code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'xlm-roberta' def __init__(self , lowerCamelCase=30_522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3_072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout class __lowerCamelCase ( __lowercase ): @property def A__ (self ): '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
317
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size def A__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = MobileNetVaImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """crop_size""" ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Tuple = getLogger(__name__) def __UpperCAmelCase ( snake_case_ : List[str] , snake_case_ : str , snake_case_ : str , snake_case_ : int = 8 , snake_case_ : int = 1024 , snake_case_ : Any="val" , snake_case_ : Dict=None , snake_case_ : Tuple=False , snake_case_ : Optional[Any]="summarization" , snake_case_ : str=None , snake_case_ : Optional[int]=1 , snake_case_ : Dict = None , snake_case_ : int="" , **snake_case_ : Dict , ) -> Dict: """simple docstring""" _lowerCAmelCase = str(snake_case_ ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""" , rank=snake_case_ ) _lowerCAmelCase = Path(snake_case_ ) _lowerCAmelCase = save_dir.joinpath(F"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(snake_case_ ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda() if fpaa: _lowerCAmelCase = model.half() # determine if we need to increase num_beams use_task_specific_params(snake_case_ , snake_case_ ) # update config with task specific params _lowerCAmelCase = generate_kwargs.pop("""num_beams""" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _lowerCAmelCase = num_return_sequences _lowerCAmelCase = AutoTokenizer.from_pretrained(snake_case_ ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: _lowerCAmelCase = tokenizer.model_max_length if prefix is None: _lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" _lowerCAmelCase = SeqaSeqDataset( snake_case_ , snake_case_ , snake_case_ , max_target_length=1024 , type_path=snake_case_ , n_obs=snake_case_ , prefix=snake_case_ , **snake_case_ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _lowerCAmelCase = ds.make_sortish_sampler(snake_case_ , distributed=snake_case_ , add_extra_examples=snake_case_ , shuffle=snake_case_ ) _lowerCAmelCase = DataLoader(snake_case_ , sampler=snake_case_ , batch_size=snake_case_ , collate_fn=ds.collate_fn ) _lowerCAmelCase = [] for batch in tqdm(snake_case_ ): _lowerCAmelCase = model.generate( input_ids=batch["""input_ids"""].to(model.device ) , attention_mask=batch["""attention_mask"""].to(model.device ) , num_return_sequences=snake_case_ , num_beams=snake_case_ , **snake_case_ , ) _lowerCAmelCase = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) _lowerCAmelCase = batch["""ids"""] if num_return_sequences > 1: _lowerCAmelCase = chunks(snake_case_ , snake_case_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(snake_case_ ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(snake_case_ , snake_case_ ) return results, sampler.num_replicas def __UpperCAmelCase ( ) -> int: """simple docstring""" _lowerCAmelCase = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""" , type=snake_case_ , help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""" , type=snake_case_ , help="""like facebook/bart-large-cnn,t5-base, etc.""" , default="""sshleifer/distilbart-xsum-12-3""" , ) parser.add_argument("""--save_dir""" , type=snake_case_ , help="""where to save""" , default="""tmp_gen""" ) parser.add_argument("""--max_source_length""" , type=snake_case_ , default=snake_case_ ) parser.add_argument( """--type_path""" , type=snake_case_ , default="""test""" , help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""" , type=snake_case_ , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=snake_case_ , default=8 , required=snake_case_ , help="""batch size""" ) parser.add_argument( """--local_rank""" , type=snake_case_ , default=-1 , required=snake_case_ , help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""" , type=snake_case_ , default=snake_case_ , required=snake_case_ , help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""" , type=snake_case_ , default=1 , required=snake_case_ , help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""" , type=snake_case_ , default=600 , required=snake_case_ , help="""How long should master process wait for other processes to finish.""" , ) parser.add_argument("""--src_lang""" , type=snake_case_ , default=snake_case_ , required=snake_case_ ) parser.add_argument("""--tgt_lang""" , type=snake_case_ , default=snake_case_ , required=snake_case_ ) parser.add_argument( """--prefix""" , type=snake_case_ , required=snake_case_ , default=snake_case_ , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--debug""" , action="""store_true""" ) _lowerCAmelCase = time.time() _lowerCAmelCase , _lowerCAmelCase = parser.parse_known_args() _lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(snake_case_ ) if generate_kwargs and args.local_rank <= 0: print(F"""parsed the following generate kwargs: {generate_kwargs}""" ) _lowerCAmelCase = Path(args.save_dir + """_tmp""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking. _lowerCAmelCase = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(F"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _lowerCAmelCase = {} if args.src_lang is not None: _lowerCAmelCase = args.src_lang if args.tgt_lang is not None: _lowerCAmelCase = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = eval_data_dir( args.data_dir , snake_case_ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=snake_case_ , **snake_case_ , ) if args.local_rank <= 0: _lowerCAmelCase = Path(args.save_dir ) save_dir.mkdir(exist_ok=snake_case_ ) _lowerCAmelCase = gather_results_from_each_node(snake_case_ , snake_case_ , args.sync_timeout ) _lowerCAmelCase = combine_partial_results(snake_case_ ) if args.num_return_sequences > 1: _lowerCAmelCase = save_dir.joinpath("""pseudolabel_results.json""" ) print(F"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(snake_case_ , snake_case_ ) return _lowerCAmelCase = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(snake_case_ ) as f: _lowerCAmelCase = [x.rstrip() for x in f.readlines()][: len(snake_case_ )] # Calculate metrics, save metrics, and save _generations.txt _lowerCAmelCase = """translation""" in args.task _lowerCAmelCase = calculate_bleu if calc_bleu else calculate_rouge _lowerCAmelCase = """bleu""" if calc_bleu else """rouge""" _lowerCAmelCase = score_fn(snake_case_ , snake_case_ ) _lowerCAmelCase = len(snake_case_ ) _lowerCAmelCase = time.time() - start_time _lowerCAmelCase = round(runtime / metrics["""n_obs"""] , 4 ) _lowerCAmelCase = num_replicas # TODO(@stas00): add whatever metadata to metrics _lowerCAmelCase = save_dir.joinpath(F"""{args.type_path}_{metric_name}.json""" ) save_json(snake_case_ , snake_case_ , indent=snake_case_ ) print(snake_case_ ) write_txt_file(snake_case_ , save_dir.joinpath(F"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(snake_case_ , save_dir.joinpath(F"""{args.type_path}.target""" ) ) else: shutil.rmtree(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> List: """simple docstring""" _lowerCAmelCase = [] for partial_result in partial_results: records.extend(snake_case_ ) _lowerCAmelCase = sorted(snake_case_ , key=lambda snake_case_ : x["id"] ) _lowerCAmelCase = [x["""pred"""] for x in records] return preds def __UpperCAmelCase ( snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : List[str] ) -> List[Dict[str, List]]: """simple docstring""" _lowerCAmelCase = time.time() logger.info("""waiting for all nodes to finish""" ) _lowerCAmelCase = None while (time.time() - start_wait) < timeout: _lowerCAmelCase = list(save_dir.glob("""rank_*.json""" ) ) if len(snake_case_ ) < num_replicas: continue try: # make sure all json files are fully saved _lowerCAmelCase = lmap(snake_case_ , snake_case_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" for i in range(len(snake_case_ ) - 1 , 0 , -1 ): _lowerCAmelCase = False for j in range(snake_case_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j - 1], unsorted[j] _lowerCAmelCase = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j + 1], unsorted[j] _lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(''',''')] print(F'{cocktail_shaker_sort(unsorted) = }')
317
1
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.task_name.lower() class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'train' __UpperCamelCase = 'dev' __UpperCamelCase = 'test' class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__(self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = Split.train , lowerCamelCase = None , ): '''simple docstring''' warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , lowerCamelCase , ) _lowerCAmelCase = args _lowerCAmelCase = glue_processors[args.task_name]() _lowerCAmelCase = glue_output_modes[args.task_name] if isinstance(lowerCamelCase , lowerCamelCase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) _lowerCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _lowerCAmelCase , _lowerCAmelCase = label_list[2], label_list[1] _lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(lowerCamelCase ): if os.path.exists(lowerCamelCase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(lowerCamelCase ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _lowerCAmelCase = self.processor.get_test_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _lowerCAmelCase = examples[:limit_length] _lowerCAmelCase = glue_convert_examples_to_features( lowerCamelCase , lowerCamelCase , max_length=args.max_seq_length , label_list=lowerCamelCase , output_mode=self.output_mode , ) _lowerCAmelCase = time.time() torch.save(self.features , lowerCamelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , lowerCamelCase ): '''simple docstring''' return self.features[i] def A__ (self ): '''simple docstring''' return self.label_list
317
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : bool , snake_case_ : bool ) -> Tuple: """simple docstring""" def run_func(snake_case_ : Union[str, Any] ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : Optional[int] , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : Dict , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: """simple docstring""" _lowerCAmelCase = random.Random() _lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = "TensorFlow" @property def A__ (self ): '''simple docstring''' return tf.__version__ def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase , decoder_input_ids=lowerCamelCase , training=lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase , training=lowerCamelCase ) _lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase = model(lowerCamelCase , decoder_input_ids=lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients _lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A__ (self , lowerCamelCase ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase = timeit.repeat( lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _lowerCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _lowerCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase ) _lowerCAmelCase = meminfo.used _lowerCAmelCase = Memory(lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _lowerCAmelCase = None else: _lowerCAmelCase = measure_peak_memory_cpu(lowerCamelCase ) _lowerCAmelCase = Memory(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase = stop_memory_tracing(lowerCamelCase ) if memory is None: _lowerCAmelCase = summary.total else: _lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int ) -> int: """simple docstring""" if n == 1 or not isinstance(snake_case_ , snake_case_ ): return 0 elif n == 2: return 1 else: _lowerCAmelCase = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __UpperCAmelCase ( snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = 2 while digits < n: index += 1 _lowerCAmelCase = len(str(fibonacci(snake_case_ ) ) ) return index def __UpperCAmelCase ( snake_case_ : int = 1000 ) -> int: """simple docstring""" return fibonacci_digits_index(snake_case_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
317
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'transfo-xl' __UpperCamelCase = ['mems'] __UpperCamelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , lowerCamelCase=267_735 , lowerCamelCase=[20_000, 40_000, 200_000] , lowerCamelCase=1_024 , lowerCamelCase=1_024 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase=4_096 , lowerCamelCase=4 , lowerCamelCase=False , lowerCamelCase=18 , lowerCamelCase=1_600 , lowerCamelCase=1_000 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase=-1 , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="normal" , lowerCamelCase=0.01 , lowerCamelCase=0.01 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=0 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: _lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: _lowerCAmelCase = [False] + [False] * len(self.cutoffs ) _lowerCAmelCase = d_model _lowerCAmelCase = d_embed _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = div_val _lowerCAmelCase = pre_lnorm _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = mem_len _lowerCAmelCase = same_length _lowerCAmelCase = attn_type _lowerCAmelCase = clamp_len _lowerCAmelCase = sample_softmax _lowerCAmelCase = adaptive _lowerCAmelCase = dropout _lowerCAmelCase = dropatt _lowerCAmelCase = untie_r _lowerCAmelCase = init _lowerCAmelCase = init_range _lowerCAmelCase = proj_init_std _lowerCAmelCase = init_std _lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
317
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) class __lowerCamelCase ( __lowercase , __lowercase ): __UpperCamelCase = 'maskformer-swin' __UpperCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , lowerCamelCase=224 , lowerCamelCase=4 , lowerCamelCase=3 , lowerCamelCase=96 , lowerCamelCase=[2, 2, 6, 2] , lowerCamelCase=[3, 6, 12, 24] , lowerCamelCase=7 , lowerCamelCase=4.0 , lowerCamelCase=True , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase="gelu" , lowerCamelCase=False , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase , ): '''simple docstring''' super().__init__(**lowerCamelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(lowerCamelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) _lowerCAmelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] _lowerCAmelCase , _lowerCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
317
"""simple docstring""" import math def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 2 _lowerCAmelCase = int(math.sqrt(snake_case_ ) ) # Size of every segment _lowerCAmelCase = [True] * (end + 1) _lowerCAmelCase = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): _lowerCAmelCase = False start += 1 prime += in_prime _lowerCAmelCase = end + 1 _lowerCAmelCase = min(2 * end , snake_case_ ) while low <= n: _lowerCAmelCase = [True] * (high - low + 1) for each in in_prime: _lowerCAmelCase = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): _lowerCAmelCase = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) _lowerCAmelCase = high + 1 _lowerCAmelCase = min(high + end , snake_case_ ) return prime print(sieve(1_0**6))
317
1
"""simple docstring""" SCREAMING_SNAKE_CASE : dict[str, float] = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_02_17_66_34e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.3_5_5_8_1_8, } def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str , snake_case_ : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: _lowerCAmelCase = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {", ".join(snake_case_ )}""" ) raise ValueError(snake_case_ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
317
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE : Any = (7_2_0, 1_2_8_0) # Height, Width SCREAMING_SNAKE_CASE : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE : List[Any] = 1 / 1_0_0 SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = '''''' SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = 2_5_0 def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_dataset(snake_case_ , snake_case_ ) for index in range(snake_case_ ): _lowerCAmelCase = random.sample(range(len(snake_case_ ) ) , 4 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase = random_chars(32 ) _lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _lowerCAmelCase = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowerCAmelCase = [] for anno in new_annos: _lowerCAmelCase = anno[3] - anno[1] _lowerCAmelCase = anno[4] - anno[2] _lowerCAmelCase = anno[1] + width / 2 _lowerCAmelCase = anno[2] + height / 2 _lowerCAmelCase = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(snake_case_ ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> tuple[list, list]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case_ , """*.txt""" ) ): _lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case_ ) as in_file: _lowerCAmelCase = in_file.readlines() _lowerCAmelCase = os.path.join(snake_case_ , F"""{label_name}.jpg""" ) _lowerCAmelCase = [] for obj_list in obj_lists: _lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) _lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 _lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list , snake_case_ : list[int] , snake_case_ : tuple[int, int] , snake_case_ : tuple[float, float] , snake_case_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" _lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = int(scale_x * output_size[1] ) _lowerCAmelCase = int(scale_y * output_size[0] ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, index in enumerate(snake_case_ ): _lowerCAmelCase = all_img_list[index] path_list.append(snake_case_ ) _lowerCAmelCase = all_annos[index] _lowerCAmelCase = cva.imread(snake_case_ ) if i == 0: # top-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCAmelCase = cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCAmelCase = cva.resize( snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
317
1
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(lowerCamelCase ), len(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE : Any = '''ABAABA''' SCREAMING_SNAKE_CASE : Optional[int] = '''AB''' SCREAMING_SNAKE_CASE : str = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
317
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
1
"""simple docstring""" from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def __UpperCAmelCase ( snake_case_ : Sequence[float] , snake_case_ : int , snake_case_ : int ) -> tuple[int | None, int | None, float]: """simple docstring""" if not arr: return None, None, 0 if low == high: return low, high, arr[low] _lowerCAmelCase = (low + high) // 2 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = max_subarray(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = max_subarray(snake_case_ , mid + 1 , snake_case_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = max_cross_sum(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def __UpperCAmelCase ( snake_case_ : Sequence[float] , snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> tuple[int, int, float]: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = float("""-inf""" ), -1 _lowerCAmelCase , _lowerCAmelCase = float("""-inf""" ), -1 _lowerCAmelCase = 0 for i in range(snake_case_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _lowerCAmelCase = summ _lowerCAmelCase = i _lowerCAmelCase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _lowerCAmelCase = summ _lowerCAmelCase = i return max_left, max_right, (left_sum + right_sum) def __UpperCAmelCase ( snake_case_ : int ) -> float: """simple docstring""" _lowerCAmelCase = [randint(1 , snake_case_ ) for _ in range(snake_case_ )] _lowerCAmelCase = time.time() max_subarray(snake_case_ , 0 , input_size - 1 ) _lowerCAmelCase = time.time() return end - start def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] _lowerCAmelCase = [time_max_subarray(snake_case_ ) for input_size in input_sizes] print("""No of Inputs\t\tTime Taken""" ) for input_size, runtime in zip(snake_case_ , snake_case_ ): print(snake_case_ , """\t\t""" , snake_case_ ) plt.plot(snake_case_ , snake_case_ ) plt.xlabel("""Number of Inputs""" ) plt.ylabel("""Time taken in seconds""" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE : Dict = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
"""simple docstring""" from math import isqrt def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case_ , snake_case_ ): _lowerCAmelCase = False return [i for i in range(2 , snake_case_ ) if is_prime[i]] def __UpperCAmelCase ( snake_case_ : int = 10**8 ) -> int: """simple docstring""" _lowerCAmelCase = calculate_prime_numbers(max_number // 2 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : Dict , **snake_case_ : int ) -> Dict: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : Union[str, Any] , **snake_case_ : str ) -> List[str]: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : List[str] , **snake_case_ : int ) -> List[str]: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : List[Any] , **snake_case_ : List[Any] ) -> int: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : List[Any] , **snake_case_ : Optional[Any] ) -> Optional[int]: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : Optional[Any] , **snake_case_ : List[str] ) -> Optional[Any]: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) def __UpperCAmelCase ( *snake_case_ : List[Any] , **snake_case_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(snake_case_ , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) class __lowerCamelCase ( metaclass=__lowercase ): __UpperCamelCase = ['torch'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def A__ (cls , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(cls , ["""torch"""] )
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCamelCase = 'CIDAS/clipseg-rd64-refined' __UpperCamelCase = 'image_segmenter' __UpperCamelCase = CLIPSegForImageSegmentation __UpperCamelCase = ['image', 'text'] __UpperCamelCase = ['image'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase , return_tensors="""pt""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase = self.model(**lowerCamelCase ).logits return logits def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = outputs.cpu().detach().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
317
1
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : Tuple , snake_case_ : Dict ) -> Any: """simple docstring""" _lowerCAmelCase = set() _lowerCAmelCase = [] def parse_line(snake_case_ : int ): for line in fp: if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(snake_case_ ) > 0: _lowerCAmelCase = """\n""".join(snake_case_ ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(snake_case_ ) buffer.clear() continue else: _lowerCAmelCase = line.strip() buffer.append(snake_case_ ) if from_gh: for filename in os.listdir(snake_case_ ): _lowerCAmelCase = os.path.join(snake_case_ , snake_case_ ) if not os.path.isdir(snake_case_ ): # read the file if filename != "warnings.txt": continue with open(snake_case_ ) as fp: parse_line(snake_case_ ) else: try: with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename != "warnings.txt": continue with z.open(snake_case_ ) as fp: parse_line(snake_case_ ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def __UpperCAmelCase ( snake_case_ : int , snake_case_ : Optional[Any] ) -> int: """simple docstring""" _lowerCAmelCase = set() _lowerCAmelCase = [os.path.join(snake_case_ , snake_case_ ) for p in os.listdir(snake_case_ ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(snake_case_ , snake_case_ ) ) return selected_warnings if __name__ == "__main__": def __UpperCAmelCase ( snake_case_ : Optional[Any] ) -> Optional[int]: """simple docstring""" return values.split(""",""" ) SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links SCREAMING_SNAKE_CASE : Tuple = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts SCREAMING_SNAKE_CASE : Optional[Any] = extract_warnings(args.output_dir, args.targets) SCREAMING_SNAKE_CASE : int = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
317
"""simple docstring""" from __future__ import annotations import queue class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None def __UpperCAmelCase ( ) -> TreeNode: """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) _lowerCAmelCase = input("""Enter the value of the root node: """ ).strip().lower() _lowerCAmelCase = queue.Queue() _lowerCAmelCase = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() _lowerCAmelCase = F"""Enter the left node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = left_node q.put(snake_case_ ) _lowerCAmelCase = F"""Enter the right node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = right_node q.put(snake_case_ ) raise def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = [] while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(snake_case_ ) _lowerCAmelCase = n.left # end of while means current node doesn't have left child _lowerCAmelCase = stack.pop() # start to traverse its right child _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: stack.append(snake_case_ ) _lowerCAmelCase = n.left _lowerCAmelCase = stack.pop() print(n.data , end=""",""" ) _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : str = "" , snake_case_ : int=50 , snake_case_ : Dict="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char _lowerCAmelCase , _lowerCAmelCase = divmod(width - len(snake_case_ ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) SCREAMING_SNAKE_CASE : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
317
1
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py SCREAMING_SNAKE_CASE : str = '''src/transformers''' SCREAMING_SNAKE_CASE : List[str] = '''docs/source/en/tasks''' def __UpperCAmelCase ( snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : Any ) -> Union[str, Any]: """simple docstring""" with open(snake_case_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _lowerCAmelCase = f.readlines() # Find the start prompt. _lowerCAmelCase = 0 while not lines[start_index].startswith(snake_case_ ): start_index += 1 start_index += 1 _lowerCAmelCase = start_index while not lines[end_index].startswith(snake_case_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE : List[str] = direct_transformers_import(TRANSFORMERS_PATH) SCREAMING_SNAKE_CASE : List[Any] = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). SCREAMING_SNAKE_CASE : Dict = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def __UpperCAmelCase ( snake_case_ : Tuple ) -> List[str]: """simple docstring""" _lowerCAmelCase = TASK_GUIDE_TO_MODELS[task_guide] _lowerCAmelCase = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case_ , set() ) _lowerCAmelCase = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def __UpperCAmelCase ( snake_case_ : List[Any] , snake_case_ : str=False ) -> List[str]: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = _find_text_in_file( filename=os.path.join(snake_case_ , snake_case_ ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) _lowerCAmelCase = get_model_list_for_task(snake_case_ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case_ , snake_case_ ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" """ to fix this.""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') SCREAMING_SNAKE_CASE : str = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
