self.assertEqual(output.shape , lowerCamelCase ) _lowerCAmelCase = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase , atol=1e-4 )
317
"""simple docstring""" from functools import reduce SCREAMING_SNAKE_CASE : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __UpperCAmelCase ( snake_case_ : str = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case_ , snake_case_ : str(int(snake_case_ ) * int(snake_case_ ) ) , n[i : i + 13] ) ) for i in range(len(snake_case_ ) - 12 ) ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=4 , ): '''simple docstring''' _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_attention_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_choices def A__ (self ): '''simple docstring''' _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_attention_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = True __UpperCamelCase = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = FlaxBertModelTester(self ) @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = FlaxBertModel.from_pretrained("""bert-base-cased""" ) _lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase )
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 600851475143 ) -> int: """simple docstring""" try: _lowerCAmelCase = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: while n % i == 0: _lowerCAmelCase = i n //= i i += 1 if n > 1: _lowerCAmelCase = n return int(snake_case_ ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'mgp-str' def __init__(self , lowerCamelCase=[32, 128] , lowerCamelCase=4 , lowerCamelCase=3 , lowerCamelCase=27 , lowerCamelCase=38 , lowerCamelCase=50_257 , lowerCamelCase=30_522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=4.0 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=1e-5 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=False , lowerCamelCase=0.02 , **lowerCamelCase , ): '''simple docstring''' super().__init__(**lowerCamelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = max_token_length _lowerCAmelCase = num_character_labels _lowerCAmelCase = num_bpe_labels _lowerCAmelCase = num_wordpiece_labels _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = mlp_ratio _lowerCAmelCase = distilled _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = drop_rate _lowerCAmelCase = qkv_bias _lowerCAmelCase = attn_drop_rate _lowerCAmelCase = drop_path_rate _lowerCAmelCase = output_aa_attentions _lowerCAmelCase = initializer_range
317
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether tp freeze the encoder.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __UpperCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Source language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Target language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': '# num_beams to use for evaluation.'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , F"""{split}_results.json""" ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase = SeqaSeqDataset # Get datasets _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) _lowerCAmelCase = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) _lowerCAmelCase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowerCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase = train_result.metrics _lowerCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate(metric_key_prefix="""val""" ) _lowerCAmelCase = data_args.n_val _lowerCAmelCase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowerCAmelCase = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="""test""" ) _lowerCAmelCase = test_output.metrics _lowerCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: _lowerCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) _lowerCAmelCase = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def __UpperCAmelCase ( snake_case_ : Any ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
317
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) _lowerCAmelCase = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _lowerCAmelCase = model(lowerCamelCase )["""last_hidden_state"""] _lowerCAmelCase = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , lowerCamelCase ) # compare the actual values for a slice. _lowerCAmelCase = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
317
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
1