317
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(lowerCamelCase ), len(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE : Any = '''ABAABA''' SCREAMING_SNAKE_CASE : Optional[int] = '''AB''' SCREAMING_SNAKE_CASE : str = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
317
1
"""simple docstring""" import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __lowerCamelCase ( unittest.TestCase ): def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return f"""gaussian_noise_s={seed}_shape={"_".join([str(lowerCamelCase ) for s in shape] )}.npy""" def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() def A__ (self , lowerCamelCase=0 , lowerCamelCase=(4, 4, 64, 64) , lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa _lowerCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase , lowerCamelCase ) ) , dtype=lowerCamelCase ) return image def A__ (self , lowerCamelCase=False , lowerCamelCase="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa _lowerCAmelCase = """bf16""" if fpaa else None _lowerCAmelCase , _lowerCAmelCase = FlaxUNetaDConditionModel.from_pretrained( lowerCamelCase , subfolder="""unet""" , dtype=lowerCamelCase , revision=lowerCamelCase ) return model, params def A__ (self , lowerCamelCase=0 , lowerCamelCase=(4, 77, 768) , lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa _lowerCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase , lowerCamelCase ) ) , dtype=lowerCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=lowerCamelCase ) _lowerCAmelCase = self.get_latents(lowerCamelCase , fpaa=lowerCamelCase ) _lowerCAmelCase = self.get_encoder_hidden_states(lowerCamelCase , fpaa=lowerCamelCase ) _lowerCAmelCase = model.apply( {"""params""": params} , lowerCamelCase , jnp.array(lowerCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=lowerCamelCase , ).sample assert sample.shape == latents.shape _lowerCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _lowerCAmelCase = jnp.array(lowerCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCamelCase , lowerCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=lowerCamelCase ) _lowerCAmelCase = self.get_latents(lowerCamelCase , shape=(4, 4, 96, 96) , fpaa=lowerCamelCase ) _lowerCAmelCase = self.get_encoder_hidden_states(lowerCamelCase , shape=(4, 77, 1_024) , fpaa=lowerCamelCase ) _lowerCAmelCase = model.apply( {"""params""": params} , lowerCamelCase , jnp.array(lowerCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=lowerCamelCase , ).sample assert sample.shape == latents.shape _lowerCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _lowerCAmelCase = jnp.array(lowerCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCamelCase , lowerCamelCase , atol=1e-2 )
317
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device SCREAMING_SNAKE_CASE : List[str] = False class __lowerCamelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( image=lowerCamelCase , generator=lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _lowerCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
317
1
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1e-3 ) def A__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
317
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'funnel' __UpperCamelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__(self , lowerCamelCase=30_522 , lowerCamelCase=[4, 4, 4] , lowerCamelCase=None , lowerCamelCase=2 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=64 , lowerCamelCase=3_072 , lowerCamelCase="gelu_new" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=None , lowerCamelCase=1e-9 , lowerCamelCase="mean" , lowerCamelCase="relative_shift" , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = block_sizes _lowerCAmelCase = [1] * len(lowerCamelCase ) if block_repeats is None else block_repeats assert len(lowerCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _lowerCAmelCase = num_decoder_layers _lowerCAmelCase = d_model _lowerCAmelCase = n_head _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = initializer_range _lowerCAmelCase = initializer_std _lowerCAmelCase = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _lowerCAmelCase = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _lowerCAmelCase = attention_type _lowerCAmelCase = separate_cls _lowerCAmelCase = truncate_seq _lowerCAmelCase = pool_q_only super().__init__(**lowerCamelCase ) @property def A__ (self ): '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def A__ (self ): '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
317
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list ) -> float: """simple docstring""" _validate_point(snake_case_ ) _validate_point(snake_case_ ) if len(snake_case_ ) != len(snake_case_ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(snake_case_ , snake_case_ ) ) ) def __UpperCAmelCase ( snake_case_ : list[float] ) -> None: """simple docstring""" if point: if isinstance(snake_case_ , snake_case_ ): for item in point: if not isinstance(snake_case_ , (int, float) ): _lowerCAmelCase = ( """Expected a list of numbers as input, found """ F"""{type(snake_case_ ).__name__}""" ) raise TypeError(snake_case_ ) else: _lowerCAmelCase = F"""Expected a list of numbers as input, found {type(snake_case_ ).__name__}""" raise TypeError(snake_case_ ) else: raise ValueError("""Missing an input""" ) def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list ) -> float: """simple docstring""" _validate_point(snake_case_ ) _validate_point(snake_case_ ) if len(snake_case_ ) != len(snake_case_ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(snake_case_ , snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
1
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black SCREAMING_SNAKE_CASE : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. SCREAMING_SNAKE_CASE : List[str] = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _lowerCAmelCase = self.transformer_dir shutil.copy( os.path.join(lowerCamelCase , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = """src/transformers""" shutil.rmtree(self.transformer_dir ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase = black.format_str(lowerCamelCase , mode=lowerCamelCase ) _lowerCAmelCase = os.path.join(self.transformer_dir , """new_code.py""" ) with open(lowerCamelCase , """w""" , newline="""\n""" ) as f: f.write(lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCamelCase ) with open(lowerCamelCase , """r""" ) as f: self.assertTrue(f.read() , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , lowerCamelCase , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , lowerCamelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub("""Bert""" , lowerCamelCase , lowerCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , lowerCamelCase , overwrite_result=re.sub("""Bert""" , """TestModel""" , lowerCamelCase ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _lowerCAmelCase , _lowerCAmelCase = check_copies.convert_to_localized_md( lowerCamelCase , lowerCamelCase , localized_readme["""format_model_list"""] ) self.assertFalse(lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = check_copies.convert_to_localized_md( lowerCamelCase , lowerCamelCase , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCamelCase ) _lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _lowerCAmelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _lowerCAmelCase , _lowerCAmelCase = check_copies.convert_to_localized_md( lowerCamelCase , lowerCamelCase , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(lowerCamelCase , lowerCamelCase )
317
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ) -> str | None: """simple docstring""" _lowerCAmelCase = "" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def __UpperCAmelCase ( snake_case_ : list[int] ) -> list[str]: """simple docstring""" _lowerCAmelCase = [] for key in product(snake_case_ , repeat=3 ): _lowerCAmelCase = try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def __UpperCAmelCase ( snake_case_ : list[str] , snake_case_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( snake_case_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding="""utf-8""" ) _lowerCAmelCase = [int(snake_case_ ) for number in data.strip().split(""",""" )] _lowerCAmelCase = filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" import pprint import requests SCREAMING_SNAKE_CASE : Optional[Any] = '''https://zenquotes.io/api''' def __UpperCAmelCase ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __UpperCAmelCase ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = random_quotes() pprint.pprint(response)
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit + 1 _lowerCAmelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : Any ) -> List[str]: """simple docstring""" _lowerCAmelCase = len(snake_case_ ) _lowerCAmelCase = sum(snake_case_ ) _lowerCAmelCase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _lowerCAmelCase = True for i in range(1 , s + 1 ): _lowerCAmelCase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _lowerCAmelCase = dp[i][j - 1] if arr[i - 1] <= j: _lowerCAmelCase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _lowerCAmelCase = s - 2 * j break return diff
317
"""simple docstring""" from functools import reduce SCREAMING_SNAKE_CASE : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __UpperCAmelCase ( snake_case_ : str = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case_ , snake_case_ : str(int(snake_case_ ) * int(snake_case_ ) ) , n[i : i + 13] ) ) for i in range(len(snake_case_ ) - 12 ) ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE : int = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Tuple=None , snake_case_ : int=None , snake_case_ : int=None , snake_case_ : Dict=None , snake_case_ : int=None , snake_case_ : str=None , ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: _lowerCAmelCase = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowerCAmelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowerCAmelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=99 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase=4 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=0.02 , ): '''simple docstring''' _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = eos_token_id _lowerCAmelCase = pad_token_id _lowerCAmelCase = bos_token_id _lowerCAmelCase = initializer_range def A__ (self ): '''simple docstring''' _lowerCAmelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _lowerCAmelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _lowerCAmelCase = shift_tokens_right(lowerCamelCase , 1 , 2 ) _lowerCAmelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCamelCase , ) _lowerCAmelCase = prepare_blenderbot_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return config, inputs_dict def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(lowerCamelCase ) _lowerCAmelCase = model.encode(inputs_dict["""input_ids"""] ) _lowerCAmelCase , _lowerCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _lowerCAmelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCAmelCase = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , decoder_position_ids=lowerCamelCase , ) _lowerCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _lowerCAmelCase = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase , ) _lowerCAmelCase = model.decode(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(lowerCamelCase ) _lowerCAmelCase = model.encode(inputs_dict["""input_ids"""] ) _lowerCAmelCase , _lowerCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _lowerCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowerCAmelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCAmelCase = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , decoder_position_ids=lowerCamelCase , ) _lowerCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _lowerCAmelCase = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase , decoder_position_ids=lowerCamelCase , ) _lowerCAmelCase = model.decode(lowerCamelCase , lowerCamelCase , decoder_attention_mask=lowerCamelCase ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCamelCase ( unittest.TestCase ): __UpperCamelCase = 99 def A__ (self ): '''simple docstring''' _lowerCAmelCase = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _lowerCAmelCase = input_ids.shape[0] _lowerCAmelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self._get_config_and_data() _lowerCAmelCase = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase ) _lowerCAmelCase = lm_model(input_ids=lowerCamelCase ) _lowerCAmelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _lowerCAmelCase = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase ) _lowerCAmelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _lowerCAmelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _lowerCAmelCase = lm_model(input_ids=lowerCamelCase , decoder_input_ids=lowerCamelCase ) _lowerCAmelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _lowerCAmelCase = shift_tokens_right(lowerCamelCase , 1 , 2 ) _lowerCAmelCase = np.equal(lowerCamelCase , 1 ).astype(np.floataa ).sum() _lowerCAmelCase = np.equal(lowerCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __lowerCamelCase ( __lowercase , unittest.TestCase , __lowercase ): __UpperCamelCase = True __UpperCamelCase = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) __UpperCamelCase = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def A__ (self ): '''simple docstring''' _lowerCAmelCase = FlaxBlenderbotSmallModelTester(self ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_class(lowerCamelCase ) @jax.jit def encode_jitted(lowerCamelCase , lowerCamelCase=None , **lowerCamelCase ): return model.encode(input_ids=lowerCamelCase , attention_mask=lowerCamelCase ) with self.subTest("""JIT Enabled""" ): _lowerCAmelCase = encode_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _lowerCAmelCase = encode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase = model_class(lowerCamelCase ) _lowerCAmelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _lowerCAmelCase = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase , lowerCamelCase , lowerCamelCase ): return model.decode( decoder_input_ids=lowerCamelCase , decoder_attention_mask=lowerCamelCase , encoder_outputs=lowerCamelCase , ) with self.subTest("""JIT Enabled""" ): _lowerCAmelCase = decode_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _lowerCAmelCase = decode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A__ (self ): '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowerCAmelCase = np.ones((1, 1) ) * model.config.eos_token_id _lowerCAmelCase = model(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase )
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 600851475143 ) -> int: """simple docstring""" try: _lowerCAmelCase = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: while n % i == 0: _lowerCAmelCase = i n //= i i += 1 if n > 1: _lowerCAmelCase = n return int(snake_case_ ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether tp freeze the encoder.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __UpperCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Source language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Target language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': '# num_beams to use for evaluation.'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , F"""{split}_results.json""" ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase = SeqaSeqDataset # Get datasets _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) _lowerCAmelCase = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) _lowerCAmelCase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowerCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase = train_result.metrics _lowerCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate(metric_key_prefix="""val""" ) _lowerCAmelCase = data_args.n_val _lowerCAmelCase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowerCAmelCase = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="""test""" ) _lowerCAmelCase = test_output.metrics _lowerCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: _lowerCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) _lowerCAmelCase = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def __UpperCAmelCase ( snake_case_ : Any ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
317
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE : Optional[Any] = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[Any] = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
1
"""simple docstring""" from typing import Any class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None class __lowerCamelCase : def __init__(self ): '''simple docstring''' _lowerCAmelCase = None def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.head while temp is not None: print(temp.data , end=""" """ ) _lowerCAmelCase = temp.next print() def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = Node(lowerCamelCase ) _lowerCAmelCase = self.head _lowerCAmelCase = new_node def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if node_data_a == node_data_a: return else: _lowerCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _lowerCAmelCase = node_a.next _lowerCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _lowerCAmelCase = node_a.next if node_a is None or node_a is None: return _lowerCAmelCase , _lowerCAmelCase = node_a.data, node_a.data if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
317
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size def A__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = MobileNetVaImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """crop_size""" ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __UpperCAmelCase ( ) -> Dict: """simple docstring""" _lowerCAmelCase = torch.nn.Linear(2 , 4 ) _lowerCAmelCase = torch.optim.AdamW(model.parameters() , lr=1.0 ) _lowerCAmelCase = torch.optim.lr_scheduler.OneCycleLR(snake_case_ , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) _lowerCAmelCase = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) _lowerCAmelCase = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> Tuple: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(snake_case_ ) class __lowerCamelCase ( __lowercase ): @require_cuda def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowerCamelCase ): _lowerCAmelCase = Accelerator(cpu=lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() _lowerCAmelCase = GradientState() assert state.num_steps == 1 _lowerCAmelCase = 4 assert state.num_steps == 4 assert state.sync_gradients is True _lowerCAmelCase = False assert state.sync_gradients is False GradientState._reset_state() def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = create_components() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = accelerator.prepare(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = create_components() accelerator.prepare(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def A__ (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowerCamelCase , **lowerCamelCase ): pass with patch("""torch.cuda.set_device""" , lowerCamelCase ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): _lowerCAmelCase = Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = create_components() accelerator.prepare(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = get_signature(lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCamelCase ) # make sure random weights don't match load_random_weights(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) < 1e-3 ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = create_components() accelerator.prepare(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = get_signature(lowerCamelCase ) # saving hook def save_config(lowerCamelCase , lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(lowerCamelCase , """data.json""" ) , """w""" ) as f: json.dump(lowerCamelCase , lowerCamelCase ) # loading hook def load_config(lowerCamelCase , lowerCamelCase ): with open(os.path.join(lowerCamelCase , """data.json""" ) , """r""" ) as f: _lowerCAmelCase = json.load(lowerCamelCase ) _lowerCAmelCase = config["""class_name"""] _lowerCAmelCase = accelerator.register_save_state_pre_hook(lowerCamelCase ) _lowerCAmelCase = accelerator.register_load_state_pre_hook(lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCamelCase ) # make sure random weights don't match with hooks load_random_weights(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded _lowerCAmelCase = """random""" # make sure loaded weights match with hooks accelerator.load_state(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCamelCase ) # make sure random weights don't match with hooks removed load_random_weights(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded _lowerCAmelCase = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = create_components() _lowerCAmelCase = None # This should work _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertTrue(dummy_obj is None ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = create_components() _lowerCAmelCase = [1, 2, 3] # This should work _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertEqual( getattr(lowerCamelCase , """_is_accelerate_prepared""" , lowerCamelCase ) , lowerCamelCase , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(lowerCamelCase , """_is_accelerate_prepared""" , lowerCamelCase ) , lowerCamelCase , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(lowerCamelCase , """_is_accelerate_prepared""" , lowerCamelCase ) , lowerCamelCase , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(lowerCamelCase , """_is_accelerate_prepared""" , lowerCamelCase ) , lowerCamelCase , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(lowerCamelCase , """_is_accelerate_prepared""" , lowerCamelCase ) , lowerCamelCase , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(lowerCamelCase , """_is_accelerate_prepared""" , lowerCamelCase ) , lowerCamelCase , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def A__ (self ): '''simple docstring''' from transformers import AutoModelForCausalLM _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=lowerCamelCase , device_map={"""""": 0} , ) _lowerCAmelCase = Accelerator() # This should work _lowerCAmelCase = accelerator.prepare(lowerCamelCase ) @slow @require_bnb def A__ (self ): '''simple docstring''' from transformers import AutoModelForCausalLM _lowerCAmelCase = Accelerator() with init_empty_weights(): _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() _lowerCAmelCase = infer_auto_device_map(lowerCamelCase ) _lowerCAmelCase = """cpu""" _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=lowerCamelCase , load_in_abit=lowerCamelCase , llm_inta_enable_fpaa_cpu_offload=lowerCamelCase ) # This should not work and get value error with self.assertRaises(lowerCamelCase ): _lowerCAmelCase = accelerator.prepare(lowerCamelCase ) @slow @require_bnb @require_multi_gpu def A__ (self ): '''simple docstring''' from transformers import AutoModelForCausalLM _lowerCAmelCase = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() _lowerCAmelCase = infer_auto_device_map(lowerCamelCase ) _lowerCAmelCase = 1 _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=lowerCamelCase , device_map=lowerCamelCase , ) _lowerCAmelCase = Accelerator() # This should not work and get value error with self.assertRaises(lowerCamelCase ): _lowerCAmelCase = accelerator.prepare(lowerCamelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def A__ (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) _lowerCAmelCase = infer_auto_device_map(lowerCamelCase ) _lowerCAmelCase = 1 _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=lowerCamelCase , device_map=lowerCamelCase , ) _lowerCAmelCase = Accelerator() # This should work _lowerCAmelCase = accelerator.prepare(lowerCamelCase ) @require_cuda def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.nn.Linear(10 , 10 ) _lowerCAmelCase = torch.optim.SGD(model.parameters() , lr=0.01 ) _lowerCAmelCase = Accelerator(cpu=lowerCamelCase ) _lowerCAmelCase = accelerator.prepare(lowerCamelCase )
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" for i in range(len(snake_case_ ) - 1 , 0 , -1 ): _lowerCAmelCase = False for j in range(snake_case_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j - 1], unsorted[j] _lowerCAmelCase = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j + 1], unsorted[j] _lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(''',''')] print(F'{cocktail_shaker_sort(unsorted) = }')
317
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Dict = { '''configuration_upernet''': ['''UperNetConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ '''UperNetForSemanticSegmentation''', '''UperNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : bool , snake_case_ : bool ) -> Tuple: """simple docstring""" def run_func(snake_case_ : Union[str, Any] ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : Optional[int] , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : Dict , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: """simple docstring""" _lowerCAmelCase = random.Random() _lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = "TensorFlow" @property def A__ (self ): '''simple docstring''' return tf.__version__ def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase , decoder_input_ids=lowerCamelCase , training=lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase , training=lowerCamelCase ) _lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase = model(lowerCamelCase , decoder_input_ids=lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients _lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A__ (self , lowerCamelCase ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase = timeit.repeat( lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _lowerCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _lowerCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase ) _lowerCAmelCase = meminfo.used _lowerCAmelCase = Memory(lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _lowerCAmelCase = None else: _lowerCAmelCase = measure_peak_memory_cpu(lowerCamelCase ) _lowerCAmelCase = Memory(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase = stop_memory_tracing(lowerCamelCase ) if memory is None: _lowerCAmelCase = summary.total else: _lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : float , snake_case_ : float , snake_case_ : float , snake_case_ : float , snake_case_ : float , ) -> float: """simple docstring""" _lowerCAmelCase = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: _lowerCAmelCase = 1 - (matter_density + radiation_density + dark_energy) _lowerCAmelCase = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _lowerCAmelCase = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE : List[str] = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
317
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'transfo-xl' __UpperCamelCase = ['mems'] __UpperCamelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , lowerCamelCase=267_735 , lowerCamelCase=[20_000, 40_000, 200_000] , lowerCamelCase=1_024 , lowerCamelCase=1_024 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase=4_096 , lowerCamelCase=4 , lowerCamelCase=False , lowerCamelCase=18 , lowerCamelCase=1_600 , lowerCamelCase=1_000 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase=-1 , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="normal" , lowerCamelCase=0.01 , lowerCamelCase=0.01 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=0 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: _lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: _lowerCAmelCase = [False] + [False] * len(self.cutoffs ) _lowerCAmelCase = d_model _lowerCAmelCase = d_embed _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = div_val _lowerCAmelCase = pre_lnorm _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = mem_len _lowerCAmelCase = same_length _lowerCAmelCase = attn_type _lowerCAmelCase = clamp_len _lowerCAmelCase = sample_softmax _lowerCAmelCase = adaptive _lowerCAmelCase = dropout _lowerCAmelCase = dropatt _lowerCAmelCase = untie_r _lowerCAmelCase = init _lowerCAmelCase = init_range _lowerCAmelCase = proj_init_std _lowerCAmelCase = init_std _lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
317
1
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowerCamelCase ( __lowercase ): def __init__(self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' super().__init__( lowerCamelCase , split=lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase , streaming=lowerCamelCase , num_proc=lowerCamelCase , **lowerCamelCase , ) _lowerCAmelCase = field _lowerCAmelCase = path_or_paths if isinstance(lowerCamelCase , lowerCamelCase ) else {self.split: path_or_paths} _lowerCAmelCase = Json( cache_dir=lowerCamelCase , data_files=lowerCamelCase , features=lowerCamelCase , field=lowerCamelCase , **lowerCamelCase , ) def A__ (self ): '''simple docstring''' if self.streaming: _lowerCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None self.builder.download_and_prepare( download_config=lowerCamelCase , download_mode=lowerCamelCase , verification_mode=lowerCamelCase , base_path=lowerCamelCase , num_proc=self.num_proc , ) _lowerCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase , in_memory=self.keep_in_memory ) return dataset class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) _lowerCAmelCase = dataset _lowerCAmelCase = path_or_buf _lowerCAmelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowerCAmelCase = num_proc _lowerCAmelCase = """utf-8""" _lowerCAmelCase = to_json_kwargs def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.to_json_kwargs.pop("""path_or_buf""" , lowerCamelCase ) _lowerCAmelCase = self.to_json_kwargs.pop("""orient""" , """records""" ) _lowerCAmelCase = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) _lowerCAmelCase = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) _lowerCAmelCase = self.to_json_kwargs.pop("""compression""" , lowerCamelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCamelCase ) as buffer: _lowerCAmelCase = self._write(file_obj=lowerCamelCase , orient=lowerCamelCase , lines=lowerCamelCase , index=lowerCamelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" """ was passed. Please provide a local path instead.""" ) _lowerCAmelCase = self._write( file_obj=self.path_or_buf , orient=lowerCamelCase , lines=lowerCamelCase , index=lowerCamelCase , **self.to_json_kwargs ) return written def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = args _lowerCAmelCase = query_table( table=self.dataset.data , key=slice(lowerCamelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) _lowerCAmelCase = batch.to_pandas().to_json( path_or_buf=lowerCamelCase , orient=lowerCamelCase , lines=lowerCamelCase , index=lowerCamelCase , **lowerCamelCase ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _lowerCAmelCase = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowerCamelCase ) else: _lowerCAmelCase , _lowerCAmelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCamelCase , lowerCamelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCamelCase ) return written
317
"""simple docstring""" import math def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 2 _lowerCAmelCase = int(math.sqrt(snake_case_ ) ) # Size of every segment _lowerCAmelCase = [True] * (end + 1) _lowerCAmelCase = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): _lowerCAmelCase = False start += 1 prime += in_prime _lowerCAmelCase = end + 1 _lowerCAmelCase = min(2 * end , snake_case_ ) while low <= n: _lowerCAmelCase = [True] * (high - low + 1) for each in in_prime: _lowerCAmelCase = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): _lowerCAmelCase = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) _lowerCAmelCase = high + 1 _lowerCAmelCase = min(high + end , snake_case_ ) return prime print(sieve(1_0**6))
317
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ['image_processor', 'tokenizer'] __UpperCamelCase = 'CLIPImageProcessor' __UpperCamelCase = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCamelCase , ) _lowerCAmelCase = kwargs.pop("""feature_extractor""" ) _lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__(self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _lowerCAmelCase = self.tokenizer(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if images is not None: _lowerCAmelCase = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None and images is not None: _lowerCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase ) , tensor_type=lowerCamelCase ) def A__ (self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def A__ (self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
317
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE : Any = (7_2_0, 1_2_8_0) # Height, Width SCREAMING_SNAKE_CASE : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE : List[Any] = 1 / 1_0_0 SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = '''''' SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = 2_5_0 def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_dataset(snake_case_ , snake_case_ ) for index in range(snake_case_ ): _lowerCAmelCase = random.sample(range(len(snake_case_ ) ) , 4 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase = random_chars(32 ) _lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _lowerCAmelCase = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowerCAmelCase = [] for anno in new_annos: _lowerCAmelCase = anno[3] - anno[1] _lowerCAmelCase = anno[4] - anno[2] _lowerCAmelCase = anno[1] + width / 2 _lowerCAmelCase = anno[2] + height / 2 _lowerCAmelCase = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(snake_case_ ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> tuple[list, list]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case_ , """*.txt""" ) ): _lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case_ ) as in_file: _lowerCAmelCase = in_file.readlines() _lowerCAmelCase = os.path.join(snake_case_ , F"""{label_name}.jpg""" ) _lowerCAmelCase = [] for obj_list in obj_lists: _lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) _lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 _lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list , snake_case_ : list[int] , snake_case_ : tuple[int, int] , snake_case_ : tuple[float, float] , snake_case_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" _lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = int(scale_x * output_size[1] ) _lowerCAmelCase = int(scale_y * output_size[0] ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, index in enumerate(snake_case_ ): _lowerCAmelCase = all_img_list[index] path_list.append(snake_case_ ) _lowerCAmelCase = all_annos[index] _lowerCAmelCase = cva.imread(snake_case_ ) if i == 0: # top-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCAmelCase = cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCAmelCase = cva.resize( snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
317
1
"""simple docstring""" from statistics import mean, stdev def __UpperCAmelCase ( snake_case_ : list , snake_case_ : int = 3 ) -> list: """simple docstring""" _lowerCAmelCase = min(snake_case_ ) _lowerCAmelCase = max(snake_case_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , snake_case_ ) for x in data] def __UpperCAmelCase ( snake_case_ : list , snake_case_ : int = 3 ) -> list: """simple docstring""" _lowerCAmelCase = mean(snake_case_ ) _lowerCAmelCase = stdev(snake_case_ ) # standardize data return [round((x - mu) / (sigma) , snake_case_ ) for x in data]
317
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'gpt_neo' __UpperCamelCase = ['past_key_values'] __UpperCamelCase = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__(self , lowerCamelCase=50_257 , lowerCamelCase=2_048 , lowerCamelCase=2_048 , lowerCamelCase=24 , lowerCamelCase=[[["global", "local"], 12]] , lowerCamelCase=16 , lowerCamelCase=None , lowerCamelCase=256 , lowerCamelCase="gelu_new" , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=1e-5 , lowerCamelCase=0.02 , lowerCamelCase=True , lowerCamelCase=50_256 , lowerCamelCase=50_256 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = hidden_size _lowerCAmelCase = num_layers _lowerCAmelCase = num_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = window_size _lowerCAmelCase = activation_function _lowerCAmelCase = resid_dropout _lowerCAmelCase = embed_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = classifier_dropout _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = attention_types _lowerCAmelCase = self.expand_attention_types_params(lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) @staticmethod def A__ (lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : List[str] , snake_case_ : Optional[int] ) -> Tuple: """simple docstring""" import torch _lowerCAmelCase = input.size() _lowerCAmelCase = len(snake_case_ ) _lowerCAmelCase = shape[dimension] _lowerCAmelCase = torch.arange(0 , snake_case_ , snake_case_ ) _lowerCAmelCase = torch.div(sizedim - size , snake_case_ , rounding_mode="""floor""" ) + 1 _lowerCAmelCase = torch.arange(snake_case_ ) + low_indices[:min_length][:, None] _lowerCAmelCase = [slice(snake_case_ )] * rank _lowerCAmelCase = indices _lowerCAmelCase = input[s] _lowerCAmelCase = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : List[str] ) -> Optional[Any]: """simple docstring""" import torch _lowerCAmelCase = torch.arange(1 , snake_case_ ) _lowerCAmelCase = torch.remainder(snake_case_ , snake_case_ ) _lowerCAmelCase = remainders == 0 _lowerCAmelCase = candidates[divisor_indices] _lowerCAmelCase = torch.max(snake_case_ ) return largest_divisor, torch.div(snake_case_ , snake_case_ , rounding_mode="""floor""" ) class __lowerCamelCase ( __lowercase ): @property def A__ (self ): '''simple docstring''' _lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowerCamelCase , direction="""inputs""" ) _lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def A__ (self ): '''simple docstring''' return self._config.num_heads def A__ (self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' _lowerCAmelCase = super(lowerCamelCase , self ).generate_dummy_inputs( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) # We need to order the input in the way they appears in the forward() _lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCAmelCase = [ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(self.num_layers ) ] _lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: _lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype _lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowerCamelCase , lowerCamelCase , dtype=lowerCamelCase )] , dim=1 ) return ordered_inputs @property def A__ (self ): '''simple docstring''' return 13
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable SCREAMING_SNAKE_CASE : List[Any] = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
"""simple docstring""" from math import isqrt def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case_ , snake_case_ ): _lowerCAmelCase = False return [i for i in range(2 , snake_case_ ) if is_prime[i]] def __UpperCAmelCase ( snake_case_ : int = 10**8 ) -> int: """simple docstring""" _lowerCAmelCase = calculate_prime_numbers(max_number // 2 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = FunnelTokenizer __UpperCamelCase = FunnelTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def A__ (self ): '''simple docstring''' super().setUp() _lowerCAmelCase = [ """<unk>""", """<cls>""", """<sep>""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def A__ (self , **lowerCamelCase ): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def A__ (self , **lowerCamelCase ): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = """UNwant\u00E9d,running""" _lowerCAmelCase = """unwanted, running""" return input_text, output_text def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.tokenizer_class(self.vocab_file ) _lowerCAmelCase = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCamelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [7, 4, 5, 10, 8, 9] ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_tokenizers(do_lower_case=lowerCamelCase ) for tokenizer in tokenizers: _lowerCAmelCase = tokenizer("""UNwant\u00E9d,running""" ) _lowerCAmelCase = len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len ) _lowerCAmelCase = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCamelCase = 'CIDAS/clipseg-rd64-refined' __UpperCamelCase = 'image_segmenter' __UpperCamelCase = CLIPSegForImageSegmentation __UpperCamelCase = ['image', 'text'] __UpperCamelCase = ['image'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase , return_tensors="""pt""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase = self.model(**lowerCamelCase ).logits return logits def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = outputs.cpu().detach().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
317
1
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate SCREAMING_SNAKE_CASE : Tuple = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[Any] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} SCREAMING_SNAKE_CASE : str = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', '''emoji''': True, }, } ] SCREAMING_SNAKE_CASE : Optional[int] = 0 for log in Path().glob('''*.log'''): SCREAMING_SNAKE_CASE : Tuple = 0 with open(log, '''r''') as f: for line in f: SCREAMING_SNAKE_CASE : Union[str, Any] = json.loads(line) if line.get('''nodeid''', '''''') != "": SCREAMING_SNAKE_CASE : Optional[int] = line['''nodeid'''] if line.get('''duration''', None) is not None: SCREAMING_SNAKE_CASE : Any = F'{line["duration"]:.4f}' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) SCREAMING_SNAKE_CASE : List[Any] = [] log.unlink() SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Optional[int] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Optional[Any] = {} for test in failed_tests: SCREAMING_SNAKE_CASE : List[Any] = test[0].split('''::''') SCREAMING_SNAKE_CASE : Dict = data[0].split('''/''')[-1] if data[0] not in filesafailed: SCREAMING_SNAKE_CASE : Optional[Any] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) SCREAMING_SNAKE_CASE : List[str] = [test[0] for test in failed_table] SCREAMING_SNAKE_CASE : int = list(set(files)) # Count number of instances in failed_tests SCREAMING_SNAKE_CASE : List[str] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) SCREAMING_SNAKE_CASE : Optional[int] = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: SCREAMING_SNAKE_CASE : str = '''Too many failed tests, please see the full report in the Action results.''' SCREAMING_SNAKE_CASE : List[str] = len(err) + 1_0 SCREAMING_SNAKE_CASE : Optional[Any] = message[: 3_0_0_0 - offset] + F'\n...\n```\n{err}' print(F'### {message}') else: SCREAMING_SNAKE_CASE : Optional[Any] = '''No failed tests! 🤗''' print(F'## {message}') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient SCREAMING_SNAKE_CASE : List[Any] = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": SCREAMING_SNAKE_CASE : Any = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) SCREAMING_SNAKE_CASE : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) SCREAMING_SNAKE_CASE : List[str] = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) SCREAMING_SNAKE_CASE : List[str] = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) SCREAMING_SNAKE_CASE : Dict = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name SCREAMING_SNAKE_CASE : List[Any] = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: SCREAMING_SNAKE_CASE : Tuple = row[0] else: SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Optional[Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
317
"""simple docstring""" from __future__ import annotations import queue class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None def __UpperCAmelCase ( ) -> TreeNode: """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) _lowerCAmelCase = input("""Enter the value of the root node: """ ).strip().lower() _lowerCAmelCase = queue.Queue() _lowerCAmelCase = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() _lowerCAmelCase = F"""Enter the left node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = left_node q.put(snake_case_ ) _lowerCAmelCase = F"""Enter the right node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = right_node q.put(snake_case_ ) raise def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = [] while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(snake_case_ ) _lowerCAmelCase = n.left # end of while means current node doesn't have left child _lowerCAmelCase = stack.pop() # start to traverse its right child _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: stack.append(snake_case_ ) _lowerCAmelCase = n.left _lowerCAmelCase = stack.pop() print(n.data , end=""",""" ) _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : str = "" , snake_case_ : int=50 , snake_case_ : Dict="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char _lowerCAmelCase , _lowerCAmelCase = divmod(width - len(snake_case_ ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) SCREAMING_SNAKE_CASE : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
317
1
"""simple docstring""" from math import sqrt def __UpperCAmelCase ( snake_case_ : int ) -> bool: """simple docstring""" assert isinstance(snake_case_ , snake_case_ ) and ( number >= 0 ), "'number' must been an int and positive" _lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: _lowerCAmelCase = False for divisor in range(2 , int(round(sqrt(snake_case_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _lowerCAmelCase = False break # precondition assert isinstance(snake_case_ , snake_case_ ), "'status' must been from type bool" return status def __UpperCAmelCase ( snake_case_ : str ) -> Dict: """simple docstring""" assert isinstance(snake_case_ , snake_case_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _lowerCAmelCase = list(range(2 , n + 1 ) ) _lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(snake_case_ ) ): for j in range(i + 1 , len(snake_case_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _lowerCAmelCase = 0 # filters actual prime numbers. _lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(snake_case_ , snake_case_ ), "'ans' must been from type list" return ans def __UpperCAmelCase ( snake_case_ : str ) -> Union[str, Any]: """simple docstring""" assert isinstance(snake_case_ , snake_case_ ) and (n > 2), "'N' must been an int and > 2" _lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(snake_case_ ): ans.append(snake_case_ ) # precondition assert isinstance(snake_case_ , snake_case_ ), "'ans' must been from type list" return ans def __UpperCAmelCase ( snake_case_ : str ) -> Tuple: """simple docstring""" assert isinstance(snake_case_ , snake_case_ ) and number >= 0, "'number' must been an int and >= 0" _lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. _lowerCAmelCase = 2 _lowerCAmelCase = number if number == 0 or number == 1: ans.append(snake_case_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(snake_case_ ): while quotient != 1: if is_prime(snake_case_ ) and (quotient % factor == 0): ans.append(snake_case_ ) quotient /= factor else: factor += 1 else: ans.append(snake_case_ ) # precondition assert isinstance(snake_case_ , snake_case_ ), "'ans' must been from type list" return ans def __UpperCAmelCase ( snake_case_ : Tuple ) -> Dict: """simple docstring""" assert isinstance(snake_case_ , snake_case_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" _lowerCAmelCase = 0 # prime factorization of 'number' _lowerCAmelCase = prime_factorization(snake_case_ ) _lowerCAmelCase = max(snake_case_ ) # precondition assert isinstance(snake_case_ , snake_case_ ), "'ans' must been from type int" return ans def __UpperCAmelCase ( snake_case_ : Any ) -> Optional[Any]: """simple docstring""" assert isinstance(snake_case_ , snake_case_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" _lowerCAmelCase = 0 # prime factorization of 'number' _lowerCAmelCase = prime_factorization(snake_case_ ) _lowerCAmelCase = min(snake_case_ ) # precondition assert isinstance(snake_case_ , snake_case_ ), "'ans' must been from type int" return ans def __UpperCAmelCase ( snake_case_ : Tuple ) -> Dict: """simple docstring""" assert isinstance(snake_case_ , snake_case_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , snake_case_ ), "compare bust been from type bool" return number % 2 == 0 def __UpperCAmelCase ( snake_case_ : Optional[Any] ) -> Optional[int]: """simple docstring""" assert isinstance(snake_case_ , snake_case_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , snake_case_ ), "compare bust been from type bool" return number % 2 != 0 def __UpperCAmelCase ( snake_case_ : Dict ) -> List[str]: """simple docstring""" assert ( isinstance(snake_case_ , snake_case_ ) and (number > 2) and is_even(snake_case_ ) ), "'number' must been an int, even and > 2" _lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' _lowerCAmelCase = get_prime_numbers(snake_case_ ) _lowerCAmelCase = len(snake_case_ ) # run variable for while-loops. _lowerCAmelCase = 0 _lowerCAmelCase = None # exit variable. for break up the loops _lowerCAmelCase = True while i < len_pn and loop: _lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _lowerCAmelCase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(snake_case_ , snake_case_ ) and (len(snake_case_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple ) -> Any: """simple docstring""" assert ( isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _lowerCAmelCase = 0 while numbera != 0: _lowerCAmelCase = numbera % numbera _lowerCAmelCase = numbera _lowerCAmelCase = rest # precondition assert isinstance(snake_case_ , snake_case_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __UpperCAmelCase ( snake_case_ : Union[str, Any] , snake_case_ : Any ) -> int: """simple docstring""" assert ( isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _lowerCAmelCase = prime_factorization(snake_case_ ) _lowerCAmelCase = prime_factorization(snake_case_ ) elif numbera == 1 or numbera == 1: _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = max(snake_case_ , snake_case_ ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _lowerCAmelCase = prime_fac_a.count(snake_case_ ) _lowerCAmelCase = prime_fac_a.count(snake_case_ ) for _ in range(max(snake_case_ , snake_case_ ) ): ans *= n else: _lowerCAmelCase = prime_fac_a.count(snake_case_ ) for _ in range(snake_case_ ): ans *= n done.append(snake_case_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _lowerCAmelCase = prime_fac_a.count(snake_case_ ) for _ in range(snake_case_ ): ans *= n done.append(snake_case_ ) # precondition assert isinstance(snake_case_ , snake_case_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" assert isinstance(snake_case_ , snake_case_ ) and (n >= 0), "'number' must been a positive int" _lowerCAmelCase = 0 _lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(snake_case_ ): ans += 1 # precondition assert isinstance(snake_case_ , snake_case_ ) and is_prime( snake_case_ ), "'ans' must been a prime number and from type int" return ans def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : int ) -> Any: """simple docstring""" assert ( is_prime(snake_case_ ) and is_prime(snake_case_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _lowerCAmelCase = p_number_a + 1 # jump to the next number _lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(snake_case_ ): number += 1 while number < p_number_a: ans.append(snake_case_ ) number += 1 # fetch the next prime number. while not is_prime(snake_case_ ): number += 1 # precondition assert ( isinstance(snake_case_ , snake_case_ ) and ans[0] != p_number_a and ans[len(snake_case_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __UpperCAmelCase ( snake_case_ : int ) -> Dict: """simple docstring""" assert isinstance(snake_case_ , snake_case_ ) and (n >= 1), "'n' must been int and >= 1" _lowerCAmelCase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(snake_case_ ) # precondition assert ans[0] == 1 and ans[len(snake_case_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Optional[Any]: """simple docstring""" assert isinstance(snake_case_ , snake_case_ ) and ( number > 1 ), "'number' must been an int and >= 1" _lowerCAmelCase = get_divisors(snake_case_ ) # precondition assert ( isinstance(snake_case_ , snake_case_ ) and (divisors[0] == 1) and (divisors[len(snake_case_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Dict ) -> List[Any]: """simple docstring""" assert ( isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _lowerCAmelCase = gcd(abs(snake_case_ ) , abs(snake_case_ ) ) # precondition assert ( isinstance(snake_case_ , snake_case_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> Optional[int]: """simple docstring""" assert isinstance(snake_case_ , snake_case_ ) and (n >= 0), "'n' must been a int and >= 0" _lowerCAmelCase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[Any]: """simple docstring""" assert isinstance(snake_case_ , snake_case_ ) and (n >= 0), "'n' must been an int and >= 0" _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 1 # this will be return for _ in range(n - 1 ): _lowerCAmelCase = ans ans += fiba _lowerCAmelCase = tmp return ans
317
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(lowerCamelCase ), len(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE : Any = '''ABAABA''' SCREAMING_SNAKE_CASE : Optional[int] = '''AB''' SCREAMING_SNAKE_CASE : str = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
317
1
"""simple docstring""" import math from datetime import datetime, timedelta def __UpperCAmelCase ( snake_case_ : int ) -> datetime: """simple docstring""" _lowerCAmelCase = year % 19 _lowerCAmelCase = year % 4 _lowerCAmelCase = year % 7 _lowerCAmelCase = math.floor(year / 100 ) _lowerCAmelCase = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _lowerCAmelCase = leap_day_inhibits / 4 _lowerCAmelCase = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _lowerCAmelCase = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _lowerCAmelCase = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _lowerCAmelCase = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(snake_case_ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(snake_case_ , 4 , 18 ) else: return datetime(snake_case_ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): SCREAMING_SNAKE_CASE : Dict = '''will be''' if year > datetime.now().year else '''was''' print(F'Easter in {year} {tense} {gauss_easter(year)}')
317
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device SCREAMING_SNAKE_CASE : List[str] = False class __lowerCamelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( image=lowerCamelCase , generator=lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _lowerCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" for i in range(len(snake_case_ ) - 1 , 0 , -1 ): _lowerCAmelCase = False for j in range(snake_case_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j - 1], unsorted[j] _lowerCAmelCase = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j + 1], unsorted[j] _lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(''',''')] print(F'{cocktail_shaker_sort(unsorted) = }')
317
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1e-3 ) def A__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
317
1
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( snake_case_ : list[float] ) -> float: """simple docstring""" _lowerCAmelCase = 0.0_0 _lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: _lowerCAmelCase = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(snake_case_ ) first_sum += 1 / float(snake_case_ ) index += 1 return 1 / first_sum def __UpperCAmelCase ( snake_case_ : list[float] ) -> float: """simple docstring""" _lowerCAmelCase = 0.0_0 _lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _lowerCAmelCase = F"""Resistor at index {index} has a negative value!""" raise ValueError(snake_case_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
317
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
317
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): __UpperCamelCase = StableDiffusionLDMaDPipeline __UpperCamelCase = TEXT_TO_IMAGE_PARAMS __UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCamelCase , set_alpha_to_one=lowerCamelCase , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) _lowerCAmelCase = CLIPTextModel(lowerCamelCase ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = StableDiffusionLDMaDPipeline(**lowerCamelCase ) _lowerCAmelCase = ldmad_pipe.to(lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = ldmad_pipe(**lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = output.rgb, output.depth _lowerCAmelCase = rgb[0, -3:, -3:, -1] _lowerCAmelCase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _lowerCAmelCase = np.array( [0.3733_8176, 0.7_0247, 0.7420_3193, 0.5164_3604, 0.5825_6793, 0.6093_2136, 0.418_1095, 0.4835_5877, 0.4653_5262] ) _lowerCAmelCase = np.array([103.4_6727, 85.81_2004, 87.84_9236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = StableDiffusionLDMaDPipeline(**lowerCamelCase ) _lowerCAmelCase = ldmad_pipe.to(lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = 3 * [inputs["""prompt"""]] # forward _lowerCAmelCase = ldmad_pipe(**lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = output.rgb, output.depth _lowerCAmelCase = rgb_slice_a[0, -3:, -3:, -1] _lowerCAmelCase = depth_slice_a[0, -3:, -1] _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] _lowerCAmelCase = ldmad_pipe.tokenizer( lowerCamelCase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=lowerCamelCase , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs["""input_ids"""].to(lowerCamelCase ) _lowerCAmelCase = ldmad_pipe.text_encoder(lowerCamelCase )[0] _lowerCAmelCase = prompt_embeds # forward _lowerCAmelCase = ldmad_pipe(**lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = output.rgb, output.depth _lowerCAmelCase = rgb_slice_a[0, -3:, -3:, -1] _lowerCAmelCase = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase ) _lowerCAmelCase = StableDiffusionLDMaDPipeline(**lowerCamelCase ) _lowerCAmelCase = ldmad_pipe.to(lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = """french fries""" _lowerCAmelCase = ldmad_pipe(**lowerCamelCase , negative_prompt=lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = output.rgb, output.depth _lowerCAmelCase = rgb[0, -3:, -3:, -1] _lowerCAmelCase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _lowerCAmelCase = np.array( [0.3_7044, 0.7181_1503, 0.722_3251, 0.4860_3675, 0.563_8391, 0.636_4948, 0.4283_3704, 0.490_1315, 0.4792_6217] ) _lowerCAmelCase = np.array([107.8_4738, 84.6_2802, 89.96_2135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self , lowerCamelCase , lowerCamelCase="cpu" , lowerCamelCase=torch.floataa , lowerCamelCase=0 ): '''simple docstring''' _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = np.random.RandomState(lowerCamelCase ).standard_normal((1, 4, 64, 64) ) _lowerCAmelCase = torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase , dtype=lowerCamelCase ) _lowerCAmelCase = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) _lowerCAmelCase = ldmad_pipe.to(lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_inputs(lowerCamelCase ) _lowerCAmelCase = ldmad_pipe(**lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = output.rgb, output.depth _lowerCAmelCase = rgb[0, -3:, -3:, -1].flatten() _lowerCAmelCase = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) _lowerCAmelCase = np.array( [0.5380_5465, 0.5670_7305, 0.548_6515, 0.5701_2236, 0.581_4511, 0.5625_3487, 0.5484_3014, 0.5509_2263, 0.645_9706] ) _lowerCAmelCase = np.array( [0.926_3781, 0.667_8672, 0.548_6515, 0.9220_2145, 0.6783_1135, 0.5625_3487, 0.924_1694, 0.755_1478, 0.645_9706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self , lowerCamelCase , lowerCamelCase="cpu" , lowerCamelCase=torch.floataa , lowerCamelCase=0 ): '''simple docstring''' _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = np.random.RandomState(lowerCamelCase ).standard_normal((1, 4, 64, 64) ) _lowerCAmelCase = torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase , dtype=lowerCamelCase ) _lowerCAmelCase = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_inputs(lowerCamelCase ) _lowerCAmelCase = ldmad_pipe(**lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = output.rgb, output.depth _lowerCAmelCase = 0.49_5586 _lowerCAmelCase = 0.3379_5515 _lowerCAmelCase = 112.4_8518 _lowerCAmelCase = 98.48_9746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def A__ (self ): '''simple docstring''' _lowerCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_inputs(lowerCamelCase ) _lowerCAmelCase = ldmad_pipe(**lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = output.rgb, output.depth _lowerCAmelCase = 0.419_4127 _lowerCAmelCase = 0.3537_5586 _lowerCAmelCase = 0.563_8502 _lowerCAmelCase = 0.3468_6103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[Any] = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ) -> str | None: """simple docstring""" _lowerCAmelCase = "" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def __UpperCAmelCase ( snake_case_ : list[int] ) -> list[str]: """simple docstring""" _lowerCAmelCase = [] for key in product(snake_case_ , repeat=3 ): _lowerCAmelCase = try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def __UpperCAmelCase ( snake_case_ : list[str] , snake_case_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( snake_case_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding="""utf-8""" ) _lowerCAmelCase = [int(snake_case_ ) for number in data.strip().split(""",""" )] _lowerCAmelCase = filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" import math def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 2 _lowerCAmelCase = int(math.sqrt(snake_case_ ) ) # Size of every segment _lowerCAmelCase = [True] * (end + 1) _lowerCAmelCase = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): _lowerCAmelCase = False start += 1 prime += in_prime _lowerCAmelCase = end + 1 _lowerCAmelCase = min(2 * end , snake_case_ ) while low <= n: _lowerCAmelCase = [True] * (high - low + 1) for each in in_prime: _lowerCAmelCase = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): _lowerCAmelCase = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) _lowerCAmelCase = high + 1 _lowerCAmelCase = min(high + end , snake_case_ ) return prime print(sieve(1_0**6))
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit + 1 _lowerCAmelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class __lowerCamelCase : def __init__(self , lowerCamelCase=None , **lowerCamelCase ): '''simple docstring''' logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) _lowerCAmelCase = model _lowerCAmelCase = kwargs.get("""model_save_dir""" , lowerCamelCase ) _lowerCAmelCase = kwargs.get("""latest_model_name""" , lowerCamelCase ) def __call__(self , **lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = {k: np.array(lowerCamelCase ) for k, v in kwargs.items()} return self.model.run(lowerCamelCase , lowerCamelCase ) @staticmethod def A__ (lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): '''simple docstring''' if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) _lowerCAmelCase = """CPUExecutionProvider""" return ort.InferenceSession(lowerCamelCase , providers=[provider] , sess_options=lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME _lowerCAmelCase = self.model_save_dir.joinpath(self.latest_model_name ) _lowerCAmelCase = Path(lowerCamelCase ).joinpath(lowerCamelCase ) try: shutil.copyfile(lowerCamelCase , lowerCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _lowerCAmelCase = self.model_save_dir.joinpath(lowerCamelCase ) if src_path.exists(): _lowerCAmelCase = Path(lowerCamelCase ).joinpath(lowerCamelCase ) try: shutil.copyfile(lowerCamelCase , lowerCamelCase ) except shutil.SameFileError: pass def A__ (self , lowerCamelCase , **lowerCamelCase , ): '''simple docstring''' if os.path.isfile(lowerCamelCase ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) # saving model weights/files self._save_pretrained(lowerCamelCase , **lowerCamelCase ) @classmethod def A__ (cls , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowerCamelCase ): _lowerCAmelCase = OnnxRuntimeModel.load_model( os.path.join(lowerCamelCase , lowerCamelCase ) , provider=lowerCamelCase , sess_options=lowerCamelCase ) _lowerCAmelCase = Path(lowerCamelCase ) # load model from hub else: # download model _lowerCAmelCase = hf_hub_download( repo_id=lowerCamelCase , filename=lowerCamelCase , use_auth_token=lowerCamelCase , revision=lowerCamelCase , cache_dir=lowerCamelCase , force_download=lowerCamelCase , ) _lowerCAmelCase = Path(lowerCamelCase ).parent _lowerCAmelCase = Path(lowerCamelCase ).name _lowerCAmelCase = OnnxRuntimeModel.load_model(lowerCamelCase , provider=lowerCamelCase , sess_options=lowerCamelCase ) return cls(model=lowerCamelCase , **lowerCamelCase ) @classmethod def A__ (cls , lowerCamelCase , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = None if len(str(lowerCamelCase ).split("""@""" ) ) == 2: _lowerCAmelCase , _lowerCAmelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=lowerCamelCase , revision=lowerCamelCase , cache_dir=lowerCamelCase , force_download=lowerCamelCase , use_auth_token=lowerCamelCase , **lowerCamelCase , )
317
"""simple docstring""" from functools import reduce SCREAMING_SNAKE_CASE : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __UpperCAmelCase ( snake_case_ : str = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case_ , snake_case_ : str(int(snake_case_ ) * int(snake_case_ ) ) , n[i : i + 13] ) ) for i in range(len(snake_case_ ) - 12 ) ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { '''nielsr/canine-s''': 2_0_4_8, } # Unicode defines 1,114,112 total “codepoints” SCREAMING_SNAKE_CASE : Tuple = 1_1_1_4_1_1_2 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : str = 0XE000 SCREAMING_SNAKE_CASE : Any = 0XE001 SCREAMING_SNAKE_CASE : Optional[int] = 0XE002 SCREAMING_SNAKE_CASE : List[Any] = 0XE003 SCREAMING_SNAKE_CASE : Union[str, Any] = 0XE004 # Maps special codepoints to human-readable names. SCREAMING_SNAKE_CASE : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. SCREAMING_SNAKE_CASE : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class __lowerCamelCase ( __lowercase ): __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self , lowerCamelCase=chr(lowerCamelCase ) , lowerCamelCase=chr(lowerCamelCase ) , lowerCamelCase=chr(lowerCamelCase ) , lowerCamelCase=chr(lowerCamelCase ) , lowerCamelCase=chr(lowerCamelCase ) , lowerCamelCase=chr(lowerCamelCase ) , lowerCamelCase=False , lowerCamelCase=2_048 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token _lowerCAmelCase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token _lowerCAmelCase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token _lowerCAmelCase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token _lowerCAmelCase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , model_max_length=lowerCamelCase , **lowerCamelCase , ) # Creates a mapping for looking up the IDs of special symbols. _lowerCAmelCase = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): _lowerCAmelCase = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _lowerCAmelCase = { codepoint: name for name, codepoint in self._special_codepoints.items() } _lowerCAmelCase = UNICODE_VOCAB_SIZE _lowerCAmelCase = len(self._special_codepoints ) @property def A__ (self ): '''simple docstring''' return self._unicode_vocab_size def A__ (self , lowerCamelCase ): '''simple docstring''' return list(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' try: return ord(lowerCamelCase ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowerCamelCase ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' return "".join(lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] _lowerCAmelCase = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def A__ (self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) _lowerCAmelCase = [1] + ([0] * len(lowerCamelCase )) + [1] if token_ids_a is not None: result += ([0] * len(lowerCamelCase )) + [1] return result def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] _lowerCAmelCase = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' return ()
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 600851475143 ) -> int: """simple docstring""" try: _lowerCAmelCase = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: while n % i == 0: _lowerCAmelCase = i n //= i i += 1 if n > 1: _lowerCAmelCase = n return int(snake_case_ ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int ) -> list[list[int]]: """simple docstring""" _lowerCAmelCase = [] create_all_state(1 , snake_case_ , snake_case_ , [] , snake_case_ ) return result def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : list[int] , snake_case_ : list[list[int]] , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(snake_case_ , total_number - level + 2 ): current_list.append(snake_case_ ) create_all_state(i + 1 , snake_case_ , level - 1 , snake_case_ , snake_case_ ) current_list.pop() def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> None: """simple docstring""" for i in total_list: print(*snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = 4 SCREAMING_SNAKE_CASE : List[Any] = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = generate_all_combinations(n, k) print_all_state(total_list)
317
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether tp freeze the encoder.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __UpperCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Source language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Target language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': '# num_beams to use for evaluation.'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , F"""{split}_results.json""" ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase = SeqaSeqDataset # Get datasets _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) _lowerCAmelCase = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) _lowerCAmelCase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowerCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase = train_result.metrics _lowerCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate(metric_key_prefix="""val""" ) _lowerCAmelCase = data_args.n_val _lowerCAmelCase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowerCAmelCase = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="""test""" ) _lowerCAmelCase = test_output.metrics _lowerCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: _lowerCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) _lowerCAmelCase = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def __UpperCAmelCase ( snake_case_ : Any ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
317
1
"""simple docstring""" import operator as op SCREAMING_SNAKE_CASE : Union[str, Any] = '''scaler.pt''' SCREAMING_SNAKE_CASE : Optional[Any] = '''pytorch_model''' SCREAMING_SNAKE_CASE : str = '''random_states''' SCREAMING_SNAKE_CASE : int = '''optimizer''' SCREAMING_SNAKE_CASE : Optional[int] = '''scheduler''' SCREAMING_SNAKE_CASE : int = '''pytorch_model.bin''' SCREAMING_SNAKE_CASE : List[Any] = '''pytorch_model.bin.index.json''' SCREAMING_SNAKE_CASE : str = '''model.safetensors''' SCREAMING_SNAKE_CASE : str = '''model.safetensors.index.json''' SCREAMING_SNAKE_CASE : Dict = '''1.10.2''' SCREAMING_SNAKE_CASE : Optional[Any] = '''py38''' SCREAMING_SNAKE_CASE : List[str] = '''4.17.0''' SCREAMING_SNAKE_CASE : Dict = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] SCREAMING_SNAKE_CASE : Dict = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] SCREAMING_SNAKE_CASE : List[Any] = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] SCREAMING_SNAKE_CASE : List[Any] = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] SCREAMING_SNAKE_CASE : Any = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] SCREAMING_SNAKE_CASE : Any = '''2.0.1''' SCREAMING_SNAKE_CASE : Tuple = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] SCREAMING_SNAKE_CASE : Tuple = ['''default''', '''reduce-overhead''', '''max-autotune'''] SCREAMING_SNAKE_CASE : int = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] SCREAMING_SNAKE_CASE : List[str] = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] SCREAMING_SNAKE_CASE : Dict = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
317
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : int = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size def A__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = MobileNetVaImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """crop_size""" ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ['image_processor', 'tokenizer'] __UpperCamelCase = 'ViltImageProcessor' __UpperCamelCase = ('BertTokenizer', 'BertTokenizerFast') def __init__(self , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCamelCase , ) _lowerCAmelCase = kwargs.pop("""feature_extractor""" ) _lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = self.image_processor def __call__(self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = 0 , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = True , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) # add pixel_values + pixel_mask _lowerCAmelCase = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase ) encoding.update(lowerCamelCase ) return encoding def A__ (self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def A__ (self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A__ (self ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCamelCase , ) return self.image_processor_class @property def A__ (self ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCamelCase , ) return self.image_processor
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" for i in range(len(snake_case_ ) - 1 , 0 , -1 ): _lowerCAmelCase = False for j in range(snake_case_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j - 1], unsorted[j] _lowerCAmelCase = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j + 1], unsorted[j] _lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(''',''')] print(F'{cocktail_shaker_sort(unsorted) = }')
317
1
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = PegasusTokenizer __UpperCamelCase = PegasusTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def A__ (self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = PegasusTokenizer(lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A__ (self ): '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def A__ (self , **lowerCamelCase ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return ("This is a test", "This is a test") def A__ (self ): '''simple docstring''' _lowerCAmelCase = """</s>""" _lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(lowerCamelCase ) , 1_103 ) def A__ (self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_103 ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _lowerCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids[0] _lowerCAmelCase = py_tokenizer([raw_input_str] , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids[0] self.assertListEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _lowerCAmelCase = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _lowerCAmelCase = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] _lowerCAmelCase = tokenizer([raw_input_str] , return_tensors=lowerCamelCase ).input_ids[0] self.assertListEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 _lowerCAmelCase = """To ensure a smooth flow of bank resolutions.""" _lowerCAmelCase = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] _lowerCAmelCase = tokenizer([raw_input_str] , return_tensors=lowerCamelCase ).input_ids[0] self.assertListEqual(lowerCamelCase , lowerCamelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = ["""This is going to be way too long.""" * 150, """short example"""] _lowerCAmelCase = ["""not super long but more than 5 tokens""", """tiny"""] _lowerCAmelCase = self._large_tokenizer(lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , return_tensors="""pt""" ) _lowerCAmelCase = self._large_tokenizer( text_target=lowerCamelCase , max_length=5 , padding=lowerCamelCase , truncation=lowerCamelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase ) == 2 # input_ids, attention_mask. @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = {"""input_ids""": [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = PegasusTokenizer __UpperCamelCase = PegasusTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def A__ (self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = PegasusTokenizer(lowerCamelCase , offset=0 , mask_token_sent=lowerCamelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A__ (self ): '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def A__ (self , **lowerCamelCase ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return ("This is a test", "This is a test") def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _lowerCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids[0] _lowerCAmelCase = py_tokenizer([raw_input_str] , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids[0] self.assertListEqual(lowerCamelCase , lowerCamelCase ) @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = ["""This is going to be way too long.""" * 1_000, """short example"""] _lowerCAmelCase = ["""not super long but more than 5 tokens""", """tiny"""] _lowerCAmelCase = self._large_tokenizer(lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , return_tensors="""pt""" ) _lowerCAmelCase = self._large_tokenizer( text_target=lowerCamelCase , max_length=5 , padding=lowerCamelCase , truncation=lowerCamelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase ) == 2 # input_ids, attention_mask. def A__ (self ): '''simple docstring''' _lowerCAmelCase = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _lowerCAmelCase = self._large_tokenizer(lowerCamelCase ).input_ids self.assertListEqual( lowerCamelCase , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
317
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : bool , snake_case_ : bool ) -> Tuple: """simple docstring""" def run_func(snake_case_ : Union[str, Any] ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : Optional[int] , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : Dict , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: """simple docstring""" _lowerCAmelCase = random.Random() _lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = "TensorFlow" @property def A__ (self ): '''simple docstring''' return tf.__version__ def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase , decoder_input_ids=lowerCamelCase , training=lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase , training=lowerCamelCase ) _lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase = model(lowerCamelCase , decoder_input_ids=lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients _lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A__ (self , lowerCamelCase ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase = timeit.repeat( lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _lowerCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _lowerCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase ) _lowerCAmelCase = meminfo.used _lowerCAmelCase = Memory(lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _lowerCAmelCase = None else: _lowerCAmelCase = measure_peak_memory_cpu(lowerCamelCase ) _lowerCAmelCase = Memory(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase = stop_memory_tracing(lowerCamelCase ) if memory is None: _lowerCAmelCase = summary.total else: _lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" _lowerCAmelCase = len(snake_case_ ) for i in range(1 , snake_case_ ): _lowerCAmelCase = collection[i] _lowerCAmelCase = 0 _lowerCAmelCase = i - 1 while low <= high: _lowerCAmelCase = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase = mid - 1 else: _lowerCAmelCase = mid + 1 for j in range(snake_case_ , snake_case_ , -1 ): _lowerCAmelCase = collection[j - 1] _lowerCAmelCase = val return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : Tuple = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
317
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'transfo-xl' __UpperCamelCase = ['mems'] __UpperCamelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , lowerCamelCase=267_735 , lowerCamelCase=[20_000, 40_000, 200_000] , lowerCamelCase=1_024 , lowerCamelCase=1_024 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase=4_096 , lowerCamelCase=4 , lowerCamelCase=False , lowerCamelCase=18 , lowerCamelCase=1_600 , lowerCamelCase=1_000 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase=-1 , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="normal" , lowerCamelCase=0.01 , lowerCamelCase=0.01 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=0 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: _lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: _lowerCAmelCase = [False] + [False] * len(self.cutoffs ) _lowerCAmelCase = d_model _lowerCAmelCase = d_embed _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = div_val _lowerCAmelCase = pre_lnorm _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = mem_len _lowerCAmelCase = same_length _lowerCAmelCase = attn_type _lowerCAmelCase = clamp_len _lowerCAmelCase = sample_softmax _lowerCAmelCase = adaptive _lowerCAmelCase = dropout _lowerCAmelCase = dropatt _lowerCAmelCase = untie_r _lowerCAmelCase = init _lowerCAmelCase = init_range _lowerCAmelCase = proj_init_std _lowerCAmelCase = init_std _lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
317
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE : Any = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE : Tuple = { '''facebook/nllb-large-en-ro''': 1_0_2_4, '''facebook/nllb-200-distilled-600M''': 1_0_2_4, } # fmt: off SCREAMING_SNAKE_CASE : Optional[Any] = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __lowerCamelCase ( __lowercase ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = ['input_ids', 'attention_mask'] __UpperCamelCase = NllbTokenizer __UpperCamelCase = [] __UpperCamelCase = [] def __init__(self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=False , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token _lowerCAmelCase = legacy_behaviour super().__init__( vocab_file=lowerCamelCase , tokenizer_file=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase , additional_special_tokens=lowerCamelCase , legacy_behaviour=lowerCamelCase , **lowerCamelCase , ) _lowerCAmelCase = vocab_file _lowerCAmelCase = False if not self.vocab_file else True _lowerCAmelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _lowerCAmelCase = { lang_code: self.convert_tokens_to_ids(lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase = src_lang if src_lang is not None else """eng_Latn""" _lowerCAmelCase = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A__ (self ): '''simple docstring''' return self._src_lang @src_lang.setter def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase = src_lang _lowerCAmelCase = self(lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) _lowerCAmelCase = self.convert_tokens_to_ids(lowerCamelCase ) _lowerCAmelCase = tgt_lang_id return inputs def A__ (self , lowerCamelCase , lowerCamelCase = "eng_Latn" , lowerCamelCase = None , lowerCamelCase = "fra_Latn" , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = src_lang _lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) def A__ (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def A__ (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.convert_tokens_to_ids(lowerCamelCase ) if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id] _lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.convert_tokens_to_ids(lowerCamelCase ) if self.legacy_behaviour: _lowerCAmelCase = [] _lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase = [self.cur_lang_code] _lowerCAmelCase = [self.eos_token_id] _lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return _lowerCAmelCase = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
317
"""simple docstring""" import math def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 2 _lowerCAmelCase = int(math.sqrt(snake_case_ ) ) # Size of every segment _lowerCAmelCase = [True] * (end + 1) _lowerCAmelCase = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): _lowerCAmelCase = False start += 1 prime += in_prime _lowerCAmelCase = end + 1 _lowerCAmelCase = min(2 * end , snake_case_ ) while low <= n: _lowerCAmelCase = [True] * (high - low + 1) for each in in_prime: _lowerCAmelCase = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): _lowerCAmelCase = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) _lowerCAmelCase = high + 1 _lowerCAmelCase = min(high + end , snake_case_ ) return prime print(sieve(1_0**6))
317
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = KandinskyVaaPipeline __UpperCamelCase = [ 'image_embeds', 'negative_image_embeds', ] __UpperCamelCase = ['image_embeds', 'negative_image_embeds'] __UpperCamelCase = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __UpperCamelCase = False @property def A__ (self ): '''simple docstring''' return 32 @property def A__ (self ): '''simple docstring''' return 32 @property def A__ (self ): '''simple docstring''' return self.time_input_dim @property def A__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ (self ): '''simple docstring''' return 100 @property def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCAmelCase = UNetaDConditionModel(**lowerCamelCase ) return model @property def A__ (self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.dummy_unet _lowerCAmelCase = self.dummy_movq _lowerCAmelCase = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=lowerCamelCase , set_alpha_to_one=lowerCamelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowerCamelCase , ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase ) if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) _lowerCAmelCase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = pipe(**self.get_dummy_inputs(lowerCamelCase ) ) _lowerCAmelCase = output.images _lowerCAmelCase = pipe( **self.get_dummy_inputs(lowerCamelCase ) , return_dict=lowerCamelCase , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy""" ) _lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase ) _lowerCAmelCase = KandinskyVaaPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _lowerCAmelCase = pipeline.to(lowerCamelCase ) pipeline.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = """red cat, 4k photo""" _lowerCAmelCase = torch.Generator(device="""cuda""" ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase = pipe_prior( lowerCamelCase , generator=lowerCamelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _lowerCAmelCase = torch.Generator(device="""cuda""" ).manual_seed(0 ) _lowerCAmelCase = pipeline( image_embeds=lowerCamelCase , negative_image_embeds=lowerCamelCase , generator=lowerCamelCase , num_inference_steps=100 , output_type="""np""" , ) _lowerCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
317
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE : Any = (7_2_0, 1_2_8_0) # Height, Width SCREAMING_SNAKE_CASE : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE : List[Any] = 1 / 1_0_0 SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = '''''' SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = 2_5_0 def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_dataset(snake_case_ , snake_case_ ) for index in range(snake_case_ ): _lowerCAmelCase = random.sample(range(len(snake_case_ ) ) , 4 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase = random_chars(32 ) _lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _lowerCAmelCase = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowerCAmelCase = [] for anno in new_annos: _lowerCAmelCase = anno[3] - anno[1] _lowerCAmelCase = anno[4] - anno[2] _lowerCAmelCase = anno[1] + width / 2 _lowerCAmelCase = anno[2] + height / 2 _lowerCAmelCase = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(snake_case_ ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> tuple[list, list]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case_ , """*.txt""" ) ): _lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case_ ) as in_file: _lowerCAmelCase = in_file.readlines() _lowerCAmelCase = os.path.join(snake_case_ , F"""{label_name}.jpg""" ) _lowerCAmelCase = [] for obj_list in obj_lists: _lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) _lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 _lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list , snake_case_ : list[int] , snake_case_ : tuple[int, int] , snake_case_ : tuple[float, float] , snake_case_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" _lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = int(scale_x * output_size[1] ) _lowerCAmelCase = int(scale_y * output_size[0] ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, index in enumerate(snake_case_ ): _lowerCAmelCase = all_img_list[index] path_list.append(snake_case_ ) _lowerCAmelCase = all_annos[index] _lowerCAmelCase = cva.imread(snake_case_ ) if i == 0: # top-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCAmelCase = cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCAmelCase = cva.resize( snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
317
1
"""simple docstring""" from __future__ import annotations from typing import TypedDict class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 def __UpperCAmelCase ( snake_case_ : str ) -> list[str]: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(snake_case_ ) )] def __UpperCAmelCase ( snake_case_ : str ) -> BWTTransformDict: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _lowerCAmelCase = all_rotations(snake_case_ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowerCAmelCase = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(snake_case_ ), } return response def __UpperCAmelCase ( snake_case_ : str , snake_case_ : int ) -> str: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _lowerCAmelCase = int(snake_case_ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(snake_case_ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _lowerCAmelCase = [""""""] * len(snake_case_ ) for _ in range(len(snake_case_ ) ): for i in range(len(snake_case_ ) ): _lowerCAmelCase = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = '''Provide a string that I will generate its BWT transform: ''' SCREAMING_SNAKE_CASE : Optional[int] = input(entry_msg).strip() SCREAMING_SNAKE_CASE : Tuple = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) SCREAMING_SNAKE_CASE : int = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
317
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : int = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[Any] = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE : List[str] = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ['''ViTFeatureExtractor'''] SCREAMING_SNAKE_CASE : Dict = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
"""simple docstring""" from math import isqrt def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case_ , snake_case_ ): _lowerCAmelCase = False return [i for i in range(2 , snake_case_ ) if is_prime[i]] def __UpperCAmelCase ( snake_case_ : int = 10**8 ) -> int: """simple docstring""" _lowerCAmelCase = calculate_prime_numbers(max_number // 2 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : int=False ) -> Dict: """simple docstring""" if isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = len(set_a.intersection(snake_case_ ) ) if alternative_union: _lowerCAmelCase = len(snake_case_ ) + len(snake_case_ ) else: _lowerCAmelCase = len(set_a.union(snake_case_ ) ) return intersection / union if isinstance(snake_case_ , (list, tuple) ) and isinstance(snake_case_ , (list, tuple) ): _lowerCAmelCase = [element for element in set_a if element in set_b] if alternative_union: _lowerCAmelCase = len(snake_case_ ) + len(snake_case_ ) return len(snake_case_ ) / union else: _lowerCAmelCase = set_a + [element for element in set_b if element not in set_a] return len(snake_case_ ) / len(snake_case_ ) return len(snake_case_ ) / len(snake_case_ ) return None if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = {'''a''', '''b''', '''c''', '''d''', '''e'''} SCREAMING_SNAKE_CASE : Union[str, Any] = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCamelCase = 'CIDAS/clipseg-rd64-refined' __UpperCamelCase = 'image_segmenter' __UpperCamelCase = CLIPSegForImageSegmentation __UpperCamelCase = ['image', 'text'] __UpperCamelCase = ['image'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase , return_tensors="""pt""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase = self.model(**lowerCamelCase ).logits return logits def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = outputs.cpu().detach().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
317
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size def A__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = MobileNetVaImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """crop_size""" ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
"""simple docstring""" from __future__ import annotations import queue class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None def __UpperCAmelCase ( ) -> TreeNode: """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) _lowerCAmelCase = input("""Enter the value of the root node: """ ).strip().lower() _lowerCAmelCase = queue.Queue() _lowerCAmelCase = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() _lowerCAmelCase = F"""Enter the left node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = left_node q.put(snake_case_ ) _lowerCAmelCase = F"""Enter the right node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = right_node q.put(snake_case_ ) raise def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = [] while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(snake_case_ ) _lowerCAmelCase = n.left # end of while means current node doesn't have left child _lowerCAmelCase = stack.pop() # start to traverse its right child _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: stack.append(snake_case_ ) _lowerCAmelCase = n.left _lowerCAmelCase = stack.pop() print(n.data , end=""",""" ) _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : str = "" , snake_case_ : int=50 , snake_case_ : Dict="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char _lowerCAmelCase , _lowerCAmelCase = divmod(width - len(snake_case_ ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) SCREAMING_SNAKE_CASE : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
317
1
"""simple docstring""" import requests def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> None: """simple docstring""" _lowerCAmelCase = {"""Content-Type""": """application/json"""} _lowerCAmelCase = requests.post(snake_case_ , json={"""text""": message_body} , headers=snake_case_ ) if response.status_code != 200: _lowerCAmelCase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(snake_case_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
317
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(lowerCamelCase ), len(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE : Any = '''ABAABA''' SCREAMING_SNAKE_CASE : Optional[int] = '''AB''' SCREAMING_SNAKE_CASE : str = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
317
1
"""simple docstring""" import pytest SCREAMING_SNAKE_CASE : Optional[Any] = '''__dummy_dataset1__''' SCREAMING_SNAKE_CASE : List[str] = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __UpperCAmelCase ( snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : List[Any] ) -> List[Any]: """simple docstring""" _lowerCAmelCase = dataset_loading_script_name _lowerCAmelCase = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=snake_case_ ) _lowerCAmelCase = script_dir / F"""{script_name}.py""" with open(snake_case_ , """w""" ) as f: f.write(snake_case_ ) return str(snake_case_ )
317
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device SCREAMING_SNAKE_CASE : List[str] = False class __lowerCamelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( image=lowerCamelCase , generator=lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _lowerCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
317
1
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 SCREAMING_SNAKE_CASE : int = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=1_6, ), '''generator''': 2, }, # 2048-bit 1_4: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=1_6, ), '''generator''': 2, }, # 3072-bit 1_5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=1_6, ), '''generator''': 2, }, # 4096-bit 1_6: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=1_6, ), '''generator''': 2, }, # 6144-bit 1_7: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=1_6, ), '''generator''': 2, }, # 8192-bit 1_8: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=1_6, ), '''generator''': 2, }, } class __lowerCamelCase : def __init__(self , lowerCamelCase = 14 ): '''simple docstring''' if group not in primes: raise ValueError("""Unsupported Group""" ) _lowerCAmelCase = primes[group]["""prime"""] _lowerCAmelCase = primes[group]["""generator"""] _lowerCAmelCase = int(hexlify(urandom(32 ) ) , base=16 ) def A__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def A__ (self ): '''simple docstring''' _lowerCAmelCase = pow(self.generator , self.__private_key , self.prime ) return hex(lowerCamelCase )[2:] def A__ (self , lowerCamelCase ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = int(lowerCamelCase , base=16 ) if not self.is_valid_public_key(lowerCamelCase ): raise ValueError("""Invalid public key""" ) _lowerCAmelCase = pow(lowerCamelCase , self.__private_key , self.prime ) return shaaaa(str(lowerCamelCase ).encode() ).hexdigest() @staticmethod def A__ (lowerCamelCase , lowerCamelCase ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase , (prime - 1) // 2 , lowerCamelCase ) == 1 ) @staticmethod def A__ (lowerCamelCase , lowerCamelCase , lowerCamelCase = 14 ): '''simple docstring''' _lowerCAmelCase = int(lowerCamelCase , base=16 ) _lowerCAmelCase = int(lowerCamelCase , base=16 ) _lowerCAmelCase = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase , lowerCamelCase ): raise ValueError("""Invalid public key""" ) _lowerCAmelCase = pow(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return shaaaa(str(lowerCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
317
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1e-3 ) def A__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
317
1
"""simple docstring""" import math import qiskit def __UpperCAmelCase ( snake_case_ : int = 1 , snake_case_ : int = 1 , snake_case_ : int = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(snake_case_ , snake_case_ ) or isinstance(snake_case_ , snake_case_ ) or isinstance(snake_case_ , snake_case_ ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(snake_case_ ) != input_a) or (math.floor(snake_case_ ) != input_a) or (math.floor(snake_case_ ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers _lowerCAmelCase = qiskit.QuantumRegister(4 , """qr""" ) _lowerCAmelCase = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries _lowerCAmelCase = [input_a, input_a, carry_in] _lowerCAmelCase = qiskit.QuantumCircuit(snake_case_ , snake_case_ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(snake_case_ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(snake_case_ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(snake_case_ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , snake_case_ ) # measure the last two qbits _lowerCAmelCase = qiskit.Aer.get_backend("""aer_simulator""" ) _lowerCAmelCase = qiskit.execute(snake_case_ , snake_case_ , shots=1000 ) return job.result().get_counts(snake_case_ ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
317
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
317
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether tp freeze the encoder.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __UpperCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Source language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Target language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': '# num_beams to use for evaluation.'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , F"""{split}_results.json""" ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase = SeqaSeqDataset # Get datasets _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) _lowerCAmelCase = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) _lowerCAmelCase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowerCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase = train_result.metrics _lowerCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate(metric_key_prefix="""val""" ) _lowerCAmelCase = data_args.n_val _lowerCAmelCase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowerCAmelCase = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="""test""" ) _lowerCAmelCase = test_output.metrics _lowerCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: _lowerCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) _lowerCAmelCase = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def __UpperCAmelCase ( snake_case_ : Any ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available SCREAMING_SNAKE_CASE : Optional[Any] = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ) -> str | None: """simple docstring""" _lowerCAmelCase = "" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def __UpperCAmelCase ( snake_case_ : list[int] ) -> list[str]: """simple docstring""" _lowerCAmelCase = [] for key in product(snake_case_ , repeat=3 ): _lowerCAmelCase = try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def __UpperCAmelCase ( snake_case_ : list[str] , snake_case_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( snake_case_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding="""utf-8""" ) _lowerCAmelCase = [int(snake_case_ ) for number in data.strip().split(""",""" )] _lowerCAmelCase = filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def A__ (*lowerCamelCase , **lowerCamelCase ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): __UpperCamelCase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) _lowerCAmelCase = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = object_detector(examples[0] , threshold=0.0 ) _lowerCAmelCase = len(lowerCamelCase ) self.assertGreater(lowerCamelCase , 0 ) self.assertEqual( lowerCamelCase , [ { """score""": ANY(lowerCamelCase ), """label""": ANY(lowerCamelCase ), """box""": {"""xmin""": ANY(lowerCamelCase ), """ymin""": ANY(lowerCamelCase ), """xmax""": ANY(lowerCamelCase ), """ymax""": ANY(lowerCamelCase )}, } for i in range(lowerCamelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def A__ (self ): '''simple docstring''' pass @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) _lowerCAmelCase = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) _lowerCAmelCase = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = pipeline("""zero-shot-object-detection""" ) _lowerCAmelCase = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) _lowerCAmelCase = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def A__ (self ): '''simple docstring''' pass @require_torch @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = 0.2 _lowerCAmelCase = pipeline("""zero-shot-object-detection""" ) _lowerCAmelCase = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=lowerCamelCase , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = 2 _lowerCAmelCase = pipeline("""zero-shot-object-detection""" ) _lowerCAmelCase = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=lowerCamelCase , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit + 1 _lowerCAmelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) class __lowerCamelCase ( __lowercase ): def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
317
"""simple docstring""" from functools import reduce SCREAMING_SNAKE_CASE : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __UpperCAmelCase ( snake_case_ : str = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case_ , snake_case_ : str(int(snake_case_ ) * int(snake_case_ ) ) , n[i : i + 13] ) ) for i in range(len(snake_case_ ) - 12 ) ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="resnet50" , lowerCamelCase=3 , lowerCamelCase=32 , lowerCamelCase=3 , lowerCamelCase=True , lowerCamelCase=True , ): '''simple docstring''' _lowerCAmelCase = parent _lowerCAmelCase = out_indices if out_indices is not None else [4] _lowerCAmelCase = stage_names _lowerCAmelCase = out_features _lowerCAmelCase = backbone _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = use_pretrained_backbone _lowerCAmelCase = is_training def A__ (self ): '''simple docstring''' _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = self.get_config() return config, pixel_values def A__ (self ): '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = TimmBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(lowerCamelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class __lowerCamelCase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): __UpperCamelCase = (TimmBackbone,) if is_torch_available() else () __UpperCamelCase = {'feature-extraction': TimmBackbone} if is_torch_available() else {} __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def A__ (self ): '''simple docstring''' _lowerCAmelCase = TimmBackboneModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def A__ (self ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ (self ): '''simple docstring''' _lowerCAmelCase = """resnet18""" _lowerCAmelCase = """microsoft/resnet-18""" _lowerCAmelCase = AutoBackbone.from_pretrained(lowerCamelCase , use_timm_backbone=lowerCamelCase ) _lowerCAmelCase = AutoBackbone.from_pretrained(lowerCamelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _lowerCAmelCase = AutoBackbone.from_pretrained(lowerCamelCase , use_timm_backbone=lowerCamelCase , out_indices=[1, 2, 3] ) _lowerCAmelCase = AutoBackbone.from_pretrained(lowerCamelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""Safetensors is not supported by timm.""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(lowerCamelCase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality _lowerCAmelCase = self.all_model_classes[0] _lowerCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) _lowerCAmelCase = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model(**lowerCamelCase ) _lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models _lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCamelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _lowerCAmelCase = model(**lowerCamelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _lowerCAmelCase = copy.deepcopy(lowerCamelCase ) _lowerCAmelCase = None _lowerCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _lowerCAmelCase = model(**lowerCamelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _lowerCAmelCase = copy.deepcopy(lowerCamelCase ) _lowerCAmelCase = False _lowerCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _lowerCAmelCase = model(**lowerCamelCase )
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 600851475143 ) -> int: """simple docstring""" try: _lowerCAmelCase = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: while n % i == 0: _lowerCAmelCase = i n //= i i += 1 if n > 1: _lowerCAmelCase = n return int(snake_case_ ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE : List[str] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right SCREAMING_SNAKE_CASE : List[Any] = tuple[int, int] class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = pos_x _lowerCAmelCase = pos_y _lowerCAmelCase = (pos_y, pos_x) _lowerCAmelCase = goal_x _lowerCAmelCase = goal_y _lowerCAmelCase = g_cost _lowerCAmelCase = parent _lowerCAmelCase = self.calculate_heuristic() _lowerCAmelCase = self.g_cost + self.h_cost def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.pos_x - self.goal_x _lowerCAmelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCamelCase ) + abs(lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self , lowerCamelCase ): '''simple docstring''' return self.f_cost < other.f_cost class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCamelCase ) _lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , lowerCamelCase ) _lowerCAmelCase = [self.start] _lowerCAmelCase = [] _lowerCAmelCase = False def A__ (self ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCamelCase ) self.closed_nodes.append(lowerCamelCase ) _lowerCAmelCase = self.get_successors(lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCamelCase ) else: # retrieve the best current path _lowerCAmelCase = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCamelCase ) else: self.open_nodes.append(lowerCamelCase ) return [self.start.pos] def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = [] for action in delta: _lowerCAmelCase = parent.pos_x + action[1] _lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCamelCase , lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCamelCase , ) ) return successors def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = node _lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase = current_node.parent path.reverse() return path class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = AStar(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = AStar(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = False def A__ (self ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _lowerCAmelCase = self.fwd_astar.open_nodes.pop(0 ) _lowerCAmelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCamelCase , lowerCamelCase ) self.fwd_astar.closed_nodes.append(lowerCamelCase ) self.bwd_astar.closed_nodes.append(lowerCamelCase ) _lowerCAmelCase = current_bwd_node _lowerCAmelCase = current_fwd_node _lowerCAmelCase = { self.fwd_astar: self.fwd_astar.get_successors(lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCamelCase ) else: # retrieve the best current path _lowerCAmelCase = astar.open_nodes.pop( astar.open_nodes.index(lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCamelCase ) else: astar.open_nodes.append(lowerCamelCase ) return [self.fwd_astar.start.pos] def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.fwd_astar.retrace_path(lowerCamelCase ) _lowerCAmelCase = self.bwd_astar.retrace_path(lowerCamelCase ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] SCREAMING_SNAKE_CASE : List[str] = (0, 0) SCREAMING_SNAKE_CASE : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) SCREAMING_SNAKE_CASE : Union[str, Any] = time.time() SCREAMING_SNAKE_CASE : Any = AStar(init, goal) SCREAMING_SNAKE_CASE : str = a_star.search() SCREAMING_SNAKE_CASE : Union[str, Any] = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : List[str] = BidirectionalAStar(init, goal) SCREAMING_SNAKE_CASE : Any = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
317
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether tp freeze the encoder.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __UpperCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Source language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Target language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': '# num_beams to use for evaluation.'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , F"""{split}_results.json""" ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase = SeqaSeqDataset # Get datasets _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) _lowerCAmelCase = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) _lowerCAmelCase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowerCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase = train_result.metrics _lowerCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate(metric_key_prefix="""val""" ) _lowerCAmelCase = data_args.n_val _lowerCAmelCase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowerCAmelCase = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="""test""" ) _lowerCAmelCase = test_output.metrics _lowerCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: _lowerCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) _lowerCAmelCase = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def __UpperCAmelCase ( snake_case_ : Any ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> str: """simple docstring""" if not (isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) _lowerCAmelCase = len(snake_case_ ) _lowerCAmelCase = len(snake_case_ ) _lowerCAmelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] _lowerCAmelCase = 0 _lowerCAmelCase = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: _lowerCAmelCase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: _lowerCAmelCase = i _lowerCAmelCase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
317
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp SCREAMING_SNAKE_CASE : Optional[Any] = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE : Optional[int] = { '''RUCAIBox/mvp''': 1_0_2_4, } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['input_ids', 'attention_mask'] __UpperCamelCase = MvpTokenizer def __init__(self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="replace" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase=False , lowerCamelCase=True , **lowerCamelCase , ): '''simple docstring''' super().__init__( lowerCamelCase , lowerCamelCase , tokenizer_file=lowerCamelCase , errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase , **lowerCamelCase , ) _lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowerCamelCase ) != add_prefix_space: _lowerCAmelCase = getattr(lowerCamelCase , pre_tok_state.pop("""type""" ) ) _lowerCAmelCase = add_prefix_space _lowerCAmelCase = pre_tok_class(**lowerCamelCase ) _lowerCAmelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCAmelCase = """post_processor""" _lowerCAmelCase = getattr(self.backend_tokenizer , lowerCamelCase , lowerCamelCase ) if tokenizer_component_instance: _lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase = tuple(state["""sep"""] ) if "cls" in state: _lowerCAmelCase = tuple(state["""cls"""] ) _lowerCAmelCase = False if state.get("""add_prefix_space""" , lowerCamelCase ) != add_prefix_space: _lowerCAmelCase = add_prefix_space _lowerCAmelCase = True if state.get("""trim_offsets""" , lowerCamelCase ) != trim_offsets: _lowerCAmelCase = trim_offsets _lowerCAmelCase = True if changes_to_apply: _lowerCAmelCase = getattr(lowerCamelCase , state.pop("""type""" ) ) _lowerCAmelCase = component_class(**lowerCamelCase ) setattr(self.backend_tokenizer , lowerCamelCase , lowerCamelCase ) @property def A__ (self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else value _lowerCAmelCase = value def A__ (self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = kwargs.get("""is_split_into_words""" , lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*lowerCamelCase , **lowerCamelCase ) def A__ (self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = kwargs.get("""is_split_into_words""" , lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ """to use it with pretokenized inputs.""" ) return super()._encode_plus(*lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' _lowerCAmelCase = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
317
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size def A__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = MobileNetVaImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """crop_size""" ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal SCREAMING_SNAKE_CASE : Any = datasets.utils.logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = ['''names''', '''prefix'''] SCREAMING_SNAKE_CASE : Any = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] SCREAMING_SNAKE_CASE : Tuple = ['''encoding_errors''', '''on_bad_lines'''] SCREAMING_SNAKE_CASE : int = ['''date_format'''] @dataclass class __lowerCamelCase ( datasets.BuilderConfig ): __UpperCamelCase = "," __UpperCamelCase = None __UpperCamelCase = "infer" __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = "." __UpperCamelCase = None __UpperCamelCase = '"' __UpperCamelCase = 0 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = 0 __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = None __UpperCamelCase = 10_000 __UpperCamelCase = None __UpperCamelCase = "strict" __UpperCamelCase = "error" __UpperCamelCase = None def A__ (self ): '''simple docstring''' if self.delimiter is not None: _lowerCAmelCase = self.delimiter if self.column_names is not None: _lowerCAmelCase = self.column_names @property def A__ (self ): '''simple docstring''' _lowerCAmelCase = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __lowerCamelCase ( datasets.ArrowBasedBuilder ): __UpperCamelCase = CsvConfig def A__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ (self , lowerCamelCase ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase , (str, list, tuple) ): _lowerCAmelCase = data_files if isinstance(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = [files] _lowerCAmelCase = [dl_manager.iter_files(lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = [files] _lowerCAmelCase = [dl_manager.iter_files(lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase , gen_kwargs={"""files""": files} ) ) return splits def A__ (self , lowerCamelCase ): '''simple docstring''' if self.config.features is not None: _lowerCAmelCase = self.config.features.arrow_schema if all(not require_storage_cast(lowerCamelCase ) for feature in self.config.features.values() ): # cheaper cast _lowerCAmelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _lowerCAmelCase = table_cast(lowerCamelCase , lowerCamelCase ) return pa_table def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _lowerCAmelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase ) ): _lowerCAmelCase = pd.read_csv(lowerCamelCase , iterator=lowerCamelCase , dtype=lowerCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCamelCase ): _lowerCAmelCase = pa.Table.from_pandas(lowerCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(lowerCamelCase )}: {e}""" ) raise
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" for i in range(len(snake_case_ ) - 1 , 0 , -1 ): _lowerCAmelCase = False for j in range(snake_case_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j - 1], unsorted[j] _lowerCAmelCase = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j + 1], unsorted[j] _lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(''',''')] print(F'{cocktail_shaker_sort(unsorted) = }')
317
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'transfo-xl' __UpperCamelCase = ['mems'] __UpperCamelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , lowerCamelCase=267_735 , lowerCamelCase=[20_000, 40_000, 200_000] , lowerCamelCase=1_024 , lowerCamelCase=1_024 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase=4_096 , lowerCamelCase=4 , lowerCamelCase=False , lowerCamelCase=18 , lowerCamelCase=1_600 , lowerCamelCase=1_000 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase=-1 , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="normal" , lowerCamelCase=0.01 , lowerCamelCase=0.01 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=0 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: _lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: _lowerCAmelCase = [False] + [False] * len(self.cutoffs ) _lowerCAmelCase = d_model _lowerCAmelCase = d_embed _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = div_val _lowerCAmelCase = pre_lnorm _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = mem_len _lowerCAmelCase = same_length _lowerCAmelCase = attn_type _lowerCAmelCase = clamp_len _lowerCAmelCase = sample_softmax _lowerCAmelCase = adaptive _lowerCAmelCase = dropout _lowerCAmelCase = dropatt _lowerCAmelCase = untie_r _lowerCAmelCase = init _lowerCAmelCase = init_range _lowerCAmelCase = proj_init_std _lowerCAmelCase = init_std _lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
317
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : bool , snake_case_ : bool ) -> Tuple: """simple docstring""" def run_func(snake_case_ : Union[str, Any] ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : Optional[int] , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : Dict , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: """simple docstring""" _lowerCAmelCase = random.Random() _lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = "TensorFlow" @property def A__ (self ): '''simple docstring''' return tf.__version__ def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase , decoder_input_ids=lowerCamelCase , training=lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase , training=lowerCamelCase ) _lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase = model(lowerCamelCase , decoder_input_ids=lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients _lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A__ (self , lowerCamelCase ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase = timeit.repeat( lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _lowerCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _lowerCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase ) _lowerCAmelCase = meminfo.used _lowerCAmelCase = Memory(lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _lowerCAmelCase = None else: _lowerCAmelCase = measure_peak_memory_cpu(lowerCamelCase ) _lowerCAmelCase = Memory(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase = stop_memory_tracing(lowerCamelCase ) if memory is None: _lowerCAmelCase = summary.total else: _lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
317
1
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) SCREAMING_SNAKE_CASE : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _lowerCAmelCase = model_type_to_module_name(snake_case_ ) _lowerCAmelCase = importlib.import_module(F""".{module_name}""" , """transformers.models""" ) try: return getattr(snake_case_ , snake_case_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(snake_case_ , """__name__""" , snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowerCAmelCase = importlib.import_module("""transformers""" ) if hasattr(snake_case_ , snake_case_ ): return getattr(snake_case_ , snake_case_ ) return None def __UpperCAmelCase ( snake_case_ : Union[str, os.PathLike] , snake_case_ : Optional[Union[str, os.PathLike]] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : Optional[Dict[str, str]] = None , snake_case_ : Optional[Union[bool, str]] = None , snake_case_ : Optional[str] = None , snake_case_ : bool = False , **snake_case_ : Union[str, Any] , ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = get_file_from_repo( snake_case_ , snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , resume_download=snake_case_ , proxies=snake_case_ , use_auth_token=snake_case_ , revision=snake_case_ , local_files_only=snake_case_ , ) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(snake_case_ , encoding="""utf-8""" ) as reader: return json.load(snake_case_ ) class __lowerCamelCase : def __init__(self ): '''simple docstring''' raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(lowerCamelCase ) def A__ (cls , lowerCamelCase , **lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = kwargs.pop("""config""" , lowerCamelCase ) _lowerCAmelCase = kwargs.pop("""trust_remote_code""" , lowerCamelCase ) _lowerCAmelCase = True _lowerCAmelCase , _lowerCAmelCase = FeatureExtractionMixin.get_feature_extractor_dict(lowerCamelCase , **lowerCamelCase ) _lowerCAmelCase = config_dict.get("""feature_extractor_type""" , lowerCamelCase ) _lowerCAmelCase = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): _lowerCAmelCase = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = AutoConfig.from_pretrained(lowerCamelCase , **lowerCamelCase ) # It could be in `config.feature_extractor_type`` _lowerCAmelCase = getattr(lowerCamelCase , """feature_extractor_type""" , lowerCamelCase ) if hasattr(lowerCamelCase , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: _lowerCAmelCase = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: _lowerCAmelCase = feature_extractor_class_from_name(lowerCamelCase ) _lowerCAmelCase = feature_extractor_auto_map is not None _lowerCAmelCase = feature_extractor_class is not None or type(lowerCamelCase ) in FEATURE_EXTRACTOR_MAPPING _lowerCAmelCase = resolve_trust_remote_code( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if has_remote_code and trust_remote_code: _lowerCAmelCase = get_class_from_dynamic_module( lowerCamelCase , lowerCamelCase , **lowerCamelCase ) _lowerCAmelCase = kwargs.pop("""code_revision""" , lowerCamelCase ) if os.path.isdir(lowerCamelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(lowerCamelCase , **lowerCamelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(lowerCamelCase , **lowerCamelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(lowerCamelCase ) in FEATURE_EXTRACTOR_MAPPING: _lowerCAmelCase = FEATURE_EXTRACTOR_MAPPING[type(lowerCamelCase )] return feature_extractor_class.from_dict(lowerCamelCase , **lowerCamelCase ) raise ValueError( f"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ f"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def A__ (lowerCamelCase , lowerCamelCase ): '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(lowerCamelCase , lowerCamelCase )
317
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'transfo-xl' __UpperCamelCase = ['mems'] __UpperCamelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , lowerCamelCase=267_735 , lowerCamelCase=[20_000, 40_000, 200_000] , lowerCamelCase=1_024 , lowerCamelCase=1_024 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase=4_096 , lowerCamelCase=4 , lowerCamelCase=False , lowerCamelCase=18 , lowerCamelCase=1_600 , lowerCamelCase=1_000 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase=-1 , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="normal" , lowerCamelCase=0.01 , lowerCamelCase=0.01 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=0 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: _lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: _lowerCAmelCase = [False] + [False] * len(self.cutoffs ) _lowerCAmelCase = d_model _lowerCAmelCase = d_embed _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = div_val _lowerCAmelCase = pre_lnorm _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = mem_len _lowerCAmelCase = same_length _lowerCAmelCase = attn_type _lowerCAmelCase = clamp_len _lowerCAmelCase = sample_softmax _lowerCAmelCase = adaptive _lowerCAmelCase = dropout _lowerCAmelCase = dropatt _lowerCAmelCase = untie_r _lowerCAmelCase = init _lowerCAmelCase = init_range _lowerCAmelCase = proj_init_std _lowerCAmelCase = init_std _lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
317
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
"""simple docstring""" import math def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 2 _lowerCAmelCase = int(math.sqrt(snake_case_ ) ) # Size of every segment _lowerCAmelCase = [True] * (end + 1) _lowerCAmelCase = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): _lowerCAmelCase = False start += 1 prime += in_prime _lowerCAmelCase = end + 1 _lowerCAmelCase = min(2 * end , snake_case_ ) while low <= n: _lowerCAmelCase = [True] * (high - low + 1) for each in in_prime: _lowerCAmelCase = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): _lowerCAmelCase = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) _lowerCAmelCase = high + 1 _lowerCAmelCase = min(high + end , snake_case_ ) return prime print(sieve(1_0**6))
317
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] SCREAMING_SNAKE_CASE : List[Any] = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def __UpperCAmelCase ( snake_case_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = torch.load(snake_case_ , map_location="""cpu""" ) return sd def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : List[Any]=rename_keys_prefix ) -> Dict: """simple docstring""" _lowerCAmelCase = OrderedDict() _lowerCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCAmelCase = key for name_pair in rename_keys_prefix: _lowerCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCAmelCase = new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def __UpperCAmelCase ( snake_case_ : int , snake_case_ : Union[str, Any] ) -> List[str]: """simple docstring""" assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: _lowerCAmelCase = """pretraining""" if "vcr" in checkpoint_path: _lowerCAmelCase = {"""visual_embedding_dim""": 512} elif "vqa_advanced" in checkpoint_path: _lowerCAmelCase = {"""visual_embedding_dim""": 2048} elif "vqa" in checkpoint_path: _lowerCAmelCase = {"""visual_embedding_dim""": 2048} elif "nlvr" in checkpoint_path: _lowerCAmelCase = {"""visual_embedding_dim""": 1024} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: _lowerCAmelCase = {"""visual_embedding_dim""": 512} _lowerCAmelCase = """multichoice""" elif "vqa_advanced" in checkpoint_path: _lowerCAmelCase = {"""visual_embedding_dim""": 2048} _lowerCAmelCase = """vqa_advanced""" elif "vqa" in checkpoint_path: _lowerCAmelCase = {"""visual_embedding_dim""": 2048, """num_labels""": 3129} _lowerCAmelCase = """vqa""" elif "nlvr" in checkpoint_path: _lowerCAmelCase = { """visual_embedding_dim""": 1024, """num_labels""": 2, } _lowerCAmelCase = """nlvr""" _lowerCAmelCase = VisualBertConfig(**snake_case_ ) # Load State Dict _lowerCAmelCase = load_state_dict(snake_case_ ) _lowerCAmelCase = get_new_dict(snake_case_ , snake_case_ ) if model_type == "pretraining": _lowerCAmelCase = VisualBertForPreTraining(snake_case_ ) elif model_type == "vqa": _lowerCAmelCase = VisualBertForQuestionAnswering(snake_case_ ) elif model_type == "nlvr": _lowerCAmelCase = VisualBertForVisualReasoning(snake_case_ ) elif model_type == "multichoice": _lowerCAmelCase = VisualBertForMultipleChoice(snake_case_ ) model.load_state_dict(snake_case_ ) # Save Checkpoints Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
317
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE : Any = (7_2_0, 1_2_8_0) # Height, Width SCREAMING_SNAKE_CASE : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE : List[Any] = 1 / 1_0_0 SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = '''''' SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = 2_5_0 def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_dataset(snake_case_ , snake_case_ ) for index in range(snake_case_ ): _lowerCAmelCase = random.sample(range(len(snake_case_ ) ) , 4 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase = random_chars(32 ) _lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _lowerCAmelCase = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowerCAmelCase = [] for anno in new_annos: _lowerCAmelCase = anno[3] - anno[1] _lowerCAmelCase = anno[4] - anno[2] _lowerCAmelCase = anno[1] + width / 2 _lowerCAmelCase = anno[2] + height / 2 _lowerCAmelCase = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(snake_case_ ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> tuple[list, list]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case_ , """*.txt""" ) ): _lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case_ ) as in_file: _lowerCAmelCase = in_file.readlines() _lowerCAmelCase = os.path.join(snake_case_ , F"""{label_name}.jpg""" ) _lowerCAmelCase = [] for obj_list in obj_lists: _lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) _lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 _lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list , snake_case_ : list[int] , snake_case_ : tuple[int, int] , snake_case_ : tuple[float, float] , snake_case_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" _lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = int(scale_x * output_size[1] ) _lowerCAmelCase = int(scale_y * output_size[0] ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, index in enumerate(snake_case_ ): _lowerCAmelCase = all_img_list[index] path_list.append(snake_case_ ) _lowerCAmelCase = all_annos[index] _lowerCAmelCase = cva.imread(snake_case_ ) if i == 0: # top-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCAmelCase = cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCAmelCase = cva.resize( snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
317
1
"""simple docstring""" import requests SCREAMING_SNAKE_CASE : Dict = '''''' # <-- Put your OpenWeatherMap appid here! SCREAMING_SNAKE_CASE : int = '''https://api.openweathermap.org/data/2.5/''' def __UpperCAmelCase ( snake_case_ : str = "Chicago" , snake_case_ : str = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + """weather""" , params=locals() ).json() def __UpperCAmelCase ( snake_case_ : str = "Kolkata, India" , snake_case_ : str = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + """forecast""" , params=locals() ).json() def __UpperCAmelCase ( snake_case_ : float = 5_5.6_8 , snake_case_ : float = 1_2.5_7 , snake_case_ : str = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + """onecall""" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: SCREAMING_SNAKE_CASE : Optional[Any] = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
317
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit + 1 _lowerCAmelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
1
"""simple docstring""" SCREAMING_SNAKE_CASE : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.6_0_9_3_4_4, "knot": 1.8_5_2, } SCREAMING_SNAKE_CASE : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_7_7_7_7_7_7_7_8, "mph": 0.6_2_1_3_7_1_1_9_2, "knot": 0.5_3_9_9_5_6_8_0_3, } def __UpperCAmelCase ( snake_case_ : float , snake_case_ : str , snake_case_ : str ) -> float: """simple docstring""" if unit_to not in speed_chart or unit_from not in speed_chart_inverse: _lowerCAmelCase = ( F"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" F"""Valid values are: {", ".join(snake_case_ )}""" ) raise ValueError(snake_case_ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
317
"""simple docstring""" from math import isqrt def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case_ , snake_case_ ): _lowerCAmelCase = False return [i for i in range(2 , snake_case_ ) if is_prime[i]] def __UpperCAmelCase ( snake_case_ : int = 10**8 ) -> int: """simple docstring""" _lowerCAmelCase = calculate_prime_numbers(max_number // 2 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def __UpperCAmelCase ( snake_case_ : Dict ) -> Optional[Any]: """simple docstring""" if hor == 128: _lowerCAmelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") _lowerCAmelCase = (32, 128, 256) _lowerCAmelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: _lowerCAmelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") _lowerCAmelCase = (32, 64, 128, 256) _lowerCAmelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") _lowerCAmelCase = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) _lowerCAmelCase = model.state_dict() _lowerCAmelCase = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 65536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } _lowerCAmelCase = UNetaDModel(**snake_case_ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _lowerCAmelCase = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _lowerCAmelCase = state_dict.pop(snake_case_ ) hf_value_function.load_state_dict(snake_case_ ) torch.save(hf_value_function.state_dict() , F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , """w""" ) as f: json.dump(snake_case_ , snake_case_ ) def __UpperCAmelCase ( ) -> str: """simple docstring""" _lowerCAmelCase = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 65536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } _lowerCAmelCase = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) _lowerCAmelCase = model _lowerCAmelCase = UNetaDModel(**snake_case_ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _lowerCAmelCase = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _lowerCAmelCase = state_dict.pop(snake_case_ ) hf_value_function.load_state_dict(snake_case_ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(snake_case_ , snake_case_ ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCamelCase = 'CIDAS/clipseg-rd64-refined' __UpperCamelCase = 'image_segmenter' __UpperCamelCase = CLIPSegForImageSegmentation __UpperCamelCase = ['image', 'text'] __UpperCamelCase = ['image'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase , return_tensors="""pt""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase = self.model(**lowerCamelCase ).logits return logits def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = outputs.cpu().detach().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int ) -> int: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ): raise TypeError("""Input value must be an 'int' type""" ) _lowerCAmelCase = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
317
"""simple docstring""" from __future__ import annotations import queue class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None def __UpperCAmelCase ( ) -> TreeNode: """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) _lowerCAmelCase = input("""Enter the value of the root node: """ ).strip().lower() _lowerCAmelCase = queue.Queue() _lowerCAmelCase = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() _lowerCAmelCase = F"""Enter the left node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = left_node q.put(snake_case_ ) _lowerCAmelCase = F"""Enter the right node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = right_node q.put(snake_case_ ) raise def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = [] while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(snake_case_ ) _lowerCAmelCase = n.left # end of while means current node doesn't have left child _lowerCAmelCase = stack.pop() # start to traverse its right child _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: stack.append(snake_case_ ) _lowerCAmelCase = n.left _lowerCAmelCase = stack.pop() print(n.data , end=""",""" ) _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : str = "" , snake_case_ : int=50 , snake_case_ : Dict="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char _lowerCAmelCase , _lowerCAmelCase = divmod(width - len(snake_case_ ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) SCREAMING_SNAKE_CASE : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
317
1
"""simple docstring""" from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __lowerCamelCase ( __lowercase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = """pt""" _lowerCAmelCase = """tf""" def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=lowerCamelCase ) model_tf.save_pretrained(lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = """mock_framework""" # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCamelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCamelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCamelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(lowerCamelCase ) self.assertEqual(lowerCamelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCamelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(lowerCamelCase ) self.assertEqual(lowerCamelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowerCamelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = MagicMock(return_value=lowerCamelCase ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCamelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCamelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=lowerCamelCase ) with patch("""transformers.onnx.features.is_torch_available""" , lowerCamelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCamelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=lowerCamelCase ) _lowerCAmelCase = MagicMock(return_value=lowerCamelCase ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCamelCase ), patch( """transformers.onnx.features.is_torch_available""" , lowerCamelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCamelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=lowerCamelCase ) _lowerCAmelCase = MagicMock(return_value=lowerCamelCase ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCamelCase ), patch( """transformers.onnx.features.is_torch_available""" , lowerCamelCase ): with self.assertRaises(lowerCamelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
317
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(lowerCamelCase ), len(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE : Any = '''ABAABA''' SCREAMING_SNAKE_CASE : Optional[int] = '''AB''' SCREAMING_SNAKE_CASE : str = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
317
1
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
317
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device SCREAMING_SNAKE_CASE : List[str] = False class __lowerCamelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( image=lowerCamelCase , generator=lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _lowerCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
317
1
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( snake_case_ : list[int] ) -> bool: """simple docstring""" return len(set(snake_case_ ) ) == len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
317
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = DiTPipeline __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase = False def A__ (self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def A__ (self , lowerCamelCase , lowerCamelCase=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase ) _lowerCAmelCase = pipe(**lowerCamelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1e-3 ) def A__ (self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(lowerCamelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
317
1
"""simple docstring""" from math import isqrt def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case_ , snake_case_ ): _lowerCAmelCase = False return [i for i in range(2 , snake_case_ ) if is_prime[i]] def __UpperCAmelCase ( snake_case_ : int = 10**8 ) -> int: """simple docstring""" _lowerCAmelCase = calculate_prime_numbers(max_number // 2 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
317
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> Dict: """simple docstring""" return getitem, k def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( snake_case_ : str ) -> Optional[int]: """simple docstring""" return delitem, k def __UpperCAmelCase ( snake_case_ : Optional[Any] , snake_case_ : Tuple , *snake_case_ : Tuple ) -> str: """simple docstring""" try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : int = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) SCREAMING_SNAKE_CASE : List[Any] = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] SCREAMING_SNAKE_CASE : Any = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] SCREAMING_SNAKE_CASE : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __UpperCAmelCase ( snake_case_ : List[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = HashMap(initial_block_size=4 ) _lowerCAmelCase = {} for _, (fun, *args) in enumerate(snake_case_ ): _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" def is_public(snake_case_ : str ) -> bool: return not name.startswith("""_""" ) _lowerCAmelCase = {name for name in dir({} ) if is_public(snake_case_ )} _lowerCAmelCase = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
317
1
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowerCamelCase ( __lowercase ): def __init__(self , lowerCamelCase = "▁" , lowerCamelCase = True , lowerCamelCase = "<unk>" , lowerCamelCase = "</s>" , lowerCamelCase = "<pad>" , ): '''simple docstring''' _lowerCAmelCase = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } _lowerCAmelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _lowerCAmelCase = token_dict["""token"""] _lowerCAmelCase = Tokenizer(Unigram() ) _lowerCAmelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) _lowerCAmelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowerCamelCase , add_prefix_space=lowerCamelCase ), pre_tokenizers.Digits(individual_digits=lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) _lowerCAmelCase = decoders.Metaspace(replacement=lowerCamelCase , add_prefix_space=lowerCamelCase ) _lowerCAmelCase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) _lowerCAmelCase = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(lowerCamelCase , lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase = 8_000 , lowerCamelCase = True , ): '''simple docstring''' _lowerCAmelCase = trainers.UnigramTrainer( vocab_size=lowerCamelCase , special_tokens=self.special_tokens_list , show_progress=lowerCamelCase , ) if isinstance(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = [files] self._tokenizer.train(lowerCamelCase , trainer=lowerCamelCase ) self.add_unk_id() def A__ (self , lowerCamelCase , lowerCamelCase = 8_000 , lowerCamelCase = True , ): '''simple docstring''' _lowerCAmelCase = trainers.UnigramTrainer( vocab_size=lowerCamelCase , special_tokens=self.special_tokens_list , show_progress=lowerCamelCase , ) self._tokenizer.train_from_iterator(lowerCamelCase , trainer=lowerCamelCase ) self.add_unk_id() def A__ (self ): '''simple docstring''' _lowerCAmelCase = json.loads(self._tokenizer.to_str() ) _lowerCAmelCase = self.special_tokens["""unk"""]["""id"""] _lowerCAmelCase = Tokenizer.from_str(json.dumps(lowerCamelCase ) )
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) _lowerCAmelCase = answer return answer _lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def __UpperCAmelCase ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> int: """simple docstring""" _lowerCAmelCase = [0] * (target + 1) _lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Any = 5 SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar SCREAMING_SNAKE_CASE : Union[str, Any] = TypeVar('''T''') class __lowerCamelCase ( Generic[T] ): def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None def __str__(self ): '''simple docstring''' return f"""{self.data}""" class __lowerCamelCase ( Generic[T] ): def __init__(self ): '''simple docstring''' _lowerCAmelCase = None def __iter__(self ): '''simple docstring''' _lowerCAmelCase = self.top while node: yield node.data _lowerCAmelCase = node.next def __str__(self ): '''simple docstring''' return "->".join([str(lowerCamelCase ) for item in self] ) def __len__(self ): '''simple docstring''' return len(tuple(iter(self ) ) ) def A__ (self ): '''simple docstring''' return self.top is None def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = Node(lowerCamelCase ) if not self.is_empty(): _lowerCAmelCase = self.top _lowerCAmelCase = node def A__ (self ): '''simple docstring''' if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , lowerCamelCase ) _lowerCAmelCase = self.top _lowerCAmelCase = self.top.next return pop_node.data def A__ (self ): '''simple docstring''' if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def A__ (self ): '''simple docstring''' _lowerCAmelCase = None if __name__ == "__main__": from doctest import testmod testmod()
317
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ) -> str | None: """simple docstring""" _lowerCAmelCase = "" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def __UpperCAmelCase ( snake_case_ : list[int] ) -> list[str]: """simple docstring""" _lowerCAmelCase = [] for key in product(snake_case_ , repeat=3 ): _lowerCAmelCase = try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def __UpperCAmelCase ( snake_case_ : list[str] , snake_case_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( snake_case_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding="""utf-8""" ) _lowerCAmelCase = [int(snake_case_ ) for number in data.strip().split(""",""" )] _lowerCAmelCase = filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Any = { '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = ['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = [ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit + 1 _lowerCAmelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class __lowerCamelCase ( __lowercase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __UpperCamelCase = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) __UpperCamelCase = Features({'question': Value('string' ), 'context': Value('string' )} ) __UpperCamelCase = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) __UpperCamelCase = "question" __UpperCamelCase = "context" __UpperCamelCase = "answers" @property def A__ (self ): '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
"""simple docstring""" from functools import reduce SCREAMING_SNAKE_CASE : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __UpperCAmelCase ( snake_case_ : str = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case_ , snake_case_ : str(int(snake_case_ ) * int(snake_case_ ) ) , n[i : i + 13] ) ) for i in range(len(snake_case_ ) - 12 ) ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ['image_processor', 'feature_extractor'] __UpperCamelCase = 'TvltImageProcessor' __UpperCamelCase = 'TvltFeatureExtractor' def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' super().__init__(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) _lowerCAmelCase = image_processor _lowerCAmelCase = feature_extractor def __call__(self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=False , lowerCamelCase=False , *lowerCamelCase , **lowerCamelCase , ): '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) _lowerCAmelCase = None if images is not None: _lowerCAmelCase = self.image_processor(lowerCamelCase , mask_pixel=lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) if images_mixed is not None: _lowerCAmelCase = self.image_processor(lowerCamelCase , is_mixed=lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) if audio is not None: _lowerCAmelCase = self.feature_extractor( lowerCamelCase , *lowerCamelCase , sampling_rate=lowerCamelCase , mask_audio=lowerCamelCase , **lowerCamelCase ) _lowerCAmelCase = {} if audio is not None: output_dict.update(lowerCamelCase ) if images is not None: output_dict.update(lowerCamelCase ) if images_mixed_dict is not None: output_dict.update(lowerCamelCase ) return output_dict @property def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processor.model_input_names _lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 600851475143 ) -> int: """simple docstring""" try: _lowerCAmelCase = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: while n % i == 0: _lowerCAmelCase = i n //= i i += 1 if n > 1: _lowerCAmelCase = n return int(snake_case_ ) if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu SCREAMING_SNAKE_CASE : str = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: SCREAMING_SNAKE_CASE : Tuple = json.load(f) @require_torch class __lowerCamelCase ( unittest.TestCase ): def A__ (self , lowerCamelCase ): '''simple docstring''' return FSMTTokenizer.from_pretrained(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = FSMTForConditionalGeneration.from_pretrained(lowerCamelCase ).to(lowerCamelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = f"""facebook/wmt19-{pair}""" _lowerCAmelCase = self.get_tokenizer(lowerCamelCase ) _lowerCAmelCase = self.get_model(lowerCamelCase ) _lowerCAmelCase = bleu_data[pair]["""src"""] _lowerCAmelCase = bleu_data[pair]["""tgt"""] _lowerCAmelCase = tokenizer(lowerCamelCase , return_tensors="""pt""" , truncation=lowerCamelCase , padding="""longest""" ).to(lowerCamelCase ) _lowerCAmelCase = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _lowerCAmelCase = tokenizer.batch_decode( lowerCamelCase , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase ) _lowerCAmelCase = calculate_bleu(lowerCamelCase , lowerCamelCase ) print(lowerCamelCase ) self.assertGreaterEqual(scores["""bleu"""] , lowerCamelCase )
317
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether tp freeze the encoder.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __UpperCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __UpperCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __UpperCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Source language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': 'Target language id for translation.'} ) __UpperCamelCase = field(default=__lowercase , metadata={'help': '# num_beams to use for evaluation.'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , F"""{split}_results.json""" ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _lowerCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _lowerCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _lowerCAmelCase = SeqaSeqDataset # Get datasets _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _lowerCAmelCase = ( dataset_class( snake_case_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _lowerCAmelCase = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) _lowerCAmelCase = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) _lowerCAmelCase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _lowerCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _lowerCAmelCase = train_result.metrics _lowerCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate(metric_key_prefix="""val""" ) _lowerCAmelCase = data_args.n_val _lowerCAmelCase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _lowerCAmelCase = trainer.predict(test_dataset=snake_case_ , metric_key_prefix="""test""" ) _lowerCAmelCase = test_output.metrics _lowerCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _lowerCAmelCase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: _lowerCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) _lowerCAmelCase = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def __UpperCAmelCase ( snake_case_ : Any ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
317
1
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def __UpperCAmelCase ( snake_case_ : int , snake_case_ : bool = True , snake_case_ : float = math.inf , snake_case_ : float = -math.inf , snake_case_ : float = math.inf , snake_case_ : float = -math.inf , snake_case_ : bool = False , snake_case_ : float = 100 , snake_case_ : float = 0.0_1 , snake_case_ : float = 1 , ) -> Any: """simple docstring""" _lowerCAmelCase = False _lowerCAmelCase = search_prob _lowerCAmelCase = start_temperate _lowerCAmelCase = [] _lowerCAmelCase = 0 _lowerCAmelCase = None while not search_end: _lowerCAmelCase = current_state.score() if best_state is None or current_score > best_state.score(): _lowerCAmelCase = current_state scores.append(snake_case_ ) iterations += 1 _lowerCAmelCase = None _lowerCAmelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _lowerCAmelCase = random.randint(0 , len(snake_case_ ) - 1 ) # picking a random neighbor _lowerCAmelCase = neighbors.pop(snake_case_ ) _lowerCAmelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _lowerCAmelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution _lowerCAmelCase = picked_neighbor else: _lowerCAmelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _lowerCAmelCase = picked_neighbor _lowerCAmelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _lowerCAmelCase = True else: _lowerCAmelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(snake_case_ ) , snake_case_ ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __UpperCAmelCase ( snake_case_ : Tuple , snake_case_ : Tuple ) -> List[Any]: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) SCREAMING_SNAKE_CASE : Any = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) SCREAMING_SNAKE_CASE : Union[str, Any] = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) SCREAMING_SNAKE_CASE : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) SCREAMING_SNAKE_CASE : Tuple = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def __UpperCAmelCase ( snake_case_ : List[Any] , snake_case_ : Tuple ) -> Union[str, Any]: """simple docstring""" return (3 * x**2) - (6 * y) SCREAMING_SNAKE_CASE : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) SCREAMING_SNAKE_CASE : Dict = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' ) SCREAMING_SNAKE_CASE : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) SCREAMING_SNAKE_CASE : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' )
317
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
1
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : Any , snake_case_ : Tuple ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = [0 for i in range(r + 1 )] # nc0 = 1 _lowerCAmelCase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _lowerCAmelCase = min(snake_case_ , snake_case_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
317
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size def A__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = MobileNetVaImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """crop_size""" ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class __lowerCamelCase ( __lowercase , __lowercase ): __UpperCamelCase = 'swin' __UpperCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , lowerCamelCase=224 , lowerCamelCase=4 , lowerCamelCase=3 , lowerCamelCase=96 , lowerCamelCase=[2, 2, 6, 2] , lowerCamelCase=[3, 6, 12, 24] , lowerCamelCase=7 , lowerCamelCase=4.0 , lowerCamelCase=True , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase="gelu" , lowerCamelCase=False , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=32 , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase , ): '''simple docstring''' super().__init__(**lowerCamelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(lowerCamelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) _lowerCAmelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] _lowerCAmelCase , _lowerCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = version.parse('1.11' ) @property def A__ (self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ (self ): '''simple docstring''' return 1e-4
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : list ) -> list: """simple docstring""" for i in range(len(snake_case_ ) - 1 , 0 , -1 ): _lowerCAmelCase = False for j in range(snake_case_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j - 1], unsorted[j] _lowerCAmelCase = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: _lowerCAmelCase , _lowerCAmelCase = unsorted[j + 1], unsorted[j] _lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(''',''')] print(F'{cocktail_shaker_sort(unsorted) = }')
317
1
"""simple docstring""" class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = previous _lowerCAmelCase = next_node def __str__(self ): '''simple docstring''' return f"""{self.data}""" def A__ (self ): '''simple docstring''' return self.data def A__ (self ): '''simple docstring''' return self.next def A__ (self ): '''simple docstring''' return self.previous class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = head def __iter__(self ): '''simple docstring''' return self def A__ (self ): '''simple docstring''' if not self.current: raise StopIteration else: _lowerCAmelCase = self.current.get_data() _lowerCAmelCase = self.current.get_next() return value class __lowerCamelCase : def __init__(self ): '''simple docstring''' _lowerCAmelCase = None # First node in list _lowerCAmelCase = None # Last node in list def __str__(self ): '''simple docstring''' _lowerCAmelCase = self.head _lowerCAmelCase = [] while current is not None: nodes.append(current.get_data() ) _lowerCAmelCase = current.get_next() return " ".join(str(lowerCamelCase ) for node in nodes ) def __contains__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.head while current: if current.get_data() == value: return True _lowerCAmelCase = current.get_next() return False def __iter__(self ): '''simple docstring''' return LinkedListIterator(self.head ) def A__ (self ): '''simple docstring''' if self.head: return self.head.get_data() return None def A__ (self ): '''simple docstring''' if self.tail: return self.tail.get_data() return None def A__ (self , lowerCamelCase ): '''simple docstring''' if self.head is None: _lowerCAmelCase = node _lowerCAmelCase = node else: self.insert_before_node(self.head , lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' if self.head is None: self.set_head(lowerCamelCase ) else: self.insert_after_node(self.tail , lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = Node(lowerCamelCase ) if self.head is None: self.set_head(lowerCamelCase ) else: self.set_tail(lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = node _lowerCAmelCase = node.previous if node.get_previous() is None: _lowerCAmelCase = node_to_insert else: _lowerCAmelCase = node_to_insert _lowerCAmelCase = node_to_insert def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = node _lowerCAmelCase = node.next if node.get_next() is None: _lowerCAmelCase = node_to_insert else: _lowerCAmelCase = node_to_insert _lowerCAmelCase = node_to_insert def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = 1 _lowerCAmelCase = Node(lowerCamelCase ) _lowerCAmelCase = self.head while node: if current_position == position: self.insert_before_node(lowerCamelCase , lowerCamelCase ) return current_position += 1 _lowerCAmelCase = node.next self.insert_after_node(self.tail , lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.head while node: if node.get_data() == item: return node _lowerCAmelCase = node.get_next() raise Exception("""Node not found""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' if (node := self.get_node(lowerCamelCase )) is not None: if node == self.head: _lowerCAmelCase = self.head.get_next() if node == self.tail: _lowerCAmelCase = self.tail.get_previous() self.remove_node_pointers(lowerCamelCase ) @staticmethod def A__ (lowerCamelCase ): '''simple docstring''' if node.get_next(): _lowerCAmelCase = node.previous if node.get_previous(): _lowerCAmelCase = node.next _lowerCAmelCase = None _lowerCAmelCase = None def A__ (self ): '''simple docstring''' return self.head is None def __UpperCAmelCase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
317
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : bool , snake_case_ : bool ) -> Tuple: """simple docstring""" def run_func(snake_case_ : Union[str, Any] ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : Optional[int] , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : Dict , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __UpperCAmelCase ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: """simple docstring""" _lowerCAmelCase = random.Random() _lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = "TensorFlow" @property def A__ (self ): '''simple docstring''' return tf.__version__ def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_inference ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) _lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _lowerCAmelCase = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_train ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase , decoder_input_ids=lowerCamelCase , training=lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase , training=lowerCamelCase ) _lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _lowerCAmelCase = ( hasattr(lowerCamelCase , """architectures""" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model_cls(lowerCamelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase = config.vocab_size if hasattr(lowerCamelCase , """vocab_size""" ) else config.encoder.vocab_size _lowerCAmelCase = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase = model(lowerCamelCase , decoder_input_ids=lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] _lowerCAmelCase = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients _lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A__ (self , lowerCamelCase ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase = timeit.repeat( lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _lowerCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _lowerCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase ) _lowerCAmelCase = meminfo.used _lowerCAmelCase = Memory(lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _lowerCAmelCase = None else: _lowerCAmelCase = measure_peak_memory_cpu(lowerCamelCase ) _lowerCAmelCase = Memory(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase = stop_memory_tracing(lowerCamelCase ) if memory is None: _lowerCAmelCase = summary.total else: _lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
317
1
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' super().tearDown() gc.collect() def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) _lowerCAmelCase = """A painting of a squirrel eating a burger""" _lowerCAmelCase = jax.device_count() _lowerCAmelCase = num_samples * [prompt] _lowerCAmelCase = sd_pipe.prepare_inputs(lowerCamelCase ) _lowerCAmelCase = replicate(lowerCamelCase ) _lowerCAmelCase = shard(lowerCamelCase ) _lowerCAmelCase = jax.random.PRNGKey(0 ) _lowerCAmelCase = jax.random.split(lowerCamelCase , jax.device_count() ) _lowerCAmelCase = sd_pipe(lowerCamelCase , lowerCamelCase , lowerCamelCase , num_inference_steps=25 , jit=lowerCamelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _lowerCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCAmelCase = images[0, 253:256, 253:256, -1] _lowerCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCAmelCase = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.4_5508, 0.4512] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def A__ (self ): '''simple docstring''' _lowerCAmelCase = """stabilityai/stable-diffusion-2""" _lowerCAmelCase , _lowerCAmelCase = FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCamelCase , subfolder="""scheduler""" ) _lowerCAmelCase , _lowerCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( lowerCamelCase , scheduler=lowerCamelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) _lowerCAmelCase = scheduler_params _lowerCAmelCase = """A painting of a squirrel eating a burger""" _lowerCAmelCase = jax.device_count() _lowerCAmelCase = num_samples * [prompt] _lowerCAmelCase = sd_pipe.prepare_inputs(lowerCamelCase ) _lowerCAmelCase = replicate(lowerCamelCase ) _lowerCAmelCase = shard(lowerCamelCase ) _lowerCAmelCase = jax.random.PRNGKey(0 ) _lowerCAmelCase = jax.random.split(lowerCamelCase , jax.device_count() ) _lowerCAmelCase = sd_pipe(lowerCamelCase , lowerCamelCase , lowerCamelCase , num_inference_steps=25 , jit=lowerCamelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _lowerCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCAmelCase = images[0, 253:256, 253:256, -1] _lowerCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCAmelCase = jnp.array([0.4336, 0.4_2969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
317
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'transfo-xl' __UpperCamelCase = ['mems'] __UpperCamelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , lowerCamelCase=267_735 , lowerCamelCase=[20_000, 40_000, 200_000] , lowerCamelCase=1_024 , lowerCamelCase=1_024 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase=4_096 , lowerCamelCase=4 , lowerCamelCase=False , lowerCamelCase=18 , lowerCamelCase=1_600 , lowerCamelCase=1_000 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase=-1 , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="normal" , lowerCamelCase=0.01 , lowerCamelCase=0.01 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase=0 , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: _lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: _lowerCAmelCase = [False] + [False] * len(self.cutoffs ) _lowerCAmelCase = d_model _lowerCAmelCase = d_embed _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = div_val _lowerCAmelCase = pre_lnorm _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = mem_len _lowerCAmelCase = same_length _lowerCAmelCase = attn_type _lowerCAmelCase = clamp_len _lowerCAmelCase = sample_softmax _lowerCAmelCase = adaptive _lowerCAmelCase = dropout _lowerCAmelCase = dropatt _lowerCAmelCase = untie_r _lowerCAmelCase = init _lowerCAmelCase = init_range _lowerCAmelCase = proj_init_std _lowerCAmelCase = init_std _lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def A__ (self ): '''simple docstring''' logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def A__ (self , lowerCamelCase ): '''simple docstring''' raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
317
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( snake_case_ : List[Any] ) -> List[str]: """simple docstring""" _lowerCAmelCase = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 18, 2] _lowerCAmelCase = True if """large""" in model_name or """huge""" in model_name else False _lowerCAmelCase = True if """large""" in model_name or """huge""" in model_name else False _lowerCAmelCase = True if """large""" in model_name or """huge""" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _lowerCAmelCase = [3, 3, 3, 3] _lowerCAmelCase = [5, 5, 5, 5] elif "fl4" in model_name: _lowerCAmelCase = [4, 4, 4, 4] _lowerCAmelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _lowerCAmelCase = [3, 3, 3, 3] if "lrf" in model_name: _lowerCAmelCase = [3, 3, 3, 3] else: _lowerCAmelCase = [2, 2, 2, 2] if "tiny" in model_name: _lowerCAmelCase = 96 elif "small" in model_name: _lowerCAmelCase = 96 elif "base" in model_name: _lowerCAmelCase = 128 elif "large" in model_name: _lowerCAmelCase = 192 elif "xlarge" in model_name: _lowerCAmelCase = 256 elif "huge" in model_name: _lowerCAmelCase = 352 # set label information _lowerCAmelCase = """huggingface/label-files""" if "large" in model_name or "huge" in model_name: _lowerCAmelCase = """imagenet-22k-id2label.json""" else: _lowerCAmelCase = """imagenet-1k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = FocalNetConfig( embed_dim=snake_case_ , depths=snake_case_ , focal_levels=snake_case_ , focal_windows=snake_case_ , use_conv_embed=snake_case_ , idalabel=snake_case_ , labelaid=snake_case_ , use_post_layernorm=snake_case_ , use_layerscale=snake_case_ , ) return config def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> Any: """simple docstring""" if "patch_embed.proj" in name: _lowerCAmelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _lowerCAmelCase = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: _lowerCAmelCase = """encoder.""" + name if "encoder.layers" in name: _lowerCAmelCase = name.replace("""encoder.layers""" , """encoder.stages""" ) if "downsample.proj" in name: _lowerCAmelCase = name.replace("""downsample.proj""" , """downsample.projection""" ) if "blocks" in name: _lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _lowerCAmelCase = name.replace("""modulation.f""" , """modulation.projection_in""" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _lowerCAmelCase = name.replace("""modulation.h""" , """modulation.projection_context""" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _lowerCAmelCase = name.replace("""modulation.proj""" , """modulation.projection_out""" ) if name == "norm.weight": _lowerCAmelCase = """layernorm.weight""" if name == "norm.bias": _lowerCAmelCase = """layernorm.bias""" if "head" in name: _lowerCAmelCase = name.replace("""head""" , """classifier""" ) else: _lowerCAmelCase = """focalnet.""" + name return name def __UpperCAmelCase ( snake_case_ : Any , snake_case_ : Tuple , snake_case_ : List[str]=False ) -> int: """simple docstring""" _lowerCAmelCase = { """focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""", """focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""", """focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""", """focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""", """focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""", """focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""", """focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""", """focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""", """focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""", """focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""", } # fmt: on _lowerCAmelCase = model_name_to_url[model_name] print("""Checkpoint URL: """ , snake_case_ ) _lowerCAmelCase = torch.hub.load_state_dict_from_url(snake_case_ , map_location="""cpu""" )["""model"""] # rename keys for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(snake_case_ ) _lowerCAmelCase = val _lowerCAmelCase = get_focalnet_config(snake_case_ ) _lowerCAmelCase = FocalNetForImageClassification(snake_case_ ) model.eval() # load state dict model.load_state_dict(snake_case_ ) # verify conversion _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = BitImageProcessor( do_resize=snake_case_ , size={"""shortest_edge""": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=snake_case_ , crop_size=224 , do_normalize=snake_case_ , image_mean=snake_case_ , image_std=snake_case_ , ) _lowerCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) _lowerCAmelCase = processor(images=snake_case_ , return_tensors="""pt""" ) _lowerCAmelCase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) _lowerCAmelCase = image_transforms(snake_case_ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , snake_case_ , atol=1e-4 ) _lowerCAmelCase = model(**snake_case_ ) _lowerCAmelCase = outputs.logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) print("""First values of logits:""" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _lowerCAmelCase = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": _lowerCAmelCase = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": _lowerCAmelCase = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": _lowerCAmelCase = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": _lowerCAmelCase = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": _lowerCAmelCase = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
317
"""simple docstring""" import math def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 2 _lowerCAmelCase = int(math.sqrt(snake_case_ ) ) # Size of every segment _lowerCAmelCase = [True] * (end + 1) _lowerCAmelCase = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): _lowerCAmelCase = False start += 1 prime += in_prime _lowerCAmelCase = end + 1 _lowerCAmelCase = min(2 * end , snake_case_ ) while low <= n: _lowerCAmelCase = [True] * (high - low + 1) for each in in_prime: _lowerCAmelCase = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): _lowerCAmelCase = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) _lowerCAmelCase = high + 1 _lowerCAmelCase = min(high + end , snake_case_ ) return prime print(sieve(1_0**6))
317
1
"""simple docstring""" from __future__ import annotations import queue class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None def __UpperCAmelCase ( ) -> TreeNode: """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) _lowerCAmelCase = input("""Enter the value of the root node: """ ).strip().lower() _lowerCAmelCase = queue.Queue() _lowerCAmelCase = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() _lowerCAmelCase = F"""Enter the left node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = left_node q.put(snake_case_ ) _lowerCAmelCase = F"""Enter the right node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = right_node q.put(snake_case_ ) raise def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = [] while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(snake_case_ ) _lowerCAmelCase = n.left # end of while means current node doesn't have left child _lowerCAmelCase = stack.pop() # start to traverse its right child _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: stack.append(snake_case_ ) _lowerCAmelCase = n.left _lowerCAmelCase = stack.pop() print(n.data , end=""",""" ) _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : str = "" , snake_case_ : int=50 , snake_case_ : Dict="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char _lowerCAmelCase , _lowerCAmelCase = divmod(width - len(snake_case_ ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) SCREAMING_SNAKE_CASE : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
317
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE : Any = (7_2_0, 1_2_8_0) # Height, Width SCREAMING_SNAKE_CASE : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE : List[Any] = 1 / 1_0_0 SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = '''''' SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = 2_5_0 def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_dataset(snake_case_ , snake_case_ ) for index in range(snake_case_ ): _lowerCAmelCase = random.sample(range(len(snake_case_ ) ) , 4 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase = random_chars(32 ) _lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _lowerCAmelCase = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowerCAmelCase = [] for anno in new_annos: _lowerCAmelCase = anno[3] - anno[1] _lowerCAmelCase = anno[4] - anno[2] _lowerCAmelCase = anno[1] + width / 2 _lowerCAmelCase = anno[2] + height / 2 _lowerCAmelCase = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(snake_case_ ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> tuple[list, list]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case_ , """*.txt""" ) ): _lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case_ ) as in_file: _lowerCAmelCase = in_file.readlines() _lowerCAmelCase = os.path.join(snake_case_ , F"""{label_name}.jpg""" ) _lowerCAmelCase = [] for obj_list in obj_lists: _lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) _lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 _lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list , snake_case_ : list[int] , snake_case_ : tuple[int, int] , snake_case_ : tuple[float, float] , snake_case_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" _lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = int(scale_x * output_size[1] ) _lowerCAmelCase = int(scale_y * output_size[0] ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, index in enumerate(snake_case_ ): _lowerCAmelCase = all_img_list[index] path_list.append(snake_case_ ) _lowerCAmelCase = all_annos[index] _lowerCAmelCase = cva.imread(snake_case_ ) if i == 0: # top-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCAmelCase = cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCAmelCase = cva.resize( snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
317
1
"""simple docstring""" import datasets from .evaluate import evaluate SCREAMING_SNAKE_CASE : Any = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' SCREAMING_SNAKE_CASE : Union[str, Any] = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' SCREAMING_SNAKE_CASE : Optional[Any] = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def A__ (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} _lowerCAmelCase = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] _lowerCAmelCase = evaluate(dataset=lowerCamelCase , predictions=lowerCamelCase ) return score
317
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
1
"""simple docstring""" SCREAMING_SNAKE_CASE : int = '''Tobias Carryer''' from time import time class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=int(time() ) ): # noqa: B008 '''simple docstring''' _lowerCAmelCase = multiplier _lowerCAmelCase = increment _lowerCAmelCase = modulo _lowerCAmelCase = seed def A__ (self ): '''simple docstring''' _lowerCAmelCase = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. SCREAMING_SNAKE_CASE : Dict = LinearCongruentialGenerator(1_6_6_4_5_2_5, 1_0_1_3_9_0_4_2_2_3, 2 << 3_1) while True: print(lcg.next_number())
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE : Any = (7_2_0, 1_2_8_0) # Height, Width SCREAMING_SNAKE_CASE : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE : List[Any] = 1 / 1_0_0 SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = '''''' SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : Dict = 2_5_0 def __UpperCAmelCase ( ) -> None: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_dataset(snake_case_ , snake_case_ ) for index in range(snake_case_ ): _lowerCAmelCase = random.sample(range(len(snake_case_ ) ) , 4 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = update_image_and_anno( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , filter_scale=snake_case_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase = random_chars(32 ) _lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _lowerCAmelCase = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , snake_case_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowerCAmelCase = [] for anno in new_annos: _lowerCAmelCase = anno[3] - anno[1] _lowerCAmelCase = anno[4] - anno[2] _lowerCAmelCase = anno[1] + width / 2 _lowerCAmelCase = anno[2] + height / 2 _lowerCAmelCase = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(snake_case_ ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str ) -> tuple[list, list]: """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case_ , """*.txt""" ) ): _lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case_ ) as in_file: _lowerCAmelCase = in_file.readlines() _lowerCAmelCase = os.path.join(snake_case_ , F"""{label_name}.jpg""" ) _lowerCAmelCase = [] for obj_list in obj_lists: _lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) _lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 _lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 _lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case_ ) labels.append(snake_case_ ) return img_paths, labels def __UpperCAmelCase ( snake_case_ : list , snake_case_ : list , snake_case_ : list[int] , snake_case_ : tuple[int, int] , snake_case_ : tuple[float, float] , snake_case_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" _lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase = int(scale_x * output_size[1] ) _lowerCAmelCase = int(scale_y * output_size[0] ) _lowerCAmelCase = [] _lowerCAmelCase = [] for i, index in enumerate(snake_case_ ): _lowerCAmelCase = all_img_list[index] path_list.append(snake_case_ ) _lowerCAmelCase = all_annos[index] _lowerCAmelCase = cva.imread(snake_case_ ) if i == 0: # top-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCAmelCase = cva.resize(snake_case_ , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = bbox[2] * scale_y _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCAmelCase = cva.resize(snake_case_ , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = bbox[1] * scale_x _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = bbox[3] * scale_x _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCAmelCase = cva.resize( snake_case_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase = img for bbox in img_annos: _lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCAmelCase ( snake_case_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case_ ) for _ in range(snake_case_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
317
"""simple docstring""" from math import isqrt def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case_ , snake_case_ ): _lowerCAmelCase = False return [i for i in range(2 , snake_case_ ) if is_prime[i]] def __UpperCAmelCase ( snake_case_ : int = 10**8 ) -> int: """simple docstring""" _lowerCAmelCase = calculate_prime_numbers(max_number // 2 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
317
1
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( snake_case_ : int = 4 ) -> list[list[int]]: """simple docstring""" _lowerCAmelCase = abs(snake_case_ ) or 4 return [[1 + x + y * row_size for x in range(snake_case_ )] for y in range(snake_case_ )] def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(snake_case_ ) ) # OR.. transpose(reverse_column(matrix)) def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(snake_case_ ) ) # OR.. reverse_column(reverse_row(matrix)) def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(snake_case_ ) ) # OR.. transpose(reverse_row(matrix)) def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> list[list[int]]: """simple docstring""" _lowerCAmelCase = [list(snake_case_ ) for x in zip(*snake_case_ )] return matrix def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> list[list[int]]: """simple docstring""" _lowerCAmelCase = matrix[::-1] return matrix def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> list[list[int]]: """simple docstring""" _lowerCAmelCase = [x[::-1] for x in matrix] return matrix def __UpperCAmelCase ( snake_case_ : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) SCREAMING_SNAKE_CASE : Dict = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) SCREAMING_SNAKE_CASE : List[str] = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCamelCase ( __lowercase ): __UpperCamelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) __UpperCamelCase = 'CIDAS/clipseg-rd64-refined' __UpperCamelCase = 'image_segmenter' __UpperCamelCase = CLIPSegForImageSegmentation __UpperCamelCase = ['image', 'text'] __UpperCamelCase = ['image'] def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*lowerCamelCase , **lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase , return_tensors="""pt""" ) def A__ (self , lowerCamelCase ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase = self.model(**lowerCamelCase ).logits return logits def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = outputs.cpu().detach().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
317
1
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore SCREAMING_SNAKE_CASE : List[str] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" SCREAMING_SNAKE_CASE : List[str] = [file for file in filepaths if file != file.lower()] if upper_files: print(F'{len(upper_files)} files contain uppercase characters:') print('''\n'''.join(upper_files) + '''\n''') SCREAMING_SNAKE_CASE : Optional[Any] = [file for file in filepaths if ''' ''' in file] if space_files: print(F'{len(space_files)} files contain space characters:') print('''\n'''.join(space_files) + '''\n''') SCREAMING_SNAKE_CASE : str = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F'{len(hyphen_files)} files contain hyphen characters:') print('''\n'''.join(hyphen_files) + '''\n''') SCREAMING_SNAKE_CASE : Optional[int] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'{len(nodir_files)} files are not in a directory:') print('''\n'''.join(nodir_files) + '''\n''') SCREAMING_SNAKE_CASE : str = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
317
"""simple docstring""" from __future__ import annotations import queue class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None def __UpperCAmelCase ( ) -> TreeNode: """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) _lowerCAmelCase = input("""Enter the value of the root node: """ ).strip().lower() _lowerCAmelCase = queue.Queue() _lowerCAmelCase = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() _lowerCAmelCase = F"""Enter the left node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = left_node q.put(snake_case_ ) _lowerCAmelCase = F"""Enter the right node of {node_found.data}: """ _lowerCAmelCase = input(snake_case_ ).strip().lower() or """n""" if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(snake_case_ ) ) _lowerCAmelCase = right_node q.put(snake_case_ ) raise def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = queue.Queue() q.put(snake_case_ ) while not q.empty(): _lowerCAmelCase = [] while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(snake_case_ ) _lowerCAmelCase = n.left # end of while means current node doesn't have left child _lowerCAmelCase = stack.pop() # start to traverse its right child _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: stack.append(snake_case_ ) _lowerCAmelCase = n.left _lowerCAmelCase = stack.pop() print(n.data , end=""",""" ) _lowerCAmelCase = n.right def __UpperCAmelCase ( snake_case_ : TreeNode ) -> None: """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not node: return _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def __UpperCAmelCase ( snake_case_ : str = "" , snake_case_ : int=50 , snake_case_ : Dict="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char _lowerCAmelCase , _lowerCAmelCase = divmod(width - len(snake_case_ ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) SCREAMING_SNAKE_CASE : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
317
1
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : __UpperCamelCase = 42 __UpperCamelCase = None # Automatically constructed __UpperCamelCase = "dict" __UpperCamelCase = None __UpperCamelCase = field(default='Translation' , init=__lowercase , repr=__lowercase ) def __call__(self ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ (self ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None # Automatically constructed __UpperCamelCase = "dict" __UpperCamelCase = None __UpperCamelCase = field(default='TranslationVariableLanguages' , init=__lowercase , repr=__lowercase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = sorted(set(self.languages ) ) if self.languages else None _lowerCAmelCase = len(self.languages ) if self.languages else None def __call__(self ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = set(self.languages ) if self.languages and set(lowerCamelCase ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(lowerCamelCase ) - lang_set ) )}) are not in valid set ({", ".join(lowerCamelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCAmelCase = [] for lang, text in translation_dict.items(): if isinstance(lowerCamelCase , lowerCamelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _lowerCAmelCase , _lowerCAmelCase = zip(*sorted(lowerCamelCase ) ) return {"language": languages, "translation": translations} def A__ (self ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
317
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(lowerCamelCase ), len(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE : Any = '''ABAABA''' SCREAMING_SNAKE_CASE : Optional[int] = '''AB''' SCREAMING_SNAKE_CASE : str = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
317
1